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We would like to thank the reviewers for their valuable feedback. Their insightful comments 
helped improve the quality of this paper. After examining the reviewers' comments, we have 
corrected and modified our manuscript. Our responses to the individual comments are provided 
below in blue. 

 

Reply to the Reviewer (#1)’s Comments:  

 Snow accumulation can influence global or local energy balance by controlling surface 

reflectivity, and information related to snow water equivalent (SWE) plays a crucial role 

in local hydrological modeling and water resources management. With the rapid changes 

in global climate, snow information (coverage area, volume, reflectivity, and SWE) also 

exhibits varying degrees of fluctuations. In this context, Lee et al. developed a data 

assimilation method based on SWE data from AMSR2 and snow cover fraction data from 

IMS. The topic chosen for this manuscript holds certain scientific value and contributes 

to the current fields of snow remote sensing and cryosphere remote sensing. However, as 

an academic paper, the manuscript has serious issues in terms of writing, failing to convey 

the core content of the research. Specifically: 

(1) Abstract: 

The research background or scientific problems are not explained. The presentation of 

research results is unclear, and the conclusions are not specific. The manuscript fails to 

indicate its position and role in the field of snow remote sensing. 

Response) Thank you for your comment. In response to the reviewer's feedback, we have 

revised the abstract to provide the background more clearly, articulate conclusions, and 

highlight contributions. It has been revised as follows: 

 

Revision) (L26-L55) Snow Water Equivalent (SWE), as one of the land initial conditions, plays 

a crucial role in global or regional energy and water balance, thereby exerting a considerable 

impact on seasonal and sub-seasonal scale predictions owing to its enduring memory over 1 to 



2 months. Despite its importance, most SWE initialization remains challenging due to its 

reliance on simple approaches based on spatially constrained observation. Therefore, this study 

developed the advanced SWE data assimilation framework with satellite remote-sensing data 

utilizing the local ensemble transform Kalman filter (LETKF) and the Joint U.K. Land 

Environment Simulator (JULES) land model. This constitutes a novel approach that has not 

been previously attempted, as it offers an objective way to optimally combine two imperfect 

data sources: the satellite SWE retrieval from the Advanced Microwave Scanning Radiometer 

2 (AMSR2) and dynamically balanced SWE from JULES land model. In this framework, an 

algorithm is additionally considered to determine the assimilation process based on the 

presence or absence of snow cover from the Interactive Multisensor Snow and Ice Mapping 

System (IMS) satellite, renowned for its superior reliability. 

The baseline model simulation from JULES without satellite data assimilation shows superior 

performance in high-latitude regions with heavy snow accumulation but relatively inferior in 

the transition regions with less snow and high spatial and temporal variation. Contrastingly, the 

AMSR2 satellite data exhibit better performance in the transition regions but poorer in the high 

latitudes, presumably due to the limitation of the satellite data in the penetrating depth. The 

data assimilation (DA) demonstrates the positive impacts by reducing uncertainty in the JULES 

model simulations in most areas, particularly in the mid-latitude transition regions. In the 

transition regions, the model background errors from the ensemble runs are significantly larger 

than the observation errors, emphasizing great uncertainty in the model simulations. The results 

of this study highlight the beneficial impact of data assimilation by effectively combining both 

land surface model and satellite-derived data according to their relative uncertainty, thereby 

controlling not only transitional regions but also satellite-constrained areas experiencing heavy 

snow accumulation. This assimilation framework is anticipated to contribute to a more precise 

prediction of atmospheric conditions by realistically capturing the interaction between the 

atmosphere and land, given the substantial influence of SWE on energy and water balance at 

the interface of the atmosphere and land. 

 

 

(2) Introduction: 

The writing logic is poor. From the title of the manuscript, the author's research subject 

is snow water equivalent (SWE). However, the introduction does not clarify the main 

focus of the manuscript. Most of the content (L49-L134) elaborates on snow information, 



and these details are insufficient to emphasize the significance of the author's research on 

SWE data assimilation. The research objectives are not concise (L152-L170). 

Response) In accordance with the reviewer's feedback, we have emphasized the significance 

of research on Snow Water Equivalent (SWE) data assimilation and streamlined the research 

objectives for clarity. 

 

Revision) (L72-L84) In the subseasonal to seasonal (S2S) timescales, land initial states are 

crucial components in the S2S timescale predictions due to the inherent memory that changes 

slowly for 1 to 2 months in the climate system (e.g., Derome et al. 2005; Chen et al., 2010; Seo 

et al., 2019). In particular, the realistic snow initial states contribute to improving S2S 

prediction skills, as proven in several modeling studies. For example, previous studies (Orsolini 

et al., 2013; Jeong et al., 2013) demonstrated a considerable enhancement in prediction skill of 

2m air temperature up to a lead time of 1-2 months across certain regions of Eurasia and the 

Arctic during winter, depending on snow initialization. Moreover, other studies (Orsolini et al., 

2016; Li et al., 2019) have revealed that wave activity propagating toward the stratosphere, 

influenced by snow initial conditions in climate models, can induce changes in the polar vortex 

and contribute to the persistence of the North Atlantic Oscillation (NAO) and the AO. This 

emphasizes the significance of snow initialization in climate models as an essential process for 

enhancing prediction performance at the S2S timescales.  

For determining initial snow states, snow water equivalent (SWE) is explicitly used in most 

prediction models as a prognostic variable to constrain water and energy conservation (Li et 

al., 2019; Gan et al., 2021). SWE is generally provided from in-situ observation data, remote-

sensing retrievals from satellites, or numerical models such as the stand-alone land surface 

models (LSMs) forced by observed atmospheric variables. 

 

(L123-L125) Given that the majority of the reanalysis datasets rely on snow depth 

measurements, the SWE estimation is likely to introduce potential accuracy concerns when the 

snow depth information is combined with the sow density calculations. 

 

(L134-L145) However, in regions where ground observations are unavailable, large errors may 

exist in the snow model outputs due to uncertainties in atmospheric forcing and imperfect 

model parameterization (Boone et al., 2004; Essery et al., 2009). Often, the snow processes 

parameterized in LSMs rely on observed properties sampled in limited areas (Lim et al., 2022). 



In addition, as IMS snow cover only identifies the presence of snow, the data assimilation with 

the satellite snow cover only is not sufficient and inappropriate in constraining water and 

energy conservation. Alternative methods that consider the physical quantity of snow are 

required for the snow initialization. 

One approach to mitigate the spatial discontinuity of ground observations is to use satellite-

derived SWE with wide spatial coverage and frequent temporal resolution. However, the SWE 

retrievals from satellites still have considerable uncertainties. 

 

(L154-L178) However, most previous studies have focused on targeted regions with limited 

ground-based observations. Snow initialization in global coverage using satellite-derived SWE 

remains a persistently challenging task. 

