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Abstract 24 

Snow Water Equivalent (SWE), as one of the land initial or boundary conditions, plays a 25 

crucial role in global or regional energy and water balance, thereby exerting a considerable 26 

impact on seasonal and sub-seasonal scale predictions owing to its enduring memory over 1 to 27 

2 months. Despite its importance, most SWE initialization remains challenging due to its 28 

reliance on simple approaches based on spatially limited observations. Therefore, this study 29 

developed the advanced SWE data assimilation framework with satellite remote-sensing data 30 

utilizing the local ensemble transform Kalman filter (LETKF) and the Joint U.K. Land 31 

Environment Simulator (JULES) land model. This approach constitutes an objective method 32 

that optimally combines two previously unattempted incomplete data sources: the satellite 33 

SWE retrieval from the Advanced Microwave Scanning Radiometer 2 (AMSR2) and 34 

dynamically-balanced SWE from the JULES land surface model. In this framework, an 35 

algorithm is additionally considered to determine the assimilation process based on the 36 

presence or absence of snow cover from the Interactive Multisensor Snow and Ice Mapping 37 

System (IMS) satellite, renowned for its superior reliability. 38 

The baseline model simulation from JULES without satellite data assimilation shows better 39 

performance in high-latitude regions with heavy snow accumulation but relatively inferior in 40 

the transition regions with less snow and high spatial and temporal variation. Contrastingly, the 41 

AMSR2 satellite data exhibit better performance in the transition regions but poorer in the high 42 

latitudes, presumably due to the limitation of the satellite data in the penetrating depth. The 43 

data assimilation (DA) demonstrates the positive impacts by reducing uncertainty in the JULES 44 

model simulations in most areas, particularly in the mid-latitude transition regions. In the 45 

transition regions, the model background errors from the ensemble runs are significantly larger 46 

than the observation errors, emphasizing great uncertainty in the model simulations. The results 47 

of this study highlight the beneficial impact of data assimilation by effectively combining both 48 
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land surface model and satellite-derived data according to their relative uncertainty, thereby 49 

controlling not only transitional regions but also the regions with heavy snow accumulation 50 

that are difficult to detect by satellite. 51 

  52 
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1. Introduction 53 

Snow plays a crucial role in regulating the water, energy, and carbon exchange between the 54 

land surface and atmosphere (e.g., Dutra et al., 2011; Thomas et al., 2016). A snowpack tends 55 

to increase surface albedo and soil moisture as the snow melts (Eagleson,1970), thereby 56 

affecting the climate system through changes in water and energy balances. In addition to local 57 

impacts, the continental snowpack over Eurasia can influence the large scale atmospheric 58 

circulation during winter (e.g., Li and Wang, 2014) or in spring (e.g., Broxton et al., 2017). 59 

Especially, the Eurasian autumn snow can affect upward-propagating stationary Rossby-wave 60 

activity, leading to stratospheric warming and weakening of stratospheric polar vortex and jet 61 

stream, which in turn emerges as a negative Arctic oscillation (AO)-like pattern at the surface 62 

during winter due to downward propagation through the troposphere. Its impact is shown in 63 

both observation and model experiments (e.g., Allen and Zender 2011; Cohen et al. 2007). 64 

Furthermore, the interannual variability of snow melting during the boreal spring season affects 65 

surface soil moisture in summer, which has important implications for heatwave development 66 

and emphasizing mechanisms through land-atmosphere interactions (Seo et al., 2020). 67 

In the subseasonal to seasonal (S2S) timescales, land initial states are crucial components 68 

in the S2S timescale predictions due to the inherent memory that changes slowly for 1 to 2 69 

months in the climate system (e.g., Derome et al. 2005; Chen et al., 2010; Seo et al., 2019). In 70 

particular, the realistic snow initial states contribute to improving S2S prediction skills, as 71 

proven in several modeling studies. For example, previous studies (Orsolini et al., 2013; Jeong 72 

et al., 2013) demonstrated a considerable enhancement in prediction skill of 2m air temperature 73 

up to a lead time of 1-2 months across certain regions of Eurasia and the Arctic during winter, 74 

depending on snow initialization. Moreover, other studies (Orsolini et al., 2016; Li et al., 2019) 75 

have revealed that wave activity propagating toward the stratosphere, influenced by snow 76 

initial conditions in climate models, can induce changes in the polar vortex and contribute to 77 

https://doi.org/10.1088/1748-9326/abbbae
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD030903#jgrd55729-bib-0034
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the persistence of the North Atlantic Oscillation (NAO) and the AO. This emphasizes the 78 

significance of snow initialization in climate models as an essential process for enhancing 79 

prediction performance at the S2S timescales.  80 

Snow states, i.e., snow water equivalent (SWE) used directly for hydrological analysis and 81 

initial states of the model (Li et al., 2019; Gan et al., 2021), are generally provided from in-situ 82 

observations data, remote-sensing retrievals from satellites, or numerical models such as the 83 

land surface model (LSM) operated based on the observed atmospheric variables. For the in-84 

situ data snow depth (SD) measurements prevail, largely attributed to the challenges associated 85 

with acquiring precise SWE data (Takala et al., 2011; De Rosnay et al., 2014). Surface synoptic 86 

observations (SYNOP) serve as the principal source for SD measurements. The in-situ 87 

measurements offer the most dependable snow information, yet they are characterized by 88 

relatively coarse temporal and spatial resolutions, particularly within limited areas, due to the 89 

spatial heterogeneity inherent in snow distribution. (Helmert et al., 2018; Meyal et al., 2020). 90 

Satellite-derived observations using conical scanning microwave instruments may provide 91 

spatially consistent data coverage across the globe. Cho et al. (2017) showed the SWE retrieval 92 

results from two passive microwave sensors, the advanced microwave scanning radiometer 2 93 

(AMSR2) and the special sensor microwave imager sounder (SSMIS). However, the 94 

algorithms for SWE retrieval exhibit a degree of sensitivity to a variety of parameters such as 95 

snow liquid water content and snow grain size distribution (De Rosnay et al., 2014). Hence, 96 

satellite-based SWE data still have limitations in accuracy, especially under deep snow 97 

conditions due to the limited penetration depth (Gan et al., 2021). On the other hand, satellite 98 

retrieval can estimate snow cover accurately under clear sky conditions (Brubaker et al., 2009). 99 

