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Abstract. Graphics processing units (GPUs) are becoming a compelling acceleration strategy for 20 

geoscience numerical model due to their powerful computing performance. In this study, AMD’s 21 

heterogeneous compute interface for portability (HIP) was implemented to port the GPU 22 

acceleration version of the Piecewise Parabolic Method (PPM) solver (GPU-HADVPPM) from 23 

the NVIDIA GPUs to China’s domestically GPU-like accelerators as GPU-HADVPPM4HIP. 24 

Further, it introduced the multi-level hybrid parallelism scheme to improve the total computational 25 

performance of the HIP version of the CAMx (CAMx-HIP) model on China’s domestically 26 

heterogeneous cluster. The experimental results show that the acceleration effect of GPU-27 

HADVPPM on the different GPU accelerators is more apparent when the computing scale is more 28 
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extensive, and the maximum speedup of GPU-HADVPPM on the domestic GPU-like accelerator 29 

is 28.9 times. The hybrid parallelism with a message passing interface (MPI) and HIP enables 30 

achieving up to 17.2 times speedup when configuring 32 CPU cores and GPU-like accelerators on 31 

the domestic heterogeneous cluster. The OpenMP technology is introduced further to reduce the 32 

computation time of the CAMx-HIP model by 1.9 times. More importantly, by comparing the 33 

simulation results of GPU-HADVPPM on NVIDIA GPUs and domestic GPU-like accelerators, it 34 

is found that the simulation results of GPU-HADVPPM on domestic GPU-like accelerators have 35 

less difference than the NVIDIA GPUs. Furthermore, we also exhibit that the data transfer 36 

efficiency between CPU and GPU has a meaningful essential impact on heterogeneous computing 37 

and point out that optimizing the data transfer efficiency between CPU and GPU is one of the 38 

critical directions to improve the computing efficiency of geoscience numerical models in 39 

heterogeneous clusters in the future. 40 

1. Introduction 41 

Over recent years, GPUs have become a necessary part of providing processing power for 42 

high-performance computing (HPC) applications, and heterogeneous supercomputing based on 43 

CPU processors and GPU accelerators has become the trend of global advanced supercomputing 44 

development. The 61st edition of the top 10 list, released in June 2023, reveals that 80% of 45 

advanced supercomputers adopt heterogeneous architectures (Top500, 2023). The Frontier system 46 

equipped with AMD Instinct MI250X GPU at the Oak Ridge National Laboratory remains the 47 

only actual exascale machine with the High-Performance Linpack benchmark (HPL) score of 48 

1.194 Exaflop/s (News, 2023). How to realize large-scale parallel computing and improve the 49 

computational performance of geoscience numerical models on the GPU has become one of the 50 

significant directions for the future development of numerical models.  51 

Regarding the heterogeneous porting for air quality model, most scholars select the chemical 52 

module, one of the hotspots, to implement heterogeneous porting, and porting the computational 53 

process initially on the CPU processes to the GPU accelerator, to improve the computing 54 

efficiency. For example, Sun et al. (2018) used CUDA technology to port the second-order 55 

Rosenbrock solver of the chemistry module of CAM4-Chem to NVIDIA Tesla K20X GPU. They 56 
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achieved up to 11.7x speedup compared to the AMD Opteron™ 6274 CPU (16 cores) using one 57 

CPU core. Alvanos and Christoudias (2017) developed software that automatically generates 58 

CUDA kernels to solve chemical kinetics equations in the chemistry module for the global climate 59 

model ECHAM/MESSy Atmospheric Chemistry (EMAC), and performance evaluation shows a 60 

20.4x speedup for the kernel execution. Linford et al. (2011) presented the Kinetic PreProcessor 61 

(KPP) to generate the chemical mechanism code in CUDA language, which can be implemented 62 

on the NVIDIA Tesla C1060 GPU. The KPP-generated SAPRC’99 mechanism from the CMAQ 63 

model achieved a maximum speedup of 13.7x, and the KPP-generated RADM2 mechanism from 64 

the WRF-chem model achieved an 8.5x speedup both compared to the Intel Quad-Core Xeon 65 

5400 series CPU. Similarly, the advection module is also one of the hotspot modules in the air 66 

quality model. Cao et al. (2023) adopted the Fortran-C-CUDA C scheme and implemented a series 67 

of optimizations, including reducing the CPU–GPU communication frequency, optimizing the 68 

GPU memory access, and thread and block co-indexing, to increase the computational efficiency 69 

of the HADVPPM advection solver. It can achieve up to the 18.8x speedup on the NVIDIA Tesla 70 

V100 GPU compared to the Intel Xeon Platinum 8168 CPU. 71 

The CUDA technology was implemented to carry out heterogeneous porting for the 72 

atmospheric chemical models from the CPU processors to different NVIDIA GPU accelerators. In 73 

this study, the Heterogeneous-computing Interface for Portability (HIP) interface was introduced 74 

to implement the porting of GPU-HADVPPM from the NVIDIA GPU to China’s domestically 75 

GPU-like accelerators based on the research of Cao et al. (2023). The domestic GPU-like 76 

accelerator plays the same role as the NVIDIA GPU, which is also used to accelerate the 77 

advection module in the CAMx model, so we refer to it as a GPU-like accelerator. First, we 78 

compared the simulation results of the Fortran version CAMx model with the CAMx-CUDA and 79 

CAMx-HIP models, which were coupled with the CUDA and HIP versions of the GPU-80 

HADVPPM program, respectively. Then, the computing performance of GPU-HADVPPM 81 

programs on different GPUs were compared. Finally, we tested the total performance of the 82 

CAMx-HIP model with multi-level hybrid parallelization on China 's domestically heterogeneous 83 

cluster. 84 
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2. Model and experimental platform 85 

