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Abstract
[bookmark: _Hlk161382073]The Snow Water Equivalent (SWE), as one of the land initial conditions, plays a crucial role in global or regional energy and water balance, thereby exerting a considerable impact on seasonal and sub-seasonal scale predictions owing to its enduring memory over 1 to 2 months. Despite its importance, most SWE initialization remains challenging due to its reliance on simple approaches based on spatially constrained observation. Therefore, this study developed the advanced snowSWE data assimilation is developed in this study framework with satellite remote-sensing retrievals of snow water equivalent(SWE) and snow cover fraction(SCF)data utilizing the local ensemble transform Kalman filter based on(LETKF) and the Joint U.K. Land Environment Simulator (JULES) land model. The system assimilates SWE This constitutes a novel approach that has not been previously attempted, as it offers an objective way to optimally combine two imperfect data sources: the satellite SWE retrieval from the Advanced Microwave Scanning Radiometer 2(AMSR2) and SCF  (AMSR2) and dynamically balanced SWE from JULES land model. In this framework, an algorithm is additionally considered to determine the assimilation process based on the presence or absence of snow cover from the Interactive Multisensor Snow and Ice Mapping System (IMS) during April 2013-2020. The performance is evaluated by the validations with independent data assimilation products derived from in-situ observationsatellite, renowned for its superior reliability.
The baseline model simulation from JULES without satellite data assimilation shows a superior performance in high-latitude regions with heavy snow accumulation, but relatively inferior in the transition regions with less snow and high spatial and temporal variation. Contrastingly, the AMSR2 satellite data exhibit a superiorbetter performance in the transition regions, but poor performancepoorer in the high latitudes, presumably due to the limitation of the satellite data in the penetrating depth of satellite retrieval.. The data assimilation(DA) that combines AMSR2 and IMS satellite data with the JULES model backgrounds (DA) demonstrates the positive impacts by reducing uncertainty in both satellite-derived snow data in penetrating deep snow and the JULES model simulations in the transition regions. While DA shows superior performance in most regions, it specifically improves the analysisareas, particularly in the mid-latitude transition regions where. In the transition regions, the model background errors from the ensemble runs are significantly larger than the observation errors, emphasizing the substantial influence of satellite information. The long-term analysis of snow manifests a pronounced variability in the continental interior at the interannual timescales, which implies large uncertainty in the snow initialization for the sub-seasonal to seasonal predictions of the climate models, potentially degrading prediction skills without satellite snow data assimilation. great uncertainty in the model simulations. The results of this study highlight the beneficial impact of data assimilation by effectively combining both land surface model and satellite-derived data according to their relative uncertainty, thereby controlling not only transitional regions but also satellite-constrained areas experiencing heavy snow accumulation. This assimilation framework is anticipated to contribute to a more precise prediction of atmospheric conditions by realistically capturing the interaction between the atmosphere and land, given the substantial influence of SWE on energy and water balance at the interface of the atmosphere and land.