Model simulations obtained from LSMs and simple snow models can cover complete 100 

spatiotemporal resolution but involve potentially large uncertainties due to the deficiencies in 101 

the physical parameterizations and meteorological forcing data (Dirmeyer et al., 2006; Seo et 102 
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al., 2021).  103 

Considering that snow observation dataset has its respective strengths as well as limitations, 104 

data assimilation or other data fusion methods can prove to be beneficial for constructing snow 105 

states such as reanalysis data (e.g., Brasnett, 1999; Dee et al., 2011; Meng et al., 2012; Pullen 106 

et al., 2011; De Rosnay et al., 2014). For example, the snow analysis for the Canadian 107 

Meteorological Center (CMC) utilizes a 2-dimensional optimal interpolation (2D-OI) scheme 108 

with in-situ observations and the outputs from a simple snow model (Brown et al., 2003). The 109 

National Centers for Environmental Prediction (NCEP) climate forecast system reanalysis 110 

(CFSR) combines a multi-satellite-based interactive multi-sensor snow and ice mapping 111 

system (IMS) as satellite-based snow cover retrieval and the outputs from the global snow 112 

model of the Air Force Weather Agency (Meng et al., 2012). At the European Center for 113 

Medium Weather Forecast (ECMWF), the ECMWF reanalysis (ERA)-Interim and ERA5 for 114 

the snow analysis employ a Cressman interpolation and 2D-OI, respectively, with the IMS, in-115 

situ observation, and the results from a land surface model (Dee et al. 2011; De Rosnay et al., 116 

2014). The Japanese 55-year Reanalysis (JRA55) also utilizes the 2D-OI with in-situ 117 

observation, satellite-based snow cover from SSMIS, and the results from an LSM (Kobayashi 118 

et al., 2015). Given that the majority of the reanalysis datasets rely on snow depth 119 

measurements, the SWE estimation is likely to introduce potential accuracy concerns when the 120 

snow depth information is combined with the sow density calculations. 121 

Climate prediction systems in operational centers such as the Meteorological Office (Met 122 

Office) in the United Kingdom and the Korean Meteorological Administration (KMA) conduct 123 

the snow initialization by utilizing the results of the operational global unified model (UM) and 124 

the IMS snow cover, which solely indicates the presence of snow (Pullen et al., 2011), lacking 125 

in its ability to reflect the physical quantity of it. The initialization at NCEP also performs a 126 

similar approach using input data combined from IMS snow cover and results from the global 127 
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SD model (SNODEP; Meng et al., 2012). Furthermore, the snow initialization of ECMWF 128 

employs optimal interpolation with a combination of results from the LSM, IMS snow cover, 129 

and in-situ observation from SYNOP and national networks available on the GTS. However, 130 

in regions where ground observations are unavailable, large errors may exist in the snow model 131 

outputs due to uncertainties in atmospheric forcing and imperfect model parameterization 132 

(Boone et al., 2004; Essery et al., 2009). Often, the snow processes parameterized in LSMs 133 

rely on observed properties sampled in limited areas (Lim et al., 2022). In addition, as IMS 134 

snow cover only identifies the presence of snow, the data assimilation with the satellite snow 135 

cover only is not sufficient and inappropriate in constraining water and energy conservation. 136 

Alternative methods that consider the physical quantity of snow are required for the snow 137 

initialization. 138 

One approach to mitigate the spatial discontinuity of ground observations is to use satellite-139 

derived SWE with wide spatial coverage and frequent temporal resolution. However, the SWE 140 

retrievals from satellites still have considerable uncertainties (De Lannoy et al., 2010; Dawson 141 

et al., 2018), which can arise from vegetation and terrain interference, sensor signal saturation, 142 

snowfall amount, and simplifications in the underlying assumptions of the retrieval algorithms 143 

(Liu et al., 2015). In particular, a region with heavy snow accumulation leads to a significant 144 

underestimation of SWE due to the limitations in penetration depth from satellites (Gan et al., 145 

2021), so that satellite-derived SWE is not employed in the land initialization process. In 146 

previous studies, various approaches have been attempted to improve SWE product 147 

performance, such as combining satellite-derived SWE with ground observations (Pulliainen 148 

et al., 2020), different satellite data sets (Gan et al., 2021), simple snow models (Dziubanski 149 

and Franz, 2016), or LSMs (Kwon et al., 2017; Kumar et al., 2019). However, most previous 150 

studies have focused on targeted regions with limited ground-based observations. Snow 151 

initialization in global coverage using satellite-derived SWE remains a persistently challenging 152 
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task. 153 

Therefore, this study developed an advanced SWE data assimilation framework with satellite 154 

remote-sensing data using the local ensemble transform Kalman filter (LETKF) and the Joint 155 

U.K. Land Environment Simulator (JULES) land model. While there are existing studies on 156 

SWE data assimilation (e.g., Oaida et al., 2019; Smyth et al., 2020; Luojus et al., 2021), the 157 

use of passive microwave observations based on the LETKF in this context is relatively rare 158 

(e.g., Girotto et al., 2020). This approach constitutes an objective method that optimally 159 

combines two previously unattempted incomplete data sources: the satellite SWE from the 160 

Advanced Microwave Scanning Radiometer 2 (AMSR2) and the dynamically-balanced SWE 161 

from the JULES land model forced by observed atmospheric fields. The estimated SWE data 162 

exhibit better consistence by additionally using snow cover data from the IMS data. This 163 

assimilation framework also enables the assessment of improvement as it provides insights into 164 

the reasons behind the performance improvement based on the Kalman gain analysis that 165 

measures the relative significance of the input data between the satellite and the land model 166 

during the data assimilation cycle. The satellite data have demonstrated high reliability in the 167 

transition regions of climatologically-shallow snow conditions (Gan et al., 2021), and these 168 

regions are known as "hot spots" of strong atmosphere-land coupling through snow melting 169 

and associated surface energy and water balance changes (Koster et al., 2004; Dirmeyer, 2011; 170 

