
Response to Reviewers’ comments  

We thank the two reviewers for their thoughtful and constructive comments that helped us 

substantially improve the manuscript. We have revised the manuscript accordingly. Listed below is 

our blue point-to-point response to each comment the reviewers offered. 

 

Response to Reviewer #1 

The authors have adequately addressed all comments and implemented a number of suggestions 

that have substantially improved the manuscript and presentation of results. I thus recommend that 

the manuscript is accepted for publication, subject to the call of the professional English language 

services for editortial review. 

Response: Thanks a million for your precious time and your suggestion. To improve the English 

language of the manuscript, we have carefully corrected the grammatical errors in the paper. On 

the other hand, we will agree to apply the typesetting and language copy-editing service provided 

by Copernicus Publications during the production (https://www.geoscientific-model-

development.net/policies/proofreading_guidelines.html). Moreover, two reviewers’ point-to-point 

responses are listed below. 

 

 

Response to Reviewer #2 

The authors have addressed most of the points I raised. 

Nevertheless, there are still two major not-fully-resolved points. 

Response: We appreciate the editor for reviewing our manuscript and the valuable suggestions, 

which we will address point by point in the following. 

 

1- On the point of accuracy vs performance on NVIDIA hardware: 

My main point of criticism was, in a nutshell, that the evidence provided (Figure 5) is not specific, 

thorough or deep enough to support the claim that the different range of errors in the species can 

be attributed to the hardware. The authors have included some comments on the tradeoffs between 

accuracy and computational performance, by invoking mixed precision techniques (which by their 

own account, they are not using), and now "speculate" that the differences compared to CPU 



computations can be explained by manufacturing processes resulting in unknown optimisation on 

GPU performance while renouncing accuracy. This is only a very minor toning-down of the 

previous claim. The authors also claim not to have sufficient expertise and knowledge to attribute 

this. 

This is precisely the point. The claims are in my opinion still too bold. The authors seem to be sure 

that nothing else except hardware differences can explain the differences in the relative errors, 

which is a big leaf of faith from Figure 5. I would argue there are many things that can go wrong, 

and because there are basically two different codes at play, it is likely. At the very least, it cannot 

be simply assumed that nothing else except hardware is to blame. 

An example: the authors point out that only the advection module is running on GPUs, and other 

modules on CPUs (including the chemistry). They also point out that for PNH4, PNO3 and PSO4 

the initial concentrations are very low and they are generated via complex chemical reactions. I 

translate this as follows: the reactive part of the equations is very important. Presumably, reactions 

are computed in the chemistry module, which is always on the CPUs. Then, why would the GPUs 

be mostly responsible for these errors which are far away from machine precision? I find it hard to 

attribute such large errors to porting an advection solver to GPUs (in fact, my experience is quite 

the opposite, accuracy is very much comparable). 

I unfortunately cannot take my own argument much further without making assumptions about the 

solvers and implementations. For example, if the chemical reactions lead to iterative linearisations 

and linear solvers, some convergence tolerances can play a role in there, which may be orders of 

magnitude above machine precision. This would not necessarily explain the difference between 

the Nvidia and the Chinese accelerators, but the errors could come from the different behaviours 

on the CPU. 

I concede that all of this is speculation on my side, but I write it to illustrate the variety of thoughts 

one can have before attributing these differences to hardware. I do not intend to claim that it is 

NOT attributable to hardware, but proving that would require to define other types of tests, which 

offer much more control. 