1. [bookmark: OLE_LINK7]Introduction
Snow plays a crucial role in regulating the water, energy, and carbon exchange between the land surface and atmosphere (e.g., Dutra et al., 2011; Thomas et al., 2016). A snowpack tends to increase surface albedo and soil moisture as the snow melts. It has an impact on (Eagleson,1970), thereby affecting the climate system with thethrough changes in water balance by the soil moisture change and the energy balance by albedo variationsbalances. In addition to local impacts, the continental snowpack over Eurasia can influence the large scale atmospheric circulation during winter (e.g., Li and Wang, 2014) or in spring (e.g., Broxton et al., 2017). EspecillalyEspecially, the Eurasian autumn snow can affect upward-propagating stationary Rossby-wave activity, leading to stratospheric warming and weakening of stratospheric polar vortex and jet stream, which in turn emerges as a negative Arctic oscillation (AO)-like pattern at the surface during winter due to downward propagation through the troposphere. Its impact is shown in both observation and model experiments (e.g., Allen and Zender 2011; Cohen et al. 2007). ThereforeFurthermore, the interannual variability of snow initialization process in climate models is closely related tomelting during the improvement of prediction performance.boreal spring season affects surface soil moisture in summer, which has important implications for heatwave development and emphasizing mechanisms through land-atmosphere interactions (Seo et al., 2020).
In the short and medium forecasts, snow is simply prescribed based on climatological values because the forecasts are significantly influenced by the accuracy of the initial atmospheric states in climate models. To extend the accurate prediction to subseasonal to seasonal (S2S) timescales, the atmospheric and the more slowly evolving initial conditions need to be carefully considered. Land initial states such as snow land initial states are crucial components in the S2S timescale predictions due to their climaticthe inherent memory lastingthat changes slowly for 1- to 2 months in the climate system (e.g., Derome et al. 2005; Chen et al., 2010). The ; Seo et al., 2019). In particular, the realistic snow initial states can contribute to improving S2S prediction skills, as proven in several modeling studies(e.g., . For example, previous studies (Orsolini et al., 2013; Jeong et al., 2013) demonstrated a considerable enhancement in prediction skill of 2m air temperature up to a lead time of 1-2 months across certain regions of Eurasia and the Arctic during winter, depending on snow initialization. Moreover, other studies (Orsolini et al., 2016; Li et al., 2019).2019) have revealed that wave activity propagating toward the stratosphere, influenced by snow initial conditions in climate models, can induce changes in the polar vortex and contribute to the persistence of the North Atlantic Oscillation (NAO) and the AO. This emphasizes the significance of snow initialization in climate models as an essential process for enhancing prediction performance at the S2S timescales. 
Snow statesSnow states, i.e., snow water equivalent (SWE) used directly for hydrological analysis and initial states of the model (Li et al., 2019; Gan et al., 2021), are generally provided from in-situ observations data, remote-sensing retrievals from satellites, or numerical models such as the land surface model (LSM) operated based on the observed atmospheric variables. In the case ofFor the in-situ data, the primary source of snow depth (SD) is obtained from surfacemeasurements prevail, largely attributed to the challenges associated with acquiring precise SWE data (Takala et al., 2011; De Rosnay et al., 2014). Surface synoptic observations (SYNOP). These observations are provided almost in real-time through the global telecommunication system(GTS). In addition to SYNOP, there are some regional snow measurement networks. For instance, the snowpack telemetry(SNOTEL) network collects data on) serve as the principal source for SD over 900 automated observation points located in the western United States, and the National Oceanic and Atmospheric Administration (NOAA) Cooperative Observer Program gathers SD data in North American region. Nevertheless, data collected from these national networks cannot be utilized in the almost real-time GTS. Directly measuredmeasurements. The in-situ data providemeasurements offer the most reliabledependable snow information but have, yet they are characterized by relatively coarse temporal and spatial resolutions over the, particularly within limited area because of areas, due to the spatial heterogeneities of snowheterogeneity inherent in snow distribution. (Helmert et al., 2018). Recently, in order to obtain high-resolution and high-quality snow water equivalent(SWE) analysis, artificial intelligence(AI) such as long short-term memory(LSTM) has been utilized with the given meteorological conditions from SNOTEL observations as input data, but it is still insufficient to cover the entire globe(; Meyal et al., 2020).
 Satellite-derived observations using conical scanning microwave instruments may provide spatially consistent data coverage across the globe. Cho et al.(. (2017) showed the SWE retrieval results from two passive microwave sensors, the advanced microwave scanning radiometer 2 (AMSR2) and the special sensor microwave imager sounder (SSMIS). However, the algorithms for SWE retrieval exhibit a degree of sensitivity to a variety of parameters such as snow liquid water content and snow grain size distribution (De Rosnay et al., 2014). Hence, satellite-based SWE data still have limitations in accuracy, especially under deep snow conditions due to the restrictions inlimited penetration depth (Gan et al., 2021). On the other hand, satellite retrieval can estimate snow cover accurately under clear sky conditions (Brubaker et al., 2009). The moderate resolution imaging spectroradiometer(MODIS) instrument observes daily snow cover, while a multi-satellite-based interactive multi-sensor snow and ice mapping system(IMS) provided by the United States National Snow and Ice Data Center produces the snow cover by combining in-situ observations and satellite data from microwave, infrared, and visible sensors.
Model simulations obtained from LSMs and simple snow models can cover complete spatiotemporal resolution but involve potentially large uncertainties due to the deficiencies in the physical parameterizations and meteorological forcing data (Dirmeyer et al., 2006; Seo et al., 2020). To reduce the uncertainties from model simulations, previous studies have used satellite-based2021). 
Considering that snow cover and in-situ observation datasets have their respective strengths as well as limitations, data assimilation or other data fusion methods can prove to be beneficial for constructing snow states such as SYNOP SD available on the GTS, in conjunction with the model simulationreanalysis data (e.g., Brasnett, 1999; Dee et al., 2011; Meng et al., 2012; Pullen et al., 2011; De Rosnay et al., 2014). For example, the snow analysis for the Canadian Meteorological Center (CMC) utilizes a 2-dimensional optimal interpolation (2D-OI) scheme with in-situ observations and the outputs from a simple snow model (Brown et al., 2003). The National Centers for Environmental Prediction (NCEP) climate forecast system reanalysis (CFSR) combines the a multi-satellite-based interactive multi-sensor snow and ice mapping system (IMS) as satellite-based snow cover retrieval and the outputs from the global SDsnow model of the Air Force Weather Agency (Meng et al., 2012). At the European Center for Medium Weather Forecast (ECMWF), the ECMWF reanalysis (ERA)-Interim and ERA5 for the snow analysis employ a Cressman interpolation and 2D-OI, respectively, with the IMS, in-situ observation, and the results from a land surface model (Dee et al. 2011; De Rosnay et al., 2014). The Japanese 55-year Reanalysis (JRA55) also utilizes the 2D-OI with in-situ observation, satellite-based snow cover from SSMIS, and the results from an LSM(Kobayashi et al., 2015). (Kobayashi et al., 2015). Given that the majority of the reanalysis datasets rely on snow depth measurements, the SWE estimation is likely to introduce potential accuracy concerns when the snow depth information is combined with the sow density calculations.
The most commonly employed approach to obtain reasonable estimates of land initial states for predictions is running atmospheric general circulation models(AGCMs; Pullen et al., 2011) or offline mode of LSMs with observed atmospheric conditions(Dirmeyer et al., 2006). Climate prediction systems in operational centers such as the Meteorological Office(Met Office) (Met Office) in the United Kingdom and the Korean Meteorological Administration (KMA) conduct the snow initialization by utilizing the results of the operational global unified model (UM) and the IMS snow cover, which solely indicates the presence of snow (Pullen et al., 2011).), lacking in its ability to reflect the physical quantity of it. The initialization at NCEP also performs a similar approach using input data combined from IMS snow cover and results from the global SD model (SNODEP; Meng et al., 2012). Furthermore, the snow initialization of ECMWF employs optimal interpolation with a combination of results from the LSM, IMS snow cover, and in-situ observation from SYNOP and national networks available on the GTS. However, in areasregions where ground observations are not available, the results of unavailable, large errors may exist in the snow model are relied upon, which still exists significant uncertainty in snow accumulation because of outputs due to uncertainties in the atmospheric forcing and imperfect model parameterizationsparameterization (Boone et al., 2004; Essery et al., 2009). It would be useful to to accurately initialize the Often, the snow processes parameterized in LSMs rely on observed properties sampled in limited areas (Lim et al., 2022). In addition, as IMS snow amount including vertical depth, which is more important in estimating energy and water budgets, by using cover only identifies the presence of snow, the data assimilation with the satellite-derived snow amounts with comparatively uniform spatial  snow cover only is not sufficient and inappropriate in constraining water and temporal resolutionenergy conservation. Alternative methods that consider the physical quantity of snow are required for the snow initialization.
One approach to mitigate the spatial discontinuity of ground observations is to use satellite-derived SWE with wide spatial coverage and frequent temporal resolution. However, the SWE retrievals from satellites still have considerable uncertainties (De Lannoy et al., 2010; Dawson et al., 2018), which can arise from vegetation and terrain interference, sensor signal saturation, snowfall amount, and simplifications in the underlying assumptions of the retrieval algorithms (Liu et al., 2015). In particular, a region with heavy snow accumulation leads to a significant underestimation of SWE due to the limitations in penetration depth from satellites (Gan et al., 2021). For this reason,), so that satellite-derived SWE is not employed in the land initialization process. Nevertheless, the SWE retrieval shows important advantages such as high performance in shallow snow areas with temporal and spatial homogeneity(Gan et al., 2021). In previous studies, various approaches have been attempted to improve SWE product performance, such as combining satellite-derived SWE with ground observations (Pulliainen et al., 2020), different satellite data sets (Gan et al., 2021), simple snow models (Dziubanski and Franz, 2016), or LSMs (Kwon et al., 2017). For instance,; Kumar et al.(., 2019) show the improvement of the SD estimation over the contiguous United States by assimilating satellite snow SD into the Noah LSM, indicating that these model). However, most previous studies have focused on targeted regions with limited ground-based products are generally superior to stand-alone satellite-based SWE retrievals. Thus, a globally advanced snowobservations. Snow initialization such as data assimilationin global coverage using satellite snow amount is ideal for providing realistic snow initial states related to S2S prediction skills-derived SWE remains a persistently challenging task.
Therefore, the purpose of this study is to developdeveloped an advanced snowSWE data assimilation system utilizing the Local Ensemble Transformframework with satellite remote-sensing data using the local ensemble transform Kalman Filterfilter (LETKF) with satellite-derived observations of SWE, IMS snow cover, as well as and the Joint U.K. Land Environment Simulator(JULES). In this context, our focus is on SWE rather than SD, because the former can be used directly for hydrological analysis and initial states of the model(Gan et al., 2021). From this novel  (JULES) land model. This constitutes a novel approach that has not been previously attempted, and it offers an objective way to optimally combine two imperfect data sources: the satellite SWE from the Advanced Microwave Scanning Radiometer 2 (AMSR2) and the dynamically-balanced SWE from the JULES land model forced by observed atmospheric fields. The estimated SWE data exhibit better consistence by additionally using snow cover data from the IMS data. This assimilation system, we endeavor to achieve the following objectives. The primary aim is to assess the enhancement in SWE framework also enables the assessment of improvement as it provides insights into the reasons behind the performance through the improvement based on the Kalman gain analysis that measures the relative significance of the input data between the satellite and the land model during the data assimilation with satellite remote sensing data.cycle. The satellite data showhave demonstrated high performancereliability in the transition regions withof climatologically -shallow snow conditions, termed by Koster (Gan et al.(2004)., 2021), and these regions are known as “"hot spots”" of strong atmosphere-land coupling. The second goal is to reveal the reason for skill improvement with the snow data assimilation, based on the Kalman gain analysis that measures the ratio of the model errors with respect to the observation errors. through snow melting and associated surface energy and water balance changes (Koster et al., 2004; Dirmeyer, 2011; Huning and AghaKouchak, 2020). From these perspectives, it would be possibleimportant to know how muchevaluate the satellite has affectedimpact of satellites on the transition regions, and how the assimilation system deals with the regions of  as well as on the deep snow accumulation regions where the satellite has difficulty in accurate retrieval. The final goal is to evaluate the advantagessatellite retrievals are challenging. Furthermore, the benefits of assimilating satellite retrievals in extremeextremely high-temperature events, specifically over Eurasiasuch as the case in April 2020. over Eurasia, can be elucidated. In this regard, we expect that thethis snow data assimilation offramework with satellite-derived snow informationSWE can be an alternative to producesignificant in providing optimal snow initial states for improving the S2S prediction skill in theby global climate models.


2. [bookmark: _Hlk28719564]Data and model
2.1. Satellite data
The snow information including snow cover and SWE can be derived from satellite measurements offering global coverage and high temporal as well as spatial resolution. For data assimilation, this study uses SWE calculated from brightness temperature measurements obtained by the AMSR2 on board the Japanese Aerospace Exploration Agency (JAXA) global change observation mission-water (GCOM-W) satellite. This AMSR2 Unified Level-3 (L3) dataset offers daily estimation of SWE at 25 km resolutions from July 2012 to the present. AMSR2 has a sensor designed to detect microwave radiation naturally emitted from the surface and atmosphere, employing six frequency bands ranging from 6.9 to 89 GHz. Through this conical scanning mechanism, AMSR2 can acquire day and night datasets with nearly constant spatial resolution over more than 99% of the global coverage every two days. Comprehensive explanations of AMSR2 characteristics are available in Imaoka et al.(. (2010). AMSR2 is selected for the assimilation because it produces more skilledaccurate results by assimilating data from modern sensors (e.g., AMSR2) compared to data from conventional sensors (e.g., AMSR-E)() (Cho et al., 2017).
The widely used multisensor–derived snow cover is IMS (e.g., Ramsay 1998; Helfrich et al., 2007) produced by NOAA the National Environmental Satellite Data and Information Service (NESDIS) for the Northern Hemisphere from February 2004 to the present at 4 km resolutions. This dataset is generated using various data products, including multi-satellite images and in-situ observations (U.S. National Ice Center, 2008). Since IMS provides binary (0: no snow or 1: snow covered) snow cover information, we transform the IMS snow cover at 4 km grids to the snow cover fraction (SCF) within a 50-km LSM grid by counting the snow pixel number with a value of 1. A 50-km LSM grid is declared as snow-covered when more than 50% of the 4km pixels within the grid are covered with snow. In this study, the application of the assimilation process is determined based on IMS-based SCF, renowned for its superior reliability (e.g., Brown et al., 2014). Further details will be described in Section 3.3.