Huning and AghaKouchak, 2020). From these perspectives, it would be important to evaluate 171 

the impact of satellites on the transition regions as well as on the deep accumulation regions 172 

where accurate satellite retrievals are challenging. Furthermore, the benefits of assimilating 173 

satellite retrievals in extremely high-temperature events, such as the case in April 2020 over 174 

Eurasia, can be elucidated. In this regard, we expect that this snow data assimilation framework 175 

with satellite-derived SWE can be significant in providing optimal snow initial states for 176 

improving the S2S prediction by global climate models. 177 
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2. Data and model 179 

2.1. Satellite data 180 

The snow information including snow cover and SWE can be derived from satellite 181 

measurements offering global coverage and high temporal as well as spatial resolution. For 182 

data assimilation, this study uses SWE calculated from brightness temperature measurements 183 

obtained by the AMSR2 on board the Japanese Aerospace Exploration Agency (JAXA) global 184 

change observation mission-water (GCOM-W) satellite. This AMSR2 Unified Level-3 (L3) 185 

dataset offers daily estimation of SWE at 25 km resolutions from July 2012 to the present. 186 

AMSR2 has a sensor designed to detect microwave radiation naturally emitted from the surface 187 

and atmosphere, employing six frequency bands ranging from 6.9 to 89 GHz. Through this 188 

conical scanning mechanism, AMSR2 can acquire day and night datasets with nearly constant 189 

spatial resolution over more than 99% of the global coverage every two days. Comprehensive 190 

explanations of AMSR2 characteristics are available in Imaoka et al. (2010). AMSR2 is 191 

selected for the assimilation because it produces more accurate results by assimilating data 192 

from modern sensors (e.g., AMSR2) compared to data from conventional sensors (e.g., AMSR-193 

E) (Cho et al., 2017). 194 

The widely used multisensor–derived snow cover is IMS (e.g., Ramsay 1998; Helfrich et 195 

al., 2007) produced by NOAA the National Environmental Satellite Data and Information 196 

Service (NESDIS) for the Northern Hemisphere from February 2004 to the present at 4 km 197 

resolutions. This dataset is generated using various data products, including multi-satellite 198 

images and in-situ observations (U.S. National Ice Center, 2008). Since IMS provides binary 199 

(0: no snow or 1: snow covered) snow cover information, we transform the IMS snow cover at 200 

4 km grids to the snow cover fraction (SCF) within a 50-km LSM grid by counting the snow 201 

pixel number with a value of 1. A 50-km LSM grid is declared as snow-covered when more 202 

than 50% of the 4km pixels within the grid are covered with snow. In this study, the application 203 

https://cdnsciencepub.com/doi/full/10.1139/as-2020-0024#core-ref81
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of the assimilation process is determined based on IMS-based SCF, renowned for its superior 204 

reliability (e.g., Brown et al., 2014). Further details will be described in Section 3.3. 205 

 206 

2.2. Reference data for SWE and SCF 207 

The CMC daily estimated SWE is used for verification. The SWE data is processed using 208 

statistical interpolation between a background field derived from a simple snow model and in-209 

situ daily SD (Brown and Brasnett, 2010). In detail, this dataset utilizes optimal interpolation 210 

methods to acquire spatial SD from the in-situ data, involving SYNOP, special aviation reports 211 

from the World Meteorological Organization (WMO), and meteorological aviation reports 212 

(METAR). In areas with scant in-situ data, a simple snow accumulation and melt model is 213 

employed to create an optimal interpolation that estimates snowmelt and snowfall worldwide, 214 

assuming the persistence of the snowpack mass between snowfall and melting events 215 

(Brasnett, 1999). Although the average elevation of snow measurement stations used in CMC 216 

is biased toward low elevations (< 400m), potentially causing relative negative biases at higher 217 

elevations with heavy snow accumulation, the CMC dataset is often considered the premier 218 

snow analysis accessible in the Northern Hemisphere (Su et al. 2010) and has still been widely 219 

used to evaluate model outputs (e.g., Reichle et al., 2011; Reichle et al., 2017; Toure et al, 220 

2018). Therefore, the SWE of CMC produced without the satellite-derived data is selected for 221 

verification as an independent dataset for evaluating the assimilated analysis with remote 222 

sensing snow retrievals. Since only daily SD analysis is provided in CMC, it is converted to 223 

daily SWE based on the snow bulk density methods (e.g., Sturm et al., 2010). It is available 224 

from 12 March 1998 to the present and offers comprehensive coverage of the entire Northern 225 

Hemisphere with a horizontal resolution of 24 km. The SWE of CMC at its native horizontal 226 

resolution is interpolated onto the LSM grid through local area averaging. 227 

 228 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021WR030895?casa_token=V4W_G2mcxhgAAAAA:DYBHLusobSAcf5lbkKFabNOJxFQ5tlDug4TQzIdAFrlbFdtnVQ5No6ZyYWGW6ZD-MN1IN5jfRuI7_v6zJA#wrcr25938-bib-0006
https://journals.ametsoc.org/view/journals/clim/24/24/jcli-d-10-05033.1.xml#bib46
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2.3. JULES LSM 229 

This study utilizes the JULES LSM from the Met Office (Best et al., 2011), a component 230 

land model of the global seasonal forecasting system version 6 (GloSea6) global, fully-coupled 231 

atmosphere, ocean, land, and sea-ice model. The surface types (or snow tiles) in the JULES 232 

LSM consist of four non-vegetated types: urban, land-ice, inland water, and bare soil, as well 233 

as five vegetation functional types: C3 temperate grass, needleleaf trees, shrubs, C4 tropical 234 

grass, and broadleaf trees. For each surface tile, a separate energy balance is computed, and the 235 

average energy balance in the grid cells is determined by applying weights to the values of each 236 

surface tile. Two schemes are used within JULES to represent surface snow (e.g., Best et al., 237 

