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Abstract 26 

Snow Water Equivalent (SWE), as one of the land initial or boundary conditions, plays a 27 

crucial role in global or regional energy and water balance, thereby exerting a considerable 28 

impact on seasonal and sub-seasonal scale predictions owing to its enduring memory over 1 to 29 

2 months. Despite its importance, most SWE initialization remains challenging due to its 30 

reliance on simple approaches based on spatially constrained observation.limited observations. 31 

Therefore, this study developed the advanced SWE data assimilation framework with satellite 32 

remote-sensing data utilizing the local ensemble transform Kalman filter (LETKF) and the 33 

Joint U.K. Land Environment Simulator (JULES) land model. This approach constitutes a 34 

novel approach that has not been previously attempted, as it offers an objective way tomethod 35 

that optimally combinecombines two imperfectpreviously unattempted incomplete data 36 

sources: the satellite SWE retrieval from the Advanced Microwave Scanning Radiometer 2 37 

(AMSR2) and dynamically -balanced SWE from the JULES land surface model. In this 38 

framework, an algorithm is additionally considered to determine the assimilation process based 39 

on the presence or absence of snow cover from the Interactive Multisensor Snow and Ice 40 

Mapping System (IMS) satellite, renowned for its superior reliability. 41 

The baseline model simulation from JULES without satellite data assimilation shows 42 

superiorbetter performance in high-latitude regions with heavy snow accumulation but 43 

relatively inferior in the transition regions with less snow and high spatial and temporal 44 

variation. Contrastingly, the AMSR2 satellite data exhibit better performance in the transition 45 

regions but poorer in the high latitudes, presumably due to the limitation of the satellite data in 46 

the penetrating depth. The data assimilation (DA) demonstrates the positive impacts by 47 

reducing uncertainty in the JULES model simulations in most areas, particularly in the mid-48 

latitude transition regions. In the transition regions, the model background errors from the 49 

ensemble runs are significantly larger than the observation errors, emphasizing great 50 
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uncertainty in the model simulations. The results of this study highlight the beneficial impact 51 

of data assimilation by effectively combining both land surface model and satellite-derived 52 

data according to their relative uncertainty, thereby controlling not only transitional regions but 53 

also satellite-constrained areas experiencing heavy snow accumulation. This assimilation 54 

framework is anticipated to contribute to a more precise prediction of atmospheric conditions 55 

by realistically capturing the interaction between the atmosphere and land, given the substantial 56 

influence of SWE on energy and water balance at the interface of the atmosphere and landthe 57 

regions with heavy snow accumulation that are difficult to detect by satellite. 58 

  59 
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1. Introduction 60 

Snow plays a crucial role in regulating the water, energy, and carbon exchange between the 61 

land surface and atmosphere (e.g., Dutra et al., 2011; Thomas et al., 2016). A snowpack tends 62 

to increase surface albedo and soil moisture as the snow melts (Eagleson,1970), thereby 63 

affecting the climate system through changes in water and energy balances. In addition to local 64 

impacts, the continental snowpack over Eurasia can influence the large scale atmospheric 65 

circulation during winter (e.g., Li and Wang, 2014) or in spring (e.g., Broxton et al., 2017). 66 

Especially, the Eurasian autumn snow can affect upward-propagating stationary Rossby-wave 67 

activity, leading to stratospheric warming and weakening of stratospheric polar vortex and jet 68 

stream, which in turn emerges as a negative Arctic oscillation (AO)-like pattern at the surface 69 

during winter due to downward propagation through the troposphere. Its impact is shown in 70 

both observation and model experiments (e.g., Allen and Zender 2011; Cohen et al. 2007). 71 

Furthermore, the interannual variability of snow melting during the boreal spring season affects 72 

surface soil moisture in summer, which has important implications for heatwave development 73 

and emphasizing mechanisms through land-atmosphere interactions (Seo et al., 2020). 74 

In the subseasonal to seasonal (S2S) timescales, land initial states are crucial components 75 

in the S2S timescale predictions due to the inherent memory that changes slowly for 1 to 2 76 

months in the climate system (e.g., Derome et al. 2005; Chen et al., 2010; Seo et al., 2019). In 77 

particular, the realistic snow initial states contribute to improving S2S prediction skills, as 78 

proven in several modeling studies. For example, previous studies (Orsolini et al., 2013; Jeong 79 

et al., 2013) demonstrated a considerable enhancement in prediction skill of 2m air temperature 80 

up to a lead time of 1-2 months across certain regions of Eurasia and the Arctic during winter, 81 

depending on snow initialization. Moreover, other studies (Orsolini et al., 2016; Li et al., 2019) 82 

have revealed that wave activity propagating toward the stratosphere, influenced by snow 83 

initial conditions in climate models, can induce changes in the polar vortex and contribute to 84 

https://doi.org/10.1088/1748-9326/abbbae
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD030903#jgrd55729-bib-0034
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the persistence of the North Atlantic Oscillation (NAO) and the AO. This emphasizes the 85 

significance of snow initialization in climate models as an essential process for enhancing 86 

prediction performance at the S2S timescales.  87 

Snow states, i.e., snow water equivalent (SWE) used directly for hydrological analysis and 88 

initial states of the model (Li et al., 2019; Gan et al., 2021), are generally provided from in-situ 89 

observations data, remote-sensing retrievals from satellites, or numerical models such as the 90 

land surface model (LSM) operated based on the observed atmospheric variables. For the in-91 

situ data snow depth (SD) measurements prevail, largely attributed to the challenges associated 92 

with acquiring precise SWE data (Takala et al., 2011; De Rosnay et al., 2014). Surface synoptic 93 

observations (SYNOP) serve as the principal source for SD measurements. The in-situ 94 

measurements offer the most dependable snow information, yet they are characterized by 95 

relatively coarse temporal and spatial resolutions, particularly within limited areas, due to the 96 

spatial heterogeneity inherent in snow distribution. (Helmert et al., 2018; Meyal et al., 2020). 97 

Satellite-derived observations using conical scanning microwave instruments may provide 98 

spatially consistent data coverage across the globe. Cho et al. (2017) showed the SWE retrieval 99 

results from two passive microwave sensors, the advanced microwave scanning radiometer 2 100 