Therefore, this study developed an advanced SWE data assimilation framework with satellite 

remote-sensing data using the local ensemble transform Kalman filter (LETKF) and the Joint 

U.K. Land Environment Simulator (JULES) land model. This constitutes a novel approach that 

has not been previously attempted, and it offers an objective way to optimally combine two 

imperfect data sources: the satellite SWE from the Advanced Microwave Scanning Radiometer 

2 (AMSR2) and the dynamically-balanced SWE from the JULES land model forced by 

observed atmospheric fields. The estimated SWE data exhibit better consistence by 

additionally using snow cover data from the IMS data. This assimilation framework also 

enables the assessment of improvement as it provides insights into the reasons behind the 

performance improvement based on the Kalman gain analysis that measures the relative 

significance of the input data between the satellite and the land model during the data 

assimilation cycle. The satellite data have demonstrated high reliability in the transition regions 

of climatologically-shallow snow conditions (Gan et al., 2021), and these regions are known 

as "hot spots" of strong atmosphere-land coupling through snow melting and associated surface 

energy and water balance changes (Koster et al., 2004; Dirmeyer, 2011; Huning and 

AghaKouchak, 2020). From these perspectives, it would be important to evaluate the impact 

of satellites on the transition regions as well as on the deep accumulation regions where 

accurate satellite retrievals are challenging. Furthermore, the benefits of assimilating satellite 

retrievals in extremely high-temperature events, such as the case in April 2020 over Eurasia, 

can be elucidated. In this regard, we expect that this snow data assimilation framework with 

satellite-derived SWE can be significant in providing optimal snow initial states for improving 

the S2S prediction by global climate models. 



(3) Conclusion: 

Repetitive and verbose, the conclusion section should succinctly state the model's 

strengths, shortcomings, and prospects, expressing the important role of this model in 

snow remote sensing. It is recommended to divide it into discussion and conclusion 

sections. 

Response) Following the reviewer's suggestions, we have eliminated redundant sentences in 

the conclusion part and instead emphasized the contributions of this study to the field of remote 

sensing. I have revised the final session to "Conclusion and Discussion" and added a discussion 

section after the conclusion. 

 

Revision) (L515-L562) The advanced SWE data assimilation is developed in this study with 

the LETKF data assimilation method and the JULES LSM. The system assimilates snow water 

equivalent retrievals from AMSR2 and IMS snow cover. This constitutes an objective way to 

optimally combine two imperfect data sources for SWE from satellite remote sensing data and 

the land surface model simulation forced by observed atmospheric data. This study shows that 

the satellite-derived SWE has limitations in penetrating deep snow and exhibited much 

discrepancy from the SWE obtained from the Openloop LSM simulations. The SWE 

assimilation in this study proves the beneficial impacts of using satellite snow data, maintaining 

better analysis quality by dynamically balancing the errors from the satellite observations and 

the model background states.  

It is found that the simulation from Openloop as a baseline shows superior performance in 

high-latitude regions with heavy snow accumulation but relatively inferior performance in 

transition regions with much variation of snow in space and time. Contrastingly, the AMSR2 

satellite data represent poor performance in high-latitude regions but exhibit relatively better 

performance in the transition regions. The SWE from the LETKF data assimilation consistently 

exhibits better performance in capturing the climatology and temporal variation compared to 

other results. It specifically improves the analysis in the mid-latitude transition regions that 

cover approximately 53% of the entire areas of the Northern Hemisphere. It is found that the 

model background errors estimated from the ensemble spread are significantly larger than the 

observation errors, thereby reflecting satellite information more in those regions. The LETKF 

data assimilation also proves reliable representation in the heavy snow regions due to low 

ensemble spread and large uncertainty in the satellite retrievals. Moreover, during the record-

breaking heatwave in Siberia in April 2020, the remarkable snow depletion observed due to 



high surface temperatures is more realistically reproduced by our snow analysis compared to 

the Openloop.  

This snow data assimilation framework is anticipated to contribute to a more precise prediction 

of atmospheric conditions by realistically capturing the interaction between the atmosphere and 

land, given the substantial influence of SWE on energy and water balance at the interface of 

the atmosphere and land. Specifically, this applies to the transitional regions with high spatial 

and temporal variability. The long-term analysis of snow manifests a pronounced variability in 

the continental interior at the interannual timescales, potentially improving the prediction of 

extreme heatwave events by global climate models. This study used the gridded CMC data 

from in-situ observations for the validation. Although existing snow data are subject to much 

uncertainty and limitations, we expect to obtain comparable conclusions and significant 

benefits of optimally combining satellite SWE data and the LSM model simulations through 

LETKF data assimilation method.  

The quality of the observation is crucial in the data assimilation system. Satellite-derived snow 

cover exhibits a significantly higher accuracy compared to other data sources, while SWE has 

restricted performance due to the limitations of penetration depth by satellite sensors and relies 

heavily on estimation algorithms. Due to these problems, most previous studies and operational 

centers primarily depend on satellite-derived snow cover for snow initialization. However, the 

findings from this study highlighted the beneficial impacts of using satellite-derived SWE, 

particularly in the rapidly changing transition areas, to find out which variable is more 

important in closing surface energy and water balance changed by snow. Nevertheless, areas 

of significance in large-scale circulation, such as the Tibetan region, which experiences 

significant uncertainty and degraded performance in satellite data, do not exhibit substantial 

data assimilation effects. As the performance of SWE derived from various satellites continues 

to advance, these issues will be discussed more.  

 

 

In conclusion, the SWE data assimilation method proposed by the author has a certain 

promoting effect on the field of snow remote sensing (maybe). However, the manuscript's 

writing is poor, and a significant revision is suggested before resubmission to provide 

readers with a clear and concise manuscript. 

Response) Thank you for your insightful feedback, which has been instrumental in improving 

the quality of our manuscript. In response to the reviewer's comments, we have diligently 



revised the manuscript to ensure clarity and conciseness, thereby facilitating better 

understanding for the readers. 

 

  



Reply to the Reviewer (#2)’s Comments :  

 

While this paper is conveying some important information, it is two main drawbacks: (1) 

writing is sloppy and (2) the novel contributions of this study are unclear. 

Response) Thank you for your comment. We have thoroughly revised the manuscript to address 

the reviewer's comments, focusing on enhancing clarity and conciseness while incorporating 

the new contributions of this study as suggested. We believe these revisions have significantly 

improved the manuscript and are grateful for the valuable feedback provided. 

 

 

Data assimilation method used in this study is clearly not novel component of the paper, 

as Kalman filter has been used in many other studies. In my view, the authors can focus 

on DA of AMSR2 and JULES model, as the novel component. Are there any other studies 

assimilating these two datasets? If not, then this can be a good contribution of this paper. 

