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Abstract. A comprehensive understanding of the effects of meteorology, emissions, and chemistry on severe haze is critical 11 

in the mitigation of air pollution. However, such an understanding is greatly hindered by the nonlinearity of atmospheric 12 

systems. In this study, we developed the quantitative decoupling analysis (QDA) method to quantify the effects of emissions, 13 

meteorology, chemical reactions, and their nonlinear interactions on fine particulate matter (PM2.5) pollution by running built-14 

in scenario simulations in each model step. Different from previous methods, the QDA method achieves a fully decomposed 15 

analysis of hourly changes in the PM2.5 concentration during pollution events into seven parts, including the pure 16 

meteorological contribution (M), the pure emissions contribution (E), the pure chemistry contribution (C), and the interactions 17 

among these processes (i.e., ME, MC, EC, and MCE). Via embedding the QDA method into the Weather Research and 18 

Forecasting–Nested Air Quality Prediction Modeling System, we employed this method and combined it with the Integrated 19 

Process Rate method to study a typical heavy haze episode in Beijing. We evaluate the model performance against in situ 20 

meteorological and air quality observations and describe the QDA analytical factors of this case. Results showed that M varied 21 

most significantly at different stages of the episode, from 0.21 µg∙m−3∙h−1 during the accumulation stage to −11.82 µg∙m−3∙h−1 22 

during the removal stage, indicating that the pure meteorological contribution dominated the hourly fluctuation amplitude of 23 

the PM2.5 concentration. M acted as the most important cleaner for PM2.5 in non-polluting periods but stopped being effective 24 

at this and instead became a contributor in the accumulation stage such that PM2.5 tended to grow rapidly under the 25 

superimposed influence of emissions and chemical processes, which would probably mark the beginning of a heavy pollution 26 

event. The contribution of E ranged from 0.63 to 0.88 µg∙m−3∙h−1 owing to the diurnal variation of emissions. The pure chemical 27 

contribution was shown to increase with the level of haze, becoming the largest (0.37 µg∙m−3∙h−1) in the maintenance period, 28 

which was 25% higher than during the pre-contamination period. And C+CE made a significant contribution in the 29 

accumulation and maintenance stages, indicating that chemical reactions are more important in the polluted period than in 30 

other periods. Nonnegligible nonlinear effects exist among the processes of meteorology, emissions, and chemistry on PM2.5 31 

concentrations (−1.83 to 2.44 µg∙m−3∙h−1)—something that has generally been ignored in previous studies and during the 32 
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development of heavy-pollution control strategies. The nonlinear effects are helpful in eliminating the interference of other 33 

processes and obtaining a more purified result of the target process and have important indicative significances. The ratio of 34 

CE to C is positively correlated with the chemical speed. For precursors like NH3, the smaller value of CE in the most polluted 35 

period indicated that NH3 was more deficient, and thus reducing emissions of it in that period would have had the most efficient 36 

controlling effect on the PM2.5. This study highlights that the QDA method can be used to realize an in-depth understanding 37 

of the effects of adverse meteorological conditions in haze and to judge whether the precursors are excessive or not. Not only 38 

can the QDA method provide researchers and policymakers with valuable information for understanding the key factors behind 39 

heavy pollution, but it can also help modelers to identify the sources of uncertainties in numerical models.  40 

1 Introduction 41 

Atmospheric particulate matter, especially PM2.5 (fine particulates less than 2.5 µm in diameter), can reduce visibility, 42 

degrade air quality, threaten human health, and increase mortality (Xing et al., 2021; Huang et al., 2014; Lelieveld et al., 2015; 43 

Evans et al., 2013; Fu et al., 2019; Janssen et al., 2013; Orellano et al., 2020). Over the past few decades, rapid industrialization 44 

and urbanization have led to severe haze pollution in China (Lu et al., 2019b; Chen et al., 2018; Liu et al., 2017; Hartmann et 45 

al., 2014). Beijing–Tianjin–Hebei (BTH) is one of the regions in China with the highest PM2.5 concentrations (Lin et al., 2015; 46 

Yang et al., 2020b). Annual concentrations of PM2.5 in BTH reached 106 µg∙m−3 in 2013, almost 3 times higher than China’s 47 

standard (35 µg∙m−3) and 10 times higher than that of the World Health Organization (10 µg∙m−3).  48 

To mitigate the extremely severe and persistent haze in China and reduce air pollutant emissions, strict emission control 49 

policies have been implemented by the Chinese government. However, the ambient PM2.5 concentration is not only controlled 50 

by emissions, but also largely influenced by chemical formation processes and unfavorable meteorological conditions 51 

(Gelencsér et al., 2007; Jia et al., 2015; Wang et al., 2015; He et al., 2016; Sun et al., 2016). Numerous studies have stressed 52 

the importance of chemical formation in the occurrence of severe haze events in China (Huang et al., 2014; Sun et al., 2016; 53 