(AMSR2) and the special sensor microwave imager sounder (SSMIS). However, the 101 

algorithms for SWE retrieval exhibit a degree of sensitivity to a variety of parameters such as 102 

snow liquid water content and snow grain size distribution (De Rosnay et al., 2014). Hence, 103 

satellite-based SWE data still have limitations in accuracy, especially under deep snow 104 

conditions due to the limited penetration depth (Gan et al., 2021). On the other hand, satellite 105 

retrieval can estimate snow cover accurately under clear sky conditions (Brubaker et al., 2009). 106 

Model simulations obtained from LSMs and simple snow models can cover complete 107 

spatiotemporal resolution but involve potentially large uncertainties due to the deficiencies in 108 

the physical parameterizations and meteorological forcing data (Dirmeyer et al., 2006; Seo et 109 
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al., 2021).  110 

Considering that snow observation datasets have theirdataset has its respective strengths as 111 

well as limitations, data assimilation or other data fusion methods can prove to be beneficial 112 

for constructing snow states such as reanalysis data (e.g., Brasnett, 1999; Dee et al., 2011; 113 

Meng et al., 2012; Pullen et al., 2011; De Rosnay et al., 2014). For example, the snow analysis 114 

for the Canadian Meteorological Center (CMC) utilizes a 2-dimensional optimal interpolation 115 

(2D-OI) scheme with in-situ observations and the outputs from a simple snow model (Brown 116 

et al., 2003). The National Centers for Environmental Prediction (NCEP) climate forecast 117 

system reanalysis (CFSR) combines a multi-satellite-based interactive multi-sensor snow and 118 

ice mapping system (IMS) as satellite-based snow cover retrieval and the outputs from the 119 

global snow model of the Air Force Weather Agency (Meng et al., 2012). At the European 120 

Center for Medium Weather Forecast (ECMWF), the ECMWF reanalysis (ERA)-Interim and 121 

ERA5 for the snow analysis employ a Cressman interpolation and 2D-OI, respectively, with 122 

the IMS, in-situ observation, and the results from a land surface model (Dee et al. 2011; De 123 

Rosnay et al., 2014). The Japanese 55-year Reanalysis (JRA55) also utilizes the 2D-OI with 124 

in-situ observation, satellite-based snow cover from SSMIS, and the results from an LSM 125 

(Kobayashi et al., 2015). Given that the majority of the reanalysis datasets rely on snow depth 126 

measurements, the SWE estimation is likely to introduce potential accuracy concerns when the 127 

snow depth information is combined with the sow density calculations. 128 

Climate prediction systems in operational centers such as the Meteorological Office (Met 129 

Office) in the United Kingdom and the Korean Meteorological Administration (KMA) conduct 130 

the snow initialization by utilizing the results of the operational global unified model (UM) and 131 

the IMS snow cover, which solely indicates the presence of snow (Pullen et al., 2011), lacking 132 

in its ability to reflect the physical quantity of it. The initialization at NCEP also performs a 133 

similar approach using input data combined from IMS snow cover and results from the global 134 
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SD model (SNODEP; Meng et al., 2012). Furthermore, the snow initialization of ECMWF 135 

employs optimal interpolation with a combination of results from the LSM, IMS snow cover, 136 

and in-situ observation from SYNOP and national networks available on the GTS. However, 137 

in regions where ground observations are unavailable, large errors may exist in the snow model 138 

outputs due to uncertainties in atmospheric forcing and imperfect model parameterization 139 

(Boone et al., 2004; Essery et al., 2009). Often, the snow processes parameterized in LSMs 140 

rely on observed properties sampled in limited areas (Lim et al., 2022). In addition, as IMS 141 

snow cover only identifies the presence of snow, the data assimilation with the satellite snow 142 

cover only is not sufficient and inappropriate in constraining water and energy conservation. 143 

Alternative methods that consider the physical quantity of snow are required for the snow 144 

initialization. 145 

One approach to mitigate the spatial discontinuity of ground observations is to use satellite-146 

derived SWE with wide spatial coverage and frequent temporal resolution. However, the SWE 147 

retrievals from satellites still have considerable uncertainties (De Lannoy et al., 2010; Dawson 148 

et al., 2018), which can arise from vegetation and terrain interference, sensor signal saturation, 149 

snowfall amount, and simplifications in the underlying assumptions of the retrieval algorithms 150 

(Liu et al., 2015). In particular, a region with heavy snow accumulation leads to a significant 151 

underestimation of SWE due to the limitations in penetration depth from satellites (Gan et al., 152 

2021), so that satellite-derived SWE is not employed in the land initialization process. In 153 

previous studies, various approaches have been attempted to improve SWE product 154 

performance, such as combining satellite-derived SWE with ground observations (Pulliainen 155 

et al., 2020), different satellite data sets (Gan et al., 2021), simple snow models (Dziubanski 156 

and Franz, 2016), or LSMs (Kwon et al., 2017; Kumar et al., 2019). However, most previous 157 

studies have focused on targeted regions with limited ground-based observations. Snow 158 

initialization in global coverage using satellite-derived SWE remains a persistently challenging 159 
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task. 160 

Therefore, this study developed an advanced SWE data assimilation framework with satellite 161 

remote-sensing data using the local ensemble transform Kalman filter (LETKF) and the Joint 162 

U.K. Land Environment Simulator (JULES) land model. This constitutes a novel approach that 163 

has not been previously attempted, and it offers an objective way to optimally combine two 164 

imperfectWhile there are existing studies on SWE data assimilation (e.g., Oaida et al., 2019; 165 

Smyth et al., 2020; Luojus et al., 2021), the use of passive microwave observations based on 166 

the LETKF in this context is relatively rare (e.g., Girotto et al., 2020). This approach constitutes 167 

an objective method that optimally combines two previously unattempted incomplete data 168 

sources: the satellite SWE from the Advanced Microwave Scanning Radiometer 2 (AMSR2) 169 

and the dynamically-balanced SWE from the JULES land model forced by observed 170 

atmospheric fields. The estimated SWE data exhibit better consistence by additionally using 171 

snow cover data from the IMS data. This assimilation framework also enables the assessment 172 

of improvement as it provides insights into the reasons behind the performance improvement 173 

based on the Kalman gain analysis that measures the relative significance of the input data 174 

between the satellite and the land model during the data assimilation cycle. The satellite data 175 

have demonstrated high reliability in the transition regions of climatologically-shallow snow 176 

conditions (Gan et al., 2021), and these regions are known as "hot spots" of strong atmosphere-177 

land coupling through snow melting and associated surface energy and water balance changes 178 