Otherwise, I ask authors to detail what is it they have contributed through this which not 

known already. In any case, a significant revision of introduction is required to put this 

study into the appropriate context. 

Response) As suggested by the reviewer, we have revised the introduction to emphasize that 

the method of combining the incomplete datasets of SWE from AMSR2 and SWE from the 

JULES model through data assimilation represents a novel approach that has not been 

previously attempted. 

 

 

Revision) (L154-L179) However, most previous studies have focused on targeted regions with 

limited ground-based observations. Snow initialization in global coverage using satellite-

derived SWE remains a persistently challenging task. 

Therefore, this study developed an advanced SWE data assimilation framework with satellite 

remote-sensing data using the local ensemble transform Kalman filter (LETKF) and the Joint 

U.K. Land Environment Simulator (JULES) land model. This constitutes a novel approach that 

has not been previously attempted, and it offers an objective way to optimally combine two 

imperfect data sources: the satellite SWE from the Advanced Microwave Scanning Radiometer 

2 (AMSR2) and the dynamically-balanced SWE from the JULES land model forced by 



observed atmospheric fields. The estimated SWE data exhibit better consistence by 

additionally using snow cover data from the IMS data. This assimilation framework also 

enables the assessment of improvement as it provides insights into the reasons behind the 

performance improvement based on the Kalman gain analysis that measures the relative 

significance of the input data between the satellite and the land model during the data 

assimilation cycle. The satellite data have demonstrated high reliability in the transition regions 

of climatologically-shallow snow conditions (Gan et al., 2021), and these regions are known 

as "hot spots" of strong atmosphere-land coupling through snow melting and associated surface 

energy and water balance changes (Koster et al., 2004; Dirmeyer, 2011; Huning and 

AghaKouchak, 2020). From these perspectives, it would be important to evaluate the impact 

of satellites on the transition regions as well as on the deep accumulation regions where 

accurate satellite retrievals are challenging. Furthermore, the benefits of assimilating satellite 

retrievals in extremely high-temperature events, such as the case in April 2020 over Eurasia, 

can be elucidated. In this regard, we expect that this snow data assimilation framework with 

satellite-derived SWE can be significant in providing optimal snow initial states for improving 

the S2S prediction by global climate models. 

 

 

I have made several comments on the attached pdf which will help the authors improve 

the writing but there are many more sentence that may will benefit from a revision.  

Response) We have thoroughly reviewed the attached PDF containing the reviewer's comments 

and made every effort to incorporate them into the manuscript. 

 

An important point, I was perpetually confused about for what quantity are the author 

trying to use data assimilation? SWE, SD or SCF? It should be clearly mentioned in the 

introduction. 

Response) We have revised the introduction to clearly mention the Snow Water Equivalent 

(SWE) data assimilation of our study. 

 

Revision) (L72-L88) In the subseasonal to seasonal (S2S) timescales, land initial states are 

crucial components in the S2S timescale predictions due to the inherent memory that changes 

slowly for 1 to 2 months in the climate system (e.g., Derome et al. 2005; Chen et al., 2010; Seo 

et al., 2019). In particular, the realistic snow initial states contribute to improving S2S 



prediction skills, as proven in several modeling studies. For example, previous studies (Orsolini 

et al., 2013; Jeong et al., 2013) demonstrated a considerable enhancement in prediction skill of 

2m air temperature up to a lead time of 1-2 months across certain regions of Eurasia and the 

Arctic during winter, depending on snow initialization. Moreover, other studies (Orsolini et al., 

2016; Li et al., 2019) have revealed that wave activity propagating toward the stratosphere, 

influenced by snow initial conditions in climate models, can induce changes in the polar vortex 

and contribute to the persistence of the North Atlantic Oscillation (NAO) and the AO. This 

emphasizes the significance of snow initialization in climate models as an essential process for 

enhancing prediction performance at the S2S timescales.  

Snow states, i.e., snow water equivalent (SWE) used directly for hydrological analysis and 

initial states of the model (Li et al., 2019; Gan et al., 2021), are generally provided from in-situ 

observations data, remote-sensing retrievals from satellites, or numerical models such as the 

land surface model (LSM) operated based on the observed atmospheric variables. 

 

On the methodological side, the method is well implemented but the description of the 

LETKF is quite unclear. I have a basic understanding of LETKF, but I could not 

understand what authors are trying to explain in section 3.2. Also, there needs to be some 

more discussion about JRA55 in the ‘Data’ section. What purpose does this data serve? 

In the results also, JRA55 is not discussed much. 

Response) In the data assimilation methods section, we have provided a concise explanation of 

the concepts, as we utilized the standard LETKF method. Additionally, we have employed 

JRA55 as the reanalysis dataset used for meteorological forcings in the JULES model, 

facilitating comparison with other reanalysis datasets in the context of our study results. 

Following the reviewer's suggestion, we have also included a discussion on JRA55 in the 

results section. 

 

Revision) (L99-L324) The snow assimilation is conducted based on the LETKF (e.g., Hunt et 

al., 2007), which is utilized to combine remotely sensed retrievals with the LSM model outputs 

(a.k.a. backgrounds) to produce a snow analysis. Unlike variational data assimilation methods, 

non-variational approaches (i.e., ensemble-based filters) characterize a probabilistic 

representation with the spread of the ensemble serving as an estimate of forecast uncertainty. 

LETKF has several advantages over other data assimilation methods. First, LETKF can 

efficiently handle large datasets and high-dimensional state variables by localizing the 



covariance matrix. This offers efficiency in parallel computing, making it suitable for real-time 

forecasting and high-resolution data assimilation. In this study, the horizontal local patch size 

and the localization length scale parameters are defined as 150 km and 30 km (Table 1), 

respectively. This approach involves the weight function for the covariance localization within 

the local patch centered at the analysis grid (e.g., Houtekamer and Mitchell, 2001; Hamill et 

al., 2001). This function assigns larger errors to observations located farther away from the 

center of the local patch, as proposed by Miyoshi and Yamane (2007), depending on the 

Gaussian function. Secondly, the method utilizes model simulation ensembles to capture the 

uncertainty in the initial states and background errors, which allows for a better representation 

of the flow-dependent probability distribution of the state variables that vary in time and space. 

Third, the LETKF employs an inflation parameter to adjust the ensemble spread, ensuring 

realistic uncertainty estimation by accounting for background errors. The underestimation of 

the analysis error covariance is typically issued by spatially and temporally constant boundary 

conditions and observation errors and limited ensemble members. Based on the standardized 

LETKF, this study applies a multiplicative covariance inflation of 20% of the spread of 24 

member ensembles for each data assimilation cycle. Furthermore, the Kalman gain analysis 

(Seo et al., 2021), which quantifies the ratio of the background error to the total error 

(equivalent to the sum of the background and the observation error), is conducted. This analysis 

serves to determine the weights assigned to assimilated observations in the analysis update 

processes of the LETKF. 