Chen et al., 2022). Unfavorable meteorological conditions associated with low wind speed, high humidity, temperature 54 

inversion, and low planetary boundary layer can lead to weak atmospheric dispersion conditions and suppress the diffusion of 55 

air pollutants (Chen et al., 2020b; Zheng et al., 2019). Moreover, the emissions, chemistry, and meteorological processes in 56 

the atmosphere also interact with each other. For example, high humidity not only promotes hygroscopic growth but also gas-57 

to-particle partitioning, reflecting the correlation between the effect of physical and chemical processes on the concentration 58 

of PM2.5. These complex atmospheric processes demand that effective PM2.5 control strategies must be formulated and adopted 59 

on the basis of an in-depth understanding of the effects of meteorology, emissions, atmospheric chemistry, and their 60 

interactions on the formation of PM2.5. Although the basic relationships between PM2.5 and different influencing factors have 61 

been revealed, the quantitative influences of these factors on certain pollution episodes remains unclear, and it is difficult to 62 

quantify and distinguish the roles of each factor because of their complex interactions and different behaviours from one case 63 

to another (Li et al., 2011).  64 
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There have been some tools developed based on chemical transport models (CTMs) to analyse the effects of different factors 65 

on PM2.5 concentrations. The integrated process rate (IPR) method employed in the Community Multiscale Air Quality 66 

(CMAQ) model can quantify the contributions of different physicochemical processes in numerical models, thus providing a 67 

comprehensive understanding of the formation of air pollution (Jeffries and Tonnesen, 1994). The IPR method has been applied 68 

to study the formation processes and mechanisms of O3 and particulate matter in many cities (Liu et al., 2010; Li et al., 2014; 69 

Fan et al., 2014; Huang et al., 2016; Chen et al., 2019a; Chen et al., 2019c; Fu et al., 2020). However, the IPR method can 70 

obtain the contributions of different processes in a model, it ignores the nonlinear interactions between different processes, 71 

which may lead to uncertain results.  72 

From another perspective, the scenario analysis approach (SAA) has been employed to assess the response of PM2.5 to 73 

emission changes by changing the emission inventory of the model inputs under fixed meteorological fields, as well as the 74 

response of PM2.5 to meteorological changes by changing the meteorological fields under fixed emissions. For example, Zheng 75 

et al. (2015b) found that the heavy pollution that occurred in winter 2013 in Northeast China was mainly caused by the stable 76 

weather conditions in most parts of the region, rather than a sudden increase in anthropogenic emissions, through comparison 77 

with the same period in 2012. Zhang et al. (2019a) reported that, although interannual meteorological changes may notably 78 

affect the PM2.5 concentration, the corresponding impact on the five-year trend of PM2.5 concentration in China is relatively 79 

limited (which they established by comparing results between the year 2017 and 2013). However, the traditional SAA method 80 

is also incapable of analysing the nonlinear effects. Therefore, Stein and Alpert (1993) developed the Factor Separation (FS) 81 

method to perform model sensitivity analysis and identify factors that contribute significantly to the model output. Compared 82 

with the SAA method, the FS method is superior in dealing with nonlinear processes that involve two or more factors. By 83 

performing multiple sensitivity experiments with different combinations of factors, the FS method allows one to assess the 84 

impact of a single factor in a nonlinear system as well as the interaction between that factor and other factors. This method is 85 

widely used in environmental and meteorological research (Romero et al., 2000; Alpert et al., 1999). For example, Tao et al. 86 

(2005) assessed the amount of surface O3 originated from area, mobile and point sources in the presence of biological emissions 87 

and quantified the contributions of biogenic emissions and the synergy between anthropogenic and biogenic emissions (Tao 88 

et al., 2003). The method can also be used to calculate the synergistic contributions of anthropogenic volatile organic 89 

compounds, biogenic volatile organic compounds, and nitrogen oxides (NOx) to surface O3 (Qu et al., 2013). However, both 90 

the SAA and FS method need to construct new simulation scenarios by changing the simulation conditions (emission source 91 

or meteorological field) and uses the differences between the simulation results of different scenarios to represent the 92 

contributions of the factors of interest. This means that the results of both the SAA and FS method are relative, being dependent 93 

on the simulation scenario employed. For example, the meteorological conditions we used to construct the simulation scenarios 94 

would alter the calculated contributions of meteorological processes to the PM2.5 in the SAA and FS method. In addition, the 95 

newly constructed simulation scenarios no longer represent the base simulation of the actual case because of the changed input 96 

information of the CTM. 97 
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In addition to the methods that use CTMs, methods based on observations have also been developed. For example, the 98 

PLMA (parameter linking air quality to meteorological conditions) index has been used to determine the contribution of 99 

meteorology and emissions to air pollution (Zhang et al., 2015; Zhang et al., 2019b; Yang et al., 2016). Studies employing 100 

principal component analysis or those targeting the correlation between PM2.5 and meteorological elements have suggested 101 

that a low wind speed and high humidity facilitate haze formation (Wang et al., 2013; Pang et al., 2009; Shu et al., 2017; Zhai 102 

et al., 2019). Considering that a single meteorological element does not fully explain the relationship between meteorology 103 

and PM2.5, an artificial neural network model has been used to investigate the multiscale meteorological conditions, enabling 104 

the meteorological influence to be quantified by the explained variance (He et al., 2017). 105 

To date, none of the above methods can meet the following conditions at the same time: (1) on the premise of not changing 106 

the base simulation conditions (without constructing other simulation scenarios as a reference system), we can quantitatively 107 

analyze the contributions of meteorological, emission, and chemical processes to the variations of air pollutant concentrations 108 

in an individual pollution case; (2) separation of the interactions between different factors; (3) the capability to analyse the 109 

meteorological contribution given its considerable importance in analysing the pollution process; and (4) equality between the 110 

sum of all analytical quantities and the simulated concentration change at any hourly time point so as to ensure that the 111 

analytical quantity can fully reveal the reasons for the concentration change. In view of the different advantages and 112 

disadvantages of these traditional methods mentioned above, we developed a novel quantitative decoupling analysis (QDA) 113 

method and assessed the effects of emissions, meteorology, chemical reactions, and their interactions on the PM2.5 114 

concentration in a typical pollution case in Beijing. The QDA method tracks the change in PM2.5 concentration in response to 115 

changes in emissions, meteorological conditions, and chemical reactions in high-pollution cases. Thus, this method provides 116 

a useful tool for identifying and quantifying the main determining factors of pollution cases, which can be used by decision-117 

makers for selecting the optimal scheme from different air pollution control and emergency response strategies. The differences 118 

in QDA results of different model mechanisms can be compared to help identify the key process and improve its representation 119 

in atmospheric models—for example, the physicochemical structure in the boundary layer and formation mechanism of 120 

secondary air pollution (Chen et al., 2019a; Kang et al., 2019; Xing et al., 2017; Goncalves et al., 2009).  121 