(Koster et al., 2004; Dirmeyer, 2011; Huning and AghaKouchak, 2020). From these 179 

perspectives, it would be important to evaluate the impact of satellites on the transition regions 180 

as well as on the deep accumulation regions where accurate satellite retrievals are challenging. 181 

Furthermore, the benefits of assimilating satellite retrievals in extremely high-temperature 182 

events, such as the case in April 2020 over Eurasia, can be elucidated. In this regard, we expect 183 

that this snow data assimilation framework with satellite-derived SWE can be significant in 184 
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providing optimal snow initial states for improving the S2S prediction by global climate models. 185 

  186 
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2. Data and model 187 

2.1. Satellite data 188 

The snow information including snow cover and SWE can be derived from satellite 189 

measurements offering global coverage and high temporal as well as spatial resolution. For 190 

data assimilation, this study uses SWE calculated from brightness temperature measurements 191 

obtained by the AMSR2 on board the Japanese Aerospace Exploration Agency (JAXA) global 192 

change observation mission-water (GCOM-W) satellite. This AMSR2 Unified Level-3 (L3) 193 

dataset offers daily estimation of SWE at 25 km resolutions from July 2012 to the present. 194 

AMSR2 has a sensor designed to detect microwave radiation naturally emitted from the surface 195 

and atmosphere, employing six frequency bands ranging from 6.9 to 89 GHz. Through this 196 

conical scanning mechanism, AMSR2 can acquire day and night datasets with nearly constant 197 

spatial resolution over more than 99% of the global coverage every two days. Comprehensive 198 

explanations of AMSR2 characteristics are available in Imaoka et al. (2010). AMSR2 is 199 

selected for the assimilation because it produces more accurate results by assimilating data 200 

from modern sensors (e.g., AMSR2) compared to data from conventional sensors (e.g., AMSR-201 

E) (Cho et al., 2017). 202 

The widely used multisensor–derived snow cover is IMS (e.g., Ramsay 1998; Helfrich et 203 

al., 2007) produced by NOAA the National Environmental Satellite Data and Information 204 

Service (NESDIS) for the Northern Hemisphere from February 2004 to the present at 4 km 205 

resolutions. This dataset is generated using various data products, including multi-satellite 206 

images and in-situ observations (U.S. National Ice Center, 2008). Since IMS provides binary 207 

(0: no snow or 1: snow covered) snow cover information, we transform the IMS snow cover at 208 

4 km grids to the snow cover fraction (SCF) within a 50-km LSM grid by counting the snow 209 

pixel number with a value of 1. A 50-km LSM grid is declared as snow-covered when more 210 

than 50% of the 4km pixels within the grid are covered with snow. In this study, the application 211 

https://cdnsciencepub.com/doi/full/10.1139/as-2020-0024#core-ref81
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of the assimilation process is determined based on IMS-based SCF, renowned for its superior 212 

reliability (e.g., Brown et al., 2014). Further details will be described in Section 3.3. 213 

 214 

2.2. Reference data for SWE and SCF 215 

The CMC daily estimated SWE is used for verification. The SWE data is processed using 216 

statistical interpolation between a background field derived from a simple snow model and in-217 

situ daily SD (Brown and Brasnett, 2010). In detail, this dataset utilizes optimal interpolation 218 

methods to acquire spatial SD from the in-situ data, involving SYNOP, special aviation reports 219 

from the World Meteorological Organization (WMO), and meteorological aviation reports 220 

(METAR). In areas with scant in-situ data, a simple snow accumulation and melt model is 221 

employed to create an optimal interpolation that estimates snowmelt and snowfall worldwide, 222 

assuming the persistence of the snowpack mass between snowfall and melting events 223 

(Brasnett, 1999). Although the average elevation of snow measurement stations used in CMC 224 

is biased toward low elevations (< 400m), potentially causing relative negative biases at higher 225 

elevations with heavy snow accumulation, the CMC dataset is often considered the premier 226 

snow analysis accessible in the Northern Hemisphere (Su et al. 2010) and has still been widely 227 

used to evaluate model outputs (e.g., Reichle et al., 2011; Reichle et al., 2017; Toure et al, 228 

2018). Therefore, the SWE of CMC produced without the satellite-derived data is selected for 229 

verification as an independent dataset for evaluating the assimilated analysis with remote 230 

sensing snow retrievals. Since only daily SD analysis is provided in CMC, it is converted to 231 

daily SWE based on the snow bulk density methods (e.g., Sturm et al., 2010). It is available 232 

from 12 March 1998 to the present and offers comprehensive coverage of the entire Northern 233 

Hemisphere with a horizontal resolution of 24 km. The SWE of CMC at its native horizontal 234 

resolution is interpolated onto the LSM grid through local area averaging. 235 

 236 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021WR030895?casa_token=V4W_G2mcxhgAAAAA:DYBHLusobSAcf5lbkKFabNOJxFQ5tlDug4TQzIdAFrlbFdtnVQ5No6ZyYWGW6ZD-MN1IN5jfRuI7_v6zJA#wrcr25938-bib-0006
https://journals.ametsoc.org/view/journals/clim/24/24/jcli-d-10-05033.1.xml#bib46
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2.3. JULES LSM 237 

This study utilizes the JULES LSM from the Met Office (Best et al., 2011), a component 238 

land model of the global seasonal forecasting system version 6 (GloSea6) global, fully-coupled 239 

atmosphere, ocean, land, and sea-ice model. The surface types (or snow tiles) in the JULES 240 

LSM consist of four non-vegetated types: urban, land-ice, inland water, and bare soil, as well 241 

as five vegetation functional types: C3 temperate grass, needleleaf trees, shrubs, C4 tropical 242 

grass, and broadleaf trees. For each surface tile, a separate energy balance is computed, and the 243 

average energy balance in the grid cells is determined by applying weights to the values of each 244 

surface tile. Two schemes are used within JULES to represent surface snow (e.g., Best et al., 245 