2.1. The CAMx model description and configuration 86 

The Comprehensive Air Quality Model with Extensions version 6.10 (CAMx v6.10; 87 

ENVIRON, 2014) is a state-of-the-art air quality model that simulates the emission, dispersion, 88 

chemical reaction, and removal of the air pollutants on a system of nested three-dimensional grid 89 

boxes (CAMx, 2023). The Eulerian continuity equation is expressed as shown by Cao et al. (2023): 90 

the first term on the right-hand side represents horizontal advection, the second term represents net 91 

resolved vertical transport across an arbitrary space and time-varying height grid, and the third 92 

term represents turbulent diffusion on the sub-grid scale. Pollutant emission represents both point 93 

source emissions and grided source emissions. Chemistry is treated by solving a set of reaction 94 

equations defined by specific chemical mechanisms. Pollutant removal includes both dry 95 

deposition and wet scavenging by precipitation.  96 

In terms of the horizontal advection term on the right-hand side, this equation is solved using 97 

either the Bott (1989) scheme or the Piecewise Parabolic Method (PPM) (Colella and Woodward, 98 

1984; Odman and Ingram, 1996) scheme. The PPM horizontal advection scheme (HADVPPM) 99 

was selected in this study because it provides higher accuracy with minimal numerical diffusion 100 

(ENVIRON, 2014). The other numerical schemes selected during the CAMx model testing are 101 

listed in Table S1. As described by Cao et al. (2023), the -fp-model precise compile flag which can 102 

force the compiler to use the vectorization of some computation under value safety, is 41.4% 103 

faster than the -mieee-fp compile flag, which comes from the Makefile of the official CAMx 104 

version with the absolute errors of the simulation results are less than ±0.05 ppbV. Therefore, the -105 

fp-model precise compile flag was selected when compiling the CAMx model in this research. 106 

2.2. CUDA and ROCm introduction 107 

Compute Unified Device Architecture (CUDA; NVIDIA, 2020) is a parallel programming 108 

paradigm released in 2007 by NVIDIA. CUDA is a proprietary application programming interface 109 

(API) and is only supported on NVIDIA’s GPUs. CUDA programming uses a programming 110 

language similar to standard C, which achieves efficient parallel computing of programs on 111 
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NVIDIA GPUs by adding some keywords. The previous study implemented CUDA technology to 112 

port the HADVPPM program from CPU to NVIDIA GPU (Cao et al., 2023). 113 

Radeon Open Compute platform (ROCm; AMD, 2023) is an open-source software platform 114 

developed by AMD for HPC and hyperscale GPU computing. The ROCm for the AMD GPU is 115 

generally equivalent to CUDA for NVIDIA GPU. The ROCm software platform uses the AMD’s 116 

HIP interface, a C++ runtime API allowing developers to run programs on AMD GPUs. In general, 117 

they are very similar, and their code can be converted directly by replacing the string “cuda” with 118 

“hip” in most cases. More information about HIP API is available on the AMD ROCm website 119 

(ROCm, 2023). Similar to AMD GPU, developers can also use the ROCm-HIP programming 120 

interface to implement programs running on China's domestically GPU-like accelerator. The 121 

CUDA code cannot run directly on domestic GPU-like accelerators and must be transcoded into 122 

HIP code. 123 

2.3. Hardware components and software environment of the testing system 124 

Table 1 lists four GPU clusters where we conducted the experiments, two NVIDIA 125 

heterogeneous clusters that have the same hardware configuration as Cao et al. (2023), and two 126 

China’s domestically heterogeneous clusters newly used in this research, namely “Songshan” 127 

supercomputer and “Taiyuan” computing platform. Two NVIDIA heterogeneous clusters are 128 

equipped with NVIDIA Tesla K40m and V100 GPU accelerators. Both domestic clusters include 129 

thousands of computing nodes, each contains one China’s domestically CPU processor, four 130 

China’s domestically GPU-like accelerators, and 128 GB of DDR4 2666 memory. The domestic 131 

CPU has four NUMA nodes, and each NUMA node has eight X86-based processors. The 132 

accelerator adopts a GPU-like architecture consisting of a 16 GB HBM2 device memory, and 133 

many compute units. The GPU-like accelerators are connected to the CPU with PCI-E, and the 134 

peak bandwidth of the data transfer between main memory and device memory is 16 GB/s.  135 

It is worth noting that the “Taiyuan” computing platform has been updated in three main 136 

aspects compared to the “Songshan” supercomputer. The CPU clock speed has been increased 137 

from 2.0 GHz to 2.5 GHz, the number of GPU-like computing units has been increased from 138 

3,840 to 8,192, and the peak bandwidth between main memory and video memory has been 139 
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increased from 16 GB/s to 32 GB/s. Regarding the software environment, the NVIDA GPU is 140 

programmed using the CUDA toolkit, and the domestic GPU-like is programmed using the 141 

ROCm-HIP toolkit developed by AMD (ROCm, 2023). More details about the hardware 142 

composition and software environment of the four heterogeneous clusters are presented in Table 1. 143 

Table 1. Configurations of the NVIDIA K40m cluster, NVIDIA V100 cluster, “Songshan” supercomputer, and 144 

“Taiyuan” computing platform.  145 

 Hardware components 

 CPU GPU 

NVIDIA K40m cluster Intel Xeon E5-2682 v4 CPU 

@2.5 GHz, 16 cores 

NVIDIA Tesla K40m GPU, 2880 CUDA 

cores, 12 GB video memory 

NVIDIA V100 cluster Intel Xeon Platinum 8168 CPU 

@2.7 GHz, 24 cores 

NVIDIA Tesla V100 GPU, 5120 CUDA 

cores, 16 GB video memory 

Songshan supercomputer China’s domestically CPU 

processor A, 2.0GHz, 32 cores 

China’s domestically GPU-like accelerator 

A, 3840 computing units, 16 GB memory 

Taiyuan computing platform China’s domestically CPU 

processor B, 2.5GHz, 32 cores 

China’s domestically GPU-like accelerator 

B, 8192 computing units, 16 GB memory 

 Software environment 

 Compiler and MPI Programming model 

NVIDIA K40m cluster Intel Toolkit 2021.4.0 CUDA-10.2 

NVIDIA V100 cluster Intel Toolkit 2019.1.144 CUDA-10.0 

Songshan supercomputer Intel Toolkit 2021.3.0 ROCm-4.0.1/ DTK-23.04 

Taiyuan computing platform Intel Toolkit 2021.3.0 DTK-23.04 

3. Implementation details 146 

This section mainly introduced the strategy of porting the HADVPPM program from CPU to 147 