2 Methods and data 122 

2.1 Description of the QDA method 123 

In this section, we provide a detailed description of the QDA method proposed in this study, including its theoretical basis, 124 

algorithms, and its realization in a model, as well as its relationship with the SAA, FS and IPR methods. 125 

2.1.1 Factors affecting PM2.5 concentration and their contributions in CTMs 126 

The governing equation for CTMs is the three-dimensional semi-empirical Euler diffusion equation (Seinfeld and Pandis, 127 

2016; Zhao et al., 2020): 128 
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where �� is the concentration of species i in the CTM; u, v and w are the wind velocity components in the x, y and z directions, 130 

respectively; ��, �� and �� are the diffusion coefficients in the x, y and z directions; S denotes the direct emissions of ��; �� 131 

is the chemical term, mainly affected by the chemical reaction mechanism; and �� and ���ℎ are the dry and wet deposition 132 

terms, respectively. Equation (1) is an instantaneous equation that cannot be solved analytically. In order to solve it numerically, 133 

the differential equation is calculated by the finite-difference and operator splitting method in three-dimensional CTMs 134 

(Santillana et al., 2016). We can define the advection operator as ADV = − ��
�
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� , the emission operator as EMIS, the chemical operator as CHEM, and the 136 

deposition operator as DEP, and then Eq. (1) can be rewritten as:  137 

���

��
= ADV(��) + DIFF(��) + EMIS(��) + CHEM(��) + DEP(��)      …(2) 138 

These model operators can also be classified in different ways. For example, the ADV, DIFF and DEP operators can be 139 

combined and defined as the meteorological operator (MET), and then Eq. (2) would become:  140 

���

��
= EMIS(��) + MET(��) + CHEM(��)         …(3) 141 

Furthermore, to produce refined process allocation, the DEP operator could be decomposed into a dry deposition operator and 142 

wet deposition operator, and the CHEM operator could be decomposed into a gas-phase chemistry operator, liquid-phase 143 

chemistry operator, or heterogeneous chemistry operator. 144 

After the time is divided into model time steps, the calculation of Eq. (3) within one time step is carried out by the operator 145 

splitting method in the order of EMIS, MET, and CHEM, as illustrated in Eqs. (4)–(6): 146 

���

��
= EMIS(��)            …(4) 147 

���

��
= MET(��)            …(5) 148 

���

��
= CHEM(��)            …(6) 149 

where �� is the initial concentration of the specific species i in a model step. If ∆�� is the integration result of 
���

��
 to t in Eq. 150 

(4) during the time step, then we can obtain �� = �� + ∆�� and use it as the initial value to be input into the next operator, 151 

MET, so the integration result of  
���

��
, marked as ∆��, would be affected by �� and ∆��. Analogously, �� = �� + ∆��. The 152 

terms ∆��, ∆�� and ∆�� correspond to the contribution of emissions, meteorology, and chemistry, respectively, by the IPR 153 

method. However, if the calculation order between these operators is changed, different contribution results will be obtained. 154 

This non-uniqueness of the contribution results comes from the nonlinear effects of different operator processes on the pollutant 155 

concentration after the operator splitting. The concentration calculated by the latter operator process will be affected by the 156 

results of the former operator processes. This nonlinear effect influenced by the former processes has not been separated in 157 
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previous research, which will bias the results regarding the contributions of different process operators (as with the IPR 158 

method). To obtain more accurate and reliable results on the contributions of emissions, meteorological processes, and 159 

chemical processes, it is necessary to quantify the nonlinear effects among these three operator processes.  160 

If all three operators use the initial concentration of time step �� as the input value, just as in the following three equations: 161 

���

��
= EMIS(��)            …(7) 162 

���

��
= MET(��)            …(8) 163 

���

��
= CHEM(��)            …(9) 164 

then the contribution results obtained by integration of Eqs. (7)–(9) only depend on the value of �� and are unaffected by the 165 

nonlinear interactions of other operator processes. Therefore, the integration results of Eqs. (7)–(9) can be regarded as pure 166 

contributions. The results obtained after the integration of Eqs. (7)–(9) are marked as ∆��, ∆�� and ∆�� , respectively, where 167 

∆�� is the pure contribution of the emission process to the concentration, ∆�� is the pure contribution of the meteorological 168 

process to the concentration, and ∆�� is the pure contribution of the chemical process to the concentration. On this basis, we 169 

can further explore how to quantify the nonlinear interactions of different operator processes on the concentration, so as to 170 

achieve a complete analysis of the amount of concentration change. 171 

2.1.2 Theoretical basis of the QDA method 172 

Considering the simulation of a haze case (base simulation), the simulated PM2.5 concentrations at step t+1 (PM�.�
���) can 173 

be calculated by running all the processes in the model (including emissions, meteorology and chemistry) with the simulated 174 