2011; Burke et al., 2013). The simple method involves a zero-layer approach, which modifies 246 

the top soil level without using explicit model layers to represent snow processes. The other is 247 

the multi-layer approach which is more comprehensive, described in Best et al. (2011). In the 248 

case of vegetated surfaces, snow can be separated into ground snow and canopy snow or stored 249 

in a single effective reservoir. As both the zero-layer and multi-layer snow models provide 250 

similar results under various conditions (Best et al., 2011), this study used the zero-layer snow 251 

model with constant thermal conductivity and density for snow. Although the heat capacity of 252 

snow is ignored, the bulk thermal conductivity in the surface layer is reduced as the thermal 253 

conductivity of snow differs from that of the soil and the layer thickness increases. As long as 254 

snow persists on the ground, the skin temperature cannot exceed 0°C, yet the heat flux utilized 255 

for melting the snow is diagnosed as the residual in the surface energy balance. The melted 256 

water is immediately drained from the snow, divided into runoff and soil infiltration, and liquid 257 

water is not stored or frozen in the snow. A detailed description of the energy and water cycling 258 

in the JULES LSM can be referenced in Best et al. (2011). 259 

The prognostic variables (e.g., SWE) in the LSM are determined by meteorological forcing 260 

variables such as 2-m air temperature, humidity, 10-m wind speed, precipitation, surface 261 

https://gmd.copernicus.org/articles/12/1909/2019/#bib1.bibx54
https://gmd.copernicus.org/articles/12/1909/2019/#bib1.bibx54
https://gmd.copernicus.org/articles/12/1909/2019/#bib1.bibx34
https://gmd.copernicus.org/articles/12/1909/2019/#bib1.bibx34
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pressure, and radiative fluxes. The 3-hourly, JRA55 reanalysis at 0.56° spatial resolution is 262 

employed for the meteorological forcing variables, which is linearly interpolated to a 50 km 263 

resolution of the LSM. The model background error needed for data assimilation is estimated 264 

by JULES ensemble runs with perturbed initial and boundary conditions. Following the 265 

previous studies (Reichle et al., 2008; Seo et al., 2021), meteorological forcing variables are 266 

perturbed to account for the uncertainties in these variables, especially precipitation, downward 267 

shortwave, and downward longwave. Perturbations are applied using additive adjustments 268 

assuming a normal distribution for longwave radiation and multiplicative adjustments 269 

following a log-normal distribution for shortwave radiation and precipitation, as guided by 270 

previous studies (Seo et al., 2021). Here, the ensemble means of additional and multiplicative 271 

perturbations are zero and one, respectively. The relationship between disturbed precipitation 272 

and radiative flux ensures the physical consistency among atmospheric forcing variables 273 

(Reichle et al., 2008). For instance, a negative anomaly in precipitation and downward 274 

longwave-radiation is statistically linked to a positive anomaly of downward shortwave-275 

radiation. Detailed explanations regarding the perturbation of atmospheric forcings can be 276 

found in Reichle et al. (2008). 277 

  278 
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3. Methodology 279 

3.1. Bias correction 280 

The discrepancy in SWE between remote sensing and LSMs often arises due to uncertainties 281 

in the model physics and forcing data and satellite retrievals. These uncertainties can lead to a 282 

significant discrepancy in SWE between model simulations and satellite remote-sensing 283 

retrievals, potentially degrading performance. In previous studies (e.g., Reichle and Koster, 284 

2004; Seo et al., 2021), a scaling method of the nonlinear cumulative distribution function 285 

(CDF) matching is used to account for the systematic bias of soil moisture in the model 286 

backgrounds. However, unlike soil moisture, SWE presents varying characteristics in the CDF 287 

distribution across different regions, such as between high and low latitudes, thus requiring the 288 

estimation of distribution at each grid point. As a result, the insufficient sample size hinders 289 

the clear simulation of the CDF distribution, posing challenges in its application. To address 290 

this issue, we attempted to apply a simple and effective standard normal deviation scaling to 291 

satellite-derived SWE at each grid point, considering its potential use as initial conditions for 292 

JULES LSM-based climate models. Based on the climatology and standard deviation for the 293 

model and remote sensing retrievals, the scaled SWE (𝑂𝑛𝑒𝑤) from the satellite can be derived 294 

from the following relation: 295 

 296 

𝑂𝑛𝑒𝑤 = (
𝑂−�̅�

𝜎𝑜
× 𝜎𝑚) + �̅�                           (1) 297 

 298 

where �̅� (𝜎𝑜 ) and �̅� (𝜎𝑚)  indicate climatology (standard deviation) of remote sensing 299 

retrievals and the model, respectively. This approach has been widely utilized in observation-300 

based land initialization and has proven to be effective (e.g., Koster et al., 2011; Jeong et al., 301 

2013). 302 

303 
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3.2. Data assimilation method  304 

The snow assimilation is conducted based on the LETKF (e.g., Hunt et al., 2007), which is 305 

utilized to combine remotely sensed retrievals with the LSM model outputs (a.k.a. backgrounds) 306 

at each grid point to produce a snow analysis. Unlike variational data assimilation methods, 307 

non-variational approaches (i.e., ensemble-based filters) characterize a probabilistic 308 

representation with the spread of the ensemble serving as an estimate of forecast uncertainty. 309 

LETKF has several advantages over other data assimilation methods. First, LETKF can 310 

efficiently handle large datasets and high-dimensional state variables by localizing the 311 

covariance matrix. This offers efficiency in parallel computing, making it suitable for real-time 312 

forecasting and high-resolution data assimilation. In this study, the horizontal local patch size 313 

and the localization length scale parameters are defined as 150 km and 30 km (Table 1), 314 

respectively. This approach involves the weight function for the covariance localization within 315 

the local patch centered at the analysis grid (e.g., Houtekamer and Mitchell, 2001; Hamill et 316 

al., 2001). This function assigns larger errors to observations located farther away from the 317 

center of the local patch, as proposed by Miyoshi and Yamane (2007), depending on the 318 