NVIDIA GPU and domestic GPU-like accelerator, as well as the proposed multi-level hybrid 148 

parallelism technology to make full use of computing resources.  149 

3.1. Porting the HADVPPM program from CPU to NVIDIA GPU and domestic 150 

GPU-like accelerator 151 

Fig.1 shows the heterogeneous porting process of HADVPPM from CPU to NVIDIA GPU 152 

and domestic GPU-like accelerator. First, the original Fortran code was refactored using standard 153 

C language. Then, the CUDA and ROCm HIP technology were used to convert the standard C 154 

code into CUDA C and HIP C code to make it computable on the NIVIDA GPU and domestic 155 
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GPU-like accelerator. Similar to CUDA technology, HIP technology is implemented to convert the 156 

standard C code to HIP C code by adding related built-in functions (such as hipMalloc, 157 

hipMemcpy, hipFree, etc.). To facilitate the portability of applications across different GPU 158 

platforms, ROCm provides Hipify toolkits to help transcode. The Hipify toolkit is essentially a 159 

simple script written in the Perl language, and its function is text replacement, which replaces the 160 

function name in CUDA C code with the corresponding name in HIP C code according to specific 161 

rules. For example, the Hipify toolkit can automatically recognize and replace the memory 162 

allocation function cudaMalloc in CUDA with hipMalloc. Therefore, the thread and block 163 

configuration of the GPU remains unchanged due to the simple text substitution during the 164 

transcoding. In this study, the ROCm HIP technology was used to implement the operation of 165 

GPU-HADVPPM on the domestic GPU-like accelerator based on the CUDA version of GPU-166 

HADVPPM developed by Cao et al. (2023). The HIP code was compiled using the “hipcc” 167 

compiler driver with the library flag “-lamdhip64”. 168 

 169 

Figure 1. The heterogeneous porting process of HADVPPM Fortran code from CPU to NVIDIA GPU and 170 

domestic GPU-like accelerator. 171 
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3.2. Multi-level hybrid parallelization of CAMx model on heterogeneous 172 

platform 173 

The original CAMx model running on the CPUs supports two types of parallelization 174 

(ENVIRON, 2014): (1) OpenMP (OMP), which supports multi-platform (e.g., multi-core) shared-175 

memory programming in C/C++ and Fortran; (2) Message Passing Interface (MPI), which is a 176 

message passing interface standard for developing and running parallel applications on the 177 

distributed-memory computer cluster. During the process of CAMx model simulation, MPI and 178 

OMP hybrid parallelism can be used, several CPU processes can be launched, and each process 179 

can spawn several threads. This hybrid parallelism can significantly improve the computational 180 

efficiency of the CAMx model. 181 

As mentioned, the original CAMx model supports message passing interface (MPI) parallel 182 

technology running on the general-purpose CPU. The simulation domain is divided into several 183 

sub-regions by MPI, and each CPU process is responsible for the computation of its sub-region. 184 

To expand the heterogeneous parallel scale of the CAMx model on the Songshan supercomputer, a 185 

hybrid parallel architecture with an MPI and HIP was adopted to make full use of GPU computing 186 

resources. Firstly, we use the ROCm-HIP library function hipGetDeviceCount to obtain the 187 

number of GPU accelerators configured for each compute node. Then, the total number of 188 

accelerators to be launched and the ID number of accelerator cards in each node were determined 189 

according to the MPI process ID number and the remainder function in standard C language. 190 

Finally, the hipSetDevice library function in ROCm-HIP is used to configure an accelerator for 191 

each CPU core.  192 

This study uses GPU-HADVPPM with an MPI and HIP heterogeneous hybrid programming 193 

technology to run on multiple domestic GPU-like accelerators. However, the number of GPU-like 194 

accelerators in a single compute node is usually much smaller than the number of CPU cores in 195 

heterogeneous HPC systems. Therefore, to make full use of the remaining CPU computing 196 

resources, the OMP API of the CAMx model is further introduced to realize the MPI+OMP hybrid 197 

parallelism of other modules on the CPU. A schematic of the multi-level hybrid parallel 198 

framework is shown in Fig.2. For example, four CPU processes and four GPU-like accelerators 199 

are launched in a computing node, and each CPU process spawns four threads. Then the advection 200 
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module is simulated by 4 GPU-like accelerators, and 4*4 threads spawned by CPU processes do 201 

the other modules. 202 

 203 

Figure 2. A schematic of the multi-level hybrid parallel framework. 204 

4. Results and evaluation 205 

The computational performance experiments of CUDA and HIP version GPU-HADVPPM 206 

are reported in this section. First, we compared the simulation result of the Fortran version CAMx 207 

model with the CAMx-CUDA and CAMx-HIP models, which were coupled with the CUDA and 208 

HIP versions of the GPU-HADVPPM program, respectively. Then, the computational 209 

performance of GPU-HADVPPM programs on the NVIDIA GPU and domestic GPU-like 210 

accelerator are compared. Finally, we tested the total performance of the CAMx-HIP model with 211 

multi-level hybrid parallelization on the "Songshan" supercomputer. For ease of description, the 212 

CAMx versions of the HADVPPM program written in Fortran, CUDA C, and HIP C code are 213 

named Fortran, CUDA, and HIP, respectively.  214 
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4.1. Experimental setup 215 

Three test cases were used to evaluate the performance of CUDA and HIP version GPU-216 

HADVPPM. The experimental setup for the three test cases is shown in Table 2. In the previous 217 

study of Cao et al. (2023), the BJ case was used to carry out the performance tests, and the HN 218 

case and ZY case was the newly constructed test cases in this study. The Beijing case (BJ) covers 219 

Beijing, Tianjin, and part of the Hebei Province with 145 × 157 grid boxes, and the simulation of 220 

the BJ case starts on 1 November, 2020. The Henan case (HN) mainly covers the Henan Province 221 

with 209 × 209 grid boxes. The starting date of simulation in the HN case is 1 October, 2022. The 222 

