NEWTS1.0: Numerical model of coastal Erosion by Waves and Transgressive Scarps
Rose V. Palermo1,2, J. Taylor Perron3, Jason M. Soderblom3, Samuel P. D. Birch1, Alexander G. Hayes4, Andrew D. Ashton5

1 U. S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida 33701, USA
2 MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, MA, USA
3 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
4 Department of Earth, Atmospheric and Planetary Sciences, Cornell University, Cambridge, MA, USA
5 Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

Correspondence to: Rose V. Palermo (rpalermo@usgs.gov)

Abstract: Models of rocky coast erosion help us understand the physical phenomena that control coastal morphology and evolution, infer the processes shaping coasts in remote environments, and evaluate risk from natural hazards and future climate change. Existing models, however, are highly complex, computationally expensive, and depend on many input parameters; this limits our ability to explore planform erosion of rocky coasts over long timescales (100s to 100,000s of years) and a range of conditions. In this paper, we present a simplified cellular model of coastline evolution through uniform erosion and wave-driven erosion. Uniform erosion is modeled as a constant rate of retreat. Wave erosion is modeled as a function of fetch, the distance over which the wind blows to generate waves, and the angle between the incident wave and the shoreline. This reduced complexity model can be used to evaluate how a detachment-limited coastal landscape reflects climate, sea level history, material properties, and the relative influence of different erosional processes.

1 Introduction

Rocky coastlines are erosional coastal landforms resulting from the landward transgression of a shoreline through bedrock. They make up approximately 80% of global coasts (Emery and Kuhn, 1980) and often erode slowly through the impact of waves (Adams et al., 2002, 2005), abrasion by sediment (Sunamura, 1976; Robinson, 1977; Walkden & Hall, 2005; Bramante et al., 2020), and chemical weathering (Sunamura, 1992; Trenhaile, 2001). Rocky coastlines protect coastal communities from erosion and flooding, provide sediment for estuaries, marshes, and beaches, serve as important habitats (such as kelp forests), and support tourism economies.

The imprint that each erosional mechanism leaves on the shoreline may be further complicated by sea-level changes, accumulation and redistribution of sediment, heterogeneities in the bedrock, or climate forcings. Wave-driven erosion occurs at a rate proportional to the wave power (Huppert et al., 2020). Therefore, over long time scales, waves tend to erode more exposed parts of coastlines preferentially, blunting headlands while preserving the shapes of sheltered embayments. Uniform erosional processes, like dissolution or mass backwasting, erode at a nearly uniform rate everywhere along a coastline and result in smooth, rounded coastal features punctuated by skewed, pointy promontories or headlands (Howard, 1995).
Although the relative influence of uniform erosion processes, such as dissolution, and wave-driven erosion are still being quantified (Trenhaile, 2015), the shape of coastlines may offer a means to infer dominant processes in remote environments where in situ measurements are impractical. One such example are arctic coats, where local field data are sparse. A reduced complexity model of long-term, planform evolution of erosion-dominated coasts can provide insights about the importance of wave erosion relative to uniform erosion, such as backwasting of permafrost (Günther et al., 2013). Here, we present a reduced-complexity model of detachment-limited coastal erosion by uniform erosion and wave erosion. We test the model by comparing our numerical solution of erosion with an analytical solution and test for model result sensitivity to grid resolution and input parameters.

2 Background

2.1 Previous Models of Coastal Erosion

2.1.1 Models of uniform erosion

Shorelines formed by dissolution in karst landscapes have received some attention, mostly in the context of cave collapse features or sinkholes (Johnson, 1997; Martinez et al., 1998, Yechieli et al., 2006). However, most research has focused on the initial formation of these features; studies of the long-term retreat of coastlines due to dissolution are focused on the meter-scale erosion of coastal notches through mechanical and biochemical erosion and by dissolution (Trenhaile 2013; Trenhaile, 2015) and to our knowledge have not been evaluated over a larger spatial scale. Howard (1995) modeled the retreat of a closed basin scarp as a uniform erosion process. Howard’s approach identifies gridded domain points as either interior or exterior to the escarpment and erodes the escarpment edge at a constant rate in all directions originating from adjacent points (Howard, 1995). In his model experiments, the escarpment retreats uniformly toward the interior of the domain from the exterior. This uniform scarp retreat is analogous to coastline retreat in response to dissolution of a uniform substrate. Although Howard’s model was designed for a different, subaerial system, uniform erosion of a lake shoreline can be described with the same process law, as we assume the planform lake shoreline also erodes at the same rate in all directions.