2.2. Reference data for SWE and SCF
The CMC daily estimated SWE is used for verification. The SWE data is processed using statistical interpolation between a background field derived from a simple snow model and in-situ daily SD (Brown and Brasnett, 2010). In detail, this dataset utilizes optimal interpolation methods to acquire spatial SD from the in-situ data, involving SYNOP, special aviation reports from the World Meteorological Organization (WMO), and meteorological aviation reports (METAR). In areas with scant in-situ data, a simple snow accumulation and melt model is employed to create an optimal interpolation that estimates snowmelt and snowfall worldwide, assuming the persistence of the snowpack mass between snowfall and melting events (Brasnett, 1999). Although the average elevation of snow measurement stations used in CMC is biased toward low elevations (< 400m), leading to a potentialpotentially causing relative negative biasbiases at highhigher elevations with heavy snow accumulation, the CMC dataset is often considered the premier snow analysis accessible in the Northern Hemisphere (Su et al. 2010) and has still been widely used to evaluate model outputs (e.g., Reichle et al., 2011; Reichle et al., 2017; Toure et al, 2018). Therefore, the SWE of CMC produced without the satellite-derived data is selected for verification as an independent dataset for evaluating the assimilated analysis with remote sensing snow retrievals. Since only daily SD analysis is provided in CMC, it is converted to daily SWE based on the snow bulk density methods (e.g., Sturm et al., 2010). It is available from 12 March 1998 to the present and offers comprehensive coverage of the entire Northern Hemisphere with a horizontal resolution of 24 km. The SWE of CMC at its native horizontal resolution is interpolated onto the LSM grid through local area averaging.
The widely used multisensor–derived snow cover is IMS(e.g., Ramsay 1998; Helfrich et al., 2007) produced by NOAA the National Environmental Satellite Data and Information Service(NESDIS) for the Northern Hemisphere from February 2004 to the present at 4 km resolutions. This dataset is generated using various data products, including multi-satellite images and in-situ observations(U.S. National Ice Center, 2008). Since IMS provides binary(0: no snow or 1: snow covered) snow cover information, we transform the IMS snow cover at 4 km grids to the snow cover fraction(SCF) within a 50-km LSM grid by counting the snow pixel number with a value of 1. A 50-km LSM grid is declared as snow-covered when more than 50% of the 4km pixels within the grid are covered with snow. In this study, the IMS-based SCF is employed to mask the SWE, considering the higher reliability of IMS data (e.g., Brown et al., 2014).

2.3. JULES LSM
This study utilizes the JULES LSM from the Met Office (Best et al., 2011), a component land model of the global seasonal forecasting system version 6 (GloSea6) global, fully-coupled atmosphere, ocean, land, and sea-ice model. The surface types (or snow tiles) in the JULES LSM consist of four non-vegetated types: urban, land-ice, inland water, and bare soil, as well as five vegetation functional types: C3 temperate grass, needleleaf trees, shrubs, C4 tropical grass, and broadleaf trees. For each surface tile, a separate energy balance is computed, and the average energy balance in the grid cells is determined by applying weights to the values of each surface tile. Two schemes are used within JULES to represent surface snow. (e.g., Best et al., 2011; Burke et al., 2013). The simple method involves a zero-layer approach, which modifies the top soil level without using explicit model layers to represent snow processes. The other is the multi-layer approach which is more comprehensive., described in Best et al. (2011). In the case of vegetated surfaces, snow can be separated into ground snow and canopy snow or stored in a single effective reservoir. As both the zero-layer and multi-layer snow models provide similar results under various conditions(e.g.,  (Best et al., 2011), this study used the zero-layer snow model with constant thermal conductivity and density for snow. Although the heat capacity of snow is ignored, the bulk thermal conductivity in the surface layer is reduced as the thermal conductivity of snow differs from that of the soil and the layer thickness increases. As long as snow persists on the ground, the skin temperature cannot exceed 0°C, yet the heat flux utilized for melting the snow is diagnosed throughas the residual in the surface energy balance. The melted water is immediately drained from the snow, divided into runoff and soil infiltration, and liquid water is not stored or frozen in the snow. A detailed description of the energy and water cycling in the JULES LSM can be referenced in Best et al.(. (2011).
The prognostic variables (e.g., SWE) in the LSM are determined by meteorological forcing variables such as 2-m air temperature, humidity, 10-m wind speed, precipitation, surface pressure, and radiative fluxes. The 3-hourly, JRA55 reanalysis at 0.56° spatial resolution is employed for the meteorological forcing variables, which is linearly interpolated to a 50 km resolution of the LSM. The model background error needed for data assimilation is estimated by JULES ensemble runs with perturbed initial and boundary conditions. Following the previous studies (Reichle et al., 2008; Seo et al., 2021), meteorological forcing variables are perturbed due to randomnessto account for the uncertainties in these variables, especially precipitation, downward shortwave, and downward longwave. Perturbations are applied using additive adjustments assuming a normal distribution for longwave radiation and multiplicative adjustments following a log-normal distribution for shortwave radiation and precipitation., as guided by previous studies (Seo et al., 2021). Here, the ensemble means of additional and multiplicative perturbations are zero and one, respectively. The relationship between disturbed precipitation and radiative flux ensures the physical consistency among atmospheric forcing variables (Reichle et al., 2008). For instance, a negative anomaly in precipitation and downward longwave-radiation is statistically linked to a positive anomaly of downward shortwave-radiation. Detailed explanations regarding the perturbation of atmospheric forcings can be found in Reichle et al.(. (2008).


3. Methodology
3.1. Bias correction
[bookmark: _Hlk161641964][bookmark: _Hlk161641674]The discrepanciesdiscrepancy in SWE between remote sensing and LSMs are often caused by arises due to uncertainties in the model physics and meteorological forcing data. and satellite retrievals. These differencesuncertainties can lead to a significant biases in the variance and mean ofdiscrepancy in SWE between model simulations and satellite remote-sensing retrievals, and such biases can result in poorpotentially degrading performance. In previous studies (e.g., Reichle and Koster, 2004; Seo et al., 2021), a scaling method of the nonlinear cumulative distribution function (CDF) matching is used to account for the systematic bias of soil moisture in the model backgrounds. However, unlike soil moisture, SWE presents varying characteristics in this study, it is difficult to apply it as the CDF distribution across different regions, such as between high and low latitudes, thus requiring the estimation of SWE could not be clearly simulated due todistribution at each grid point. As a result, the insufficient sample size hinders the clear simulation of the CDF distribution, posing challenges in its application. To address this issue, we attempted to apply a simple and effective standard normal deviation scaling to satellite-derived SWE., considering its potential use as initial conditions for JULES LSM-based climate models. Based on the climatology and standard deviation for the model and remote sensing retrievals, the scaled SWE () from the satellite can be derived from the following relation:

                           (1)

, where () and ( indicate climatology (standard deviation) of remote sensing retrievals and the model, respectively. This approach has been widely utilized in observation-based land initialization and has proven to be effective (e.g., Koster et al., 2011; Jeong et al., 2013).