 

(L357-L360) Figure 2 displays the climatological-mean SCF from the IMS multi-satellite data 

(Brown et al., 2014) and the differences from AMSR2, Openloop, JRA55, and DA for April 

2013-2020. Here, the JRA55 SWE serves as a reference dataset for comparison with other 

reanalyses and is associated with meteorological forcing data used in the JULES land surface 

model. 

 

(L379-L386) The SWE climatology from AMSR2, Openloop, JRA55, and DA is also 

compared with CMC as a reference in Fig. 3. The SWE derived from AMSR2 shows a 

significant underestimation compared to CMC, particularly in the regions with heavy snow 

accumulation at high latitudes. This is presumed to be due to limitations in satellite sensors 

detecting the depth of snow (Gan et al., 2021). The SWE from JRA55 exhibits characteristics 

of overestimation in high latitudes and underestimation in transitional regions. On the other 



hand, the climatological SWEs from Openloop and DA exhibit higher correspondence to CMC, 

even higher than JRA55. 

 

The results section is overall good but a bit repetitive (the conclusion section is also quite 

long and repetitive). Some of the details in section 4.3 are just not required. 

Response) Following the reviewer's suggestions, we have eliminated redundant sections from 

the conclusion and instead emphasized the contributions of this study to the field of remote 

sensing. In addition, we have revised Section 4.3 based on the reviewer's comments. 

 

Revision) (L483-L498) Previous studies have identified the strong polar vortex accompanied 

by the AO amplification during winter as a major cause of the cold Eurasian region (Overland 

and Wang, 2021). Additionally, it has been revealed that the occurrence of high temperatures 

in the Siberian region is found to be closely associated with large-scale atmospheric waves in 

the upper atmosphere over the Eurasian region originating from the Atlantic (De Angelis et al., 

2023). As a result, remarkable snow melting occurred due to the high surface temperature over 

the Siberian region in April 2020, leading to extremely low values of SWE and SCF as depicted 

in SFig. 2. This is consistent with previous studies reporting a significant snow depletion in 

2020 in the region (Gloege et al., 2022). Especially, as shown in Fig. 10, significant negative 

anomalies in SWE and SCF are predominant over the transition region. Substantial snow melt 

can contribute to record-breaking heatwaves through albedo feedback and changes in the ratio 

of the latent and sensible heat fluxes from the exposed surface, coupled with favorable 

atmospheric circulation patterns (Collow et al., 2022). Collow et al. (2022) demonstrated that 

the exposed surface contributed to up to 20% of the temperature anomaly over Siberia in spring 

2020. This implies the importance of realistic snow initial states in the global coupled model 

forecasts. 

 

(L515-L562) The advanced SWE data assimilation is developed in this study with the LETKF 

data assimilation method and the JULES LSM. The system assimilates snow water equivalent 

retrievals from AMSR2 and IMS snow cover. This constitutes an objective way to optimally 

combine two imperfect data sources for SWE from satellite remote sensing data and the land 

surface model simulation forced by observed atmospheric data. This study shows that the 

satellite-derived SWE has limitations in penetrating deep snow and exhibited much 

discrepancy from the SWE obtained from the Openloop LSM simulations. The SWE 



assimilation in this study proves the beneficial impacts of using satellite snow data, maintaining 

better analysis quality by dynamically balancing the errors from the satellite observations and 

the model background states.  

It is found that the simulation from Openloop as a baseline shows superior performance in 

high-latitude regions with heavy snow accumulation but relatively inferior performance in 

transition regions with much variation of snow in space and time. Contrastingly, the AMSR2 

satellite data represent poor performance in high-latitude regions but exhibit relatively better 

performance in the transition regions. The SWE from the LETKF data assimilation consistently 

exhibits better performance in capturing the climatology and temporal variation compared to 

other results. It specifically improves the analysis in the mid-latitude transition regions that 

cover approximately 53% of the entire areas of the Northern Hemisphere. It is found that the 

model background errors estimated from the ensemble spread are significantly larger than the 

observation errors, thereby reflecting satellite information more in those regions. The LETKF 

data assimilation also proves reliable representation in the heavy snow regions due to low 

ensemble spread and large uncertainty in the satellite retrievals. Moreover, during the record-

breaking heatwave in Siberia in April 2020, the remarkable snow depletion observed due to 

high surface temperatures is more realistically reproduced by our snow analysis compared to 

the Openloop.  

This snow data assimilation framework is anticipated to contribute to a more precise prediction 

of atmospheric conditions by realistically capturing the interaction between the atmosphere and 

land, given the substantial influence of SWE on energy and water balance at the interface of 

the atmosphere and land. Specifically, this applies to the transitional regions with high spatial 

and temporal variability. The long-term analysis of snow manifests a pronounced variability in 

the continental interior at the interannual timescales, potentially improving the prediction of 

extreme heatwave events by global climate models. This study used the gridded CMC data 

from in-situ observations for the validation. Although existing snow data are subject to much 

uncertainty and limitations, we expect to obtain comparable conclusions and significant 

benefits of optimally combining satellite SWE data and the LSM model simulations through 

LETKF data assimilation method.  

The quality of the observation is crucial in the data assimilation system. Satellite-derived snow 

cover exhibits a significantly higher accuracy compared to other data sources, while SWE has 

restricted performance due to the limitations of penetration depth by satellite sensors and relies 

heavily on estimation algorithms. Due to these problems, most previous studies and operational 



centers primarily depend on satellite-derived snow cover for snow initialization. However, the 

findings from this study highlighted the beneficial impacts of using satellite-derived SWE, 

particularly in the rapidly changing transition areas, to find out which variable is more 

important in closing surface energy and water balance changed by snow. Nevertheless, areas 

of significance in large-scale circulation, such as the Tibetan region, which experiences 

significant uncertainty and degraded performance in satellite data, do not exhibit substantial 

data assimilation effects. As the performance of SWE derived from various satellites continues 

to advance, these issues will be discussed more.  

 

 

Overall, the paper needs a major revision before it can be judged for its significance to 

scientific literature. I have made several comments in the attached PDF which I hope help 

the authors in improving their work. 

Response) Thank you for your valuable input, which has greatly enhanced the clarity and 

impact of our paper. The PDF containing the reviewer's comments has been immensely helpful 

in improving the manuscript. We have extensively revised the text to incorporate the reviewer's 

feedback, thereby highlighting the scientific contributions and significance of our study. 