2.1.2 Models of wave-driven erosion

Models of rocky-coastline geomorphology have historically focused on the erosion of the cross-shore profile through sea-level rise (Walkden and Hall, 2005; Young et al., 2014), wave impacts (Adams et al., 2002, 2005; Huppert et al., 2020), and the competing effects of sediment abrasion and sediment cover (Kline et al., 2014; Young et al., 2014; Sunamura 2018; Trenhaile, 2019). But recent work has explored the alongshore variability (Walkden and Hall, 2005) and planform evolution of these features (Limber & Murray, 2011; Limber et al., 2014; Sunamura, 2015; Palermo et al., 2021), with particular focus on either the relationship between planform morphology and retreat rates following storms (Palermo et al., 2021) or the persistence of an equilibrium coastline shape consisting of headlands interspersed with pocket beaches due to...
variable lithology, grain size, or sediment tools and cover (Trenhaile, 2016; Limber & Murray, 2011; Limber et al., 2014).

Existing models of planform erosion of rocky beaches include 1) a mesoscale (1 to 100 years) alongshore-coupled cross-shore profile model, SCAPE (Walkden and Hall, 2005), in which waves erode the substrate when the substrate is not armored by sediment and sediment is transported by waves using linear wave theory; 2) a numerical model of sea-cliff retreat that focuses on the mechanical abrasion of a notch at the cliff toe and subsequent failure of the cliff and sediment comminution in the surf zone (Kline et al., 2014); and 3) a numerical model of headlands and pocket beaches that takes into account wave energy convergence/divergence and the processes of sediment production and redistribution by waves (Limber at al., 2014).

Previous work on marsh-shoreline erosion considers the heterogeneity of substrate erodibility using a percolation theory model (Leonardi & Fagherazzi, 2015). In this system, low wave energy conditions lead to patchy failure of large marsh portions, resulting in a strong dependence on the spatial distribution of substrate resistance. In contrast, high-wave-energy conditions cause the shoreline to erode uniformly, such that the spatial heterogeneity in marsh erodibility does not influence the erosion rate (Leonardi & Fagherazzi, 2015). This ignores variations in fetch, which can be important for rocky coastal systems.

These previous process-based models are all computationally expensive and require specific knowledge of sediment and wave characteristics to accurately apply at local scales. To model systems for which minimal field data are available, or to explore the general behavior of planform erosion in rocky coasts under a broad range of conditions, a reduced-complexity model (Ranasinghe, 2020) is necessary.

3 Model

We developed the Numerical model of coastal Erosion by Waves and Transgressive Scars, V1.0 (NEWTS1.0) (Palermo et al., 2023) to study the planform-shoreline erosion of detachment-limited coasts by waves, uniform erosion, or a combination of these processes. This reduced-complexity model can be used to explore long-term (1000s-10,000s of years) trends in landscape evolution that result from these processes. Uniform erosion includes dissolution or mass backwasting and is modeled with a spatially uniform rate of shoreline retreat, which generally smooths the coastline but generates cuspat e points where promontories are eroded. Wave erosion occurs in proportion to the wave energy that the coastline is exposed to and to the angle of incidence of the incoming waves, such that the erosion rate depends on the wave energy in the cross-shore direction per unit of length along the coast (Komar, 1997; Ashton & Murray, 2009; Huppert et al., 2020). Coastlines that have larger exposure to the lake (larger fetch) experience higher wave energy and therefore faster wave erosion. We model this energy-dependent erosion by computing the fetch of every incident wave angle that may impact a given point on the shoreline and weighting this fetch by the cosine of the angle between the incident wave crests and the shoreline. Mathematically, this is equivalent to the dot product of the direction of wave travel and the direction normal to the shoreline.