Zhongyuan case (ZY) has the widest coverage of the three cases, with Henan Province as the 223 

center, covering the Beijing-Tianjin-Hebei region, Shanxi Province, Shaanxi Province, Hubei 224 

Province, Anhui Province, Jiangsu Province, and Shandong Province, with 531 × 513 grid boxes. 225 

ZY case started simulation on 4 January, 2023. All three performance test cases have a 3km 226 

horizontal resolution, 48 hours of simulation, and 14 vertical model layers. The number of three-227 

dimensional grid boxes in BJ, HN, and ZY cases total 318,710, 611,534, and 3,813,642, 228 

respectively. The meteorological fields inputting the different versions of the CAMx model in the 229 

three cases were provided by the Weather Research and Forecasting Model (WRF). In terms of 230 

emission inventories, the emission for the BJ case is consistent with the Cao et al. (2023), the HN 231 

case uses the Multi-resolution Emission Inventory for China (MEIC). The ZY case uses the 232 

emission constructed by the Sparse Matrix Operator Kernel Emission (SMOKE) model in this 233 

study. 234 

Table 2. The experimental setup for the BJ, HN, and ZY cases. 235 

 BJ  HN ZY 

Start date November 1, 2020 October 1, 2022 1 January, 2023 

Horizontal resolution 3km 3km 3km 

Grid boxes 145 × 157 × 14 209 × 209 × 14 531 × 513 × 14 

Meteorological fields WRF WRF WRF 

Emission Cao et al. (2023) MEIC SMOKE 

4.2. Error analysis 236 

The hourly concentrations of four major species, i.e., O3, PSO4, CO, and NO2, outputted by 237 

the Fortran, CUDA, and HIP versions of CAMx for the BJ case are compared to verify the results 238 
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correctness before testing the computational performance. Fig.3 shows the four major species 239 

simulation results of the three CAMx versions, including the Fortran version on the Intel E5-2682 240 

v4 CPU, the CUDA version on the NVIDIA K40m cluster, and the HIP version on the “Songshan” 241 

supercomputer, after 48 hours integration, as well as the absolute errors (AEs) of their 242 

concentrations. As described by Cao et al. (2023), the parallel design of the CAMx model adopts 243 

the primary/secondary mode, and the P0 process is responsible for inputting and outputting the 244 

data and calling the MPI_Barrier function to synchronize the process, and the other processes are 245 

accountable for simulation. When comparing the simulation results, we only launched 2 CPU 246 

processes on the CPU platform, launched 2 CPU processes and configured 2 GPU accelerators on 247 

the NVIDIA K40m cluster and “Songshan” supercomputer, respectively. 248 

The species’ spatial pattern of the three CAMx versions on different platforms are visually 249 

very consistent. The AEs between the HIP and Fortran versions are much smaller than the CUDA 250 

and Fortran versions. For example, the AEs between the CUDA and Fortran versions for O3, PSO4, 251 

and NO2 are in the range of ±0.04 ppbV, ±0.02 �� ∙ ���, and ±0.04 ppbV. The AEs between the 252 

HIP and Fortran versions for the three species fall into the range of ±0.01 ppbV, ±0.005 �� ∙ ���, 253 

and ±0.01 ppbV. For CO, AEs are relatively large due to their high background concentration. 254 

However, the AEs between the HIP and Fortran versions are also less than those between the 255 

CUDA and Fortran versions, which were in the range of ±0.4 ppbV and ±0.1 ppbV, respectively.  256 

Considering the situation of AEs accumulation and growth, Fig.4 highlights the time series of 257 

AEs between Fortran and CUDA versions and between Fortran and HIP versions after grid 258 

averaging. As is shown in Fig.4, the AEs of O3, PSO4, CO, and NO2 between the Fortran version 259 

and the CUDA version are -0.0002 to 0.0001 ppbV, -0.00003 to 0.00001 �� ∙ ���, -0.0004 to 260 

0.0004 ppbV, and -0.0002 to 0.0002 ppbV, respectively, and fluctuate. Although the AEs of the 261 

above four species between the Fortran and the HIP version also fluctuate, the fluctuation range is 262 

much smaller than that of the CUDA version. Notably, the AEs between Fortran and CUDA 263 

versions and between Fortran and HIP versions do not accumulate and grow over prolonged 264 

simulation periods. 265 
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 266 

Figure 3. O3, PSO4, CO, and NO2 concentrations outputted by the CAMx Fortran version on the Intel E5-2682 v4 267 

CPU, CUDA version on the NVIDIA K40m cluster, and HIP version on the "Songshan" supercomputer under the 268 

BJ case. Panels (a), (f), (k), and (p) are from the Fortran version of simulation results for four species. Panels (b), 269 

(g), (l), and (q) are from the CUDA version of simulation results for four species. Panels (c), (h), (m), and (r) are 270 

from the HIP version of simulation results for four species. Panels (d), (i), (n), and (s) are the AEs between the 271 

Fortran and CUDA versions. Panels (e), (j), (o), and (t) are the AEs between the Fortran and HIP versions. 272 
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 273 

Figure 4. After grid averaging, the time series of AEs between Fortran and CUDA versions (solid blue line) and 274 

between Fortran and HIP versions (solid red line). Panel (a)~(d) represent the AEs of O3, PSO4, CO, and NO2, 275 

respectively. 276 

To further detail the differences in the simulation results, we supplement the offline 277 

experimental results of the advection module on the NVIDIA K40m cluster and the Songshan 278 

supercomputer. First, we construct the Fortran programs to provide consistent input data for the 279 

advection module written in CUDA C code and HIP C code on NVIDIA Tesla K40m GPU and 280 

domestic GPU-like accelerator, respectively. The accuracy of the input data is kept at 12 decimal 281 

places. Then, the advection module outputs and prints the computing results after completing one 282 

integration operation on different accelerators. Finally, the results of the various accelerators were 283 

compared with those of the Fortran code on the Intel Xeon E5-2682 v4 CPU processor. The 284 

specific results are shown in the Fig.5. The difference in the computing results of the advection 285 

module written in HIP C code on the domestic GPU-like accelerator is smaller than that of the 286 

