Response to Reviews of “Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter” by Joonlee lee, Myong-In Lee, Sunlae Tak, Eunkyo Seo, and Yong-Keun Lee. (Geoscientific Model Development: #gmd-2023-221) 

We would like to thank the reviewers for their valuable feedback. Their insightful comments helped improve the quality of this paper. After examining the reviewers' comments, we have corrected and modified our manuscript. Our responses to the individual comments are provided below in blue.

Reply to the Reviewer (#2)’s Comments : 

While this paper is conveying some important information, it is two main drawbacks: (1) writing is sloppy and (2) the novel contributions of this study are unclear.
Response) Thank you for your comment. We have thoroughly revised the manuscript to address the reviewer's comments, focusing on enhancing clarity and conciseness while incorporating the new contributions of this study as suggested. We believe these revisions have significantly improved the manuscript and are grateful for the valuable feedback provided.


Data assimilation method used in this study is clearly not novel component of the paper, as Kalman filter has been used in many other studies. In my view, the authors can focus on DA of AMSR2 and JULES model, as the novel component. Are there any other studies assimilating these two datasets? If not, then this can be a good contribution of this paper. Otherwise, I ask authors to detail what is it they have contributed through this which not known already. In any case, a significant revision of introduction is required to put this study into the appropriate context.
Response) As suggested by the reviewer, we have revised the introduction to emphasize that the method of combining the incomplete datasets of SWE from AMSR2 and SWE from the JULES model through data assimilation represents a novel approach that has not been previously attempted.


Revision) (L154-L179) However, most previous studies have focused on targeted regions with limited ground-based observations. Snow initialization in global coverage using satellite-derived SWE remains a persistently challenging task.
Therefore, this study developed an advanced SWE data assimilation framework with satellite remote-sensing data using the local ensemble transform Kalman filter (LETKF) and the Joint U.K. Land Environment Simulator (JULES) land model. This constitutes a novel approach that has not been previously attempted, and it offers an objective way to optimally combine two imperfect data sources: the satellite SWE from the Advanced Microwave Scanning Radiometer 2 (AMSR2) and the dynamically-balanced SWE from the JULES land model forced by observed atmospheric fields. The estimated SWE data exhibit better consistence by additionally using snow cover data from the IMS data. This assimilation framework also enables the assessment of improvement as it provides insights into the reasons behind the performance improvement based on the Kalman gain analysis that measures the relative significance of the input data between the satellite and the land model during the data assimilation cycle. The satellite data have demonstrated high reliability in the transition regions of climatologically-shallow snow conditions (Gan et al., 2021), and these regions are known as "hot spots" of strong atmosphere-land coupling through snow melting and associated surface energy and water balance changes (Koster et al., 2004; Dirmeyer, 2011; Huning and AghaKouchak, 2020). From these perspectives, it would be important to evaluate the impact of satellites on the transition regions as well as on the deep accumulation regions where accurate satellite retrievals are challenging. Furthermore, the benefits of assimilating satellite retrievals in extremely high-temperature events, such as the case in April 2020 over Eurasia, can be elucidated. In this regard, we expect that this snow data assimilation framework with satellite-derived SWE can be significant in providing optimal snow initial states for improving the S2S prediction by global climate models.


I have made several comments on the attached pdf which will help the authors improve the writing but there are many more sentence that may will benefit from a revision. 
Response) We have thoroughly reviewed the attached PDF containing the reviewer's comments and made every effort to incorporate them into the manuscript.

An important point, I was perpetually confused about for what quantity are the author trying to use data assimilation? SWE, SD or SCF? It should be clearly mentioned in the introduction.
Response) We have revised the introduction to clearly mention the Snow Water Equivalent (SWE) data assimilation of our study.

Revision) (L72-L88) In the subseasonal to seasonal (S2S) timescales, land initial states are crucial components in the S2S timescale predictions due to the inherent memory that changes slowly for 1 to 2 months in the climate system (e.g., Derome et al. 2005; Chen et al., 2010; Seo et al., 2019). In particular, the realistic snow initial states contribute to improving S2S prediction skills, as proven in several modeling studies. For example, previous studies (Orsolini et al., 2013; Jeong et al., 2013) demonstrated a considerable enhancement in prediction skill of 2m air temperature up to a lead time of 1-2 months across certain regions of Eurasia and the Arctic during winter, depending on snow initialization. Moreover, other studies (Orsolini et al., 2016; Li et al., 2019) have revealed that wave activity propagating toward the stratosphere, influenced by snow initial conditions in climate models, can induce changes in the polar vortex and contribute to the persistence of the North Atlantic Oscillation (NAO) and the AO. This emphasizes the significance of snow initialization in climate models as an essential process for enhancing prediction performance at the S2S timescales. 
Snow states, i.e., snow water equivalent (SWE) used directly for hydrological analysis and initial states of the model (Li et al., 2019; Gan et al., 2021), are generally provided from in-situ observations data, remote-sensing retrievals from satellites, or numerical models such as the land surface model (LSM) operated based on the observed atmospheric variables.