3.1 General description and model setup

3.1.1 Model domain and structure
3.1.1.1 Model domain

The domain of the model (Fig. 1) is a grid discretized into \(N_x \) cells in the \(x \) direction and \(N_y \) cells in the \(y \) direction, with cell spacings \(\Delta x \) and \(\Delta y \), such that \(x_i = i \Delta x \) and \(y_j = j \Delta y \). The value of each grid cell, \(z_{ij} \), corresponds to the landscape elevation. The boundaries of the grid are periodic. Each cell in the domain is defined as either liquid or land based on its elevation relative to sea level. Cells below sea level are fixed and do not erode. Shoreline cells, defined as land cells directly adjacent to liquid, may be eroded by coastal processes through uniform erosion and wave erosion. Sea level is an input to the system that the user can vary throughout a model run.

3.1.1.2 Identification of lake and shoreline cells

Boundaries in the grid are identified using pixel connection definitions of either 4-connected or 8-connected cells. Liquid cells that are 8-connected to each other comprise the same lake. Islands are defined as groups of land cells that are surrounded by liquid cells. Lakes can also occur inside islands and islands inside these lakes, so we define a lake hierarchy to identify and model each lake individually. The first level in this hierarchy is the land that is connected to the border of the domain. First order lakes are lakes that are immediately surrounded by this land that extends to the border of the domain. A first order island is immediately surrounded by a first order lake. A second order lake is surrounded by a first order island, and so on. This continues such that Nth-order islands are surrounded by Nth-order lakes, and Nth-order lakes are surrounded by N-minus-one-order islands. This hierarchy allows us to identify and isolate unique lakes, which will be important when we consider wave-driven erosion.

3.1.1.3 Cellular grid erosion

Each cell starts with an initial strength, \(S_{\text{init}} \), (see Sections 3.1.3 to 3.3) which is depleted according to a rate law associated with each coastal process until reaching 0 (see Sections 3.2 and 3.3), at which point the cell erodes. Coastal erosion occurs on shoreline cells, defined as land cells adjacent to liquid cells, and decreases the elevation of those cells by a specified depth of erosion, \(d_e \), which is user specified. For cells eroded by coastal processes, \(z(t) = z(t - 1) - d_e \), where \(t \) is model time. For uniform erosion, \(d_e \) is conceptualized as the scarp dissolution depth. For wave erosion, \(d_e \) is conceptualized as a wave base. Shoreline cells become lake cells once eroded. To avoid numerical artifacts associated with the time discretization, the timestep must be set such that the amount of erosion per iteration is a small fraction of the total cell size.
In practice, we set the time step to erode less than 1/10th of a cell at a given time given the cell spacing and rate law. The model run terminates if a lake cell becomes adjacent to a boundary cell because the wave erosion model requires a closed coastline.

3.1.1.4 Order of operations

During each timestep, erosion occurs according to three steps, if enabled: 1) Sea-level Change, 2) Wave Erosion, and 3) Uniform Erosion (Fig. 2). Here we describe the general model components and simulation procedure. The governing equations for Uniform Erosion and Wave erosion are outlined in more detail in sections 3.2 and 3.3, respectively.

The first operation of the model is sea-level change. The sea level changes as an input rate or according to an input sea-level curve. The new sea level is used to define the lake(s) and shoreline(s) (Section 3.1.1.2 and 3.1.2).

Next, wave erosion of the shoreline(s) occurs as a function of the fetch—the open-water distance wind and waves travel before reaching a point on the coast—and the angle between the wave crests of the incident waves, \(\varphi \), and the azimuth of the shoreline, \(\theta \) (Section 3.3). In this module, the shoreline is first identified and traced such that shoreline cells are ordered in a counterclockwise direction. The shoreline is then used to calculate the shoreline angle, incident wave angle, and associated fetch at each cell along the shoreline (Section 3.3.1). The elevation of eroded shoreline cells is lowered, their labels are changed to liquid cells as appropriate, and the shoreline is updated (See Section 3.4, Fig 5). This approach considers sediment removal as

![Diagram of model structure showing the time loop in which the model 1) updates sea-level change, then calculates shoreline erosion due to 2) waves and 3) uniform erosion processes.](https://doi.org/10.5194/gmd-2023-223)

Preprint. Discussion started: 1 December 2023
© Author(s) 2023. CC BY 4.0 License.
instantaneous. Future variations of the model could consider the erosion also as a function of the height of the material being eroded or the excavation rate of weathered rubble.