CUDA C code on the NVIDIA Tesla K40m GPU. The mean relative errors (REs) and AEs of the 287 

computing results on the NVIDIA Tesla K40m GPU are 1.3 × 10�� % and 7.1 × 10�� , 288 

respectively, while on the domestic GPU-like accelerator, the mean REs and AEs of the results are 289 

5.4 × 10��% and 2.6 × 10��, respectively. 290 
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 291 

Figure 5. The boxplots of REs and AEs between the Fortran code on Intel Xeon E5-2682 v4 CPU and CUDA C 292 

code on NVIDIA Tesla K40m GPU, and between HIP C code on domestic GPU-like accelerator, respectively, in 293 

the case of offline testing. 294 

Fig.6 further presents the boxplot of the REs in all grid boxes for the PSO4, PNO3, PNH4, O3, 295 

CO, and NO2 during the 48-hour simulation under the BJ case. Statistically, the REs between the 296 

CUDA version on the NVIDIA K40m cluster and Fortran version on the Intel E5-2682 v4 CPU for 297 

the above six species are in the range of ±0.006%, ±0.01%, ±0.008%, ±0.002%, ±0.002%, and 298 

±0.002%. In terms of REs between the HIP version on the “Songshan” supercomputer and the 299 

Fortran version on the Intel E5-2682 v4 CPU, the values are much smaller than REs between 300 

CUDA and Fortran versions which fall into the range of ± 0.0005%, ± 0.004%, ± 0.004%, 301 

±0.00006%, ±0.00004%, and ±0.00008%, respectively. In the air quality model, the initial 302 

concentration of secondary fine particulate matter such as PSO4, PNO3, and PNH4 is very low and 303 

is mainly generated by complex chemical reactions. The integration process of the advection 304 

module is ported from the CPU processor to the GPU accelerator, which will lead to minor 305 

differences in the results due to different hardware. The low initial concentration of secondary fine 306 

particulate matter is sensitive to these minor differences, which may eventually lead to a higher 307 
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difference in the simulation results of secondary particulate matter than other species.  308 

 309 

Figure 6. The REs distribution in all grid boxes for the PSO4, PNO3, PNH4, O3, CO, and NO2 under the BJ case. 310 

The red boxplot represents the REs between the CUDA version on the NVIDIA K40m cluster and the Fortran 311 

version on the Intel E5-2682 v4 CPU, and the blue boxplot represents the REs between the HIP version on the 312 

“Songshan” supercomputer and the Fortran version on the Intel E5-2682 v4 CPU. 313 

Wang et al. (2021) verified the applicability of the numerical model in scientific research by 314 

computing the ratio of root mean square error (RMSE) between two different model versions to 315 

system spatial variation (standard deviation, std). If the ratio is smaller, it is indicated that the 316 

difference in the simulation results of the model on the GPU is minimal compared with the spatial 317 

variation of the system. That is to say, the simulation results of the model on the GPU are accepted 318 

for scientific research. Here, we calculate the standard deviation of O3, PSO4, CO, and NO2 on the 319 

Intel Xeon E5-2682 v4 CPU and their RMSE between the NVIDIA V100 cluster, NVIDIA K40m 320 

cluster, and "Songshan" supercomputer and the Intel Xeon E5-2682 v4 CPU, which are presented 321 

in Table 3. The std for the above four species on the Intel Xeon E5-2682 v4 CPU are 9.6 ppbV, 1.7 322 

�� ∙ ��� , 141.9 ppbV, and 7.4 ppbV, respectively, and their ratios of RMSE and std on the 323 

"Songshan" supercomputer are 5.8 × 10��%, 4.8 × 10��%, 5.7 × 10��%, and 2.1 × 10��%, 324 

which are smaller than two NVIDIA clusters, significantly much smaller than the NVIDIA V100 325 

cluster. For example, the ratio on the NVIDIA K40m cluster for four species are 1.2 × 10��%, 326 

6.6 × 10�� %, 7.0 × 10�� %, and 4.1 × 10�� %, and ratio on the NVIDIA V100 cluster are 327 
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1.5 × 10��%, 2.5 × 10��%, 6.4 × 10��%, and 1.3 × 10��%, respectively. 328 

Table 3. The standard deviation (std) of O3, PSO4, CO, and NO2 on the Intel Xeon E5-2682 v4 CPU, root mean 329 

square error (RMSE), and its ratio on the NVIDIA V100 cluster, NVIDIA K40m cluster, and "Songshan" 330 

supercomputer 331 

  NIVIDA V100 cluster NIVIDA K40m cluster 
"Songshan" 

supercomputer 

 std RMSE RMSE/std RMSE RMSE/std RMSE RMSE/std 

O3 (ppbV) 9.6 1.5 × 10�� 1.5 × 10�� 1.1 × 10�� 1.2 × 10�� 7.4 × 10�� 7.7 × 10�� 

PSO4 (�� ∙ ���) 1.7 4.3 × 10�� 2.5 × 10�� 1.1 × 10�� 6.6 × 10�� 2.5 × 10�� 1.5 × 10�� 

CO (ppbV) 141.9 9.0 × 10�� 6.4 × 10�� 1.0 × 10�� 7.0 × 10�� 4.4 × 10�� 3.1 × 10�� 

NO2 (ppbV) 7.4 9.3 × 10�� 1.3 × 10�� 3.0 × 10�� 4.1 × 10�� 2.0 × 10�� 2.7 × 10�� 

From AEs, REs, and the ratio of RMSE and std between different CAMx versions, there is 332 

less difference that the GPU-HADVPPM4HIP program runs on the “Songshan” supercomputer. 333 