On the methodological side, the method is well implemented but the description of the LETKF is quite unclear. I have a basic understanding of LETKF, but I could not understand what authors are trying to explain in section 3.2. Also, there needs to be some more discussion about JRA55 in the ‘Data’ section. What purpose does this data serve? In the results also, JRA55 is not discussed much.
Response) In the data assimilation methods section, we have provided a concise explanation of the concepts, as we utilized the standard LETKF method. Additionally, we have employed JRA55 as the reanalysis dataset used for meteorological forcings in the JULES model, facilitating comparison with other reanalysis datasets in the context of our study results. Following the reviewer's suggestion, we have also included a discussion on JRA55 in the results section.

[bookmark: _Hlk161638910][bookmark: _Hlk161638999]Revision) (L99-L324) The snow assimilation is conducted based on the LETKF (e.g., Hunt et al., 2007), which is utilized to combine remotely sensed retrievals with the LSM model outputs (a.k.a. backgrounds) to produce a snow analysis. Unlike variational data assimilation methods, non-variational approaches (i.e., ensemble-based filters) characterize a probabilistic representation with the spread of the ensemble serving as an estimate of forecast uncertainty. LETKF has several advantages over other data assimilation methods. First, LETKF can efficiently handle large datasets and high-dimensional state variables by localizing the covariance matrix. This offers efficiency in parallel computing, making it suitable for real-time forecasting and high-resolution data assimilation. In this study, the horizontal local patch size and the localization length scale parameters are defined as 150 km and 30 km (Table 1), respectively. This approach involves the weight function for the covariance localization within the local patch centered at the analysis grid (e.g., Houtekamer and Mitchell, 2001; Hamill et al., 2001). This function assigns larger errors to observations located farther away from the center of the local patch, as proposed by Miyoshi and Yamane (2007), depending on the Gaussian function. Secondly, the method utilizes model simulation ensembles to capture the uncertainty in the initial states and background errors, which allows for a better representation of the flow-dependent probability distribution of the state variables that vary in time and space. Third, the LETKF employs an inflation parameter to adjust the ensemble spread, ensuring realistic uncertainty estimation by accounting for background errors. The underestimation of the analysis error covariance is typically issued by spatially and temporally constant boundary conditions and observation errors and limited ensemble members. Based on the standardized LETKF, this study applies a multiplicative covariance inflation of 20% of the spread of 24 member ensembles for each data assimilation cycle. Furthermore, the Kalman gain analysis (Seo et al., 2021), which quantifies the ratio of the background error to the total error (equivalent to the sum of the background and the observation error), is conducted. This analysis serves to determine the weights assigned to assimilated observations in the analysis update processes of the LETKF.

(L357-L360) Figure 2 displays the climatological-mean SCF from the IMS multi-satellite data (Brown et al., 2014) and the differences from AMSR2, Openloop, JRA55, and DA for April 2013-2020. Here, the JRA55 SWE serves as a reference dataset for comparison with other reanalyses and is associated with meteorological forcing data used in the JULES land surface model.

(L379-L386) The SWE climatology from AMSR2, Openloop, JRA55, and DA is also compared with CMC as a reference in Fig. 3. The SWE derived from AMSR2 shows a significant underestimation compared to CMC, particularly in the regions with heavy snow accumulation at high latitudes. This is presumed to be due to limitations in satellite sensors detecting the depth of snow (Gan et al., 2021). The SWE from JRA55 exhibits characteristics of overestimation in high latitudes and underestimation in transitional regions. On the other hand, the climatological SWEs from Openloop and DA exhibit higher correspondence to CMC, even higher than JRA55.

The results section is overall good but a bit repetitive (the conclusion section is also quite long and repetitive). Some of the details in section 4.3 are just not required.
Response) Following the reviewer's suggestions, we have eliminated redundant sections from the conclusion and instead emphasized the contributions of this study to the field of remote sensing. In addition, we have revised Section 4.3 based on the reviewer's comments.