3.2. SnowData assimilation method 
[bookmark: _Hlk161638910][bookmark: _Hlk161638999]The snow assimilation is conducted based on the LETKF (e.g., Hunt et al., 2007), which is utilized to combine satellite remote-sensingremotely sensed retrievals with the LSM model outputs (a.k.a. backgrounds) to produce a snow analysis. LETKF is a powerfulUnlike variational data assimilation method and methods, non-variational approaches (i.e., ensemble-based filters) characterize a probabilistic representation with the spread of the ensemble serving as an estimate of forecast uncertainty. LETKF has several advantages over other data assimilation methods. First, LETKF can efficiently handle large datasets and high-dimensional state variables by localizing the covariance matrix. This offers efficiency in parallel computing, making it suitable for real-time forecasting and high-resolution data assimilation. SecondlyIn this study, the method utilizes model simulation ensembles to capture the uncertainty in the initial stateshorizontal local patch size and model errors, which allows for a better representation of the true probability distribution of the state variables that vary in timethe localization length scale parameters are defined as 150 km and space. Third, LETKF applies an adaptive inflation scheme, which adjusts the ensemble spread to account for the observational and model errors, ensuring that the uncertainty estimates are realistic and not underestimated nor overestimated. In LETKF, the analysis states() are obtained by
                            (2)
, where  and  are the matrices of analysis ensemble means and perturbations,30 km (Table 1), respectively. They are defined by
                            (3)
.                       (4)
Here, the analysis ensemble means() is determined by gathering the analysis increment() to the model ensemble mean() produced by the JULES land surface model. The analysis ensemble perturbation( is computed considering the model perturbation(), the number of model ensembles(), and the analysis error covariance() in the ensemble space. The analysis increment() is acquired by considering the difference between the SWE of AMSR2 used as observation and the model ensembles produced by the JULES LSM and determined by
, and                     (5)
.                        (6)
It consists of the model ensemble perturbation(), the analysis error covariance(), observation error covariance(), model ensemble perturbation in the observation grid(δY), and observation innovation derived from the difference between the model ensemble in the observation grid() and the observation(). Here,  represents the observation operator, projecting the modeled snow background onto the satellite observation locations using bilinear interpolation.  denotes the covariance inflation factor for the , aiding in preventing underestimation of the covariance. This study applies multiplication-based 20% inflation() for the ensemble spread derived from 24 member ensembles. Therefore, the final analysis state() is written as
.          (7)
This approach involves the weight function() for the covariance localization within the local patch centered at the analysis grid (e.g., Houtekamer and Mitchell, 2001; Hamill et al., 2001). This function assigns larger errors to observations located farther away from the center of the local patch, as proposed by Miyoshi and Yamane(2007), depending on the Gaussian function as (2007), depending on the Gaussian function. Secondly, the method utilizes model simulation ensembles to capture the uncertainty in the initial states and background errors, which allows for a better representation of the flow-dependent probability distribution of the state variables that vary in time and space. Third, the LETKF employs an inflation parameter to adjust the ensemble spread, ensuring realistic uncertainty estimation by accounting for background errors. The underestimation of the analysis error covariance is typically issued by spatially and temporally constant boundary conditions and observation errors and limited ensemble members. Based on the standardized LETKF, this study applies a multiplicative covariance inflation of 20% of the spread of 24 member ensembles for each data assimilation cycle. Furthermore, the Kalman gain analysis (Seo et al., 2021), which quantifies the ratio of the background error to the total error (equivalent to the sum of the background and the observation error), is conducted. This analysis serves to determine the weights assigned to assimilated observations in the analysis update processes of the LETKF.
                               (8)
 where σ denotes a parameter of the localization length scale and  indicates the distance of j-th observed value from the center of each local patch. In this study, the horizontal local patch size and the localization length scale parameters are defined as 150 km and 30 km(Table 1), respectively. Detailed information about the LETKF algorithm and its implementation can be referenced in Hunt et al.(2007) and Shlyaeva et al.(2013).

3.3. Snow data assimilation design
[bookmark: _Hlk161639046]This study conducts the advanced snow data assimilation experiment at a daily cycle based on LETKF with the satellite data and the JULES LSM model outputs driven by 3-hourly JRA55 reanalysis atmospheric forcing. The snow assimilation processes are illustrated in Fig. 1, with a more detailed description in Table 1. Since data assimilation is conducted by considering the error of SWE in both the model and the observation, it is important to accurately understand the observation and modelbackground errors to improve the performance of data assimilation. The experiment calculates the modelbackground error from the 24 ensemble member spreads generated by perturbing atmospheric forcings such as longwave radiation, shortwave radiation, and precipitation in JULES LSM, as provided in section 2.3. TheDue to the absence of precise error estimates for AMSR2 SWE retrievals, the observation error is conservatively prescribed as 10% of AMSR2 SWE for each grid compared to the previous study utilizing AMSR2 SWE data (Lee et al., 2015), because it usually increasesconsidering the general increase in the errors during the snow accumulation period with the developingdevelopment of deep snowpack (Foster et al., 2005; Cho et al., 2017). Here, the bias-corrected AMSR2 satellite data as described in section 3.1 is used as the observation data, and the updated snow analysis state() through data assimilation becomes a new initial state for the next integration in JULES LSM (Fig. 1). In addition, the analysis state of this method is calculated based on the IMS snow cover fraction as a reference in the following way (Fig. 1); where the SCF of IMS is zero, the snow amount analysis is set to zero, and in other cases, it is derived from data assimilation. The reason for this is due to the importance of the presence or absence of snow in the climate system, as well as the high reliability of the IMS data. (e.g., Brown et al., 2014). A background experiment of JULES LSM without satellite data assimilation as a baseline (referred to hereafter as “Openloop”) is also achieved by employing the same ensemble perturbations, thereby measuring the skill improvement from the snow analysis state through the assimilation of satellite-derived SWE and IMS SCF from satellite and surface observations (referred to hereafter as “DA”). All experiments are conducted in April from 2013 to 2020, which is one of the months with low snow performance in the LSM when the snow begins to melt in the Northern Hemisphere (e.g., Toure et al., 2018; You et al., 2020).

4. Results
4.1.  Skill Verification
Figure 2 displays the climatological-mean SCF from the IMS multi-satellite data (Brown et al., 2014) and the differences from AMSR2, Openloop, JRA55, and DA for April 2013-2020. Here, the JRA55 SWE serves as a reference dataset for comparison with other reanalyses and is associated with meteorological forcing data used in the JULES land surface model. April is a season when the accumulated snow during the cold season begins to melt. This study defines the transitional region with a climatological-mean SWE of less than 16 mm as in previous studies (e.g., Gan et al., 2021), the boundary of these transition regions is represented by the black lines in Fig. 2. The transitional regions exhibit large variability in space and time, and they are mainly located at mid-latitudes. The SCF climatology patterns show negligible differences in high latitudes of heavy snow accumulation but noticeable differences in the transitional mid-latitude regions of less snow. SCF from JRA55 tends to be underestimated compared to IMS, whereas AMSR2 and Openloop tend to overestimate. There is a clear difference in SCF between AMSR2 and IMS satellite data. This study gives more credibility to IMS than AMSR2, as the former is based on multiple satellite data sources. (e.g., Brown et al., 2014). As we used the IMS SCF to define the snow region to be assimilated by AMSR2 SWE, it is natural that DA shows better consistency with IMS and reduces overestimation biases in Openloop. Quantitatively, the root mean square differences (accuracy, defined in supplementary Table 1 as in previous study) for AMSR2, Openloop, JRA55, and DA with (from) IMS are 0.23 (0.91), 0.18 (0.91), 0.13 (0.93), and 0.13 (0.97), respectively, showing the best consistency in DA. The quantitative differences between DA and other experimental results are minor, but noticeable spatial discrepancies exist, particularly around transition regions.
[bookmark: _Hlk162704239]The SWE climatology from AMSR2, Openloop, JRA55, and DA is also compared with CMC as a reference in Fig. 3. The SWE derived from AMSR2 shows a significant underestimation compared to CMC, particularly in the regions with heavy snow accumulation at high latitudes. This is presumed to be due to limitations in satellite sensors detecting the depth of snow(Gan et al., 2021). (Gan et al., 2021). The SWE from JRA55 exhibits characteristics of overestimation in high latitudes and underestimation in transitional regions. On the other hand, the climatological SWEs from Openloop and DA exhibit higher correspondence to CMC, even higher than JRA55. Specifically, DA demonstrates a higher agreement with CMC., despite the marginal difference compared to Openloop. Quantitatively, the pattern correlation coefficients (root mean square differences) for AMSR2, Openloop, JRA55, and DA with (from) CMC are 0.63 (80.7 kg/m2), 0.80 (50.1 kg/m2), 0.60 (100.8 kg/m2), and 0.80 (49.9 kg/m2), respectively. Due to the application of standard deviation scaling to the satellite-derived SWE used in data assimilation, the discrepancy in climatological SWE distributions between DA and Openloop is deemed negligible. Despite its similarity to Openloop, DA with snow data assimilation displays the relatively highest correlation and the smallest root mean square difference among the datasets, indicating the benefit of assimilating the AMSR2 SWE despite the relatively lower performance of the satellite data itself. .
Next, we compare the temporal variation of SWE as measured by the Spearman rank correlation coefficient with CMC, which is regarded as more appropriate than the Pearson correlation coefficient for describing nonlinear variablesdatasets containing nonlinearity and outliers such as snow in both time and space. Figure 4 compares the distribution of correlation skills from AMSR2, Openloop, JRA55, and DA. Openloop has a high performance in regions with heavy snow accumulation but relatively low performance in transition regions with significant snow changes. In contrast, the results from the AMSR2 satellite data represent poor performance in high-latitude areas with heavy snow accumulation but high performance in transitional regions, consistent with the previous studies (Gan et al., 2021). DA shows high performance not only in high-latitude areas with heavy snow accumulation but also in transition regions. Even compared to JRA55 used as the atmospheric forcing, DA performs better in temporal variation. The quantitative results in the correlation in the Northern Hemisphere over 40oN (the transition region) are 0.41 (0.54) for AMSR2, 0.61 (0.48) for Openloop, 0.58 (0.58) for JRA55, and 0.67 (0.61) for DA, respectively. The findings indicate that satellite retrievals offer additional value in capturing temporal variations through data assimilation., indicating the benefit of assimilating the AMSR2 SWE despite the overall lower performance of the satellite data itself. 
The performance improvement by DA is also evident in the zonally-averaged correlation coefficient shown in Fig. 5. The AMSR2 satellite data shows higher performance than Openloop in the transition region around latitude 45 oN-55 oN, although performance sharply decreases with increasing snow accumulation. Openloop indicates gradually increasing performance as the latitude increases, with the highest performance at around 60oN. DA denotes superior performance across the Northern Hemisphere, especially in the mid-latitude transition region than AMSR2 or JRA55. An exception is for 35-40oN in the Tibetan Plateau, where JRA55 used in-situ observations. The results suggest that the developed snow data assimilation system represents well not only the transitional regions but also the satellite-limited regions with heavy snow.
Figure 6 presents the Spearman rank correlation depending on the SWE amount in the Northern Hemisphere. AMSR2 exhibits higher performance than Openloop for SWE up to 16 mm. However, the performance of AMSR2 sharply declines beyond that threshold, and Openloop shows a better performance. Consistent with the results illustrated in Figs. 4 and 5, DA demonstrates superior performance compared to others. Note that DA performs significantly better in the transition region of less than 16 mm of SWE. Considering that the area below 16 mm of SWE accounts for approximately 53% of the entire area of the Northern Hemisphere(as shown in the pie chart in Fig. 6), the data assimilation impact is identifiable, and it can contribute substantially to the increase in the prediction skill through improving the simulation of the albedo changes and surface energy balance.
[bookmark: _Hlk161639116]ThisConsistent with the description in Section 3.3, this study conducted considers an algorithm based on the highly reliable IMS satellite SCF data to identify the presence of snow and determine the assimilation process. Therefore, a further sensitivity test is conducted to investigate the influence of incorporating IMS snow coverdata in snow assimilation. Figure 7 compares the correlation differences between Openloop and the data assimilation result employing both AMSR2 and IMS (DA), as well as the data assimilation result utilizing solely AMSR2 and excluding IMS (hereafter referred to as DA_AMSR2). The results obtained from the snow assimilation show the improvements in the transitional regions where AMSR2 denotes a better agreement with the observations compared to Openloop. Notably, the skill is enhanced significantly in DA by incorporating the IMS SCF. There are exceptional areas where DA performsexhibits inferior performance compared to Openloop in certain exceptional cases, which are associated with the differences in SCFmay be attributed to discrepancies in snow identification between the CMC observations used for correlation and the IMS and CMCdata utilized for data assimilation. Moreover, the performance of SWE improves even when only AMSR2 is used, but incorporating IMS leads to a substantial improvement in the transitional regions. This implies that IMS has a positive influence on the snow data assimilation.


