Supplementary Material

GPU-HADVPPM4HIP V1.0: higher model accuracy on China's domestically GPU-like accelerator using heterogeneous compute interface for portability (HIP) technology to accelerate the piecewise parabolic method (PPM) in an air quality model (CAMx V6.10)

Kai Cao¹, Qizhong Wu¹,⁵, Lingling Wang², Hengliang Guo³, Nan Wang², Huaqiong Cheng¹,⁵, Xiao Tang⁴, Lina Liu³, Dongqing Li¹, Hao Wu³, and Lanning Wang¹,⁵

¹College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
²Henan Ecological Environmental Monitoring Centre and Safety Center, Henan Key Laboratory of Environmental Monitoring Technology, Zhengzhou 450008, China
³National Supercomputing Center in Zhengzhou, Zhengzhou, 450001, China
⁴State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China
⁵Joint Center for Earth System Modeling and High Performance Computing, Beijing Normal University, Beijing, 100875, China

Correspondence to: Qizhong Wu (wqizhong@bnu.edu.cn); Lingling Wang (928216422@qq.com); Lanning Wang (wangln@bnu.edu.cn)

Figure S1. O₃ concentrations outputted by CAMx model for Fortran (F), HIP C(HIP), and HIP C with OpenMP (HIP_OMP) versions. Panels (a) is from Fortran version. Panels (b) is from HIP C version. Panels (c) is from HIP C with OpenMP version. Panels (d) is the output concentration differences of Fortran and HIP C versions. Panels (e) is the output concentration differences of HIP C and HIP C with OpenMP versions. Panels (f) is the output concentration differences of Fortran and HIP C with OpenMP versions.
Table S1. The physical and chemical numerical methods selected during CAMx model simulation.

<table>
<thead>
<tr>
<th>Process</th>
<th>Numerical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal advection</td>
<td>PPM (Colella and Woodward, 1984)</td>
</tr>
<tr>
<td>Vertical diffusion</td>
<td>K-theory 1<sup>st</sup> order closure</td>
</tr>
<tr>
<td>Aqueous-phase oxidation</td>
<td>Regional Acid Deposition Model (RADM-AQ, (Chang et al., 1987))</td>
</tr>
<tr>
<td>Inorganic aerosol thermodynamic partitioning</td>
<td>ISORROPIA (Nenes et al., 1999)</td>
</tr>
<tr>
<td>Gas-Phase Chemistry</td>
<td>Carbon Bond 2005 (Yarwood et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>EBI solver (Hertel et al., 1993)</td>
</tr>
</tbody>
</table>
Dry deposition

Resistance model for gases (Zhang et al., 2003)

and aerosols (Zhang et al., 2001)

Wet deposition

Scavenging model for gases

and aerosols (Seinfeld et al., 1998)

Reference