Response: Thanks for the constructive comment. To further detail the differences in the 

simulation results, we supplement the offline experimental results of the advection module on the 

NVIDIA K40m cluster and the Songshan supercomputer. First, we construct the Fortran programs 



to provide consistent input data for the advection module written in CUDA C code and HIP C 

code on NVIDIA Tesla K40m GPU and domestic GPU-like accelerator, respectively. The accuracy 

of the input data is kept at 12 decimal places. Then, the advection module outputs and prints the 

computing results after completing one integration operation on different accelerators. Finally, the 

results of the various accelerators were compared with those of the Fortran code on the Intel Xeon 

E5-2682 v4 CPU processor. The specific results are shown in the Fig.5 below. The difference in 

the computing results of the advection module written in HIP C code on the domestic GPU-like 

accelerator is smaller than that of the CUDA C code on the NVIDIA Tesla K40m GPU. The mean 

relative errors (REs) and AEs of the computing results on the NVIDIA Tesla K40m GPU are 

1.3 × 10��% and 7.1 × 10��, respectively, while on the domestic GPU-like accelerator, the mean 

REs and AEs of the results are 5.4 × 10��% and 2.6 × 10�� , respectively. The above codes 

related to offline tests are available online via ZENODO 

(https://zenodo.org/doi/10.5281/zenodo.10158214). 

In the air quality model, the initial concentration of secondary fine particulate matter such as 

PSO4, PNO3, and PNH4 is very low and is mainly generated by complex chemical reactions. The 

integration process of the advection module is ported from the CPU processor to the GPU 

accelerator, which will lead to minor differences in the results due to different hardware. The low 

initial concentration of secondary fine particulate matter is sensitive to these minor differences, 

which may eventually lead to a higher difference in the simulation results of secondary particulate 

matter than other species. We have modified this part in lines 277-313, which are as follows: 

Lines 277-313: 

To further detail the differences in the simulation results, we supplement the offline 

experimental results of the advection module on the NVIDIA K40m cluster and the Songshan 

supercomputer. First, we construct the Fortran programs to provide consistent input data for the 

advection module written in CUDA C code and HIP C code on NVIDIA Tesla K40m GPU and 

domestic GPU-like accelerator, respectively. The accuracy of the input data is kept at 12 decimal 

places. Then, the advection module outputs and prints the computing results after completing one 

integration operation on different accelerators. Finally, the results of the various accelerators 

were compared with those of the Fortran code on the Intel Xeon E5-2682 v4 CPU processor. The 

specific results are shown in the Fig.5. The difference in the computing results of the advection 



module written in HIP C code on the domestic GPU-like accelerator is smaller than that of the 

CUDA C code on the NVIDIA Tesla K40m GPU. The mean relative errors (REs) and AEs of the 

computing results on the NVIDIA Tesla K40m GPU are 1.3 × 10��% and 7.1 × 10��, respectively, 

while on the domestic GPU-like accelerator, the mean REs and AEs of the results are 5.4 × 10��% 

and 2.6 × 10��, respectively. 

Fig.6 further presents the boxplot of the REs in all grid boxes for the PSO4, PNO3, PNH4, O3, 

CO, and NO2 during the 48-hour simulation under the BJ case. Statistically, the REs between the 

CUDA version on the NVIDIA K40m cluster and Fortran version on the Intel E5-2682 v4 CPU for 

the above six species are in the range of ±0.006%, ±0.01%, ±0.008%, ±0.002%, ±0.002%, and 

±0.002%. In terms of REs between the HIP version on the “Songshan” supercomputer and the 

Fortran version on the Intel E5-2682 v4 CPU, the values are much smaller than REs between 

CUDA and Fortran versions which fall into the range of ±0.0005%, ±0.004%, ±0.004%, 

±0.00006%, ±0.00004%, and ±0.00008%, respectively. In the air quality model, the initial 

concentration of secondary fine particulate matter such as PSO4, PNO3, and PNH4 is very low 

and is mainly generated by complex chemical reactions. The integration process of the advection 

module is ported from the CPU processor to the GPU accelerator, which will lead to minor 

differences in the results due to different hardware. The low initial concentration of secondary fine 

particulate matter is sensitive to these minor differences, which may eventually lead to a higher 

difference in the simulation results of secondary particulate matter than other species. 



 

Figure 5. The boxplots of REs and AEs between the Fortran code on Intel Xeon E5-2682 v4 CPU and CUDA C 

code on NVIDIA Tesla K40m GPU, and between HIP C code on domestic GPU-like accelerator, respectively, in 

the case of offline testing. 