2011; Burke et al., 2013). The simple method involves a zero-layer approach, which modifies 238 

the top soil level without using explicit model layers to represent snow processes. The other is 239 

the multi-layer approach which is more comprehensive, described in Best et al. (2011). In the 240 

case of vegetated surfaces, snow can be separated into ground snow and canopy snow or stored 241 

in a single effective reservoir. As both the zero-layer and multi-layer snow models provide 242 

similar results under various conditions (Best et al., 2011), this study used the zero-layer snow 243 

model with constant thermal conductivity and density for snow. Although the heat capacity of 244 

snow is ignored, the bulk thermal conductivity in the surface layer is reduced as the thermal 245 

conductivity of snow differs from that of the soil and the layer thickness increases. As long as 246 

snow persists on the ground, the skin temperature cannot exceed 0°C, yet the heat flux utilized 247 

for melting the snow is diagnosed as the residual in the surface energy balance. The melted 248 

water is immediately drained from the snow, divided into runoff and soil infiltration, and liquid 249 

water is not stored or frozen in the snow. A detailed description of the energy and water cycling 250 

in the JULES LSM can be referenced in Best et al. (2011). 251 

The prognostic variables (e.g., SWE) in the LSM are determined by meteorological forcing 252 

variables such as 2-m air temperature, humidity, 10-m wind speed, precipitation, surface 253 

https://gmd.copernicus.org/articles/12/1909/2019/#bib1.bibx54
https://gmd.copernicus.org/articles/12/1909/2019/#bib1.bibx54
https://gmd.copernicus.org/articles/12/1909/2019/#bib1.bibx34
https://gmd.copernicus.org/articles/12/1909/2019/#bib1.bibx34
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pressure, and radiative fluxes. The 3-hourly, JRA55 reanalysis at 0.56° spatial resolution is 254 

employed for the meteorological forcing variables, which is linearly interpolated to a 50 km 255 

resolution of the LSM. The model background error needed for data assimilation is estimated 256 

by JULES ensemble runs with perturbed initial and boundary conditions. Following the 257 

previous studies (Reichle et al., 2008; Seo et al., 2021), meteorological forcing variables are 258 

perturbed to account for the uncertainties in these variables, especially precipitation, downward 259 

shortwave, and downward longwave. Perturbations are applied using additive adjustments 260 

assuming a normal distribution for longwave radiation and multiplicative adjustments 261 

following a log-normal distribution for shortwave radiation and precipitation, as guided by 262 

previous studies (Seo et al., 2021). Here, the ensemble means of additional and multiplicative 263 

perturbations are zero and one, respectively. The relationship between disturbed precipitation 264 

and radiative flux ensures the physical consistency among atmospheric forcing variables 265 

(Reichle et al., 2008). For instance, a negative anomaly in precipitation and downward 266 

longwave-radiation is statistically linked to a positive anomaly of downward shortwave-267 

radiation. Detailed explanations regarding the perturbation of atmospheric forcings can be 268 

found in Reichle et al. (2008). 269 

  270 
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3. Methodology 271 

3.1. Bias correction 272 

The discrepancy in SWE between remote sensing and LSMs often arises due to uncertainties 273 

in the model physics and forcing data and satellite retrievals. These uncertainties can lead to a 274 

significant discrepancy in SWE between model simulations and satellite remote-sensing 275 

retrievals, potentially degrading performance. In previous studies (e.g., Reichle and Koster, 276 

2004; Seo et al., 2021), a scaling method of the nonlinear cumulative distribution function 277 

(CDF) matching is used to account for the systematic bias of soil moisture in the model 278 

backgrounds. However, unlike soil moisture, SWE presents varying characteristics in the CDF 279 

distribution across different regions, such as between high and low latitudes, thus requiring the 280 

estimation of distribution at each grid point. As a result, the insufficient sample size hinders 281 

the clear simulation of the CDF distribution, posing challenges in its application. To address 282 

this issue, we attempted to apply a simple and effective standard normal deviation scaling to 283 

satellite-derived SWE at each grid point, considering its potential use as initial conditions for 284 

JULES LSM-based climate models. Based on the climatology and standard deviation for the 285 

model and remote sensing retrievals, the scaled SWE (𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛) from the satellite can be derived 286 

from the following relation: 287 

 288 

𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑂𝑂−𝑂𝑂
�

𝜎𝜎𝑜𝑜
× 𝜎𝜎𝑚𝑚� + 𝑀𝑀�                            (1) 289 

 290 

where 𝑂𝑂� (𝜎𝜎𝑜𝑜 ) and 𝑀𝑀� (𝜎𝜎𝑚𝑚)  indicate climatology (standard deviation) of remote sensing 291 

retrievals and the model, respectively. This approach has been widely utilized in observation-292 

based land initialization and has proven to be effective (e.g., Koster et al., 2011; Jeong et al., 293 

2013). 294 

295 



15 

 

3.2. Data assimilation method  296 

The snow assimilation is conducted based on the LETKF (e.g., Hunt et al., 2007), which is 297 

utilized to combine remotely sensed retrievals with the LSM model outputs (a.k.a. backgrounds) 298 

at each grid point to produce a snow analysis. Unlike variational data assimilation methods, 299 

non-variational approaches (i.e., ensemble-based filters) characterize a probabilistic 300 

representation with the spread of the ensemble serving as an estimate of forecast uncertainty. 301 

LETKF has several advantages over other data assimilation methods. First, LETKF can 302 

efficiently handle large datasets and high-dimensional state variables by localizing the 303 

covariance matrix. This offers efficiency in parallel computing, making it suitable for real-time 304 

forecasting and high-resolution data assimilation. In this study, the horizontal local patch size 305 

and the localization length scale parameters are defined as 150 km and 30 km (Table 1), 306 

respectively. This approach involves the weight function for the covariance localization within 307 

the local patch centered at the analysis grid (e.g., Houtekamer and Mitchell, 2001; Hamill et 308 

al., 2001). This function assigns larger errors to observations located farther away from the 309 

center of the local patch, as proposed by Miyoshi and Yamane (2007), depending on the 310 

Gaussian function. Secondly, the method utilizes model simulation ensembles to capture the 311 

uncertainty in the initial states and background errors, which allows for a better representation 312 

of the flow-dependent probability distribution of the state variables that vary in time and space. 313 

