Supplementary Material

GPU-HADVPPM4HIP V1.0: higher model accuracy on China's domestically GPU-like accelerator using heterogeneous compute interface for portability (HIP) technology to accelerate the piecewise parabolic method (PPM) in an air quality model (CAMx V6.10)

Kai Cao¹, Qizhong Wu^{1,5}, Lingling Wang², Hengliang Guo³, Nan Wang², Huaqiong Cheng^{1,5},
Xiao Tang⁴, Lina Liu³, Dongqing Li¹, Hao Wu³, and Lanning Wang^{1,5}
¹College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
²Henan Ecological Environmental Monitoring Centre and Safety Center, Henan Key Laboratory of Environmental Monitoring Technology, Zhengzhou 450008, China
³National Supercomputing Center in Zhengzhou, Zhengzhou, 450001, China
⁴State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China
⁵Joint Center for Earth System Modeling and High Performance Computing, Beijing Normal University, Beijing, 100875, China

Correspondence to: Qizhong Wu (<u>wqizhong@bnu.edu.cn</u>); Lingling Wang(<u>928216422@qq.com</u>); Lanning Wang (<u>wangln@bnu.edu.cn</u>)

Figure S1. O₃ concentrations outputted by CAMx model for Fortran (F), HIP C(HIP), and HIP C with OpenMP (HIP_OMP) versions. Panels (a) is from Fortran version. Panels (b) is from HIP C version. Panels (c) is from HIP C with OpenMP version. Panels (d) is the output concentration differences of Fortran and HIP C versions. Panels (e) is the output concentration differences of Fortran and HIP C versions. Panels (f) is the output concentration differences of Fortran and HIP C versions. Panels (f) is the output concentration differences of Fortran and HIP C versions. Panels (f) is the output concentration differences of Fortran and HIP C versions.

Table S1. The physical and chemical numerical methods selected during CAMx model simulation.

Process	Numerical Methods
Horizontal advection	PPM (Colella and Woodward, 1984)
Vertical diffusion	K-theory 1 st order closure
Aqueous-phase oxidation	Regional Acid Deposition Model
	(RADM-AQ, (Chang et al., 1987))
Inorganic aerosol	ISORROPIA (Nenes et al., 1999)
thermodynamic partitioning	
Gas-Phase Chemistry	Carbon Bond 2005 (Yarwood et al., 2005)
	EBI solver (Hertel et al., 1993)

Dry deposition	Resistance model for gases (Zhang et al., 2003)
	and aerosols (Zhang et al., 2001)
Wet deposition	Scavenging model for gases
	and aerosols (Seinfeld et al., 1998)

Reference

- Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J.: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation, Journal of Geophysical Research: Atmospheres, 92, 14681-14700, https://doi.org/10.1029/JD092iD12p14681, 1987.
- Colella, P. and Woodward, P. R.: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics, 54, 174-201, https://doi.org/10.1016/0021-9991(84)90143-8, 1984.
- Hertel, O., Berkowicz, R., Christensen, J., and Hov, Ø.: Test of two numerical schemes for use in atmospheric transport-chemistry models, Atmospheric Environment. Part A. General Topics, 27, 2591-2611, https://doi.org/10.1016/0960-1686(93)90032-T, 1993.
- Nenes, A., Pandis, S. N., and Pilinis, C.: Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models, Atmospheric Environment, 33, 1553-1560, https://doi.org/10.1016/S1352-2310(98)00352-5, 1999.
- Seinfeld, J. H., Pandis, S. N., and Noone, K. J. J. P. T.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 51, 88-90, 1998.
- Yarwood, G., Rao, S., Yocke, M., and Whitten, G.: Updates to the carbon bond chemical mechanism: CB05 final report to the US EPA, RT-0400675, 2005.
- Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in airquality models, Atmos. Chem. Phys., 3, 2067-2082, 10.5194/acp-3-2067-2003, 2003.
- Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmospheric Environment, 35, 549-560, https://doi.org/10.1016/S1352-2310(00)00326-5, 2001.