PM2.5 concentration at step t (PM�.�
� ) as the initial condition. Taking the calculation of one model step (from t to t+1) as the 175 

example, we can define the function F to denote the simulated PM2.5 concentration using PM�.�
�  as the initial concentration, 176 

where the information in parentheses represents the process operators that have been experienced in that time step:  177 

�(0,0,0) = PM�.�
�            (10) 178 

�(��, ��, ��) = PM�.�
���           (11) 179 

Here, �(��, ��, ��) represents the simulated PM2.5 concentration obtained after the initial concentration has been subjected to 180 

the processes of emission (��), meteorology (��), and chemistry (��) through this step; and �(0,0,0) is equal to the initial 181 

concentration because it has not been subjected to any process operator. Therefore, the variation in PM2.5 concentration in the 182 

base simulation can be written as:  183 

∆���.�
��� = ���.�

��� − ���.�
� = �(��, ��, ��) − �(0,0,0)       (12) 184 

According to Taylor series expansion, the function � can be decomposed as follows: 185 

https://doi.org/10.5194/gmd-2023-22
Preprint. Discussion started: 2 May 2023
c© Author(s) 2023. CC BY 4.0 License.



7 
 

�(��, ��, ��) − �(0,0,0) = ∑
��

���

�
��� �� +

�

�!
�∑

���

���
�

�
��� ��

� + 2
���

������
���� + 2

���

������
���� + 2

���

������
����� +186 

�

�!
�∑

���

���
�

�
��� ��

� + ∑ 3
���

���
����

���
�
��� ��

���
��� + ∑ 3

���

���
����

��� ��
���

����
��� + ∑ 3

���

���
����

���
�
��� ��

���
��� +187 

6
���

���������
������� + ⋯ + ��          (13) 188 

The terms in Eq. (13) that only contain partial derivatives to �� (
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the pure emission contribution (marked as E); the terms that only contain partial derivatives to ��  (
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derivatives to �� (
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� + ⋯ ) can be understood as the pure chemistry contribution (marked as C). 192 

These pure contributions have the same meaning as ∆��, ∆�� and ∆��  in the previous section, indicating the amount of 193 

concentration change that occurs under the influence of only one process operator. The cross-derivative terms indicate the 194 

effects of the interaction of different operators on the PM2.5 concentration—for example, 
�

�!

����

������
���� +195 
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����
��� + ⋯ represents the interaction between emissions and meteorology on the concentration (ME), and 196 

the term 
�

�!
�6

���

���������
������� + ⋯  represents the interaction among emissions, meteorology and chemistry on the 197 

concentration (MCE). Detailed definitions of the terms in Eq. (13) are available in Table 1. Please note that “pure” in this 198 

context means that, within a time step, the corresponding contribution is only due to the influence of a certain process operator 199 

on the initial value and is unaffected by other operators. For example, the pure contribution of emissions (E) depends only on 200 

local, direct emissions, and cannot represent the indirect contribution of emissions, which include the amount of PM2.5 201 

produced by the emitted precursor participating in the chemical reaction.  202 

According to these definitions, the PM2.5 variations from step t to t+1 in the base simulation can be decomposed into 203 

seven contributions, including the analytical quantities of �, �, �, ME, MC, CE, and MCE, as follows:  204 

∆PM�.�
��� = � + � + � + ME + MC + CE + MCE        (14) 205 

2.1.3 Algorithms of the QDA method and its implementation in the model 206 

The QDA method uses algorithms similar to the FS method introduced by Stein and Alpert (1993) to calculate the 207 

contributions in Eq. (14). By setting the parameters in the parentheses of F to be �� (� = 1,2,3) or 0 to respectively represent 208 

the concentration at time step t+1 with or without the corresponding process in the model, we can obtain the following 209 

equations:  210 
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where �(��, 0,0), �(0, ��, 0) and �(0,0, ��) can be calculated by the built-in scenario simulations that only consider emissions, 217 

meteorology and chemistry from step t to t+1, respectively; and �(��, ��, 0), �(��, 0, ��) and �(0, ��, ��) are calculated by 218 

the built-in scenario simulation that does not include chemistry, meteorology or emissions from step t to t+1, respectively 219 

(Table 2). The initial concentrations in the built-in scenario simulations will be updated by the values of the base simulation 220 

at each time step, which ensures the resulting contributions are at the same concentration starting point and can be used to 221 

analyse the hourly concentration change of the base simulation. The codes of the built-in scenario simulations are embedded 222 

in the original code of the CTM and the initial concentration of the built-in scenario simulations at each time step can be 223 

synchronously updated by the base simulation—something that cannot be done by the FS or other previous methods.  224 

Therefore, the values of �(��, 0,0), �(0, ��, 0), �(0,0, ��), �(��, ��, 0), �(��, 0, ��) and �(0, ��, ��) can be obtained from 225 

the results of the six built-in scenario simulations, and the values of �(0,0,0) and �(��, ��, ��) can be simply obtained from 226 

the base simulation. Based on these equations above, the contributions of the four interactions in Eq. (14) can be calculated as 227 

follows:  228 

ME = �(��, ��, 0) − �(��, 0,0) − �(0, ��, 0) + �(0,0,0)       (21) 229 

CE = �(��, 0, ��) − �(��, 0,0) − �(0,0, ��) + �(0,0,0)       (22) 230 

MC = �(0, ��, ��) − �(0, ��, 0) − �(0,0, ��) + �(0,0,0)       (23) 231 

MCE = �(��, ��, ��) + ��(��, 0,0) + �(0, ��, 0) + �(0,0, ��)� − ��(��, ��, 0) + �(��, 0, ��) + �(0, ��, ��)� − �(0,0,0)232 