  



Reply to the Reviewer (#3)’s Comments :  

Review of “Assimilation of snow water equivalent from AMSR2 and IMS satellite data 

utilizing the local ensemble transform Kalman filter” 

Summary 

This work assimilates the snow retrieval from AMSR2 (and the snow cover from IMS, 

albeit indirectly) into the JULES model using LETKF. The data assimilation (DA) 

framework offers an objective way to optimally combine the two imperfect dataset: the 

JULES model which has larger uncertainty in the transitional region, and the satellite 

retrieval which on the other hand exhibits greater uncertainty in the deep snow region. It 

is shown that the DA simulation is able to provide better initial conditions and forecast 

for snow, compared to the one without DA and other existing methods. 

Overall, the DA approach and the experiment setup are carefully designed, the analyses 

are done well, and the results hold promise. However, there are concerns about the 

coherence in the current manuscript, especially in the introduction, making it difficult for 

the readers to follow and to understand the significance of this work. Therefore, I suggest 

a major revision in this iteration. 

 

Comments 

L70-117: Different snow states products derived using in-situ observation, remote-sensing 

retrievals, and using numerical models are summarized in these three paragraphs. 

However, these paragraphs appear disconnected. The coherence could be improved by 

trimming some unnecessary details, and emphasizing more on, e.g, (1) 

advantage/limitations of each dataset (2) the exactly snow state (i.e., SWE, SD, SCF, etc) 

that each dataset provides. Following these paragraphs, e.g., a comparison/summary 

paragraph for these dataset could be presented, which can lead to the explanation why 

data assimilation or other data fusion methods are considered necessary/beneficial for 

constructing snow states. 

Response) Thank you for your comment. As suggested by the reviewer’s comment, we have 

revised these paragraphs related to different snow states products derived using in-situ 

observation, remote-sensing retrievals, and using numerical models 

 



Revision) (L85-L125) Snow states, i.e., snow water equivalent (SWE) used directly for 

hydrological analysis and initial states of the model (Li et al., 2019; Gan et al., 2021), are 

generally provided from in-situ observations data, remote-sensing retrievals from satellites, or 

numerical models such as the land surface model (LSM) operated based on the observed 

atmospheric variables. For the in-situ data snow depth (SD) measurements prevail, largely 

attributed to the challenges associated with acquiring precise SWE data (Takala et al., 2011; 

De Rosnay et al., 2014). Surface synoptic observations (SYNOP) serve as the principal source 

for SD measurements. The in-situ measurements offer the most dependable snow information, 

yet they are characterized by relatively coarse temporal and spatial resolutions, particularly 

within limited areas, due to the spatial heterogeneity inherent in snow distribution. (Helmert et 

al., 2018; Meyal et al., 2020). Satellite-derived observations using conical scanning microwave 

instruments may provide spatially consistent data coverage across the globe. Cho et al. (2017) 

showed the SWE retrieval results from two passive microwave sensors, the advanced 

microwave scanning radiometer 2 (AMSR2) and the special sensor microwave imager sounder 

(SSMIS). However, the algorithms for SWE retrieval exhibit a degree of sensitivity to a variety 

of parameters such as snow liquid water content and snow grain size distribution (De Rosnay 

et al., 2014). Hence, satellite-based SWE data still have limitations in accuracy, especially 

under deep snow conditions due to the limited penetration depth (Gan et al., 2021). On the 

other hand, satellite retrieval can estimate snow cover accurately under clear sky conditions 

(Brubaker et al., 2009). Model simulations obtained from LSMs and simple snow models can 

cover complete spatiotemporal resolution but involve potentially large uncertainties due to the 

deficiencies in the physical parameterizations and meteorological forcing data (Dirmeyer et al., 

2006; Seo et al., 2021).  

Considering that snow observation datasets have their respective strengths as well as 

limitations, data assimilation or other data fusion methods can prove to be beneficial for 

constructing snow states such as reanalysis data (e.g., Brasnett, 1999; Dee et al., 2011; Meng 

et al., 2012; Pullen et al., 2011; De Rosnay et al., 2014). For example, the snow analysis for 

the Canadian Meteorological Center (CMC) utilizes a 2-dimensional optimal interpolation 

(2D-OI) scheme with in-situ observations and the outputs from a simple snow model (Brown 

et al., 2003). The National Centers for Environmental Prediction (NCEP) climate forecast 

system reanalysis (CFSR) combines a multi-satellite-based interactive multi-sensor snow and 

ice mapping system (IMS) as satellite-based snow cover retrieval and the outputs from the 

global snow model of the Air Force Weather Agency (Meng et al., 2012). At the European 



Center for Medium Weather Forecast (ECMWF), the ECMWF reanalysis (ERA)-Interim and 

ERA5 for the snow analysis employ a Cressman interpolation and 2D-OI, respectively, with 

the IMS, in-situ observation, and the results from a land surface model (Dee et al. 2011; De 

Rosnay et al., 2014). The Japanese 55-year Reanalysis (JRA55) also utilizes the 2D-OI with 

in-situ observation, satellite-based snow cover from SSMIS, and the results from an LSM 

(Kobayashi et al., 2015). Given that the majority of the reanalysis datasets rely on snow depth 

measurements, the SWE estimation is likely to introduce potential accuracy concerns when the 

snow depth information is combined with the sow density calculations. 

 

 

L103-117: These methods (e.g., optimal interpolation) are similar to using data 

assimilation in the sense that they both combine the model simulation with the 

observations. You might want to emphasize why your DA system is a better method 

compared to these existing methods. 

Response) We have revised the manuscript to highlight the reasons why our data assimilation 

system outperforms existing methods. 

 

Revision) (L154-L179) However, most previous studies have focused on targeted regions with 

limited ground-based observations. Snow initialization in global coverage using satellite-

derived SWE remains a persistently challenging task. 

Therefore, this study developed an advanced SWE data assimilation framework with satellite 

remote-sensing data using the local ensemble transform Kalman filter (LETKF) and the Joint 

U.K. Land Environment Simulator (JULES) land model. This constitutes a novel approach that 

has not been previously attempted, and it offers an objective way to optimally combine two 

imperfect data sources: the satellite SWE from the Advanced Microwave Scanning Radiometer 

2 (AMSR2) and the dynamically-balanced SWE from the JULES land model forced by 

observed atmospheric fields. The estimated SWE data exhibit better consistence by 

additionally using snow cover data from the IMS data. This assimilation framework also 

enables the assessment of improvement as it provides insights into the reasons behind the 

performance improvement based on the Kalman gain analysis that measures the relative 

significance of the input data between the satellite and the land model during the data 

assimilation cycle. The satellite data have demonstrated high reliability in the transition regions 

of climatologically-shallow snow conditions (Gan et al., 2021), and these regions are known 



as "hot spots" of strong atmosphere-land coupling through snow melting and associated surface 

energy and water balance changes (Koster et al., 2004; Dirmeyer, 2011; Huning and 

AghaKouchak, 2020). From these perspectives, it would be important to evaluate the impact 

of satellites on the transition regions as well as on the deep accumulation regions where 

accurate satellite retrievals are challenging. Furthermore, the benefits of assimilating satellite 

retrievals in extremely high-temperature events, such as the case in April 2020 over Eurasia, 

can be elucidated. In this regard, we expect that this snow data assimilation framework with 

satellite-derived SWE can be significant in providing optimal snow initial states for improving 

the S2S prediction by global climate models. 