Third, the LETKF employs an inflation parameter to adjust the ensemble spread, ensuring 314 

realistic uncertainty estimation by accounting for background errors. The underestimation of 315 

the analysis error covariance is typically issued by spatially and temporally constant boundary 316 

conditions and observation errors and limited ensemble members. Based on the standardized 317 

LETKF, this study applies a multiplicative covariance inflation of 20% of the spread of 24 318 

member ensembles for each data assimilation cycle. Furthermore, the Kalman gain analysis 319 

(Seo et al., 2021), which quantifies the ratio of the background error to the total error 320 
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(equivalent to the sum of the background and the observation error), is conducted. This analysis 321 

serves to determine the weights assigned to assimilated observations in the analysis update 322 

processes of the LETKF. 323 

 324 

3.3. Snow data assimilation design 325 

This study conducts the advanced daily cycle snow data assimilation experiment at each 326 

gird point using the LETKF based on the satellite data and the JULES LSM model outputs 327 

driven by 3-hourly JRA55 reanalysis atmospheric forcing. The snow assimilation processes are 328 

illustrated in Fig. 1, with a more detailed description in Table 1. Since data assimilation is 329 

conducted by considering the error of SWE in both the model and the observation, it is 330 

important to accurately understand the observation and background errors to improve the 331 

performance of data assimilation. The experiment calculates the background error from the 24 332 

ensemble member spreads generated by perturbing atmospheric forcings such as longwave 333 

radiation, shortwave radiation, and precipitation in JULES LSM, as provided in section 2.3. 334 

Due to the absence of precise error estimates for AMSR2 SWE retrievals, the observation error 335 

is conservatively prescribed as 10% of AMSR2 SWE for each grid compared to the previous 336 

study utilizing AMSR2 SWE data (Lee et al., 2015), considering the general increase in the 337 

errors during the snow accumulation period with the development of deep snowpack (Foster et 338 

al., 2005; Cho et al., 2017). Here, the bias-corrected AMSR2 satellite data as described in 339 

section 3.1 is used as the observation data, and the updated snow analysis state through data 340 

assimilation becomes a new initial state for the next integration in JULES LSM (Fig. 1). In 341 

addition, the analysis state of this method is calculated based on the IMS snow cover fraction 342 

as follows (Fig. 1). If the SCF from IMS is 0, the snow analysis is set to zero; otherwise, it is 343 

derived through data assimilation. The reason for this is due to the importance of the presence 344 

or absence of snow in the climate system, as well as the high reliability of the IMS data (e.g., 345 
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Brown et al., 2014). A background experiment of JULES LSM without satellite data 346 

assimilation as a baseline (referred to hereafter as “Openloop”) is also achieved by employing 347 

the same ensemble perturbations, thereby measuring the skill improvement from the snow 348 

analysis state through the assimilation of satellite-derived SWE and IMS SCF from satellite 349 

and surface observations (referred to hereafter as “DA”). All experiments are conducted in 350 

April from 2013 to 2020, which is one of the months with low snow performance in the LSM 351 

when the snow begins to melt in the Northern Hemisphere (e.g., Toure et al., 2018; You et al., 352 

2020).  353 
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4. Results 354 

4.1. Skill Verification 355 

Figure 2 displays the climatological-mean SCF from the IMS multi-satellite data (Brown 356 

et al., 2014) and the differences from AMSR2, Openloop, JRA55, and DA for April 2013-2020. 357 

Here, the JRA55 SWE serves as a reference dataset for comparison with other reanalyses and 358 

is associated with meteorological forcing data used in the JULES land surface model. April is 359 

a season when the accumulated snow during the cold season begins to melt. This study defines 360 

the transitional region with a climatological-mean SWE of less than 16 mm as in previous 361 

studies (e.g., Gan et al., 2021), the boundary of these transition regions is represented by the 362 

black lines in Fig. 2. The transitional regions exhibit large variability in space and time, and 363 

they are mainly located at mid-latitudes. The SCF climatology patterns show negligible 364 

differences in high latitudes of heavy snow accumulation but noticeable differences in the 365 

transitional mid-latitude regions of less snow. SCF from JRA55 tends to be underestimated 366 

compared to IMS, whereas AMSR2 and Openloop tend to overestimate. There is a clear 367 

difference in SCF between AMSR2 and IMS satellite data. This study gives more credibility 368 

to IMS than AMSR2, as the former is based on multiple satellite data sources (e.g., Brown et 369 

al., 2014). As we used the IMS SCF to define the snow region to be assimilated by AMSR2 370 

SWE, it is natural that DA shows better consistency with IMS and reduces overestimation 371 

biases in Openloop. Quantitatively, the root mean square differences (accuracy, defined in 372 

supplementary Table 1 as in previous study) for AMSR2, Openloop, JRA55, and DA with 373 

(from) IMS are 0.23 (0.91), 0.18 (0.91), 0.13 (0.93), and 0.13 (0.97), respectively, showing the 374 

best consistency in DA. The quantitative differences between DA and other experimental 375 

results are minor, but noticeable spatial discrepancies exist, particularly around transition 376 

regions. 377 

The SWE climatology from AMSR2, Openloop, JRA55, and DA is also compared with 378 
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CMC as a reference in Fig. 3. The SWE derived from AMSR2 shows a significant 379 

underestimation compared to CMC, particularly in the regions with heavy snow accumulation 380 

at high latitudes. This is presumed to be due to limitations in satellite sensors detecting the 381 

depth of snow (Gan et al., 2021). The SWE from JRA55 exhibits characteristics of 382 

overestimation in high latitudes and underestimation in transitional regions. On the other hand, 383 

the climatological SWEs from Openloop and DA exhibit higher correspondence to CMC, even 384 

higher than JRA55. Specifically, DA demonstrates a higher agreement with CMC, despite the 385 

marginal difference compared to Openloop. Quantitatively, the pattern correlation coefficients 386 

(root mean square differences) for AMSR2, Openloop, JRA55, and DA with (from) CMC are 387 

0.63 (80.7 kg/m2), 0.80 (50.1 kg/m2), 0.60 (100.8 kg/m2), and 0.80 (49.9 kg/m2), respectively. 388 