4.2 Kalman gain analysis
[bookmark: _Hlk162360663]In order to better understand the skill enhancement through snow assimilation of satellite data, this section examines the Kalman gain, which represents the weights of the assimilated observations in the analysis update of LETKF.. Figure 8 illustrates the spatial distribution of observation error, model background error, and the Kalman gain. A high value of the Kalman gain denotes that the assimilated result is closer to the AMSR2 observation than the model background. The Kalman gain is large when the modelbackground error becomes large, or the observation error is small. As this study specifies the observation error as a conservative 10% of SWE compared to the previous study (Lee et al., 2015), the observation error basically follows the distribution similar to the climatological-mean values. The background errors, originating from the 24 ensemble members, have higher values in high-latitude regions and mid-latitude regions. Data assimilation methods such as LETKF used in this study often face challenges in accurately representing background errors when the ensemble spread is insufficient. Generally, the magnitude of ensemble spread is frequently compared to the root mean square error (RMSE). The background errorensemble spread in this study demonstrates a sufficiently valid magnitude in comparison with the RMSE, as illustrated in SFig. 1, indicating that it is well estimated. Moreover, the SWE distribution among ensemble members consistently exhibited a Gaussian distribution, with a distinct this distribution particularly evident in transitional regions (SFig. 4). In the spatial distribution of Kalman gain in Fig. 8c, significant performance improvement is observed in transition regions, where Kalman gains exhibit larger values. However, in high-latitude areas with substantial snow accumulation, there is a tendency for Kalman gain to have lower values. These findings agree well with the bar graph in Fig. 9, which illustrates the Kalman gain as a function of SWE amount. In the region encompassing the transition region with SWE amounts below 20 mm, the Kalman gain displays the highest values, particularly exceeding 0.8. As the SWE amount increases, the Kalman gain decreases, with a significant decline observed when the SWE amount reaches 80-100 mm or higher. Furthermore, in the areas where DA denotes improved skill compared to Openloop, the Kalman gain shows values generally above 0.7. In contrast, relatively lower values below 0.5 are observed in the areas with decreased skill. This indicates that in the dominant areas of performance improvement, including the transition region, the background error is significantly larger than the observation error, emphasizing the substantial influence of observations in data assimilation. It is found that accurate remote sensing retrievals are well reflected in regions with high uncertainty in the LSM through the snow data assimilation system, leading to performance improvement.


4.3 Validation of the SWE for the extreme event
[bookmark: _Hlk161639199][bookmark: _Hlk161639239]In April 2020, Siberia experienced a record-breaking heatwave with the highest observed average temperature. This section investigates the potential benefits of snow assimilation using satellite data for the case of the 2020 Siberian heatwave. Previous studies have identified the strong polar vortex accompanied by the AO amplification during winter as a major cause of the cold Eurasian region (Overland and Wang, 2021). Additionally, it has been revealed that the occurrence of high temperatures in the Siberian region is found to be closely related to the development ofassociated with large-scale atmospheric waves in the upper atmosphere ofover the Eurasian region, indicating a significant influence on the strengthened land-atmosphere interaction in recent years. originating from the Atlantic (De Angelis et al., 2023). As a result, remarkable snow melting occurred due to the high surface temperature over the Siberian region in April 2020, leading to extremely low values of SWE and SCF as depicted in SFig. 2. This is consistent with previous studies reporting a significant snow depletion in 2020 in the region (Gloege et al., 2022). Especially, as shown in Fig. 10, significant negative anomalies in SWE and SCF are predominant over the transition region. With a substantialSubstantial snow melting, it increases themelt can contribute to record-breaking heatwaves through albedo feedback and changes in the ratio of the latent and sensible heat flux to the atmosphere, thereby strengtheningfluxes from the upper-level waves by enhanced atmosphere-land interaction, leadingexposed surface, coupled with favorable atmospheric circulation patterns (Collow et al., 2022). Collow et al. (2022) demonstrated that the exposed surface contributed to further intensification of heatwaves.up to 20% of the temperature anomaly over Siberia in spring 2020. This implies the importance of realistic snow initial states in the global coupled model forecasts. For the Siberian region with extreme high-temperature events marked by the red box in Fig. 10, DA shows a better agreement with the extremely dry snow conditions, especially in the transitional region, compared to the Openloop. These results are evident when considering the observation-to-model ratio in that region. The percentage of CMC (IMS) is 83%(% (78%) for Openloop and 93%(% (89%) for DA, indicating that DA with snow data assimilation based on satellite data produces more significant changes ineffectively replicates the observed snow depletion in comparison with Openloop. Similarly to the 2020 case, we obtained another significant case in 2014 compared to Openloop, as shown in SFig. 3. Such extremely dry snow conditions can provide significant heatwave events in the following months.  