Gaussian function. Secondly, the method utilizes model simulation ensembles to capture the 319 

uncertainty in the initial states and background errors, which allows for a better representation 320 

of the flow-dependent probability distribution of the state variables that vary in time and space. 321 

Third, the LETKF employs an inflation parameter to adjust the ensemble spread, ensuring 322 

realistic uncertainty estimation by accounting for background errors. The underestimation of 323 

the analysis error covariance is typically issued by spatially and temporally constant boundary 324 

conditions and observation errors and limited ensemble members. Based on the standardized 325 

LETKF, this study applies a multiplicative covariance inflation of 20% of the spread of 24 326 

member ensembles for each data assimilation cycle. Furthermore, the Kalman gain analysis 327 

(Seo et al., 2021), which quantifies the ratio of the background error to the total error 328 
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(equivalent to the sum of the background and the observation error), is conducted. This analysis 329 

serves to determine the weights assigned to assimilated observations in the analysis update 330 

processes of the LETKF. 331 

 332 

3.3. Snow data assimilation design 333 

This study conducts the advanced daily cycle snow data assimilation experiment at a daily 334 

cycle based on each gird point using the LETKF withbased on the satellite data and the JULES 335 

LSM model outputs driven by 3-hourly JRA55 reanalysis atmospheric forcing. The snow 336 

assimilation processes are illustrated in Fig. 1, with a more detailed description in Table 1. 337 

Since data assimilation is conducted by considering the error of SWE in both the model and 338 

the observation, it is important to accurately understand the observation and background errors 339 

to improve the performance of data assimilation. The experiment calculates the background 340 

error from the 24 ensemble member spreads generated by perturbing atmospheric forcings such 341 

as longwave radiation, shortwave radiation, and precipitation in JULES LSM, as provided in 342 

section 2.3. Due to the absence of precise error estimates for AMSR2 SWE retrievals, the 343 

observation error is conservatively prescribed as 10% of AMSR2 SWE for each grid compared 344 

to the previous study utilizing AMSR2 SWE data (Lee et al., 2015), considering the general 345 

increase in the errors during the snow accumulation period with the development of deep 346 

snowpack (Foster et al., 2005; Cho et al., 2017). Here, the bias-corrected AMSR2 satellite data 347 

as described in section 3.1 is used as the observation data, and the updated snow analysis state 348 

through data assimilation becomes a new initial state for the next integration in JULES LSM 349 

(Fig. 1). In addition, the analysis state of this method is calculated based on the IMS snow 350 

cover fraction as a reference in the following wayfollows (Fig. 1); where). If the SCF offrom 351 

IMS is zero0, the snow amount analysis is set to zero, and in other cases; otherwise, it is derived 352 

fromthrough data assimilation. The reason for this is due to the importance of the presence or 353 
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absence of snow in the climate system, as well as the high reliability of the IMS data (e.g., 354 

Brown et al., 2014). A background experiment of JULES LSM without satellite data 355 

assimilation as a baseline (referred to hereafter as “Openloop”) is also achieved by employing 356 

the same ensemble perturbations, thereby measuring the skill improvement from the snow 357 

analysis state through the assimilation of satellite-derived SWE and IMS SCF from satellite 358 

and surface observations (referred to hereafter as “DA”). All experiments are conducted in 359 

April from 2013 to 2020, which is one of the months with low snow performance in the LSM 360 

when the snow begins to melt in the Northern Hemisphere (e.g., Toure et al., 2018; You et al., 361 

2020).  362 
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4. Results 363 

4.1. Skill Verification 364 

Figure 2 displays the climatological-mean SCF from the IMS multi-satellite data (Brown 365 

et al., 2014) and the differences from AMSR2, Openloop, JRA55, and DA for April 2013-2020. 366 

Here, the JRA55 SWE serves as a reference dataset for comparison with other reanalyses and 367 

is associated with meteorological forcing data used in the JULES land surface model. April is 368 

a season when the accumulated snow during the cold season begins to melt. This study defines 369 

the transitional region with a climatological-mean SWE of less than 16 mm as in previous 370 

studies (e.g., Gan et al., 2021), the boundary of these transition regions is represented by the 371 

black lines in Fig. 2. The transitional regions exhibit large variability in space and time, and 372 

they are mainly located at mid-latitudes. The SCF climatology patterns show negligible 373 

differences in high latitudes of heavy snow accumulation but noticeable differences in the 374 

transitional mid-latitude regions of less snow. SCF from JRA55 tends to be underestimated 375 

compared to IMS, whereas AMSR2 and Openloop tend to overestimate. There is a clear 376 

difference in SCF between AMSR2 and IMS satellite data. This study gives more credibility 377 

to IMS than AMSR2, as the former is based on multiple satellite data sources (e.g., Brown et 378 

al., 2014). As we used the IMS SCF to define the snow region to be assimilated by AMSR2 379 

SWE, it is natural that DA shows better consistency with IMS and reduces overestimation 380 

biases in Openloop. Quantitatively, the root mean square differences (accuracy, defined in 381 

supplementary Table 1 as in previous study) for AMSR2, Openloop, JRA55, and DA with 382 

(from) IMS are 0.23 (0.91), 0.18 (0.91), 0.13 (0.93), and 0.13 (0.97), respectively, showing the 383 

best consistency in DA. The quantitative differences between DA and other experimental 384 

results are minor, but noticeable spatial discrepancies exist, particularly around transition 385 

regions. 386 

The SWE climatology from AMSR2, Openloop, JRA55, and DA is also compared with 387 
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CMC as a reference in Fig. 3. The SWE derived from AMSR2 shows a significant 388 

underestimation compared to CMC, particularly in the regions with heavy snow accumulation 389 

at high latitudes. This is presumed to be due to limitations in satellite sensors detecting the 390 

depth of snow (Gan et al., 2021). The SWE from JRA55 exhibits characteristics of 391 

overestimation in high latitudes and underestimation in transitional regions. On the other hand, 392 

the climatological SWEs from Openloop and DA exhibit higher correspondence to CMC, even 393 

higher than JRA55. Specifically, DA demonstrates a higher agreement with CMC, despite the 394 

marginal difference compared to Openloop. Quantitatively, the pattern correlation coefficients 395 