Due to the application of standard deviation scaling to the satellite-derived SWE used in data 389 

assimilation, the discrepancy in climatological SWE distributions between DA and Openloop 390 

is deemed negligible. Despite its similarity to Openloop, DA with snow data assimilation 391 

displays the relatively highest correlation and the smallest root mean square difference among 392 

the datasets. 393 

Next, we compare the temporal variation of SWE as measured by the Spearman rank 394 

correlation coefficient with CMC, which is regarded as more appropriate than the Pearson 395 

correlation coefficient for describing datasets containing nonlinearity and outliers such as snow 396 

in both time and space. Figure 4 compares the distribution of correlation skills from AMSR2, 397 

Openloop, JRA55, and DA. Openloop has a high performance in regions with heavy snow 398 

accumulation but relatively low performance in transition regions with significant snow 399 

changes. In contrast, the results from the AMSR2 satellite data represent poor performance in 400 

high-latitude areas with heavy snow accumulation but high performance in transitional regions, 401 

consistent with the previous studies (Gan et al., 2021). DA shows high performance not only 402 

in high-latitude areas with heavy snow accumulation but also in transition regions. Even 403 
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compared to JRA55 used as the atmospheric forcing, DA performs better in temporal variation. 404 

The quantitative results in the correlation in the Northern Hemisphere over 40oN (the transition 405 

region) are 0.41 (0.54) for AMSR2, 0.61 (0.48) for Openloop, 0.58 (0.58) for JRA55, and 0.67 406 

(0.61) for DA, respectively. The findings indicate that satellite retrievals offer additional value 407 

in capturing temporal variations through data assimilation, indicating the benefit of 408 

assimilating the AMSR2 SWE despite the overall lower performance of the satellite data itself.  409 

The performance improvement by DA is also evident in the zonally-averaged correlation 410 

coefficient shown in Fig. 5. The AMSR2 satellite data shows higher performance than 411 

Openloop in the transition region around latitude 45 oN-55 oN, although performance sharply 412 

decreases with increasing snow accumulation. Openloop indicates gradually increasing 413 

performance as the latitude increases, with the highest performance at around 60oN. DA 414 

denotes superior performance across the Northern Hemisphere, especially in the mid-latitude 415 

transition region than AMSR2 or JRA55. An exception is for 35-40oN in the Tibetan Plateau, 416 

where JRA55 used in-situ observations. The results suggest that the developed snow data 417 

assimilation system represents well not only the transitional regions but also the regions with 418 

high snow accumulation that are difficult to detect by satellite. 419 

Figure 6 presents the Spearman rank correlation depending on the SWE amount in the 420 

Northern Hemisphere. AMSR2 exhibits higher performance than Openloop for SWE up to 16 421 

mm. However, the performance of AMSR2 sharply declines beyond that threshold, and 422 

Openloop shows a better performance. Consistent with the results illustrated in Figs. 4 and 5, 423 

DA demonstrates superior performance compared to others. Note that DA performs 424 

significantly better in the transition region of less than 16 mm of SWE. Considering that the 425 

area below 16 mm of SWE accounts for approximately 53% of the entire area of the Northern 426 

Hemisphere(as shown in the pie chart in Fig. 6), the data assimilation impact is identifiable, 427 

and it can contribute substantially to the increase in the prediction skill through improving the 428 
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simulation of the albedo changes and surface energy balance. 429 

Consistent with the description in Section 3.3, this study considers an algorithm based on 430 

the highly reliable IMS satellite SCF data to identify the presence of snow and determine the 431 

assimilation process. Therefore, a further sensitivity test is conducted to investigate the 432 

influence of incorporating IMS data in snow assimilation. Figure 7 compares the correlation 433 

differences between Openloop and the data assimilation result employing both AMSR2 and 434 

IMS (DA), as well as the data assimilation result utilizing solely AMSR2 and excluding IMS 435 

(hereafter referred to as DA_AMSR2). The results obtained from the snow assimilation show 436 

the improvements in the transitional regions where AMSR2 denotes a better agreement with 437 

the observations compared to Openloop. Notably, the skill is enhanced significantly in DA by 438 

incorporating the IMS SCF. DA exhibits inferior performance compared to Openloop in certain 439 

exceptional cases, which may be attributed to discrepancies in snow identification between the 440 

CMC observations used for correlation and the IMS data utilized for data assimilation. 441 

Moreover, the performance of SWE improves even when only AMSR2 is used, but 442 

incorporating IMS leads to a substantial improvement in the transitional regions. This implies 443 

that IMS has a positive influence on the snow data assimilation. 444 

 445 

4.2 Kalman gain analysis 446 

In order to better understand the skill enhancement through snow assimilation of satellite 447 

data, this section examines the Kalman gain. Figure 8 illustrates the spatial distribution of 448 

observation error, model background error, and the Kalman gain for SWE. A high value of the 449 

Kalman gain denotes that the assimilated result is closer to the AMSR2 observation than the 450 

model background. The Kalman gain is large when the background error becomes large, or the 451 

observation error is small. As this study specifies the observation error as a conservative 10% 452 

of SWE compared to the previous study (Lee et al., 2015), the observation error basically 453 
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follows the distribution similar to the climatological-mean values. The background errors, 454 

originating from the 24 ensemble members, have higher values in high-latitude regions and 455 

mid-latitude regions. Data assimilation methods such as LETKF used in this study often face 456 

challenges in accurately representing background errors when the ensemble spread is 457 

insufficient. Generally, the magnitude of ensemble spread is frequently compared to the root 458 

mean square error (RMSE). The ensemble spread in this study demonstrates a sufficiently valid 459 

magnitude in comparison with the RMSE, as illustrated in SFig. 1, indicating that it is well 460 

estimated. Moreover, the standardized distribution of SWE among the ensemble members 461 

exhibits a quasi-Gaussian distribution centered around zero, with the transition region showing 462 

a closer resemblance to a standardized Gaussian distribution (SFig. 4). In the spatial 463 

distribution of Kalman gain in Fig. 8c, significant performance improvement is observed in 464 

transition regions, where Kalman gains exhibit larger values. However, in high-latitude areas 465 

with substantial snow accumulation, there is a tendency for Kalman gain to have lower values. 466 