             (24) 233 

The above formulae are all introduced based on one time step. The QDA method uses the above algorithm in each mode time 234 

step, and outputs the contribution analysis results of the change in PM2.5 concentration per hour. The initial concentrations of 235 

not only PM2.5 but also other species (all species contained in the CTM) in the built-in scenario simulations would all be 236 

updated by the base simulated values at the beginning of the new step. Finally, the QDA method’s analytical results of the 237 

variation at each step in the model output species, including PM2.5, can be obtained. The relationships among the seven 238 

contributions in Eq. (14) can also be shown visually (Fig. 1), in which the processes of emissions, meteorology and chemistry 239 

are denoted by the three circles and the interactions among the different processes are denoted by the overlapping areas (Lunt 240 

et al., 2021).  241 
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2.1.4 Relationship and differences with the SAA, FS and IPR methods  242 

The similarity between the FS method and the QDA method is that they employ the same idea to separate the contributions 243 

of different processes, while the biggest difference between them is the target of the algorithm. The FS method commonly 244 

targets an “individual case”, in which several sets of scenario simulations will run independently for several days or even 245 

longer with different input conditions for the factors of concern. The difference among these simulations due to the input 246 

conditions will gradually accumulate with the simulation time, and this cumulative amount is understood as the contribution 247 

of the condition difference for the entire individual case. The QDA method targets the “time step”, in which the process 248 

operator is switched within the time steps of built-in scenario simulations and the concentration differences between the built-249 

in scenario simulations of the same time step can reflect the process contribution but there is no transfer or accumulation of 250 

contribution between time steps. Therefore, the QDA method can not only obtain the process contribution for any given hour, 251 

but also the total contribution during the individual case.  252 

The FS method has limitations in research and practical operations. Firstly, it can only study the relative contributions 253 

and not the absolute contributions. Relative contribution means the contribution expressed by the difference between two or 254 

more individual cases. Absolute contribution means the contribution of the process itself in an individual case. For example, 255 

by reducing or increasing specific emission sources, the concentration changes caused by the emission differences and their 256 

interactions could be obtained. If we want to study the influence of all emission sources in the geographical range of the model 257 

simulation settings, the FS method would have to construct a simulation scenario with a zero emission source, but this would 258 

lead to the concentrations of air pollutants only coming from the boundary and initial conditions in the CTM. So, after a period 259 

of simulation, the concentrations become extremely low, which is not what we want. To avoid this problem, the QDA method 260 

would synchronously update the initial concentration for the built-in scenario simulations by using the base simulation 261 

concentrations at each time step, which makes a certain process shut down for no more than one hour and ensures a physically 262 

meaningful result. To research the absolute contribution of meteorological conditions to air pollutant concentrations, we cannot 263 

construct a simulation scenario that completely closes the meteorological conditions through the FS method. FS can only be 264 

used to study the relative differences in concentration due to the changes in meteorological conditions. The QDA method has 265 

no such limitation; it is not only able to obtain the absolute contributions of operator processes at any time, but also able to 266 

calculate the relative differences in the contributions under different emission or meteorological scenarios. Secondly, FS can 267 

calculate the contribution for the case as a whole but cannot obtain the contribution for any specific hour in the case. The QDA 268 

method draws lessons from the idea of the IPR method in that it analyses the influence of factors in every time step and 269 

successfully solves the above problems.  270 

By analysing the contribution of each process in the model, the IPR method can be used to resolve the contributions of 271 

different physical and chemical processes to the concentration change of every time step. Different from the fact that all 272 

physical and chemical processes in the real atmosphere are carried out almost simultaneously, the processes in CTMs are all 273 

carried out in sequence. The idea of the IPR method is that, in a time step, the operator processes are executed in sequence 274 
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according to the order in the model, and the concentration difference before and after the execution is calculated to represent 275 

the contribution of a single process. This makes the IPR method unable to consider the effects of the nonlinear interactions 276 

among different processes on pollutant concentrations. The order in which process operators are executed varies among 277 

different CTMs. Assuming that in CTMs calculations are performed in the order of emission, meteorological and chemical 278 

processes, the contribution of emissions obtained by the IPR method equals E in QDA, while the meteorological contribution 279 

in the IPR (the concentration change caused by atmospheric advection, diffusion and deposition) equals M + ME in QDA, and 280 

the chemical contribution equals C + CE + MC + MCE. Likewise, if one assumes that the CTM calculations are carried out in 281 

the order of emission, chemical and meteorological processes, the contribution of emissions obtained by the IPR method equals 282 

E in QDA, while the chemical contribution in the IPR equals C + CE in QDA, and the meteorological contribution equals M 283 

+ MC + ME + MCE. The above two examples show that the IPR method cannot separate the interactions among different 284 

processes, which leads to the interactions being included in the obtained IPR contributions.  285 