5. Conclusions and discussion
The advanced snowSWE data assimilation is developed in this study with the LETKF data assimilation method based onand the JULES LSM. The system assimilates snow water equivalent retrievals from AMSR2 and IMS snow cover. This constitutes an objective way to optimally combine two imperfect data sources for SWE from satellite remote sensing observations.data and the land surface model simulation forced by observed atmospheric data. This study showedshows that the satellite-derived snow dataSWE has limitations in penetrating deep snow, and exhibited much discrepancy from the snowSWE obtained from the Openloop LSM simulations. The snowSWE assimilation framework developed in this study proves the beneficial impacts of using satellite snow data, maintaining better analysis quality both in the regions with low satellite data quality and the high satellite data quality by dynamically balancing the errors from the satellite observations and the model background forecasts. states. 
It is found that the simulation from Openloop as a baseline shows superior performance in high-latitude regions with heavy snow accumulation but relatively inferior performance in transition regions with significant much variation of snow changes.in space and time. Contrastingly, the results of the AMSR2 satellite data represent poor performance in high-latitude regions but exhibit good performance in transition regions. AMSR2 demonstrates higher performance than Openloop up to 16 mm of SWE, but beyond that threshold, the skill of AMSR2 sharply declines while Openloop showsrelatively better performance. DA with snow in the transition regions. The SWE from the LETKF data assimilation consistently performsexhibits better performance in capturing the climatological-mean patternclimatology and temporal variation compared to other results. Notably,It specifically improves the snow assimilation system in this study reflects wellanalysis in the errors and advantages of land surface models and satellite-derived data, controlling not only the mid-latitude transition regions but also the satellite-limitedthat cover approximately 53% of the entire areas of the Northern Hemisphere. It is found that the model background errors estimated from the ensemble spread are significantly larger than the observation errors, thereby reflecting satellite information more in those regions with. The LETKF data assimilation also proves reliable representation in the heavy snow regions due to low ensemble spread and large uncertainty in the satellite retrievals. Moreover, during the record-breaking heatwave in Siberia in April 2020, the remarkable snow depletion observed due to high surface temperatures is more realistically reproduced by our snow analysis compared to the Openloop. 
The significant improvement of SWE data assimilation is primarily observed in the transition regions of less than 16 mm, which accounts for approximately 53% of the entire areas of the Northern Hemisphere. A sensitivity test also revealed that the use of IMS SCF led to a substantial improvement in the transitional regions, in addition to the use of AMSR2 SWE. The sources contributing to the skill improvement of SWE in the snow assimilation system can be explained through Kalman gain analysis, measuring the relative importance of observations given the model background errors. Higher Kalman gains values above 0.7 were observed in the transition regions, whereas they decreased below 0.5 in the high latitudes with heavy snow accumulation. It found that in the dominant areas of performance improvement, including the transition region, the background error is significantly larger than the observation error, emphasizing the substantial influence of observations in the snow assimilation process. 
In the case of the Siberian heatwave, remarkable snow melting occurred due to high surface temperature over the Siberian region in April 2020. It resulted in extremely low values of SWE and SCF, leading to a further intensification of the heatwave. The SWE anomalies from the snow data assimilation with the AMSR2 satellite showed significant changes in snow that seemed to better explain the heatwave episode than the Openloop.This snow data assimilation framework is anticipated to contribute to a more precise prediction of atmospheric conditions by realistically capturing the interaction between the atmosphere and land, given the substantial influence of SWE on energy and water balance at the interface of the atmosphere and land. Specifically, this applies to the transitional regions with high spatial and temporal variability. The long-term analysis of snow manifests a pronounced variability in the continental interior at the interannual timescales, potentially improving the prediction of extreme heatwave events by global climate models. This study used the gridded CMC data from in-situ observations for the validation. Although existing snow data are subject to much uncertainty and limitations, we expect to obtain comparable conclusions and significant benefits of optimally combining satellite SWE data and the LSM model simulations through LETKF data assimilation method. 
The quality of the observation is crucial in the data assimilation system. Satellite-derived snow cover exhibits a significantly higher accuracy compared to other data sources, while SWE has restricted performance due to the limitations of penetration depth by satellite sensors and relies heavily on estimation algorithms. Due to these problems, most previous studies and operational centers primarily depend on satellite-derived snow cover for snow initialization. However, the findings from this study highlighted the beneficial impacts of using satellite-derived SWE, particularly in the rapidly changing transition areas, to find out which variable is more important in closing surface energy and water balance changed by snow. Nevertheless, areas of significance in large-scale circulation, such as the Tibetan region, which experiences significant uncertainty and degraded performance in satellite data, do not exhibit substantial data assimilation effects. As the performance of SWE derived from various satellites continues to advance, these issues will be discussed more. 
Improved snow estimates from the snow assimilation system can enhance the initialization of climate models used in most of the seasonal forecast operation centers. As snow significantly influences energy and water balance at the atmosphere-land boundary, this approach allows for a more accurate prediction of atmospheric conditions by realistically representing atmosphere-land interactions. Specifically, this applies to transitional regions where the reliability of snow estimation performance through model simulations is compromised. The long-term analysis of snow manifests a pronounced variability in the continental interior at the interannual timescales, potentially improving the prediction of extreme heatwave events by global couple models. This study used the gridded CMC data as a validation reference, which is based on in-situ observations. Despite much uncertainty and limitations of this dataset, we expect to obtain comparable conclusions to this study through comparisons with other independent, observation-based datasets.



Key words
Snow data assimilation, AMSR2, LETKF, snow water equivalent, JULES LSM

Data availability.
The AMSR2 SWE and IMS SC were obtained from https://n5eil01u.ecs.nsidc.org/AMSA/AU_DySno.001/ and https://noaadata.apps.nsidc.org/NOAA/G02156/, respectively. The CMC SWE was collected from https://daacdata.apps.nsidc.org/pub/DATASETS/nsidc0447_CMC_snow_depth_v01/. The snow-assimilated results and land surface variables from the LSM offline simulation may be requested from the authors.

Author contributions. 
LJL conceived the project, designed the study, developed the snow assimilation system, wrote the paper, and made the figures. LMI provided advice on the methods, project design, and review and editing of the manuscript. TSL helped with the experiment with the land surface model. SEK helped with the data assimilation method based on LETKF. LYK provided advice on snow satellite data and the sensitivity methods. All authors contributed to the writing of the paper by providing comments and feedback.

Competing interests. 
The contact author has declared that none of the authors has any competing interests. 


Acknowledgements
This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMI2021-01210. ES was supported by Learning & Academic research institution for Master’s·PhD students, and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (RS-2023-000301702).