(root mean square differences) for AMSR2, Openloop, JRA55, and DA with (from) CMC are 396 

0.63 (80.7 kg/m2), 0.80 (50.1 kg/m2), 0.60 (100.8 kg/m2), and 0.80 (49.9 kg/m2), respectively. 397 

Due to the application of standard deviation scaling to the satellite-derived SWE used in data 398 

assimilation, the discrepancy in climatological SWE distributions between DA and Openloop 399 

is deemed negligible. Despite its similarity to Openloop, DA with snow data assimilation 400 

displays the relatively highest correlation and the smallest root mean square difference among 401 

the datasets. 402 

Next, we compare the temporal variation of SWE as measured by the Spearman rank 403 

correlation coefficient with CMC, which is regarded as more appropriate than the Pearson 404 

correlation coefficient for describing datasets containing nonlinearity and outliers such as snow 405 

in both time and space. Figure 4 compares the distribution of correlation skills from AMSR2, 406 

Openloop, JRA55, and DA. Openloop has a high performance in regions with heavy snow 407 

accumulation but relatively low performance in transition regions with significant snow 408 

changes. In contrast, the results from the AMSR2 satellite data represent poor performance in 409 

high-latitude areas with heavy snow accumulation but high performance in transitional regions, 410 

consistent with the previous studies (Gan et al., 2021). DA shows high performance not only 411 

in high-latitude areas with heavy snow accumulation but also in transition regions. Even 412 
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compared to JRA55 used as the atmospheric forcing, DA performs better in temporal variation. 413 

The quantitative results in the correlation in the Northern Hemisphere over 40oN (the transition 414 

region) are 0.41 (0.54) for AMSR2, 0.61 (0.48) for Openloop, 0.58 (0.58) for JRA55, and 0.67 415 

(0.61) for DA, respectively. The findings indicate that satellite retrievals offer additional value 416 

in capturing temporal variations through data assimilation, indicating the benefit of 417 

assimilating the AMSR2 SWE despite the overall lower performance of the satellite data itself.  418 

The performance improvement by DA is also evident in the zonally-averaged correlation 419 

coefficient shown in Fig. 5. The AMSR2 satellite data shows higher performance than 420 

Openloop in the transition region around latitude 45 oN-55 oN, although performance sharply 421 

decreases with increasing snow accumulation. Openloop indicates gradually increasing 422 

performance as the latitude increases, with the highest performance at around 60oN. DA 423 

denotes superior performance across the Northern Hemisphere, especially in the mid-latitude 424 

transition region than AMSR2 or JRA55. An exception is for 35-40oN in the Tibetan Plateau, 425 

where JRA55 used in-situ observations. The results suggest that the developed snow data 426 

assimilation system represents well not only the transitional regions but also the satellite-427 

limited regions with heavyhigh snow accumulation that are difficult to detect by satellite. 428 

Figure 6 presents the Spearman rank correlation depending on the SWE amount in the 429 

Northern Hemisphere. AMSR2 exhibits higher performance than Openloop for SWE up to 16 430 

mm. However, the performance of AMSR2 sharply declines beyond that threshold, and 431 

Openloop shows a better performance. Consistent with the results illustrated in Figs. 4 and 5, 432 

DA demonstrates superior performance compared to others. Note that DA performs 433 

significantly better in the transition region of less than 16 mm of SWE. Considering that the 434 

area below 16 mm of SWE accounts for approximately 53% of the entire area of the Northern 435 

Hemisphere(as shown in the pie chart in Fig. 6), the data assimilation impact is identifiable, 436 

and it can contribute substantially to the increase in the prediction skill through improving the 437 
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simulation of the albedo changes and surface energy balance. 438 

Consistent with the description in Section 3.3, this study considers an algorithm based on 439 

the highly reliable IMS satellite SCF data to identify the presence of snow and determine the 440 

assimilation process. Therefore, a further sensitivity test is conducted to investigate the 441 

influence of incorporating IMS data in snow assimilation. Figure 7 compares the correlation 442 

differences between Openloop and the data assimilation result employing both AMSR2 and 443 

IMS (DA), as well as the data assimilation result utilizing solely AMSR2 and excluding IMS 444 

(hereafter referred to as DA_AMSR2). The results obtained from the snow assimilation show 445 

the improvements in the transitional regions where AMSR2 denotes a better agreement with 446 

the observations compared to Openloop. Notably, the skill is enhanced significantly in DA by 447 

incorporating the IMS SCF. DA exhibits inferior performance compared to Openloop in certain 448 

exceptional cases, which may be attributed to discrepancies in snow identification between the 449 

CMC observations used for correlation and the IMS data utilized for data assimilation. 450 

Moreover, the performance of SWE improves even when only AMSR2 is used, but 451 

incorporating IMS leads to a substantial improvement in the transitional regions. This implies 452 

that IMS has a positive influence on the snow data assimilation. 453 

 454 

4.2 Kalman gain analysis 455 

In order to better understand the skill enhancement through snow assimilation of satellite 456 

data, this section examines the Kalman gain. Figure 8 illustrates the spatial distribution of 457 

observation error, model background error, and the Kalman gain for SWE. A high value of the 458 

Kalman gain denotes that the assimilated result is closer to the AMSR2 observation than the 459 

model background. The Kalman gain is large when the background error becomes large, or the 460 

observation error is small. As this study specifies the observation error as a conservative 10% 461 

of SWE compared to the previous study (Lee et al., 2015), the observation error basically 462 
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follows the distribution similar to the climatological-mean values. The background errors, 463 

originating from the 24 ensemble members, have higher values in high-latitude regions and 464 

mid-latitude regions. Data assimilation methods such as LETKF used in this study often face 465 

challenges in accurately representing background errors when the ensemble spread is 466 

insufficient. Generally, the magnitude of ensemble spread is frequently compared to the root 467 

mean square error (RMSE). The ensemble spread in this study demonstrates a sufficiently valid 468 

magnitude in comparison with the RMSE, as illustrated in SFig. 1, indicating that it is well 469 

estimated. Moreover, the SWEstandardized distribution of SWE among the ensemble members 470 

consistently exhibitedexhibits a quasi-Gaussian distribution centered around zero, with the 471 

transition region showing a distinct thiscloser resemblance to a standardized Gaussian 472 

distribution particularly evident in transitional regions (SFig. 4). In the spatial distribution of 473 