To some extent, the QDA method could be seen as a combination of the FS method and IPR method. This method 286 

combines the advantages of the IPR method for time-step analysis and the analytical advantages of FS for separating 287 

interactions, but it is different from each of the two methods.  288 

2.2 Combination of the QDA and IPR methods  289 

The above QDA method can also be combined with the IPR method to resolve more detailed information. This is achieved 290 

by applying the IPR method to each built-in scenario simulation. The premise is to ignore the nonlinear effect within one time 291 

step. In Sect. 2.1, we showed that meteorological and chemical operators can be split into smaller sub-process operators—for 292 

example, the meteorological process can be divided into advection, diffusion, dry and wet deposition processes; and the 293 

chemical process can be divided into the gas- and aqueous-phase chemistry, thermodynamic equilibrium processes, and 294 

secondary organic aerosol (SOA) reactions. That is to say, the IPR analysis can be used in the operators of emissions, 295 

meteorology and chemistry under the calculation framework of the QDA method at the same time (Fig. 2). Therefore, we can 296 

obtain the sub-process contributions among the seven quantitative analytical factors in Eq. (14).  297 

The results of the base simulation and each built-in scenario simulation at t+1 can be decomposed by IPR as follows:  298 

�(��, 0,0) − �(0,0,0) = emit��
          (25) 299 

�(0, ��, 0) − �(0,0,0) = advhor��
+ advvert��

+ difhor��
+ difvert��

+ wetdep��
+ drydep��

   (26) 300 

�(0,0, ��) − �(0,0,0) = gaschem��
+ ISORR��

+ SOA��
       (27) 301 

�(��, ��, 0) − �(0,0,0) = emit���
+ advhor���

+ advvert���
+ difhor���

+ difvert���
+ wetdep���

+ drydep���
 (28) 302 

�(��, 0, ��) − �(0,0,0) = emit���
+ gaschem���

+ ISORR���
+ SOA���

     (29) 303 

�(0, ��, ��) − �(0,0,0) = advhor���
+ advvert���

+ difhor���
+ difvert���

+ wetdep���
+ drydep���

+ gaschem���
+304 

ISORR���
+ SOA���

           (30) 305 
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�(��, ��, ��) − �(0,0,0) = emit� + advhor� + advvert� + difhor� + difvert� + wetdep� + drydep� + gaschem� +306 

ISORR� + SOA�            (31) 307 

Table 2 explains the meaning of each item on the left-hand sides of Eqs. (25)–(30); �(��, ��, ��) and �(0,0,0) represent the 308 

PM2.5 concentration at time t+1 and time t in the base simulation S; the subscripts on the right-hand sides of Eqs. (25)–(30) 309 

denote the corresponding simulation mark; the IPR terms refer to previous research (Chen et al., 2019a; Chen et al., 2019c); 310 

and these subprocess definitions and abbreviations are detailed in Table 3. Combining Eqs. (25)–(31) and Eqs. (15)–(25), the 311 

contributions of sub-process operators in any QDA analytic quantity can be obtained.  312 

2.3 Model setup and emission inventories 313 

To illustrate the use of the QDA method, we embedded its codes into the Nested Air Quality Prediction Modeling System 314 

(NAQPMS) model and built QDA v1.0 for NAQPMS. The QDA method can be combined with other CTMs in a similar way 315 

following the QDA algorithm. NAQPMS is a three-dimensional regional Eulerian CTM developed by the Institute of 316 

Atmospheric Physics, Chinese Academy of Sciences, which has been widely used in scientific research and operational air 317 

quality prediction (Wang et al., 2014; Du et al., 2021; Kong et al., 2021; Wang et al., 2021; Akimoto et al., 2020; Yang et al., 318 

2020a) owing to its good performance in simulating the emission, meteorological and chemical processes in the atmosphere. 319 

Within the model, the gas-phase chemistry is simulated by the “carbon bonding mechanism Z” developed by Zaveri and Peters 320 

(1999), which includes 134 reactions and 71 species. For inorganic aerosols, the ISORROPIA v1.7 thermodynamic equilibrium 321 

module (Nenes et al., 1998) is used to simulate the ammonia–nitrate–sulfate–chloride–sodium–water system. Six SOAs are 322 

processed by a two-product module in NAQPMS (Odum et al., 1997). The aqueous-phase chemistry and wet deposition are 323 

modelled using the Regional Acid Deposition Model mechanism in CMAQ version 4.6. The dry deposition of gases and 324 

aerosols is simulated based on the scheme of Wesely (1989) and the advection is simulated with an accurate mass-conservation 325 

algorithm from Walcek and Aleksic (1998). More technical details on NAQPMS could be found in Li et al. (2012).  326 

To illustrate the feasibility of the QDA method and quantitatively analyse the magnitudes of the contributions from 327 

emissions, meteorology and chemistry to the variation in PM2.5 during heavy pollution, we applied the method to a week-long 328 

heavy-haze episode that took place in Beijing during 17–28 February 2014. Figure 3 shows the modelling domain of this case, 329 

which covers most of East Asia with a horizontal resolution of 45 km. Vertically, NAQPMS uses 20 nonequally distributed 330 

terrain-following layers from the surface (~100 m) to 20 km. The anthropogenic emission inventories used in the simulation 331 

were obtained from the Chinese Multi-resolution Emission Inventory (MEIC) for the year 2014 developed by Tsinghua 332 

University (http://www.meicmodel.org). We adjusted the original inventory with reference to the diurnal profile of the 333 

emission inventory in MICS-Asia III (Model Inter-Comparison Study for Asia III), which is shown in Fig. S1. Biogenic 334 

emissions were obtained from the Model of Natural Gas and Aerosol Emissions (MEGAN v2.0) (Guenther et al., 2006), and 335 

the biomass burning emissions were obtained from the the Global Fire Emissions Database version 4 (Randerson et al., 2017; 336 

van der Werf et al., 2010). A clean initial condition was used in the simulation with a 10-day free run of NAQPMS as a spin-337 

up time. The top and boundary conditions of the outermost region were extracted from the global CTM MOZART (Model for 338 
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Ozone and Related Chemical Tracers) version 2.5, with a 3-h temporal resolution (Brasseur et al., 1998). The offline hourly 339 

meteorological fields were generated by the Weather Research and Forecasting (WRF) model version 3.7 (http://www.wrf-340 

model.org/), driven by National Centers for Environmental Prediction (NCEP) Final Analysis data (FNL).  341 