Because the simulation accuracy of geoscience numerical model is closely related to the model 334 

efficiency, and many model optimization works improve the computational performance by 335 

reducing the precision of the data, such as Váňa et al. (2017) changed some variables precision in 336 

the atmospheric model from double precision to single precision, which increased the overall 337 

computational efficiency by 40%, and Wang et al. (2019) improved the computational efficiency 338 

of the gas-phase chemistry module in the air quality mode by 25%~28% by modifying the 339 

floating-point precision compile flag. Therefore, we speculate that this may be related to the 340 

manufacturing process of NVIDIA GPUs and domestic GPU-like accelerators, which may use 341 

unknown optimizations to improve GPU performance efficiency by losing part of the accuracy. In 342 

this study, we mainly focus on numerical simulation. Of course, we also want to know the specific 343 

reasons for this. Still, we are not professional GPU research and development designers after all 344 

and do not know the underlying design logic of the hardware, so we can only present our 345 

experimental results in the air pollution model to you, and discuss with each other to jointly 346 

promote the application of GPU in the field of geoscience numerical models. 347 

4.3. Application performance 348 

4.3.1. GPU-HADVPPM on a single GPU accelerator 349 

As described in Sect. 4.2, we validate the 48-hour simulation results outputted by the Fortran, 350 
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CUDA, and HIP versions of CAMx model. Next, computational performance was compared for 351 

the Fortran version of HADVPPM on the Intel Xeon E5-2682 v4 CPU and domestic CPU 352 

processor A, the CUDA version of GPU-HADVPPM on the NVIDIA Tesla K40m and V100 GPU, 353 

and the HIP version of GPU-HADVPPM on the domestic GPU-like accelerator A, under the BJ, 354 

HN and ZY case. The simulation time in this section is 1 hour unless otherwise specified.  355 

Similarly, since the CAMx model adopts the primary/secondary mode, two CPU processes, 356 

P0 and P1, are launched on the CPU, and the system_clock functions in the Fortran language are 357 

used to test the elapsed time of the advection module in the P1 process. When testing the 358 

computation performance of the advection module on the GPU-like accelerator, we only launch 2 359 

CPU processes and 2 GPU-like accelerators. When a P1 process runs to the advection module, the 360 

original computation process is migrated from the CPU to the GPU, and the hipEvent_t function 361 

in HIP programming is used to test the running time of the advection module on the GPU-like 362 

accelerator. When comparing the speedup on different GPU accelerators, the elapsed time of the 363 

advection module launched one CPU process (P1) on the domestic CPU processor A is taken as 364 

the benchmark; that is, the speedup is 1.0x. The runtime of the advection module on Intel CPU 365 

processor and different GPU accelerators is compared with the baseline to obtain the speedup.  366 

Fig.7 (a) and (b) show the elapsed time and speedup of the different versions of HADVPPM 367 

on the CPU processors and GPU accelerators for BJ, HN, and ZY cases, respectively. The results 368 

show that CUDA and HIP technology to port HADVPPM from CPU to GPU can significantly 369 

improve its computational efficiency. For example, the elapsed time of the advection module on 370 

the domestic processor A is 609.2 seconds under the ZY case. After it is ported to the domestic 371 

GPU accelerator and NVIDIA Tesla V100 GPU, it only takes 21.1 seconds and 7.6 seconds to 372 

complete the computing, and the speedups are 28.9x and 80.2x, respectively. The ZY case had the 373 

most significant number of grids in the three cases. It exceeded the memory of a single NVIDIA 374 

Tesla K40m GPU accelerator, so it was not possible to test its elapsed time on it. Moreover, the 375 

optimization of thread and block co-indexing is used to compute the grid point in the horizontal 376 

direction simultaneously (Cao et al., 2023). Therefore, it can be seen from Fig. 6(b) that the larger 377 

the computing scale, the more pronounced the acceleration, which indicates that GPU is more 378 

suitable for super-large scale parallel computing and provides technical support for accurate and 379 
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fast simulation of ultra-high-resolution air quality at the meter level in the future. 380 

 381 

Figure 7. The elapsed time (a) and speedup (b) of the Fortran version of HADVPPM on the Intel Xeon E5-2682 382 

v4 CPU and the domestic CPU processor A, the CUDA version of GPU-HADVPPM on the NVIDIA Tesla K40m 383 

GPU, NVIDIA Tesla V100 GPU, and the HIP version of GPU-HADVPPM on the domestic GPU-like accelerator 384 

A for BJ, HN, and ZY case. The unit of elapsed time is in seconds (s). 385 

The BJ, HN, and ZY case timestep were 59, 47, and 61, respectively. Fig.8 shows the GPU-386 

HADVPPM4HIP acceleration in each time step on a single domestic GPU-like accelerator A. It 387 

can be seen from the figure that all three cases have the smallest speedup of 8.2x, 11.2x, and 27.8x 388 

at the first timestep, which is related to the time required for GPU-like accelerator startup. When 389 

the GPU-like is started and operating normally, the speedup of the three cases tends to be stable in 390 

the following time steps and stabilize around 8.5x, 11.5x, and 28.0x, respectively. 391 



19 

 

 392 

Figure 8. The GPU-HADVPPM4HIP acceleration in each time step on a single GPU-like accelerator for BJ, HN, 393 

and ZY cases. The timestep of the above three cases are 59, 47, and 61, respectively. 394 

Table 4 further lists the total elapsed time of CAMx Fortran and HIP versions for BJ case on 395 

the "Songshan" supercomputer and "Taiyuan" computing platform and the computing time of the 396 

advection module with or without data transfer. By coupling the GPU-HADVPPM4HIP to the 397 

CAMx model and adopting a series of optimizations (Cao et al., 2023), such as communication 398 

optimization, memory access optimization, and 2D thread optimization, the overall computation 399 

time of the CAMx-HIP model on a single domestic GPU-like accelerator is faster than that of the 400 

original Fortran version on a single domestic CPU core. For example, on the "Songshan" 401 

supercomputer, one hour of simulation in the CAMx-HIP model takes 469 seconds, and the 402 

Fortran version takes 481 seconds. On the "Taiyuan" computing platform, the acceleration effect is 403 

more evident due to the upgrade of hardware and network bandwidth. The integration time of the 404 