 

(L299-L324) The snow assimilation is conducted based on the LETKF (e.g., Hunt et al., 2007), 

which is utilized to combine remotely sensed retrievals with the LSM model outputs (a.k.a. 

backgrounds) to produce a snow analysis. Unlike variational data assimilation methods, non-

variational approaches (i.e., ensemble-based filters) characterize a probabilistic representation 

with the spread of the ensemble serving as an estimate of forecast uncertainty. LETKF has 

several advantages over other data assimilation methods. First, LETKF can efficiently handle 

large datasets and high-dimensional state variables by localizing the covariance matrix. This 

offers efficiency in parallel computing, making it suitable for real-time forecasting and high-

resolution data assimilation. In this study, the horizontal local patch size and the localization 

length scale parameters are defined as 150 km and 30 km (Table 1), respectively. This approach 

involves the weight function for the covariance localization within the local patch centered at 

the analysis grid (e.g., Houtekamer and Mitchell, 2001; Hamill et al., 2001). This function 

assigns larger errors to observations located farther away from the center of the local patch, as 

proposed by Miyoshi and Yamane (2007), depending on the Gaussian function. Secondly, the 

method utilizes model simulation ensembles to capture the uncertainty in the initial states and 

background errors, which allows for a better representation of the flow-dependent probability 

distribution of the state variables that vary in time and space. Third, the LETKF employs an 

inflation parameter to adjust the ensemble spread, ensuring realistic uncertainty estimation by 

accounting for background errors. The underestimation of the analysis error covariance is 

typically issued by spatially and temporally constant boundary conditions and observation 

errors and limited ensemble members. Based on the standardized LETKF, this study applies a 

multiplicative covariance inflation of 20% of the spread of 24 member ensembles for each data 

assimilation cycle. Furthermore, the Kalman gain analysis (Seo et al., 2021), which quantifies 



the ratio of the background error to the total error (equivalent to the sum of the background and 

the observation error), is conducted. This analysis serves to determine the weights assigned to 

assimilated observations in the analysis update processes of the LETKF 

 

 

L135: The connection between this and the previous paragraph is unclear. 

Response) We have made revisions to ensure clarity and coherence between the preceding and 

subsequent paragraphs. 

 

Revision) (L134-L144) However, in regions where ground observations are unavailable, large 

errors may exist in the snow model outputs due to uncertainties in atmospheric forcing and 

imperfect model parameterization (Boone et al., 2004; Essery et al., 2009). Often, the snow 

processes parameterized in LSMs rely on observed properties sampled in limited areas (Lim et 

al., 2022). In addition, as IMS snow cover only identifies the presence of snow, the data 

assimilation with the satellite snow cover only is not sufficient and inappropriate in 

constraining water and energy conservation. Alternative methods that consider the physical 

quantity of snow are required for the snow initialization. 

One approach to mitigate the spatial discontinuity of ground observations is to use satellite-

derived SWE with wide spatial coverage and frequent temporal resolution. 

 

 

L143-146, 149-151: You may want to emphasize the unique contribution of this work 

compared to previous studies mentioned in these lines. 

Response) We have revised the sentences to emphasize the unique contributions of our study 

compared to previous research. 

 

Revision) (L154-L179) However, most previous studies have focused on targeted regions with 

limited ground-based observations. Snow initialization in global coverage using satellite-

derived SWE remains a persistently challenging task. 

Therefore, this study developed an advanced SWE data assimilation framework with satellite 

remote-sensing data using the local ensemble transform Kalman filter (LETKF) and the Joint 

U.K. Land Environment Simulator (JULES) land model. This constitutes a novel approach that 

has not been previously attempted, and it offers an objective way to optimally combine two 



imperfect data sources: the satellite SWE from the Advanced Microwave Scanning Radiometer 

2 (AMSR2) and the dynamically-balanced SWE from the JULES land model forced by 

observed atmospheric fields. The estimated SWE data exhibit better consistence by 

additionally using snow cover data from the IMS data. This assimilation framework also 

enables the assessment of improvement as it provides insights into the reasons behind the 

performance improvement based on the Kalman gain analysis that measures the relative 

significance of the input data between the satellite and the land model during the data 

assimilation cycle. The satellite data have demonstrated high reliability in the transition regions 

of climatologically-shallow snow conditions (Gan et al., 2021), and these regions are known 

as "hot spots" of strong atmosphere-land coupling through snow melting and associated surface 

energy and water balance changes (Koster et al., 2004; Dirmeyer, 2011; Huning and 

AghaKouchak, 2020). From these perspectives, it would be important to evaluate the impact 

of satellites on the transition regions as well as on the deep accumulation regions where 

accurate satellite retrievals are challenging. Furthermore, the benefits of assimilating satellite 

retrievals in extremely high-temperature events, such as the case in April 2020 over Eurasia, 

can be elucidated. In this regard, we expect that this snow data assimilation framework with 

satellite-derived SWE can be significant in providing optimal snow initial states for improving 

the S2S prediction by global climate models. 

 

 

L162-163: “model error” -> I recommend change to “background error” (also in other 

places). Also, the Kalman gain measures the ratio of the background error to the sum of 

the background and the observation error. 

Response) As the point well taken, we corrected it. 

 

 

L218-220: it’s unclear how SCF is used based on the statement. You do explain it later in 

the text, but I suggest add something like ‘this will be detailed later in Section …’ 

Response) Thank you for your comment. We have added a sentence indicating that further 

explanations will be provided later in the manuscript, as per the reviewer's comment. 

 

Revision) (L205-L207) In this study, the application of the assimilation process is determined 

based on IMS-based SCF, renowned for its superior reliability (e.g., Brown et al., 2014). 



Further details will be described in Section 3.3. 

 

 

L251: I suggest change “due to randomness” -> “to account for the uncertainties in these 

variables” 

Response) As the point well taken, we corrected it. 

 

 

L265-267: This sentence is unclear. The bias/mean of what?  

Response) The sentence has been revised to provide a clear explanation, aiming to enhance 

understanding. 