2.4 Observation data  342 

The observational data used in this study included surface observations of PM2.5, particulate matter smaller than 10 µm 343 

in diameter (PM10), NO2, O3, SO2 and CO obtained from the China National Environmental Monitoring Center. Surface 344 

observations of wind speed, wind direction, temperature, relative humidity, and station pressure; and vertical observations of 345 

wind speed, wind direction, temperature, and relative humidity, were retrieved from the China Meteorological Administration. 346 

The spatial distributions of the meteorological and air quality observation sites are shown in Fig. 3. To compare with the PM2.5 347 

observations, the simulated PM2.5 concentrations were comprised of primary PM2.5 (including black carbon, primary organic 348 

aerosol, and other directly emitted PM2.5) and secondary PM2.5, including sulfate, nitrate, ammonium, and SOA produced by 349 

chemical reactions.  350 

3 Results and discussion 351 

3.1 Observed pollution during the heavy-haze episode 352 

A serious pollution event occurred in the Beijing area during 19–27 February 2014, with the observed mean PM2.5 353 

concentration reaching 168.9 µg m−3, more than double the national secondary standard level (75 µg m−3). As shown in Fig. 354 

S2, this pollution episode also affected a wide area of the BTH region, with severe haze mostly located in the southern part of 355 

the region before 23 February and gradually extending northwards to encompass wider areas. The SO2 and NO2 concentrations 356 

did not exhibit notable exceedances as the PM2.5 did, indicating that this case was a typical particulate-led pollution event.  357 

To investigate the characteristics of the contributions from meteorology, emissions and chemistry in different stages of 358 

this haze event, we divided the whole episode into four stages based on the temporal characteristics of the PM2.5 concentration 359 

in Beijing (Fig. 4): (1) the pre-contamination stage [0800 LST (local standard time) 17 February to 1400 LST 19 February] 360 

with relatively low PM2.5 concentrations and flat variation; (2) the accumulation stage (1500 LST 19 February to 0800 LST 23 361 

February) when the PM2.5 concentration increased the most rapidly; (3) the pollution maintenance stage (0900 LST 23 February 362 

to 1800 LST 26 February) when the PM2.5 concentration remained high with small fluctuations; and (4) the pollution removal 363 

stage (1900 LST 26 February to 0800 LST 27 February) when the PM2.5 concentration rapidly dropped.  364 

3.2 Validation of the meteorology and chemistry simulations 365 

To assess the accuracy of the model, simulated meteorological parameters and air pollutant concentrations were compared 366 

with observed values. We used several evaluation indicators to quantitatively assess the model performance, including the 367 

simulated mean, observed mean, correlation coefficient (R), mean fractional bias (MFB), mean fractional error (MFE), mean 368 
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bias, mean error (MEr), normalized mean bias (NMB), normalized mean error (NME), root-mean-square error, and index of 369 

agreement (IOA), which are defined in Table S1. The verification results of meteorological elements are shown in Table S2, 370 

revealing the R of temperature (Temp), relative humidity (RH) and pressure to all be above 0.85. The correlation between wind 371 

speed (WS) and observation data (R=0.47) is better than that of wind direction (WD: R=0.24). Although the MEr of the 372 

simulated wind is greater than that of other meteorological elements, the NME and NMB are less than 1, which indicates that 373 

the simulation and observation match well on the whole, and the MEr may have little influence on the performance of aerosol 374 

simulation.  375 

The simulations based on the NAQPMS model generally reproduced the magnitude of, and temporal variation in, the 376 

PM2.5 concentration in the Beijing area well, with an R of approximately 0.83. The model simulation results exhibit relatively 377 

larger underestimations of the PM2.5 concentration from 20–23 February, which may be attributable to the overestimation of 378 

the simulated wind speed by the WRF model during this period (Figs. S3 and S4). Regarding the two important precursors of 379 

PM2.5, the simulated NO2 and SO2 concentrations also agree well with the observations, with R values of approximately 0.71 380 

and 0.76, respectively. In general, the simulated PM2.5 concentrations satisfy the NMB, NME, R, and IOA performance 381 

standards (NMB<20%, NME<45%, R>0.6, and IOA>0.7) proposed by Huang et al. (2021a), and the simulated SO2 and NO2 382 

concentrations all satisfy the MFB and MFE performance standards (MFB<30%, MFE<50%) proposed by (Boylan and Russell, 383 

2006). The simulated sulfate, nitrate and ammonium concentrations were also compared with observations, to evaluate the 384 

chemical processes in the NAQPMS model (Fig. S5). The model reproduced the variation in secondary inorganic aerosols 385 

(SIAs) well during this episode (R>0.82), although the model underestimated the sulfate concentration, possibly due to missing 386 

reaction pathways of sulfuric acid in the model, such as heterogeneous chemistry (Zheng et al., 2015a; Cheng et al., 2016). 387 

Underestimation of the sulfate concentration is a common problem in current CTMs (Chen et al., 2019b), but one that is beyond 388 

the scope of this study. However, this could lead to uncertainty in the estimation of the contribution from chemistry to the 389 