[bookmark: _Hlk28760552]Reference
Allen, R.J., Zender, C.S.: Forcing of the Arctic Oscillation by Eurasian snow cover. J. Clim. 24 (24), 6528-6539, 2011.
Best, M.J., Pryor, M., Clark, D.B., Rooney, G.G., Essery, R., Ménard, C.B., Edwards, J.M., Hendry, M.A., Porson, A., Gedney, N., Mercado, L.M., Sitch, S., Blyth, E., Boucher, O., Cox, P.M., Grimmond, C.S.B., Harding, R.J.: The Joint UK Land Environment Simulator (JULES), model description–Part 1: energy and water fluxes. Geosci. Model Dev. 4, 677–699, 2011.
Boone, A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S., Gusev, Y., Haddeland, I., Koster, R., Lohmann, D., Mahanama, S., Mitchell, K., Nasonova, O., Niu, G.Y., Pitman, A., Polcher, J., Shmakin, A., Tanaka, K., van den Hurk, B., Ve´ rant, S., Verseghy, D., Viterbo, P., Yang, Z.L.: The Rhone-Aggregation land surface scheme intercomparison project: an overview. J. Clim. 17, 187–208, 2004.
Brasnett, B.: A global analysis of snow depth for numerical weather prediction. J. Appl. Meteorol. 38 (6), 726–740, 1999.
Brown, L.C., Howell, S.E., Mortin, J., Derksen, C.: Evaluation of the Interactive Multisensor Snow and Ice Mapping System (IMS) for monitoring sea ice phenology. Remote Sens. Environ. 147, 65–78. doi: 10.1016/j.rse.2014.02.012, 2014.
Brown, R.D., Brasnett, B.: Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA. https://doi.org/10.5067/ W9FOYWH0EQZ3, 2010.
Brown, R.D., Brasnett, B., Robinson, D.: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41, 1–14, 2003.
Broxton, P.D., Zeng, X., Dawson, N.: The impact of a low bias in snow water equivalent initialization on CFS seasonal forecasts. J. Clim. 30 (21), 8657–8671. https://doi.org/10.1175/JCLI‐D‐17‐0072.1, 2017.
Brubaker, K., Pinker, R., Deviatova, E.: Evaluation and comparison of MODIS and IMS snow-cover estimates for the continental United States using station data. J. Hydrometeorol. 6, 1002–1017, 2009.
Burke, E. J., Dankers, R., Jones, C. D., and Wiltshire, A. J.: A retrospective analysis of pan Arctic permafrost using the JULES land surface model, Clim. Dynam., 41, 1025–1038, https://doi.org/10.1007/s00382-012-1648-x, 2013.
Chen, M., Wang, W., Kumar, A.: Prediction of monthly-mean temperature: The roles of atmospheric and land initial conditions and sea surface temperature J. Clim. 23(3), 717-725, 2010.
Cho, E., Tuttle, S.E., Jacobs, J.M.: Evaluating consistency of snow water equivalent retrievals from passive microwave sensors over the north central US: SSM/I vs. SSMIS and AMSR-E vs. AMSR2. Remote Sens. 9(5), 465, 2017.
Cohen, J., Barlow, M., Kushner, P. J., Saito, K.: Stratosphere–troposphere coupling and links with eurasian land surface variability. J. Clim. 20(21), 5335–5343. https://doi.org/10.1175/2007jcli1725.1, 2007.
Collow, A.B.M., Thomas, N.P., Bosilovich, M.G., Lim, Y.K., Schubert, S.D., Koster, R.D.: Seasonal variability in the mechanisms behind the 2020 Siberian heatwaves.  J. Clim. 35(10), 3075-3090, 2022.
Dawson, N., Broxton, P., Zeng, X.: Evaluation of remotely sensed snow water equivalent and snow cover extent over the contiguous United States. J. Hydrometeorol. 19 (11), 1777–1791. https://doi.org/10.1175/JHM-D-18-0007.1, 2018.
De Angelis, A.M., Schubert, S.D., Chang, Y., Lim, Y.K., Koster, R.D., Wang, H., Marquardt Collow, A.B.: Dynamical Drivers of the Exceptional Warmth over Siberia during the Spring of 2020. J. Clim. 36(15), 4837-4861, 2023.
De Lannoy, G.J.M., Reichle, R.H., Houser, P.R., Arsenault, K.R., Verhoest, N.E.C., Pauwels, V.R.N.: Satellite-scale snow water equivalent assimilation into a high-resolution land surface model. J. Hydrometeorol. 11 (2), 352–369. https://doi. org/10.1175/2009JHM1192.1, 2010.
De Rosnay, P., Balsamo, G., Albergel, C., Muñoz-Sabater, J., Isaksen, L. Initialisation of land surface variables for numerical weather prediction. Surv. Geophys. 35, 607-621, 2014.
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balsameda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597, 2011.
Dirmeyer, P. Derome J, Lin H, Brunet, G.: Seasonal forecasting with a simple general circulation model: Predictive skill in the AO and PNA. J. Clim., 15, 597–609, 2005.
Dirmeyer, P.A.: The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett. 38(16), 2011.
Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z., Oki, T., Hanasaki, N.: The Second Global Soil Wetness Project (GSWP-2): Multi-model analysis and implications for our perception of the land surface. Bull. Amer. Meteor. Soc. 87, 1381–1397, 2006.
Dutra, E., Schär, C., Viterbo, P., Miranda, P. M.: Land‐atmosphere coupling associated with snow cover. Geophys. Res. Lett. 38 (15) , 2011.
Dziubanski, D.J., Franz, K.J.: Assimilation of AMSR-E snow water equivalent data in a spatially-lumped snow model. J. Hydrol. 540, 26–39. https://doi.org/10.1016/j.jhydrol.2016.05.046, 2016.
Essery, R.L.H., Rutter, N., Pomeroy, J., Baxter, R., Stahli, M., Gustafsson, D., Barr, A., Bartlett, P., Elder, K.: SNOWMIP2: an evaluation of forest snow process simulations. Bull. Amer. Meteor. Soc. 90, 1120–1135, 2009.
Eagleson, P.S.: Dynamic Hydrology, McGraw-Hill, 1970	
Foster, J.L., Sun, C., Walker, J.P., Kelly, R., Chang, A., Dong, J., Powell, H.: Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens. Environ. 94, 187–203, 2005.
Gan, Y., Zhang, Y., Kongoli, C., Grassotti, C., Liu, Y., Lee, Y. K., Seo, D. J.: Evaluation and blending of ATMS and AMSR2 snow water equivalent retrievals over the conterminous United States. Remote Sens. Environ. 254, 112280, 2021.
Gloege, L., Kornhuber, K., Skulovich, O., Pal, I., Zhou, S., Ciais, P., Gentine, P.: Land‐Atmosphere Cascade Fueled the 2020 Siberian Heatwave. AGU Advances, 3 (6), e2021AV000619, 2022.
Hamill, T.M., Whitaker, J.S., Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129, 2776–2790, 2001.
Helfrich, S.R., McNamara, D., Ramsay, B.H., Baldwin, T., Kasheta, T.: Enhancements to, and forthcoming developments in the interactive multisensor snow and ice mapping system (IMS). Hydrol. Process. 21 (12), 1576–1586. https:// doi.org/10.1002/hyp.6720, 2007.
Helmert, J., Şensoy Şorman, A., Montero, R.A., De Michele, C., De Rosnay, P., Dumont, M., Finger, D., Lange, M., Picard, G., Potopová, V., et al.: Review of Snow Data Assimilation Methods for Hydrological, Land Surface, Meteorological and Climate Models: Results from a COST HarmoSnow Survey. Geoscience, 8 (12), 489, 2018.
Houtekamer, P.L., Mitchell, H.L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129, 123–137, 2001.
Huning, L.S., AghaKouchak, A.: Global snow drought hot spots and characteristics. Proc. Natl. Acad. Sci. 117(33), 19753-19759, 2020.
Hunt, B.R., Kostelich, E.J., Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Phys. D Nonlinear Phenom. 230, 112–126, 2007.
Imaoka, K., Kachi, M., Kasahara, M., Ito, N., Nakagawa, K., Oki, T.: Instrument performance and calibration of AMSR-E and AMSR2. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 38 (8), 13–16, 2010.
Jeong, J.H., Linderholm, H.W., Woo, S.H., Folland, C., Kim, B.M., Kim, S.J., Chen, D.: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Clim. 26 (6), 1956-1972, 2013.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H.: The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II 93, 5–48, 2015.
Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C.T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y.C., Taylor, C.M., Verseghy, D., Vasic, R., Xue, Y., Yamada, T., GLACE Team: Regions of strong coupling between soil moisture and precipitation. Science, 305 (5687), 1138–1140, https://doi.org/10.1126/science.1100217,  2004.
Koster, R.D., Mahanama, S., Yamada, T., Balsamo, G., Berg, A., Boisserie, M., Dirmeyer, P., Doblas-Reyes, F., Drewitt, G., Gordon, C.: The second phase of the global land–atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill. J. Hydrometeorol. 12, 805–822, 2011.
Kumar, S.V., Jasinski, M., Mocko, D.M., Rodell, M., Borak, J., Li, B., Beaudoing, H.K., Peters-Lidard, C.D.: NCA-LDAS land analysis: development and performance of a multisensor, multivariate land data assimilation system for the national climate assessment. J. Hydrometeorol. 20 (8), 1571–1593. https://doi.org/10.1175/JHM-D- 17-0125.1, 2019.
Kwon, Y., Yang, Z.-L., Hoar, T.J., Toure, A.M.: Improving the radiance assimilation performance in estimating snow water storage across snow and land-cover types in North America. J. Hydrometeorol. 18 (3), 651–668. https://doi.org/10.1175/JHM-D-16-0102.1, 2017.
Li, F., Orsolini, Y.J., Keenlyside, N., Shen, M.L., Counillon, F., Wang, Y.G.: Impact of snow initialization in subseasonal‐to‐seasonal winter forecasts with the Norwegian Climate Prediction Model. J. Geophys. Res. Atmos. 124 (17-18), 10033-10048, 2019.
Li, F., Wang, H.: Autumn Eurasian snow depth, autumn Arctic sea ice cover and East Asian winter monsoon. Int. J. Climatol. 34(13), 3616-3625, 2014.
Lim, S., Gim, H.J., Lee, E., Lee, S., Lee, W.Y., Lee, Y.H., Cassardo C., Park, S.K.: Optimization of snow-related parameters in the Noah land surface model (v3. 4.1) using a micro-genetic algorithm (v1. 7a). Geosci. Model Dev. 15(22), 8541-8559, 2022.
Liu, Y., Peters-Lidard, C.D., Kumar, S.V., Arsenault, K.R., Mocko, D.M.: Blending satellite-based snow depth products with in situ observations for streamflow predictions in the upper Colorado River basin. Water Resour. Res. 51 (2), 1182–1202. https://doi.org/10.1002/2014WR016606, 2015.
Lee, Y.K., Kongoli, C., Key, J.: An in-depth evaluation of heritage algorithms for snow cover and snow depth using AMSR-E and AMSR2 measurements. J. Atmos. Ocean. Technol. 32(12), 2319-2336, 2015.
Meng, J., Yang, R., Wei, H., Ek, M., Gayno, G., Xie, P., Mitchell, K.: The land surface analysis in the NCEP climate forecast system reanalysis. J. Hydrometeorol. doi:10.1175/JHM-D-11-090.1, 2012.
Meyal, A.Y., Versteeg, R., Alper, E., Johnson, D., Rodzianko, A., Franklin, M., Wainwright, H.: Automated cloud based long short-term memory neural network based SWE prediction. Front. Water, 2, 574917, 2020.
Miyoshi, T., Yamane, S.: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Weather Rev. 135, 3841–3861, 2007.
Orsolini, Y.J., Senan, R., Balsamo, G., Doblas-Reyes, F.J., Vitart, F., Weisheimer, A., Carrasco, A., Benestad, R.E.: Impact of snow initialization on sub-seasonal forecasts. Clim. Dyn. 41, 1969-1982, 2013.
Orsolini, Y.J., Senan, R., Vitart, F., Weisheimer, A., Balsamo, G., Doblas-Reyes, F.: Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/10. Clim. Dyn. 47(3-4), 1325–1334. https://doi.org/10.1007/s00382-015-2903-8, 2016.
Overland, J. E., Wang, M.: The 2020 Siberian heat wave. Int. J. Climatol. 41, E2341-E2346, 2021.
Pullen, S., Jones, C., Rooney, G.: Using satellite-derived snow cover data to implement a snow analysis in the met office NWP model. J. Appl. Meteorol. 50, 958–973. doi:10.1175/2010JAMC2527.1, 2011.
Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J., Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolander, T., Norberg, J.: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 581 (7808), 294–298. https://doi.org/10.1038/s41586-020-2258-0, 2020.
Ramsay, B.H.: The interactive multisensor snow and ice mapping system. Hydrol. Process. 12 (10-11), 1537–1546, 1998.
Reichle, R.H.: Data assimilation methods in the Earth sciences. Adv. Water Resour. 31, 1411–1418, 2008.
Reichle, R.H., Draper, C.S., Liu, Q., Girotto, M., Mahanama, S.P., Koster, R.D., De Lannoy, G.J.: Assessment of MERRA-2 land surface hydrology estimates. J. Clim. 30 (8), 2937-2960, 2017.
Reichle, R.H., Koster, R.D.: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 31, 2004.
Reichle, R.H., Koster, D., De Lannoy, G.J.M., Forman, B.A., Liu, Q., Mahanama, S.P.P., Toure, A.M.: Assessment and Enhancement of MERRA Land Surface Hydrology Estimates. J. Clim. 24, 6322–6338, 2011.
Seo, E., Lee, M.I., Jeong, J.H., Koster, R.D., Schubert, S.D., Kim, H.M., Kim, D.H., Kang H.S., Kim, H.K., MacLachlan, C., Scaife, A.A.: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Clim. Dyn. 52, 1695-1709, 2019.
Seo, E., Lee, M.I., Reichle, R.H.: Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter. Remote Sens. Environ. 253, 112222, 2021.
Seo, E., Lee, M.I., Schubert, S.D., Koster, R.D., Kang, H.S.: Investigation of the 2016 Eurasia heat wave as an event of the recent warming. Environ. Res. Lett. 15(11), 114018, 2020.
Shlyaeva, A., Tolstykh, M., Mizyak, V., Rogutov, V.: Local ensemble transform Kalman filter data assimilation system for the global semi-Lagrangian atmospheric model. Russ. J. Numer. Anal. Math. Model. 28(4), 419-442, 2013.