Kalman gain in Fig. 8c, significant performance improvement is observed in transition regions, 474 

where Kalman gains exhibit larger values. However, in high-latitude areas with substantial 475 

snow accumulation, there is a tendency for Kalman gain to have lower values. These findings 476 

agree well with the bar graph in Fig. 9, which illustrates the Kalman gain as a function of SWE 477 

amount. In the region encompassing the transition region with SWE amounts below 20 mm, 478 

the Kalman gain displays the highest values, particularly exceeding 0.8. As the SWE amount 479 

increases, the Kalman gain decreases, with a significant decline observed when the SWE 480 

amount reaches 80-100 mm or higher. Furthermore, in the areas where DA denotes improved 481 

skill compared to Openloop, the Kalman gain shows values generally above 0.7. In contrast, 482 

relatively lower values below 0.5 are observed in the areas with decreased skill. This indicates 483 

that in the dominant areas of performance improvement, including the transition region, the 484 

background error is significantly larger than the observation error, emphasizing the substantial 485 

influence of observations in data assimilation. It is found that accurate remote sensing retrievals 486 

are well reflected in regions with high uncertainty in the LSM through the snow data 487 
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assimilation system, leading to performance improvement. 488 

4.3 Validation of the SWE for the extreme event 489 

In April 2020, Siberia experienced a record-breaking heatwave with the highest observed 490 

average temperature. This section investigates the potential benefits of snow assimilation using 491 

satellite data for the case of the 2020 Siberian heatwave. Previous studies have identified the 492 

strong polar vortex accompanied by the AO amplification during winter as a major cause of 493 

the cold Eurasian region (Overland and Wang, 2021). Additionally, it has been revealed that 494 

the occurrence of high temperatures in the Siberian region is found to be closely associated 495 

with large-scale atmospheric waves in the upper atmosphere over the Eurasian region 496 

originating from the Atlantic (De Angelis et al., 2023). As a result, remarkable snow melting 497 

occurred due to the high surface temperature over the Siberian region in April 2020, leading to 498 

extremely low values of SWE and SCF as depicted in SFig. 2. This is consistent with previous 499 

studies reporting a significant snow depletion in 2020 in the region (Gloege et al., 2022). 500 

Especially, as shown in Fig. 10, significant negative anomalies in SWE and SCF are 501 

predominant over the transition region. Substantial snow melt can contribute to record-502 

breaking heatwaves through albedo feedback and changes in the ratio of the latent and sensible 503 

heat fluxes from the exposed surface, coupled with favorable atmospheric circulation patterns 504 

(Collow et al., 2022). Collow et al. (2022) demonstrated that the exposed surface contributed 505 

to up to 20% of the temperature anomaly over Siberia in spring 2020. This implies the 506 

importance of realistic snow initial states in the global coupled model forecasts. For the 507 

Siberian region with extreme high-temperature events marked by the red box in Fig. 10, DA 508 

shows a better agreement with the extremely dry snow conditions, especially in the transitional 509 

region, compared to the Openloop. These results are evident when considering the observation-510 

to-model ratio in that region. The percentage of CMC (IMS) is 83% (78%) for Openloop and 511 

93% (89%) for DA, indicating that DA with snow data assimilation based on satellite data 512 
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effectively replicates the observed snow depletion in comparison with Openloop. Similarly to 513 

the 2020 case, we obtained another significant case in 2014 compared to Openloop, as shown 514 

in SFig. 3. Such extremely dry snow conditions can provide significant heatwave events in the 515 

following months.   516 

 517 

 518 

 519 

 520 

 521 

  522 
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5. Conclusions and discussion 523 

The advanced SWE data assimilation is developed in this study with the LETKF data 524 

assimilation method and the JULES LSM. The system assimilates snow water equivalent 525 

retrievals from AMSR2 and IMS snow cover. This constitutes an objective way to optimally 526 

combine two imperfect data sources for SWE from satellite remote sensing data and the land 527 

surface model simulation forced by observed atmospheric data. This study shows that the 528 

satellite-derived SWE has limitations in penetrating deep snow and exhibited much 529 

discrepancy from the SWE obtained from the Openloop LSM simulations. The SWE 530 

assimilation in this study proves the beneficial impacts of using satellite snow data, maintaining 531 

better analysis quality by dynamically balancing the errors from the satellite observations and 532 

the model background states.  533 

It is found that the simulation from Openloop as a baseline shows superior performance in 534 

high-latitude regions with heavy snow accumulation but relatively inferior performance in 535 

transition regions with much variation of snow in space and time. Contrastingly, the AMSR2 536 

satellite data represent poor performance in high-latitude regions but exhibit relatively better 537 

performance in the transition regions. The SWE from the LETKF data assimilation consistently 538 

exhibits better performance in capturing the climatology and temporal variation compared to 539 

other results. It specifically improves the analysis in the mid-latitude transition regions that 540 

cover approximately 53% of the entire areas of the Northern Hemisphere. It is found that the 541 

model background errors estimated from the ensemble spread are significantly larger than the 542 

observation errors, thereby reflecting satellite information more in those regions. The LETKF 543 

data assimilation also proves reliable representation in the heavy snow regions due to low 544 

ensemble spread and large uncertainty in the satellite retrievals. Moreover, during the record-545 

breaking heatwave in Siberia in April 2020, the remarkable snow depletion observed due to 546 

high surface temperatures is more realistically reproduced by our snow analysis compared to 547 
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the Openloop.  548 

This snow data assimilation framework is anticipated to contribute to a more precise 549 

prediction of atmospheric conditions by realistically capturing the interaction between the 550 

atmosphere and land, given the substantial influence of SWE on energy and water balance at 551 

the interface of the atmosphere and land. Specifically, this applies to the transitional regions 552 

with high spatial and temporal variability. The long-term analysis of snow manifests a 553 

pronounced variability in the continental interior at the interannual timescales, potentially 554 

improving the prediction of extreme heatwave events by global climate models. This study 555 

used the gridded CMC data from in-situ observations for the validation. Although existing 556 

snow data are subject to much uncertainty and limitations, we expect to obtain comparable 557 

conclusions and significant benefits of optimally combining satellite SWE data and the LSM 558 

model simulations through LETKF data assimilation method.  559 

The quality of the observation is crucial in the data assimilation system. Satellite-derived 560 

snow cover exhibits a significantly higher accuracy compared to other data sources, while SWE 561 

has restricted performance due to the limitations of penetration depth by satellite sensors and 562 

relies heavily on estimation algorithms. Due to these problems, most previous studies and 563 

operational centers primarily depend on satellite-derived snow cover for snow initialization. 564 