These findings agree well with the bar graph in Fig. 9, which illustrates the Kalman gain as a 467 

function of SWE amount. In the region encompassing the transition region with SWE amounts 468 

below 20 mm, the Kalman gain displays the highest values, particularly exceeding 0.8. As the 469 

SWE amount increases, the Kalman gain decreases, with a significant decline observed when 470 

the SWE amount reaches 80-100 mm or higher. Furthermore, in the areas where DA denotes 471 

improved skill compared to Openloop, the Kalman gain shows values generally above 0.7. In 472 

contrast, relatively lower values below 0.5 are observed in the areas with decreased skill. This 473 

indicates that in the dominant areas of performance improvement, including the transition 474 

region, the background error is significantly larger than the observation error, emphasizing the 475 

substantial influence of observations in data assimilation. It is found that accurate remote 476 

sensing retrievals are well reflected in regions with high uncertainty in the LSM through the 477 

snow data assimilation system, leading to performance improvement. 478 
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4.3 Validation of the SWE for the extreme event 479 

In April 2020, Siberia experienced a record-breaking heatwave with the highest observed 480 

average temperature. This section investigates the potential benefits of snow assimilation using 481 

satellite data for the case of the 2020 Siberian heatwave. Previous studies have identified the 482 

strong polar vortex accompanied by the AO amplification during winter as a major cause of 483 

the cold Eurasian region (Overland and Wang, 2021). Additionally, it has been revealed that 484 

the occurrence of high temperatures in the Siberian region is found to be closely associated 485 

with large-scale atmospheric waves in the upper atmosphere over the Eurasian region 486 

originating from the Atlantic (De Angelis et al., 2023). As a result, remarkable snow melting 487 

occurred due to the high surface temperature over the Siberian region in April 2020, leading to 488 

extremely low values of SWE and SCF as depicted in SFig. 2. This is consistent with previous 489 

studies reporting a significant snow depletion in 2020 in the region (Gloege et al., 2022). 490 

Especially, as shown in Fig. 10, significant negative anomalies in SWE and SCF are 491 

predominant over the transition region. Substantial snow melt can contribute to record-492 

breaking heatwaves through albedo feedback and changes in the ratio of the latent and sensible 493 

heat fluxes from the exposed surface, coupled with favorable atmospheric circulation patterns 494 

(Collow et al., 2022). Collow et al. (2022) demonstrated that the exposed surface contributed 495 

to up to 20% of the temperature anomaly over Siberia in spring 2020. This implies the 496 

importance of realistic snow initial states in the global coupled model forecasts. For the 497 

Siberian region with extreme high-temperature events marked by the red box in Fig. 10, DA 498 

shows a better agreement with the extremely dry snow conditions, especially in the transitional 499 

region, compared to the Openloop. These results are evident when considering the observation-500 

to-model ratio in that region. The percentage of CMC (IMS) is 83% (78%) for Openloop and 501 

93% (89%) for DA, indicating that DA with snow data assimilation based on satellite data 502 

effectively replicates the observed snow depletion in comparison with Openloop. Similarly to 503 
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the 2020 case, we obtained another significant case in 2014 compared to Openloop, as shown 504 

in SFig. 3. Such extremely dry snow conditions can provide significant heatwave events in the 505 

following months.   506 

 507 

 508 

 509 

 510 

 511 

  512 
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5. Conclusions and discussion 513 

The advanced SWE data assimilation is developed in this study with the LETKF data 514 

assimilation method and the JULES LSM. The system assimilates snow water equivalent 515 

retrievals from AMSR2 and IMS snow cover. This constitutes an objective way to optimally 516 

combine two imperfect data sources for SWE from satellite remote sensing data and the land 517 

surface model simulation forced by observed atmospheric data. This study shows that the 518 

satellite-derived SWE has limitations in penetrating deep snow and exhibited much 519 

discrepancy from the SWE obtained from the Openloop LSM simulations. The SWE 520 

assimilation in this study proves the beneficial impacts of using satellite snow data, maintaining 521 

better analysis quality by dynamically balancing the errors from the satellite observations and 522 

the model background states.  523 

It is found that the simulation from Openloop as a baseline shows superior performance in 524 

high-latitude regions with heavy snow accumulation but relatively inferior performance in 525 

transition regions with much variation of snow in space and time. Contrastingly, the AMSR2 526 

satellite data represent poor performance in high-latitude regions but exhibit relatively better 527 

performance in the transition regions. The SWE from the LETKF data assimilation consistently 528 

exhibits better performance in capturing the climatology and temporal variation compared to 529 

other results. It specifically improves the analysis in the mid-latitude transition regions that 530 

cover approximately 53% of the entire areas of the Northern Hemisphere. It is found that the 531 

model background errors estimated from the ensemble spread are significantly larger than the 532 

observation errors, thereby reflecting satellite information more in those regions. The LETKF 533 

data assimilation also proves reliable representation in the heavy snow regions due to low 534 

ensemble spread and large uncertainty in the satellite retrievals. Moreover, during the record-535 

breaking heatwave in Siberia in April 2020, the remarkable snow depletion observed due to 536 

high surface temperatures is more realistically reproduced by our snow analysis compared to 537 



26 

 

the Openloop.  538 

This snow data assimilation framework is anticipated to contribute to a more precise 539 

prediction of atmospheric conditions by realistically capturing the interaction between the 540 

atmosphere and land, given the substantial influence of SWE on energy and water balance at 541 

the interface of the atmosphere and land. Specifically, this applies to the transitional regions 542 

with high spatial and temporal variability. The long-term analysis of snow manifests a 543 

pronounced variability in the continental interior at the interannual timescales, potentially 544 

improving the prediction of extreme heatwave events by global climate models. This study 545 

used the gridded CMC data from in-situ observations for the validation. Although existing 546 

snow data are subject to much uncertainty and limitations, we expect to obtain comparable 547 

conclusions and significant benefits of optimally combining satellite SWE data and the LSM 548 

model simulations through LETKF data assimilation method.  549 

The quality of the observation is crucial in the data assimilation system. Satellite-derived 550 

snow cover exhibits a significantly higher accuracy compared to other data sources, while SWE 551 

has restricted performance due to the limitations of penetration depth by satellite sensors and 552 

relies heavily on estimation algorithms. Due to these problems, most previous studies and 553 

operational centers primarily depend on satellite-derived snow cover for snow initialization. 554 