Finally, uniform erosion of the updated shoreline occurs (Section 3.2). Here, the shoreline erodes as a function of the alongshore length of the shoreline as measured along cell boundaries (Section 3.1.2 and 3.2). And again, the elevation of eroded shoreline cells is lowered, the labels of eroded cells are changed to liquid cells, and the shoreline is updated.

3.1.2 Defining the shoreline

There are two options for defining shoreline cells: land cells that are either 4-connected to the lake (Fig. 3a) or 8-connected to the lake (Fig. 3b). We choose \(\Delta x \) and \(\Delta y \) to be small enough to represent the relevant features of the shoreline.

The shoreline cells need to be ordered so that the lake can be represented as a polygon for the fetch computation. To order the shoreline cells in closed loops, we start at the first indexed shoreline cell of the longest shoreline and move counterclockwise to find the next shoreline cell. Once a sequence of the first 3 cells is repeated, the loop is closed and the shoreline is deemed complete. Any remaining shoreline cells that do not lie on this loop represent the shoreline of a separate first-order lake, or of an island or higher order lake contained within the lake. Next,
ordering the shorelines of the islands contained within the current lake begins on the first remaining shoreline cell. We repeat this process until all land cells bordering liquid are included in a closed shoreline. When there are multiple first-order lakes in a landscape domain, the shorelines for each lake and its enclosed islands are ordered one at a time.

3.1.3 Cell strength and coastal erosion processes

All cells start with an initial strength, S_{init}, which represents how difficult it is to erode the land (Equation 1). We model the domain as having uniform strength, but this could easily be extended to a scenario with heterogeneous strength. The strength of a cell is initialized as a reference strength, S_0, multiplied by the ratio between the cell area, $A = \Delta x \Delta y$, and a reference cell area, $A_0 = \Delta x_0 \Delta y_0$, with reference spacing Δx_0 and Δy_0 (Equation 1). The reference strength and area nondimensionalize strength and maintain proportions that mitigate discretization bias. The magnitude of these values can be chosen by the user.

$$S_{\text{init}} = S_0 \frac{A}{A_0}$$

Strength is lost from each shoreline cell at a rate that depends on the exposed perimeter of the cell and an erosion rate law specific to either uniform erosion or wave erosion processes. Change in strength is grid-independent for grids sufficiently fine to satisfy model stability because the strength is initialized with a reference cell area in proportion to the parameterized cell area. To mitigate discretization bias, Δx, Δy, and Δt must be sufficiently small that Δt is less than the time to completely erode a cell (See Sections 3.2 and 3.3), and that Δx and Δy properly represent the shoreline morphology. In practice, we choose Δx to be equal to Δy.

As time progresses, each shoreline cell loses strength until failure, $S_{\text{fail}} = 0$, at which point the cell has eroded. It is possible for the strength loss in one time step to exceed the remaining strength of the cell. When this occurs, the excess time spent eroding the cell is passed along to all new shoreline neighbors of the eroded cell, representing the time of erosion that neighboring cell will incur after the erosion of the original shoreline. If a new shoreline cell is inheriting excess time from multiple neighbors, the mean excess time is used to compute the strength loss. In our simulations, taking the mean of the excess time resulted in the least grid bias.

Modeled erosion could be underestimated or redistributed improperly if the strength loss for an eroding cell is consistently large relative to the initial strength of the domain. The shoreline would then not update with the newly exposed cells, rather constantly passing strength loss to its neighbors, and inaccurately characterizing the morphology. We implement a sub-timestep routine to capture the effect of the changing shoreline within a single timestep when the strength loss of any shoreline cell in the domain exceeds a certain threshold of the initial strength, α, which ranges between 0 and 1. In the modified time-step routine, the damage is computed and the shoreline updated in sub-timesteps, which segments the time-step and allows erosion to occur in smaller increments.