However, the findings from this study highlighted the beneficial impacts of using satellite-565 

derived SWE, particularly in the rapidly changing transition areas, to find out which variable 566 

is more important in closing surface energy and water balance changed by snow. Nevertheless, 567 

areas of significance in large-scale circulation, such as the Tibetan region, which experiences 568 

significant uncertainty and degraded performance in satellite data, do not exhibit substantial 569 

data assimilation effects. As the performance of SWE derived from various satellites continues 570 

to advance, these issues will be discussed more.  571 

  572 
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Table 1. Description of the land surface model, the data used, and assimilation experiment 825 

designs.   826 

 
INFORMATION REFERENCES 

Land Surface Model JULES Best et al., (2011) 

Atmospheric Forcing 3-hourly JRA-55 reanalysis Kobayashi et al., (2015) 
 

Snow Observation AMSR2 & IMS Imaoka et al., (2010) 

Ramsay (1998) 

Helfrich et al., (2007) 

Data Assimilation 

scheme 

Local Ensemble Transform 

Kalman Filter (LETKF) 

Hunt et al., (2007) 

Miyoshi and Yamane, (2007) 

Resolution (km) 0.5° ×0.5° (~ 50) 
 

1-day DA cycle 

Localization patch size 

(km) 

3×3 (150), σ =30 

Ensemble sizes 24 

Experiment period 2013-2020, APR  

 827 
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 829 

Figure 1. Schematic diagram of the snow assimilation system with satellite-derived 830 

observations and the land surface model outputs. 831 

 832 

 833 
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 834 

Figure 2. (a) Climatology of SCF from IMS used as reference and (b-e) the differences from 835 

IMS for AMSR2, base-line model simulation (Openloop), JRA55, and the data 836 

assimilation results (DA) for April during 2013-2020. The black line represents the 837 

boundary of the transition region, defined as the climatological-mean SWE of less than 838 

16mm. Each value on the top right is the root-mean-squared difference with IMS and 839 

the accuracy from IMS (parenthesis) for 15323 pixels over 40-60oN. The accuracy is 840 

defined in supplementary Table 1 as in previous study (Lee et al., 2015). Negative 841 

values in red shades are indicated with a diagonal line. 842 

 843 
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 845 

Figure 3. (a) Climatology of SWE from CMC used as reference and (b-e) the differences from 846 

CMC for AMSR2, base-line model simulation (Openloop), JRA55, and the data 847 

assimilation results (DA) for April during 2013-2020. The black line represents the 848 

boundary of the transition region, defined as the climatological-mean SWE of less than 849 

16mm. Each value on the top right is the pattern correlation with CMC for 26482 pixels 850 

over 40 oN and the root-mean-squared difference (unit: kg/m2) from CMC (parenthesis) 851 

for 15323 pixels over 40-60oN. Negative values in red shades are indicated with a 852 

diagonal line. 853 
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 856 

Figure 4. SWE skill measured as the Spearman rank correlation (R) with the CMC for AMSR2, 857 

base-line model simulation (Openloop), JRA55, and the data assimilation result (DA). 858 

The black line represents the boundary of the transition region, defined as the 859 

climatological-mean SWE of less than 16mm. Each value on the top is the area-average 860 

R of North hemisphere for 26482 pixels over 40oN and for 8801 pixels over the 861 

transition region (parenthesis). Negative values are indicated with a diagonal line.  862 
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 863 

Figure 5. Zonally-averaged Spearman rank correlation (R) along the latitude for SWE. The 864 

yellow line indicates the climatology of SWE, and the black, blue, green, and red lines 865 

denote the values of AMSR2, base-line model simulation (Openloop), JRA55, data 866 

assimilation results (DA), respectively. 867 
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 869 

Figure 6. Box plots of the Spearman rank correlation (R) according to SWE. The pie chart 870 

shows the total area ratio (%) as a function of SWE amount. The black, blue, and red 871 

boxes denote the AMSR2, base-line model simulation (Openloop), and the data 872 

assimilation results (DA), respectively. The boxes indicate 25 and 75% percentiles, and 873 

the line and point in the boxes shows the median and the mean values. The upper and 874 

lower whiskers denote the 10 and 90% percentiles, respectively. 875 
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 877 

Figure 7. The difference in SWE Spearman rank correlation coefficient with CMC between 878 

the Openloop and data assimilation results: DA employing both AMSR2 and IMS and 879 

DA_AMSR2 utilizing solely AMSR2 and excluding IMS, for April during 2013-2020. 880 

The black line represents the boundary of the transition region, defined as the 881 

climatological-mean SWE of less than 16mm. Each value on the top right is the area-882 

average over 40oN and the transition region (parenthesis). Negative values are indicated 883 

with a diagonal line. 884 
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 888 

Figure 8. Spatial distribution of observation error (unit: kg/m2), background error (unit: kg/m2), 889 

and Kalman gain. The black line represents the boundary of the transition region, 890 

defined as the climatological-mean SWE of less than 16mm.  891 
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 893 

Figure 9. Bar chart of (left) the Kalman gain according to the SWE amount, and (right) the 894 

Kalman gain (red line) and background error (blue line) as a function of the difference 895 

between Openloop and DA in Spearman rank correlation coefficient (R). 896 
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 898 

Figure 10. Anomalies of a) SWE from CMC and b) SCF from IMS as well as the difference 899 

(c, d) of variables between DA and openloop in April 2020. Bar chart (e, f) indicates 900 

the ratio of DA and openloop to verification data such as CMC and IMS in the red box 901 

(48–65oN and 55–120oE), which is the region associated with extreme high-temperature 902 

events, focused on this study. Negative values are indicated with a diagonal line. 903 
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