 

Revision) (L275-L278) The discrepancy in SWE between remote sensing and LSMs often 

arises due to uncertainties in the model physics and forcing data and satellite retrievals. These 

uncertainties can lead to a significant discrepancy in SWE between model simulations and 

satellite remote-sensing retrievals, potentially degrading performance. 

 

 

L293: ‘true probability distribution’ -> ‘flow-dependent probability distribution’ 

Response) As the point well taken, we corrected it. 

 

 

L294: ‘LETKF applies an adaptive inflation scheme’ -> ‘LETKF is able to adopt an 

adaptive inflation scheme’.  

Response) As the point well taken, we corrected it. 

 

Revision) (L315-L317) Third, the LETKF employs an inflation parameter to adjust the 

ensemble spread, ensuring realistic uncertainty estimation by accounting for background errors. 

 

 

L294-296: In most adaptive inflation schemes (for adjusting the ensemble spread), they 

are used to address to issues of insufficient ensemble spread, which mainly comes from 

the insufficient ensemble size (i.e., sampling errors) and model errors that are not 



properly accounted for. I suggest rephrase the sentence and delete the observational error. 

In addition, since the adaptive inflation scheme (to adjust the ensemble spread) is not 

used in this work, maybe you could just remove it as it doesn’t add much here. 

Response) The sentence has been revised in accordance with the reviewer's comment. 

 

Revision) (L315-L321) Third, the LETKF employs an inflation parameter to adjust the 

ensemble spread, ensuring realistic uncertainty estimation by accounting for background errors. 

The underestimation of the analysis error covariance is typically issued by spatially and 

temporally constant boundary conditions and observation errors and limited ensemble 

members. Based on the standardized LETKF, this study applies a multiplicative covariance 

inflation of 20% of the spread of 24 member ensembles for each data assimilation cycle. 

 

 

L296-320: This paragraph needs to be rewritten. There are many details in the equations 

that are not explained. Since these equations are quite standard for LETKF, I would 

recommend trim down some details, and use plain language to briefly explain what 

LETKF is and how it works. Also, you might want to introduce and define Kalman gain 

here as it is discussed in Section 4.2. 

Response) Thank you for your comment. In response to the reviewer's comment, we have 

streamlined and provided a concise explanation of some details regarding LETKF. Additionally, 

we have included the definition of Kalman gain in this section. 

 

Revision) (L299-L324) The snow assimilation is conducted based on the LETKF (e.g., Hunt 

et al., 2007), which is utilized to combine remotely sensed retrievals with the LSM model 

outputs (a.k.a. backgrounds) to produce a snow analysis. Unlike variational data assimilation 

methods, non-variational approaches (i.e., ensemble-based filters) characterize a probabilistic 

representation with the spread of the ensemble serving as an estimate of forecast uncertainty. 

LETKF has several advantages over other data assimilation methods. First, LETKF can 

efficiently handle large datasets and high-dimensional state variables by localizing the 

covariance matrix. This offers efficiency in parallel computing, making it suitable for real-time 

forecasting and high-resolution data assimilation. In this study, the horizontal local patch size 

and the localization length scale parameters are defined as 150 km and 30 km (Table 1), 

respectively. This approach involves the weight function for the covariance localization within 



the local patch centered at the analysis grid (e.g., Houtekamer and Mitchell, 2001; Hamill et 

al., 2001). This function assigns larger errors to observations located farther away from the 

center of the local patch, as proposed by Miyoshi and Yamane (2007), depending on the 

Gaussian function. Secondly, the method utilizes model simulation ensembles to capture the 

uncertainty in the initial states and background errors, which allows for a better representation 

of the flow-dependent probability distribution of the state variables that vary in time and space. 

Third, the LETKF employs an inflation parameter to adjust the ensemble spread, ensuring 

realistic uncertainty estimation by accounting for background errors. The underestimation of 

the analysis error covariance is typically issued by spatially and temporally constant boundary 

conditions and observation errors and limited ensemble members. Based on the standardized 

LETKF, this study applies a multiplicative covariance inflation of 20% of the spread of 24 

member ensembles for each data assimilation cycle. Furthermore, the Kalman gain analysis 

(Seo et al., 2021), which quantifies the ratio of the background error to the total error 

(equivalent to the sum of the background and the observation error), is conducted. This analysis 

serves to determine the weights assigned to assimilated observations in the analysis update 

processes of the LETKF. 

 

 

L317-318: You mentioned the adaptive inflation scheme, but here you apply a fixed 

inflation scheme. Have you tried using any adaptive inflation scheme to adjust the 

ensemble spread?  

Response) In this study, we employ an inflation parameter based on a previous study (e.g., Seo 

et al., 2021), instead of utilizing the adaptive inflation scheme. The ensemble spread in this 

study demonstrates a sufficiently valid magnitude in comparison with the RMSE, as illustrated 

in SFig. 1, indicating that it is well estimated. 

 

 

Revision) (L315-L321) Third, the LETKF employs an inflation parameter to adjust the 

ensemble spread, ensuring realistic uncertainty estimation by accounting for background errors. 

The underestimation of the analysis error covariance is typically issued by spatially and 

temporally constant boundary conditions and observation errors and limited ensemble 

members. Based on the standardized LETKF, this study applies a multiplicative covariance 

inflation of 20% of the spread of 24 member ensembles for each data assimilation cycle. 



 

 

L321: You may want to add a few sentences to briefly explain what the localization is(and 

also why) here, before introducing the weight function. 

Response) Thank you for your comment. We have added a brief explanation about localization 

in accordance with the reviewer's comment. 

  

Revision) (L304-L312) First, LETKF can efficiently handle large datasets and high-

dimensional state variables by localizing the covariance matrix. This offers efficiency in 

parallel computing, making it suitable for real-time forecasting and high-resolution data 

assimilation. In this study, the horizontal local patch size and the localization length scale 

parameters are defined as 150 km and 30 km (Table 1), respectively. This approach involves 

the weight function for the covariance localization within the local patch centered at the 

analysis grid (e.g., Houtekamer and Mitchell, 2001; Hamill et al., 2001). This function assigns 

larger errors to observations located farther away from the center of the local patch, as proposed 

by Miyoshi and Yamane (2007), depending on the Gaussian function. 

 

L342-345: The assignment of the observation error seems to be a little arbitrary here.  

Are there any studies trying to estimate the observation error (e.g., using Desroziers et al. 

2005) for this retrieval? I suggest elaborate more on the observation error as it is an 

important part of the DA system. Desroziers, G., Berre, L., Chapnik, B. and Poli, P. (2005), 

Diagnosis of observation, background and analysis-error statistics in observation space. 

Q.J.R. Meteorol. Soc., 131: 3385-3396. 