3.2 Uniform erosion model

The rate of shoreline retreat by uniform erosion is set by an erodibility coefficient, k_{uniform} (Eq. 2). Strength loss due to uniform erosion occurs as a function of the amount of shoreline in contact with the lake for a given cell, represented as the number of 4-connected
sides, \(s_c \), and 8-connected corners, \(c \), in contact with lake cells (Eq. 3; Fig. 3). Because the diagonal of the cell is longer than the side by a factor of \(\sqrt{2} \), it would take \(\sqrt{2} \) times longer for a shoreline to retreat across a cell diagonal than in the perpendicular direction. To correct for this in our model, the strength loss computed from an exposed corner is \(\sqrt{2}/2 \) as much as the strength lost from an exposed side.

\[
\frac{ds_{ij}}{s_0} = -k_{uniform} \left(s_c + \frac{\sqrt{2}}{2} \right) \frac{dx}{dx_0} \Delta t, \tag{3}
\]

3.3 Wave erosion model

Wave erosion occurs at a rate determined by a wave erodibility coefficient, \(k_{wave} \) [m \(\cdot \) yr\(^{-1} \)], and the wave energy flux in the cross-shore direction, \(E \) (Eq. 4). The wave energy flux depends on the wave height, \(H \), and the angle between the wave crests of the incident waves, \(\phi \), and the azimuth of the shoreline, \(\theta \) (Eq. 5). Wave height scales with fetch, \(F \), such that \(H \propto \sqrt{F} \) (Hasselmann, 1973; Smith and Waseda, 2008). Therefore, we use fetch to approximate the wave energy density for a wave from a given direction on a coastline (Eq. 6).

\[
\frac{dx}{dt} = k_{wave} E, \tag{4}
\]

\[
E = \frac{1}{16} \rho g H^2 \cos (\phi - \theta), \tag{5}
\]

\[
E \propto \rho g F \cos (\phi - \theta), \tag{6}
\]

The strength loss of a cell due to waves can be described as

\[
\frac{ds_{ij}}{s_0} = -k_{wave} \left(s_c + \frac{\sqrt{2}}{2} \right) \int_{\phi=0}^{\phi=2\pi} F(\phi) \cos (\phi - \theta) d\phi \frac{dx}{dx_0} \Delta t. \tag{7}
\]

If the strength loss in a time step exceeds a parameter-set threshold, a sub-timestep routine is implemented. Because the fetch calculation is the costliest step of the model, in this sub-timestep routine, we estimate the fetch weighting by interpolating the fetch of the nearest neighbor shoreline cells. This avoids additional costly fetch computations during the sub-timestep updates and allows us to approximate erosion driven by waves in a way that limits error without slowing down the model simulation.

3.3.1 Modeling wave energy density

The rate of strength loss of each shoreline cell is proportional to the wave energy density. We model the wave energy density to be proportional to the fetch and the cosine of the angle between the incident wave crest and the shoreline (Fig. 4). To compute this quantity, we measure the fetch in all directions around the shoreline, in increments of \(d\phi \), for each shoreline cell. For each direction, we extend a ray from the cell center in the direction \(90^\circ - \phi \) and step along the ray in increments of a distance \(\delta \) until reaching the opposite shore. When the ray extends past the opposite shoreline, we take one step back and define this point as the intersection. The distance
between this intersection and the originating shoreline cell center is the fetch in the direction
from which a wave would propagate (Fig 4b). To calculate the amount of strength loss each cell
incurs, we compute the area of a polygon defined by the ray-shoreline intersections for that cell
(Fig. 4a). We call this area the “fetch area.” The length of the ray in each direction is then
weighted by the cosine of the angle between the shoreline and the incident wave crest, $\phi - \theta$
(Fig. 4a). The area of the polygon defined by these cosine-weighted fetch lengths is computed
and called the “wave area.” The wave area for each point on the shoreline approximates the
integral in Eq. 7.

Figure 4: a) Fetch area (black) and wave area (white) computed for a point (red circle) on a
typical model shoreline (blue). The area shown in b) is outlined in red. b) Zoomed-in view of
fetch line-of-sight rays (black) and angle-weighted line-of-sight rays (white) computed for the
same point. In this example, $d\phi = 2^\circ$ and the ray step size, $\delta = 0.05$ m.