 

Figure 6. The REs distribution in all grid boxes for the PSO4, PNO3, PNH4, O3, CO, and NO2 under the BJ case. 

The red boxplot represents the REs between the CUDA version on the NVIDIA K40m cluster and the Fortran 

version on the Intel E5-2682 v4 CPU, and the blue boxplot represents the REs between the HIP version on the 



“Songshan” supercomputer and the Fortran version on the Intel E5-2682 v4 CPU. 

 

2- this point is far simpler. It remains still unclear in section 4.3.1 exactly how many 

computational resources are used (e.g., how many cores for CPU computations, it seems only 

single GPUs). It might be good to simply state this very explicitly, very much how it is done in 

section 4.3.2. Nevertheless, in both sections explicitly stating how each module maps to which and 

how much hardware would be very much appreciated. 

Response: Sorry for not being able to explain it clearly. We only used one CPU core when testing 

the computation performance of the advection module on the different GPU accelerator in section 

4.3.1. For the MPI and HIP heterogeneous hybrid parallelization technology as described in 

section 4.3.2, we first use the ROCm-HIP library function hipGetDeviceCount to obtain the 

number of GPU accelerators configured for each compute node, and then the total number of 

accelerators to be launched and the ID number of accelerator cards in each node were determined 

according to the MPI process ID number and the remainder function in standard C language. 

Finally, the hipSetDevice library function in ROCm-HIP is used to configure an accelerator for 

each CPU core. During the simulation of the CAMx model, the computing of the emission, 

advection, dry deposition, diffusion, wet deposition, photolysis process and chemical process will 

be completed sequentially. In heterogeneous computing platforms, except for the advection 

process, the CPU processor completes the simulation of the rest of the processes, and the 

advection process is completed on the GPU accelerator. For example, using MPI and HIP hybrid 

parallel technology to launch four CPU processes and four GPU accelerators simultaneously, the 

advection process is completed on four GPU, and the other processes are still completed on four 

CPU processes. We have modified this part in lines 182-192, lines 363-366 and lines 455-464, 

which are as follows: 

Linse 182-192: 

As mentioned, the original CAMx model supports message passing interface (MPI) parallel 

technology running on the general-purpose CPU. The simulation domain is divided into several 

sub-regions by MPI, and each CPU process is responsible for the computation of its sub-region. 

To expand the heterogeneous parallel scale of the CAMx model on the Songshan supercomputer, a 

hybrid parallel architecture with an MPI and HIP was adopted to make full use of GPU 



computing resources. Firstly, we use the ROCm-HIP library function hipGetDeviceCount to 

obtain the number of GPU accelerators configured for each compute node. Then, the total number 

of accelerators to be launched and the ID number of accelerator cards in each node were 

determined according to the MPI process ID number and the remainder function in standard C 

language. Finally, the hipSetDevice library function in ROCm-HIP is used to configure an 

accelerator for each CPU core. 

Lines 363-366: 

When comparing the speedup on different GPU accelerators, the elapsed time of the 

advection module launched one CPU process (P1) on the domestic CPU processor A is taken as 

the benchmark; that is, the speedup is 1.0x. The runtime of the advection module on Intel CPU 

processor and different GPU accelerators is compared with the baseline to obtain the speedup. 

Lines 455-464: 

Generally, heterogeneous HPC systems have thousands of compute nodes equipped with one 

or more GPUs on each compute node. To fully use multiple GPUs, the hybrid parallelism with an 

MPI and HIP paradigm was used to implement the HIP version of GPU-HADVPPM run on 

multiple domestic GPU-like accelerators. During the simulation of the CAMx model, the emission, 

advection, dry deposition, diffusion, wet deposition, photolysis process, and chemical process will 

be computed sequentially. In heterogeneous computing platforms, except for the advection process, 

the CPU processor completes the simulation of the rest of the processes, and the advection process 

is completed on the GPU accelerator. For example, using MPI and HIP hybrid parallel 

technology to launch four CPU processes and four GPU accelerators simultaneously, the 

advection process is completed on four GPUs, and the other processes are still completed on four 

CPU processes. 

 