Response) As mentioned by reviewers, observational error in data assimilation is a crucial 

aspect within the context. Regrettably, there is a lack of previous studies addressing the 

accurate observational errors pertaining to AMSR2 SWE. Therefore, the observation error in 

this study is conservatively prescribed as 10% of AMSR2 SWE for each grid compared to the 

previous study utilizing AMSR2 SWE data (Lee et al., 2015), considering the general increase 

in the errors during the snow accumulation period with the development of deep snowpack. It 

has been revised as follows: 

 

Revision) (L335-L339) Due to the absence of precise error estimates for AMSR2 SWE 

retrievals, the observation error is conservatively prescribed as 10% of AMSR2 SWE for each 



grid compared to the previous study utilizing AMSR2 SWE data (Lee et al., 2015), considering 

the general increase in the errors during the snow accumulation period with the development 

of deep snowpack (Foster et al., 2005; Cho et al., 2017). 

 

 

Minor comments for the DA setup: 

(1) LETKF is optimal when the background error is Gaussian distributed. I suspect that 

in the transitional region, the ensemble distribution of SWE might not be Gaussian (e.g., 

when some ensemble members have snow while others do not). It might be interesting to 

have a look at the background and analysis ensemble at these grids. 

Response) Thank you for your comment. Unlike soil moisture, SWE presents varying 

characteristics in the CDF distribution across different regions, such as between high and low 

latitudes or when some regions have snow while others do not, thus requiring the estimation of 

distribution at each grid point. However, the SWE distribution among ensemble members 

consistently exhibited a Gaussian distribution (Additional_Fig.1). Particularly, a distinct 

Gaussian distribution was evident in transitional regions, indicating its association with 

performance enhancement through data assimilation with optimized background error 

distribution. In response to this aspect, the following content has been incorporated into the 

manuscript. 

 

 

Additional_Figure1 (Supplementary Fig. 4). Probability Density Function (PDF) of ensemble 



distribution for Snow Water Equivalent (SWE) over Global (red line) and Transitional Region 

(red line) for April during 2013-2020. 

 

Revision) (L460-L463) The ensemble spread in this study demonstrates a sufficiently valid 

magnitude in comparison with the RMSE, as illustrated in SFig. 1, indicating that it is well 

estimated. Moreover, the SWE distribution among ensemble members consistently exhibited a 

Gaussian distribution, with a distinct this distribution particularly evident in transitional regions 

(SFig. 4). 

 

(2) The observation error standard deviation is assigned to be proportional to the 

observed value. With this situation-dependent observation error, it is easier for DA to 

decrease the model SWE (when model > obs) as opposed to increase SWE (when model < 

obs). I am curious if this leads to negative biases in the SWE? 

Response) Thank you for your comment. In Figure 8, similar to observational errors (Fig. 8a), 

it is apparent that the background error exhibits considerable variation depending on the 

quantity of snow (Fig. 8b). Also, due to standard normal deviation scaling as bias correction 

applied to the satellite data utilized in data assimilation (Additional _Fig.2b), no discernible 

structural negative bias in the data assimilation results is evident (Additional _Fig.2d). Through 

additional figures, we can observe that the areas where bias is improved via data assimilation 

are predominantly transitional regions (Additional _Fig.2e). 

 



 

Additional_Figure2. Mean bias of SWE from CMC for AMSR2 (a), bias-corrected AMSR (b), 

Openloop (c), and DA (d), and difference (e: d-c) for April during 2013-2020. The black line 

represents the boundary of the transition region, defined as the climatological-mean SWE of 

less than 16mm. Each value on the top right is the pattern correlation with CMC for 26482 

pixels over 40N and the root-mean-squared difference (unit: kg/m2) from CMC (parenthesis) 

for 15323 pixels over 40-60N. Negative values in red shades are indicated with a diagonal line. 

 

 

Figure 8. Spatial distribution of observation error (unit: kg/m2), background error (unit: kg/m2), 



and Kalman gain. The black line represents the boundary of the transition region, defined as 

the climatological-mean SWE of less than 16mm.  

 

 

L433-434 (and Figure 7): Although overall DA is better than DA_AMSR2, there are more 

blue patches in DA compared to DA_AMSR2. DA_AMSR2 shows improvement almost 

globally. Do you have any comments on this? 

Response) DA exhibits inferior performance compared to Openloop in certain exceptional 

cases, which may be attributed to discrepancies in snow identification between the CMC 

observations used for correlation and the IMS data utilized for data assimilation. Based on the 

reviewer’s comment, we have modified the sentence as follows: 

 

Revision) (L439-L442) Notably, the skill is enhanced significantly in DA by incorporating the 

IMS SCF. DA exhibits inferior performance compared to Openloop in certain exceptional cases, 

which may be attributed to discrepancies in snow identification between the CMC observations 

used for correlation and the IMS data utilized for data assimilation. 

 

L455 (and S Figure 1): It’s hard to tell from (c) that the ratios are one especially in the 

transitional region. Nevertheless, the overall pattern in (a) and (b) looks similar, which is 

a good sign, suggesting the ensemble system does a decent job in quantifying the 

uncertainty. I suggest change (b) to ‘ensemble spread’.  

Response) As the point well taken, we corrected it. 

 

 

L478-481: I am not sure if I understand the causal relation implied here. Please clarify. 

Response) We have clarified the implied causality in this sentence based on the reviewer's 

comment. 

 

Revision) (L485-L488) Additionally, it has been revealed that the occurrence of high 

temperatures in the Siberian region is found to be closely associated with large-scale 

atmospheric waves in the upper atmosphere over the Eurasian region originating from the 

Atlantic (De Angelis et al., 2023). 



 

 

L486-489: To my understanding, the change in the land component does not feedbackto 

the atmospheric conditions in your DA setup (e.g., Figure 1). Therefore, I suspect if we 

can see the mechanism mentioned in L486-489 in your DA experiment. Do you really see 

the mechanism by comparing DA and OpenLoop, or is L486-489 simply an inference for 

a hypothetical scenario when a two-way coupled system is used? Please clarify. 

Response) Previous study (Collow et al., 2022) shows the land-atmosphere interaction utilizing 

a coupled atmosphere-land model. We have modified the potentially misleading sentence to 

more accurately represent the content of the paper as follows: 

 

Revision) (L493-L497) Substantial snow melt can contribute to record-breaking heatwaves 

through albedo feedback and changes in the ratio of the latent and sensible heat fluxes from the 

exposed surface, coupled with favorable atmospheric circulation patterns (Collow et al., 2022). 

Collow et al. (2022) demonstrated that the exposed surface contributed to up to 20% of the 

temperature anomaly over Siberia in spring 2020. 

 

 

L766 (Figure 1): “OBSERVAIONS” -> “OBSERVATIONS” 

Response) As the point well taken, we corrected it. 