3.4 Model output

The model can be initialized with any user defined topographic model. In the simulations
presented here, we initialize the grid with a synthetic topography consisting of a pseudo-fractal
surface with variance of 10,000 superimposed on an elliptical depression with a depth of 25% of
the domain relief and eroded by river incision to 95% of the initial terrain relief using a
landscape evolution model (Perron et al., 2008, 2009, 2012). We then flood the domain by
raising sea level by 40 m. The model of shoreline retreat by uniform and wave erosion is then
applied to the domain. Here, we show examples of an initial landscape eroded by either wave
erosion or uniform erosion, to illustrate separately the effects of the two erosional mechanisms in
the model (Fig. 5). However, all model components may be run in combination. We do not
provide examples of combined uniform and wave erosion models here.
The initial shoreline exhibits a dendritic shape due to flooding of the incised river valleys (Fig. 5). Through time, the uniform erosion model drives shoreline retreat at the same rate everywhere around the perimeter of the lake, resulting in widening valleys and increasing the pointedness of promontories or headlands (Fig. 5). The overall shape of the lake is maintained, but becomes smoother and tends toward circular. In the case of wave erosion, the river valleys erode slowly while the exposed parts of the coast erode more rapidly (Fig. 5). The embayed river valleys largely maintain their shapes, whereas the central, high-fetch portion of the lake grows larger and smoother.

Figure 5: Shaded relief maps of example model simulations of uniform erosion and wave erosion through time, starting from the same initial condition. Blue color indicates liquid cells, with darker blues indicating deeper depths. Gold color indicates land cells, with lighter shades indicating higher elevations. Black lines trace shorelines. Erodibility coefficients are $k_{\text{wave}} = k_{\text{uniform}} = 0.00001$ m·yr$^{-1}$. Uniform erosion (top) results in greater overall smoothness that is punctuated by pointy headlands, whereas wave erosion (bottom) results in blunted headlands, smooth open sections of coast, and preservation of sharp features in sheltered areas. Landscape time-steps shown correspond to similar amounts of erosion between wave and uniform examples.

Because the long-term retreat of bedrock coastlines is generally too slow to be measurable with historical aerial and satellite images, the data needed to fully validate this model are not presently available. Nonetheless, a visual comparison can be drawn between coastal features found on Earth and the coastline shapes generated by each end-member erosional mechanism in the model, which is the main goal of our modeling approach. Instances of dissolution and backwasting include karst lakes found in the Plitvice Lakes, Croatia (Fig. 6d) and in Florida, USA (Fig. 6a) as well as scarp retreat due to weathering and backwasting, such as Caineville Mesa, Utah, USA (Fig. 6b). These shorelines exhibit the same overall smoothness,
punctuated by sharp headlands, as is seen in the shorelines formed by uniform erosion in our model (Fig. 5).

A bedrock lake that has been eroded recently by waves is exemplified by Lake Rotoehu, New Zealand (Fig. 6c). In these examples, we observe blunted headlands and smooth, rounded stretches in open sections of coast, and crenulated shorelines in more protected areas of coast – similar to the shorelines formed by wave erosion in our model (Fig. 5).

Figure 6: a) Karst lakes in Florida, USA (Map Data: © Google Earth, Landsat/Copernicus). Lake Butler and the surrounding region. b) Caineville Mesa, Utah, USA (Map Data: © Google Earth, Landsat/Copernicus). c) Lake Rotoehu, New Zealand (Map Data: © Google Earth, CNS/Airbus). d) Plitvice Lakes, Croatia (Map Data: © Google Earth, DigitalGlobe).

4 Model tests

4.1 Comparison with analytical solution and sensitivity to shoreline connectedness

For the simple case of an initially circular shoreline, we compute the shoreline evolution analytically and compare this known solution with our numerical model results. For the uniform erosion case, the rate at which the radius of a circle increases, \(\dot{r} \), is equal to the constant of erosion, in this case \(k_{unif orm} \).

\[
\dot{r}(t) = k_{unif orm} \quad (8)
\]

Therefore, the radius, \(r \), at time, \(t \), and initial radius, \(r_0 \), for uniform erosion is:

\[
r(t) = r_0 + k_{unif orm}t \quad (9)
\]