CAMx-HIP model is 433 seconds when maintaining the same software environment, and the 405 

integration time of the Fortran version is 453 seconds. 406 

The elapsed time of GPU-HADVPPM given in Table 4 on NVIDIA GPU and domestic GPU-407 

like accelerator does not consider the data transfer time between CPU and GPU. However, the 408 

communication bandwidth of data transfer between the CPU and GPU is one of the most 409 

significant factors that restrict the performance of the numerical model on the heterogeneous 410 

cluster (Mielikainen et al., 2012; Mielikainen et al., 2013; Huang et al., 2013). To illustrate the 411 

significant impact of CPU-GPU data transfer efficiency, the computational performance of GPU-412 

HADVPPM with and without data transfer time for the BJ case is tested on the “Songshan” 413 
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supercomputer and “Taiyuan” computing platform with the same DTK version 23.04 software 414 

environment, and the results are further presented in Table 6. For convenience of description, we 415 

refer to the execution time of GPU-HADVPPM program on GPU kernel as kernel execution time, 416 

and the time of GPU-HADVPPM running on GPU as total runtime, which contains two parts, 417 

namely, kernel execution time and data transfer time between CPU and GPU. After testing, the 418 

kernel execution time and total running time of the GPU-HADVPPM4HIP program on domestic 419 

GPU-like accelerator A are 6.8 and 29.8 seconds, respectively. In other words, it only takes 6.8 420 

seconds to complete the computation on the domestic accelerator. Still, it takes 23.0 seconds to 421 

complete the data transfer between the CPU and the domestic GPU-like accelerator, which is 3.4 422 

times the computation time. The same problem exists in the more advanced the "Taiyuan" 423 

computing platform, where the GPU-HADVPPM4HIP takes only 5.7 seconds to complete the 424 

computation, while the data transmission takes 18.2 seconds, 3.2 times the computation time.  425 

By comparing the kernel execution time and total running time of GPU-HADVPPM4HIP on 426 

the domestic accelerator, it can be seen that the data transfer efficiency between CPU and GPU is 427 

inefficient, which seriously restricts the computational performance of numerical models in 428 

heterogeneous clusters. On the one hand, improving the data transfer bandwidth between CPU and 429 

GPU can improve the computational efficiency of the model in heterogeneous clusters. On the 430 

other hand, optimization measures can be implemented to improve the data transfer efficiency 431 

between CPU and GPU. For example, (1) Asynchronous data transfer reduces the communication 432 

latency between CPU and GPU. Computation and data transfer are performed simultaneously to 433 

hide communication overhead; (2) Currently, some advanced GPU architectures support a unified 434 

memory architecture, so that the CPU and GPU can share the same memory space and avoid 435 

frequent data transfers. This reduces the overhead of data transfer and improves data transfer 436 

efficiency; (3) Cao et al. (2023) adopted communication optimization measures to minimize the 437 

communication frequency in one-time integration step to one, but there is still the problem of high 438 

communication frequency in the whole simulation. In the future, we will consider porting other 439 

hotspots of the CAMx model or even the entire integral module except I/O, to GPU-like 440 

accelerators for increasing the proportion of code on the GPU and reducing the frequency of CPU-441 

GPU communication. 442 
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Video memory and bandwidth are the two most significant factors affecting GPU 443 

performance, and high video memory and high bandwidth can better play the powerful computing 444 

performance of GPUs. Usually, the memory and bandwidth of the GPU are already provided by 445 

the factory. In this case, the amount of data transferred to the GPU can be roughly estimated 446 

before the data is transferred to the GPU. The amount of data transferred to the GPU can be 447 

adjusted according to the size of the GPU memory to ensure that the amount of data transferred to 448 

the GPU each time reaches the maximum GPU video memory, to give full play to the GPU 449 

performance more efficiently.  450 

Table 4. The total elapsed time of CAMx Fortran and HIP versions for the BJ case on the "Songshan" 451 

supercomputer and "Taiyuan" computing platform, and the computing time of the advection module with or 452 

without data transfer. The unit of elapsed time is in seconds (s). 453 

 "Songshan" supercomputer "Taiyuan" computing platform 

 Fortran version HIP version Fortran version HIP version 

Total elapsed time 481.0 469.0 453.0 433.0 

Computing time of advection 

module without data transfer 
57.8 6.8 47.8 5.7 

Computing time of advection 

module with data transfer 
57.8 29.8 47.8 23.9 

4.3.2. CAMx-HIP model on the heterogeneous cluster 454 

Generally, heterogeneous HPC systems have thousands of compute nodes equipped with one 455 

or more GPUs on each compute node. To fully use multiple GPUs, the hybrid parallelism with an 456 

MPI and HIP paradigm was used to implement the HIP version of GPU-HADVPPM run on 457 

multiple domestic GPU-like accelerators. During the simulation of the CAMx model, the emission, 458 

advection, dry deposition, diffusion, wet deposition, photolysis process, and chemical process will 459 

be computed sequentially. In heterogeneous computing platforms, except for the advection process, 460 

the CPU processor completes the simulation of the rest of the processes, and the advection process 461 

is completed on the GPU accelerator. For example, using MPI and HIP hybrid parallel technology 462 

to launch four CPU processes and four GPU accelerators simultaneously, the advection process is 463 

completed on four GPUs, and the other processes are still completed on four CPU processes.  464 

Fig.9 shows the total elapsed time and speedup of the CAMx-HIP model, which is coupled 465 

with the HIP version GPU-HADVPPM on the "Songshan" supercomputer under the BJ, HN, and 466 
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ZY cases. The simulation of the above three cases for one hour took 488 seconds, 1135 seconds, 467 

and 5691 seconds, respectively, when launching two domestic CPU processors and two GPU-like 468 

accelerators. For the BJ and HN case, the parallel scalability is highest when configured with 24 469 

CPU cores and 24 GPU-like accelerators, with speedup of 8.1x and 11.6x, respectively. Regarding 470 

the ZY case, due to its large number of grids, the parallel scalability is the highest when 32 CPU 471 

cores and 32 GPU-like accelerators are configured, and the acceleration ratio is 17.2x. 472 