Sturm, M., Taras, B., Liston, G.E., Derksen, C., Jonas, T., Lea, J.: Estimating snow water equivalent using snow depth data and climate classes. J. Hydrometeor. 11, 1380–1394, 2010.
Su, H., Yang, Z.-L., Dickinson, R.E., Wilson, C.R., Niu, G.-Y.: Multisensor snow data assimilation at the continental scale: The value of gravity recovery and climate experiment terrestrial water storage information. J. Geophys. Res., 115, D10104, doi:10.1029/2009JD013035, 2010.
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Karna, J.P., Koskinen, J., Bojkov, B.: Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ. 115:3517–3529, 2011.
Thomas, J.A., Berg, A.A., Merryfield, W.J.: Influence of snow and soil moisture initialization on sub-seasonal predictability and forecast skill in boreal spring. Clim. Dyn. 47 (1), 49-65, 2016.
Toure, A.M., Luojus, K., Rodell, M., Beaudoing, H., Getirana, A.: Evaluation of simulated snow and snowmelt timing in the Community Land Model using satellite‐based products and streamflow observations. J. Adv. Model. Earth Syst. 10(11), 2933-2951, 2018.
U.S. National Ice Center: IMS daily Northern Hemisphere snow and ice analysis at 1 km, 4 km, and 24 km resolutions, version 3. Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center, accessed: 18 Aug 2022, https://doi.org/10.7265/N52R3PMC, 2008.
You, Y., Huang, C., Gu, J., Li, H., Hao, X., Hou, J.: Assessing snow simulation performance of typical combination schemes within Noah-MP in northern Xinjiang, China. J. Hydrol. 581, 124380, 2020.


Table 1. Description of the land surface model, the data used, and assimilation experiment designs.  
	
	Information
	References

	Land Surface Model
	JULES
	Best et al., (2011)

	Atmospheric Forcing
	3-hourly JRA-55 reanalysis
	Kobayashi et al., (2015)


	Snow Observation
	AMSR2 & IMS
	Imaoka et al., (2010)
Ramsay (1998)
Helfrich et al., (2007)

	Data Assimilation scheme
	Local Ensemble Transform Kalman Filter (LETKF)
	Hunt et al., (2007)
Miyoshi and Yamane, (2007)

	Resolution (km)
	0.5° ×0.5° (~ 50)
	

	
	1-day DA cycle
	

	Localization patch size (km)
	3×3 (150), σ =30
	

	Ensemble sizes
	24
	

	Experiment period
	2013-2020, APR
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Figure 1. Schematic diagram of the snow assimilation system with satellite-derived observations and the land surface model outputs.
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Figure 2. (a) Climatology of SCF from IMS used as reference and (b-e) the differences from IMS for AMSR2, base-line model simulation (Openloop), JRA55, and the data assimilation results (DA) for April during 2013-2020. The black line represents the boundary of the transition region, defined as the climatological-mean SWE of less than 16mm. Each value on the top right is the root-mean-squared difference with IMS and the accuracy from IMS (parenthesis) for 15323 pixels over 40-60oN. The accuracy is defined in supplementary Table 1 as in previous study (Lee et al., 2015). Negative values in red shades are indicated with a diagonal line.
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Figure 3. (a) Climatology of SWE from CMC used as reference and (b-e) the differences from CMC for AMSR2, base-line model simulation (Openloop), JRA55, and the data assimilation results (DA) for April during 2013-2020. The black line represents the boundary of the transition region, defined as the climatological-mean SWE of less than 16mm. Each value on the top right is the pattern correlation with CMC for 26482 pixels over 40 oN and the root-mean-squared difference (unit: kg/m2) from IMSCMC (parenthesis) for 15323 pixels over 40-60oN. Negative values in red shades are indicated with a diagonal line.
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Figure 4. SWE skill measured as the Spearman rank correlation (R) with the CMC for AMSR2, base-line model simulation (Openloop), JRA55, and the data assimilation result (DA). The black line represents the boundary of the transition region, defined as the climatological-mean SWE of less than 16mm. Each value on the top is the area-average R of North hemisphere for 26482 pixels over 40oN and for 8801 pixels over the transition region (parenthesis). Negative values are indicated with a diagonal line.
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Figure 5. Zonally-averaged Spearman rank correlation (R) along the latitude for SWE. The yellow line indicates the climatology of SWE, and the black, blue, green, and red lines denote the values of AMSR2, base-line model simulation (Openloop), JRA55, data assimilation results (DA), respectively.
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Figure 6. Box plots of the Spearman rank correlation (R) according to SWE. The pie chart shows the total area ratio (%) as a function of SWE amount. The black, blue, and red boxes denote the AMSR2, base-line model simulation (Openloop), and the data assimilation results (DA), respectively. The boxes indicate 25 and 75% percentiles, and the line and point in the boxes shows the median and the mean values. The upper and lower whiskers denote the 10 and 90% percentiles, respectively.
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Figure 7. DifferenceThe difference in SWE skill, measured as the Spearman rank correlation coefficient (R) with CMC, between the Openloop and the data assimilation resultresults: DA employing both AMSR2 and IMS (referred to as DA), as well as the data assimilation resultand DA_AMSR2 utilizing solely AMSR2 and excluding IMS (referred to as DA_AMSR2),, for April during 2013-2020. The black line represents the boundary of the transition region, defined as the climatological-mean SWE of less than 16mm. Each value on the top right is the area-average over 40oN and the transition region (parenthesis). Negative values are indicated with a diagonal line.
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Figure 8. Spatial distribution of observation error, (unit: kg/m2), background error, (unit: kg/m2), and Kalman gain. The black line represents the boundary of the transition region, defined as the climatological-mean SWE of less than 16mm. 
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Figure 9. Bar chart of (left) the Kalman gain according to the SWE amount, and (right) the Kalman gain (red line) and background error (blue line) according toas a function of the difference of the between Openloop and DA in Spearman rank correlation coefficient (R) between Openloop and DA.).
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Figure 10. Anomalies of a) SWE from CMC and b) SCF from IMS as well as the difference (c, d) of variables between DA and openloop in April 2020. Bar chart (e, f) indicates the ratio of DA and openloop to verification data such as CMC and IMS in the red box (48–65oN and 55–120oE), which is the region associated with extreme high-temperature events, focused on this study. Negative values are indicated with a diagonal line.
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