However, the findings from this study highlighted the beneficial impacts of using satellite-555 

derived SWE, particularly in the rapidly changing transition areas, to find out which variable 556 

is more important in closing surface energy and water balance changed by snow. Nevertheless, 557 

areas of significance in large-scale circulation, such as the Tibetan region, which experiences 558 

significant uncertainty and degraded performance in satellite data, do not exhibit substantial 559 

data assimilation effects. As the performance of SWE derived from various satellites continues 560 

to advance, these issues will be discussed more.  561 

  562 
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Table 1. Description of the land surface model, the data used, and assimilation experiment 812 

designs.   813 

 
INFORMATION REFERENCES 

Land Surface Model JULES Best et al., (2011) 

Atmospheric Forcing 3-hourly JRA-55 reanalysis Kobayashi et al., (2015) 
 

Snow Observation AMSR2 & IMS Imaoka et al., (2010) 

Ramsay (1998) 

Helfrich et al., (2007) 

Data Assimilation 
scheme 

Local Ensemble Transform 
Kalman Filter (LETKF) 

Hunt et al., (2007) 

Miyoshi and Yamane, (2007) 

Resolution (km) 0.5° ×0.5° (~ 50) 
 

1-day DA cycle 

Localization patch size 
(km) 

3×3 (150), σ =30 

Ensemble sizes 24 

Experiment period 2013-2020, APR  

 814 
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 816 

Figure 1. Schematic diagram of the snow assimilation system with satellite-derived 817 

observations and the land surface model outputs. 818 

 819 

 820 
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 821 

Figure 2. (a) Climatology of SCF from IMS used as reference and (b-e) the differences from 822 

IMS for AMSR2, base-line model simulation (Openloop), JRA55, and the data 823 

assimilation results (DA) for April during 2013-2020. The black line represents the 824 

boundary of the transition region, defined as the climatological-mean SWE of less than 825 

16mm. Each value on the top right is the root-mean-squared difference with IMS and 826 

the accuracy from IMS (parenthesis) for 15323 pixels over 40-60oN. The accuracy is 827 

defined in supplementary Table 1 as in previous study (Lee et al., 2015). Negative 828 

values in red shades are indicated with a diagonal line. 829 

 830 

  831 
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 832 

Figure 3. (a) Climatology of SWE from CMC used as reference and (b-e) the differences from 833 

CMC for AMSR2, base-line model simulation (Openloop), JRA55, and the data 834 

assimilation results (DA) for April during 2013-2020. The black line represents the 835 

boundary of the transition region, defined as the climatological-mean SWE of less than 836 

16mm. Each value on the top right is the pattern correlation with CMC for 26482 pixels 837 

over 40 oN and the root-mean-squared difference (unit: kg/m2) from CMC (parenthesis) 838 

for 15323 pixels over 40-60oN. Negative values in red shades are indicated with a 839 

diagonal line. 840 
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 843 

Figure 4. SWE skill measured as the Spearman rank correlation (R) with the CMC for AMSR2, 844 

base-line model simulation (Openloop), JRA55, and the data assimilation result (DA). 845 

The black line represents the boundary of the transition region, defined as the 846 

climatological-mean SWE of less than 16mm. Each value on the top is the area-average 847 

R of North hemisphere for 26482 pixels over 40oN and for 8801 pixels over the 848 

transition region (parenthesis). Negative values are indicated with a diagonal line.  849 



40 

 

 850 

Figure 5. Zonally-averaged Spearman rank correlation (R) along the latitude for SWE. The 851 

yellow line indicates the climatology of SWE, and the black, blue, green, and red lines 852 

denote the values of AMSR2, base-line model simulation (Openloop), JRA55, data 853 

assimilation results (DA), respectively. 854 
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 856 

Figure 6. Box plots of the Spearman rank correlation (R) according to SWE. The pie chart 857 

shows the total area ratio (%) as a function of SWE amount. The black, blue, and red 858 

boxes denote the AMSR2, base-line model simulation (Openloop), and the data 859 

assimilation results (DA), respectively. The boxes indicate 25 and 75% percentiles, and 860 

the line and point in the boxes shows the median and the mean values. The upper and 861 

lower whiskers denote the 10 and 90% percentiles, respectively. 862 
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 864 

Figure 7. The difference in SWE Spearman rank correlation coefficient with CMC between 865 

the Openloop and data assimilation results: DA employing both AMSR2 and IMS and 866 

DA_AMSR2 utilizing solely AMSR2 and excluding IMS, for April during 2013-2020. 867 

The black line represents the boundary of the transition region, defined as the 868 

climatological-mean SWE of less than 16mm. Each value on the top right is the area-869 

average over 40oN and the transition region (parenthesis). Negative values are indicated 870 

with a diagonal line. 871 
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 875 

Figure 8. Spatial distribution of observation error (unit: kg/m2), background error (unit: kg/m2), 876 

and Kalman gain. The black line represents the boundary of the transition region, 877 

defined as the climatological-mean SWE of less than 16mm.  878 
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 880 

Figure 9. Bar chart of (left) the Kalman gain according to the SWE amount, and (right) the 881 

Kalman gain (red line) and background error (blue line) as a function of the difference 882 

between Openloop and DA in Spearman rank correlation coefficient (R). 883 
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 885 

Figure 10. Anomalies of a) SWE from CMC and b) SCF from IMS as well as the difference 886 

(c, d) of variables between DA and openloop in April 2020. Bar chart (e, f) indicates 887 

the ratio of DA and openloop to verification data such as CMC and IMS in the red box 888 

(48–65oN and 55–120oE), which is the region associated with extreme high-889 

temperature events, focused on this study. Negative values are indicated with a diagonal 890 

line. 891 
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