As mentioned above, data transfer between CPU and GPU takes several times more time than 473 

computation. Regardless of the CPU-GPU data transfer consumption, GPU-HADVPPM4HIP can 474 

achieve up to 28.9x speedup on a single domestic GPU-like accelerator. However, in terms of the 475 

total time consumption, the CAMx-HIP model is only 10~20 seconds faster than the original 476 

Fortran version when one GPU-like accelerator is configured. As the number of CPU cores and 477 

GPU-like accelerators increases, the overall computing performance of the CAMx-HIP model is 478 

lower than that of the original Fortran version. The main reason is related to the amount of data 479 

transferred to GPU. As the number of MPI processes increases, the number of grids responsible 480 

for each process decreases, and the amount of data transmitted by the advection module from CPU 481 

to GPU decreases. However, GPUs are suitable for large-scale matrix computing. When the data 482 

scale is small, the performance of the GPU is low, and the communication efficiency between the 483 

CPU and GPU is the biggest bottleneck (Cao et al., 2023). Therefore, the computational 484 

performance of the CAMx-HIP model is not as good as the original Fortran version when MPI 485 

processes increase. According to the characteristics of GPUs suitable for large-scale matrix 486 

computing, the model domain can be expanded, and the model resolution can be increased in the 487 

future to ensure that the amount of data transferred to each GPU reaches the maximum video 488 

memory occupation to make efficient use of GPU. In addition, the advection module only 489 

accounts for about 10% of the total time consumption in the CAMx model (Cao et al., 2023). In 490 

the future, porting the entire integration module except I/O to the GPU is supposed to minimize 491 

the communication frequency. 492 
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 493 

Figure 9. The total elapsed time and speedup of the CAMx-HIP model on the "Songshan" supercomputer under 494 

the BJ, HN, and ZY cases. The unit is in seconds (s). 495 

The number of GPU accelerators in a single compute node is usually much smaller than the 496 

number of CPU cores in heterogeneous HPC systems. Using the hybrid parallel paradigm with 497 

MPI and HIP to configure one GPU accelerator for each CPU process results in idle computing 498 

resources for the remaining CPU cores. Therefore, the multi-level hybrid parallelism scheme was 499 

introduced further to improve the total computational performance of the CAMx-HIP model. As 500 

described in the Sect. 3.2, MPI and HIP technology accelerates the horizontal advection module, 501 

and the other modules, such as the photolysis module, deposition module, chemical module, etc., 502 

which run on the CPU are accelerated by MPI and OMP under the framework of the multi-level 503 

hybrid parallelism. 504 

The ZY case achieved the maximum speed-up when launching the 32 domestic CPU 505 

processors and GPU-like accelerators. Fig.10 shows the total elapsed time and speedup of CAMx-506 

HIP model in the same configuration when further implementing the multi-level hybrid 507 

parallelism on the "Songshan" supercomputer. The AEs of the simulation results between the 508 

CAMx-HIP model and CAMx-HIP model with the OMP technology are within ±0.04 ppbV, and 509 

the specified results are shown in Figure S1. As the number of threads increases, the elapsed time 510 
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of the CAMx-HIP model is further reduced. When a CPU core launches 8 threads, the one-hour 511 

integration time in the CAMx-HIP model has been reduced from 338 seconds to 178 seconds, with 512 

a maximum acceleration of 1.9x. 513 

 514 

Figure 10. The total elapsed time and speedup of the CAMx-HIP model when implementing the multi-level hybrid 515 

parallelism in the ZY case. The unit is in seconds (s). 516 

5. Conclusions and discussion 517 

GPUs have become an essential part of providing processing power for high performance 518 

computing applications, especially in geoscience numerical models. Implementing super-large 519 

scale parallel computing of numerical models on GPUs has become one of the significant 520 

directions of its future development. This study implemented the ROCm HIP technology to port 521 

the GPU-HADVPPM from the NVIDIA GPUs to China’s domestically GPU-like accelerators. 522 

Further, it introduced the multi-level hybrid parallelism scheme to improve the total computational 523 

performance of the CAMx-HIP model on the China’s domestically heterogeneous cluster. 524 

The consistency of model simulation results is a significant prerequisite for heterogeneous 525 

porting. However, the experimental results show that the deviation between the CUDA version 526 

and the Fortran version of the CAMx model, and the deviation between the HIP version and the 527 

Fortran version of the CAMx model, are within the acceptable range, the simulation difference 528 
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between the HIP version of CAMx model and Fortran version of CAMx model is more minor. 529 

Moreover, the BJ, HN, and ZY test cases can achieve 8.5x, 11.5x, and 28.9x speedup, respectively, 530 

when the HADVPPM program is ported from the domestic CPU processor A to the domestic 531 

GPU-like accelerator A. The experimental results of different cases show that the larger the 532 

computing scale, the obvious more pronounced the acceleration effect of the GPU-HADVPPM 533 

program, indicating that GPU is more suitable for super-large scale parallel computing and 534 

provides technical support for accurate and fast simulation of ultra-high-resolution air quality at 535 

the meter level in the future. The data transfer bandwidth between CPU and GPU is one of the 536 

most important factors affecting the computational efficiency of numerical model in 537 

heterogeneous clusters, as shown by the fact that the elapsed time of GPU-HADVPPM program 538 

on GPU only accounts for 7.3% and 23.8% when considering the data transfer time between CPU 539 

and GPU on the the “Songshan” supercomputer and “Taiyuan” computing platform. Therefore, 540 

optimizing the data transfer efficiency between CPU and GPU is one of the important directions 541 

for the porting and adaptation of geoscience numerical models on heterogeneous clusters in the 542 

future.  543 

There is still potential to further improve the computational efficiency of the CAMx-HIP 544 

model in the future. First, improve the data transfer efficiency of GPU-HADVPPM between the 545 

CPU and the GPU and reduce the data transfer time. Secondly, increase the proportion of HIP C 546 

code in CAMx-HIP model on the domestic GPU-like accelerator, and port other modules of 547 

CAMx-HIP model to the domestic GPU-like accelerator for computing. Finally, the data type of 548 

some variables could be changed from double precision to single precision, and the mixing-549 

precision method is used to further improve the CAMx-HIP computing performance. 550 

 551 
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