For wave erosion, the rate of increase of the radius, \(\dot{r} \), depends on the constant of erosion, \(k_{wave} \), and the integral of the fetch, \(F \), at each angle between the incoming wave crest and the shoreline, \((\varphi - \theta) \) in all directions around the circle:

\[
F(\varphi) = r \sqrt{2(1 + \cos(2(\varphi - \theta)))} \quad (10)
\]
\[
\dot{r}(t) = \frac{k_{\text{wave}}}{2} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} (F(\phi)\cos(\phi - \theta))^2 d\phi
\]

(11)

Computing this integral simplifies to:

\[
r(t) = k_{\text{wave}} \frac{3\pi}{4} r(t)^2
\]

(12)

Therefore, the radius, \(r \), at time, \(t \), for wave erosion is:

\[
r(t) = \frac{r_0}{1 - r_0 k_{\text{wave}} \frac{3\pi}{4} t}
\]

(13)

We use the analytical solution for the radius through time for each case to calculate the shoreline position and area of the circular lake as it is eroded by either uniform or wave erosion. To compute the relative error of the numerical model, a test circular lake is eroded for 17,400 years, resulting in approximately 20% and 25% increase in lake area for wave and uniform erosion, respectively, and compare this to the analytical solution.

Because the model operates on a rectangular grid, some amount of distortion of a circle is expected. While this distortion cannot be avoided entirely by increasing the grid resolution, increasing it can reduce the error in the shoreline shape by allowing the shoreline to retreat in finer increments. A fine grid, however, comes at increased computational cost. The spatial resolution, \(\Delta x \) and \(\Delta y \), should be chosen to be small enough to represent the features of the shoreline, but large enough to keep computational costs reasonable.

We perform these simulations for uniform and wave erosion with both 8-connected and 4-connected versions of the model (Fig. 3). The 8-connected model performs significantly better than the 4-connected model, as shown by the relative error in lake area. The 8 connected case maintains relative error less than 2% throughout the simulation whereas the error in the 4-connected model increases roughly linearly with time, ending at approximately 7% (Fig. 7a). The distortion is worse in the 4-connected case for both uniform erosion and wave erosion, and systematically worse in the diagonal directions (Fig. 7b,c). This analysis suggests that grid bias is a more important source of error in the model than spatial discretization.
Figure 7: a) The error in lake area through time of an initially circular lake relative to the analytical solution for 8-connected (solid) and 4-connected (dotted) models of uniform erosion (black) and wave erosion (blue). The initial condition (dashed), analytical solution (red), and modeled 8-connected and 4-connected shorelines at time=17400 are shown for b) uniform erosion and c) wave erosion, with zoomed in results shown for d) uniform erosion and e) wave erosion.

4.2 Resolution sensitivity

4.2.1 Grid resolution

Although the grid resolution affects the size of the features that can be resolved in the landscape, it does not substantially affect the amount of coastal erosion. As discussed above, the strength loss in this model is insensitive to grid resolution, Δx, and time step, Δt, assuming that Δx is fine enough to resolve the features of interest and that Δt is small enough to limit erosion to less than the maximum cell strength in a single time step. The total amount of strength in the domain is independent of Δx because the number of cells is proportional to Δx^{-2} and the strength of each cell is proportional to Δx^2. The damage in each time step is independent of Δx because the number of cells on the shoreline is proportional to Δx^{-1} and the damage per cell is proportional to Δx.

4.2.2 Threshold strength parameter
The threshold strength parameter, α, was introduced to prevent excess strength reduction from being neglected when a cell has less strength than is depleted in a timestep. A smaller threshold strength parameter results in a more frequent application of the sub-timestep routine and smaller sub-timesteps. With a less stringent threshold strength parameter (>0.05), the shoreline may erode more than the analytical solution in a time step, leading to a positive slope in the relative error in strength against the threshold strength parameter (Fig. 8).

Figure 8: Error in total strength reduction as a function of the threshold strength parameter, expressed as a percentage of the error for the smallest value of the threshold strength parameter, for a typical model lake (the initial condition in Fig. 5) eroded over one time step by uniform erosion (black) and wave erosion (blue).

4.3 Fetch ray angular and distance increments

We test the sensitivity of the fetch-area calculation to the angle between rays, $d\varphi$, and the ray step size, δ. This test allows us to analyze the error in fetch of a typical model due to these parameters. The error measurements provide a basis for selecting an angle between rays and a ray step size that optimize the trade between computational time and model accuracy.