[bookmark: _Hlk161639199]Revision) (L483-L498) Previous studies have identified the strong polar vortex accompanied by the AO amplification during winter as a major cause of the cold Eurasian region (Overland and Wang, 2021). Additionally, it has been revealed that the occurrence of high temperatures in the Siberian region is found to be closely associated with large-scale atmospheric waves in the upper atmosphere over the Eurasian region originating from the Atlantic (De Angelis et al., 2023). As a result, remarkable snow melting occurred due to the high surface temperature over the Siberian region in April 2020, leading to extremely low values of SWE and SCF as depicted in SFig. 2. This is consistent with previous studies reporting a significant snow depletion in 2020 in the region (Gloege et al., 2022). Especially, as shown in Fig. 10, significant negative anomalies in SWE and SCF are predominant over the transition region. Substantial snow melt can contribute to record-breaking heatwaves through albedo feedback and changes in the ratio of the latent and sensible heat fluxes from the exposed surface, coupled with favorable atmospheric circulation patterns (Collow et al., 2022). Collow et al. (2022) demonstrated that the exposed surface contributed to up to 20% of the temperature anomaly over Siberia in spring 2020. This implies the importance of realistic snow initial states in the global coupled model forecasts.

(L515-L562) The advanced SWE data assimilation is developed in this study with the LETKF data assimilation method and the JULES LSM. The system assimilates snow water equivalent retrievals from AMSR2 and IMS snow cover. This constitutes an objective way to optimally combine two imperfect data sources for SWE from satellite remote sensing data and the land surface model simulation forced by observed atmospheric data. This study shows that the satellite-derived SWE has limitations in penetrating deep snow and exhibited much discrepancy from the SWE obtained from the Openloop LSM simulations. The SWE assimilation in this study proves the beneficial impacts of using satellite snow data, maintaining better analysis quality by dynamically balancing the errors from the satellite observations and the model background states. 
It is found that the simulation from Openloop as a baseline shows superior performance in high-latitude regions with heavy snow accumulation but relatively inferior performance in transition regions with much variation of snow in space and time. Contrastingly, the AMSR2 satellite data represent poor performance in high-latitude regions but exhibit relatively better performance in the transition regions. The SWE from the LETKF data assimilation consistently exhibits better performance in capturing the climatology and temporal variation compared to other results. It specifically improves the analysis in the mid-latitude transition regions that cover approximately 53% of the entire areas of the Northern Hemisphere. It is found that the model background errors estimated from the ensemble spread are significantly larger than the observation errors, thereby reflecting satellite information more in those regions. The LETKF data assimilation also proves reliable representation in the heavy snow regions due to low ensemble spread and large uncertainty in the satellite retrievals. Moreover, during the record-breaking heatwave in Siberia in April 2020, the remarkable snow depletion observed due to high surface temperatures is more realistically reproduced by our snow analysis compared to the Openloop. 
This snow data assimilation framework is anticipated to contribute to a more precise prediction of atmospheric conditions by realistically capturing the interaction between the atmosphere and land, given the substantial influence of SWE on energy and water balance at the interface of the atmosphere and land. Specifically, this applies to the transitional regions with high spatial and temporal variability. The long-term analysis of snow manifests a pronounced variability in the continental interior at the interannual timescales, potentially improving the prediction of extreme heatwave events by global climate models. This study used the gridded CMC data from in-situ observations for the validation. Although existing snow data are subject to much uncertainty and limitations, we expect to obtain comparable conclusions and significant benefits of optimally combining satellite SWE data and the LSM model simulations through LETKF data assimilation method. 
The quality of the observation is crucial in the data assimilation system. Satellite-derived snow cover exhibits a significantly higher accuracy compared to other data sources, while SWE has restricted performance due to the limitations of penetration depth by satellite sensors and relies heavily on estimation algorithms. Due to these problems, most previous studies and operational centers primarily depend on satellite-derived snow cover for snow initialization. However, the findings from this study highlighted the beneficial impacts of using satellite-derived SWE, particularly in the rapidly changing transition areas, to find out which variable is more important in closing surface energy and water balance changed by snow. Nevertheless, areas of significance in large-scale circulation, such as the Tibetan region, which experiences significant uncertainty and degraded performance in satellite data, do not exhibit substantial data assimilation effects. As the performance of SWE derived from various satellites continues to advance, these issues will be discussed more. 


Overall, the paper needs a major revision before it can be judged for its significance to scientific literature. I have made several comments in the attached PDF which I hope help the authors in improving their work.
Response) Thank you for your valuable input, which has greatly enhanced the clarity and impact of our paper. The PDF containing the reviewer's comments has been immensely helpful in improving the manuscript. We have extensively revised the text to incorporate the reviewer's feedback, thereby highlighting the scientific contributions and significance of our study.