We compute the error in fetch area over a range of ray angles and step sizes. With a fixed ray step size of 0.05 Δx (the nominal step sized used in our simulations), we compute the fetch error for each shoreline cell over a range of 0.012° to 10°, corresponding to 30,000 and 36 rays, respectively. With a fixed ray angle of 2° (the nominal ray angle used in our simulations), we compute the relative fetch error over a range of ray step sizes between 0.01Δx to Δx. The fetch-area error of each cell is computed relative to the fetch area of the finest resolution in each parameter: 2° between rays and a ray step size of 0.05Δx (Fig. 9). The error, as well as the standard deviation in errors, in each scenario converges to zero, indicating that as the angle between rays and the ray step size become small the fetch area converges to a constant value.
5 Discussion and Conclusions

In this paper, we present NEWTS1.0, a cellular model of coastline erosion in detachment-limited environments by uniform erosion and by wave erosion. For uniform erosion, the coastline erodes at a constant rate everywhere along the shoreline. For wave-driven erosion, the coastline erodes as a function of the fetch and the angle between the incident waves and the shoreline.

While our uniform erosion rate law is similar to that of Howard (1995), our modeling approach is different. Because there are multiple mechanisms that may erode a coast in our model, memory of the strength loss of the substrate is necessary. Rather than rays extending at a constant rate from the interior points representing retreat as is done in Howard’s 1995 model, the strength of shoreline (or scarp edge) points is reduced by an amount proportional to the number and direction of neighboring lake cells. Our wave erosion model contains a dependence on wave power like in other models (Walkden and Hall, 2005; Limber et al., 2014), but simplifies the influence of sediment and other factors to a constant. This simplification is useful for locations without readily available grain size or sediment cover data, and to investigate the long-term influence of these processes. Our model is also unusual among coastal erosion models in that it evaluates multiple closed coastlines (or lakes) in a landscape domain rather than a single reach of open coastline, and that it focuses on the planform morphology of eroding rocky closed-basin shorelines. A limitation of this model is that sediment redistribution is not included in the erosion rate laws and there is no sedimentation along the coast. Sediment abrasion and cover could be incorporated in future versions of our model through a spatially heterogeneous and time-dependent erodibility coefficient, k; however, this would likely require parameterization from field data.

As a reduced-complexity model, NEWTS1.0 can be applied to investigate coastal systems in remote environments where field work is difficult or impossible. This includes locations such as the arctic or Saturn’s moon Titan, home to the only other active coastlines in
our solar system. The simplicity of our model allows for efficient, long-term simulations of
coupled landscape evolution and coastal erosion in detachment-limited systems. Among coastal
systems on Earth, investigations of fetch dependence and the resulting morphology given a
combination of erosional mechanisms would be particularly relevant to the carbonate
geomorphology community, as dissolution and wave activity are both often acting
simultaneously along these coasts.

Acknowledgments
We thank David Mohrig, Di Jin, Heidi Nepf, Jorge Lorenzo-Trueba, Santiago Benavides,
and Paul Corlies for helpful discussions. Any use of trade, firm, or product names is for
descriptive purposes only and does not imply endorsement by the U.S. Government.

Funding:
National Science Foundation Graduate Research Fellowship grant 1745302 (RVP)
NASA Cassini Data Analysis Program grants 80NSSC18K1057 and 80NSSC20K0484
(RVP, JTP, ADA, JMS, SPDB, AGH).
United States Geological Survey, Coastal and Marine Hazards Research Program (RVP)
Heising-Simons Foundation (SPDB)

Author contributions:
Conceptualization: RVP, JTP, ADA, JMS, SPDB, AGH
Methodology: RVP, JTP, ADA, JMS
Investigation: RVP, JTP, ADA
Visualization: RVP
Supervision: JTP, ADA, AGH
Writing—original draft: RVP
Writing—review & editing: RVP, JTP, ADA, JMS, SPDB, AGH

Competing interests: Authors declare that they have no competing interests.

Code/Data availability: NEWTS1.0 model (Palermo et al., 2023) code is available at
https://doi.org/10.5066/P9Q6GDGP.