PM2.5 concentration. In summary, the simulation suitably reproduced the evolution of this pollution process from the pre-390 

contamination period to the accumulation, maintenance, and removal periods, which laid a good foundation for subsequent 391 

analysis of the physical and chemical processes. 392 

3.3 Temporal variation of the QDA results in different stages 393 

Figure 5 shows the time series of the calculated contributions from emissions, meteorology, chemistry, and their 394 

interactions to the hourly variation in PM2.5 concentration using the QDA method. We can clearly see that in Fig. 5(b) the sum 395 

of all contributions is exactly equal to the hourly change in the PM2.5 concentration, indicating that the QDA method can fully 396 

resolve the variation in the PM2.5 concentration.  397 

The characteristics of temporal variation vary among different factors. Among the seven QDA analytical factors, the 398 

fluctuation range of M is the largest, which ranges from −48.7 to 7.4 µg∙m−3∙h−1. When the change in PM2.5 concentration is 399 

positive, M plays a role in promoting the accumulation of the PM2.5 concentration. When the change in PM2.5 is negative, M 400 

must play a clearing role. On the hourly scale, the value of E is not always the biggest. For example, on the afternoons of 23–401 
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25 February, CE is significantly larger than E. However, on average, E is the largest mean contribution with the highest value 402 

of 0.88 µg∙m−3∙h−1 in two stages (Table 4). The contribution from chemistry exhibits remarkable diurnal variation, being 403 

notably larger during the daytime than at nighttime. This occurs because the atmospheric oxidation capacity during daytime is 404 

higher than at nighttime, which is more conducive to secondary PM2.5 formation (Huang et al., 2021b; Chen et al., 2020a; Lu 405 

et al., 2019a), and similar conclusions have been reported in other modelling studies (Chen et al., 2019a; Li et al., 2014).  406 

We investigated the influences of the nonlinear effects on the PM2.5 concentration by summing all the contributions of 407 

the interactions among the different physical and chemical processes (COUP=EM+CE+MC+MCE). Figure 6 and Table 5 408 

show the QDA results in the different stages of the episode. The M and EM exhibit a notable negative contribution to PM2.5 in 409 

the first stage, which was enough to remove the newly emitted or formed PM2.5 from emissions and chemical reactions 410 

(|M+EM|>|E+C+CE+MCE| in Table 4). Thus, the PM2.5 concentration was relatively low in the first stage. However, M shifts 411 

to a positive contribution in stage 2, and there are no other removal processes except EM during this stage. The average increase 412 

in PM2.5 per hour (M+E+C+CE+MC+MCE=1.87 µg∙m−3∙h−1) is significantly greater than the removal speed (EM = −0.08 413 

µg∙m−3∙h−1), which led to rapid accumulation of the PM2.5 concentration. Then, M becomes negative and acts as a cleaner in 414 

stage 3, which nearly offsets the increase caused by E+C+COUP with a speed about 1.85 µg∙m−3∙h−1. Hence, the PM2.5 415 

concentration remained at a relatively steady level. In stage 4, the removal effects of M are much larger than those in the 416 

previous stages owing to the strong northwesterly nonpolluted wind, leading to a rapid decline in the PM2.5 concentration. 417 

According to the IPR results (Figs. 6e–h), horizontal advection was the main removal process in M during stages 1 and 4, 418 

indicating that horizontal outward transportation facilitated PM2.5 reduction during the relative cleaning period (Chen et al., 419 

2020c). Vertical advection was the main accumulation process in M during stages 1, 2 and 4, while in stage 3 it had removal 420 

effects on PM2.5. It has been reported by Platis et al. (2016) that the downward transport of particles may be an important 421 

reason for increased PM2.5 in the entire atmospheric boundary layer. Figure 7(a) shows that, during stage 2, PM2.5 is transported 422 

from outside to the in situ area below the height of L7 via horizontal advection, while it is exported from outside in the upper 423 

layer. These positive and negative results cancel each other out and make the horizontal advection contribute little to the entire 424 

layer during this stage. PM2.5 can originate from other places via long-distance transport (Du et al., 2020), which would lead 425 

to weakening of boundary layer turbulence and thereby the facilitation of local pollution accumulation (Huang et al., 2020). It 426 

can also be seen that the growth rate of PM2.5 in L7–L9 is the highest, which is consistent with previous findings that the 427 

accumulation of aerosols near the top of the boundary layer has the largest rate of increase (Liu et al., 2020). In addition, the 428 

hourly contribution of wet deposition was zero and played a negligible role in the variation in different stages, which was due 429 

to there being no precipitation during this typical severe haze event. The C yielded positive contributions in the first three 430 

stages (0.23–0.37 µg∙m−3∙h−1) owing to the generation of SIAs and SOAs. In stage 4, C became negative (−0.08 µg∙m−3∙h−1) as 431 

the environmental conditions at this time were suitable for nitrate decomposition (Chen et al., 2020c). According to their 432 

definitions, C reflects the contribution from chemistry to PM2.5 made by pre-existing gases in the atmosphere, and CE reflects 433 

the same but made by newly emitted gases. Therefore, the larger the ratio of CE/C, the more efficient the chemical conversion. 434 

The results suggest that the conversion efficiency of secondary aerosols was highest during stage 3 under the most serious 435 
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pollution, which is consistent with the results of other studies of heavy haze (Huang et al., 2014; Zhou et al., 2022; Shang et 436 

al., 2021).  437 

It is worth noting that E only contains the contributions from direct emissions of PM2.5 in local space, which was 438 

determined by the emissions inventory in the model. This definition is different from the contributions of emissions in previous 439 

studies, which also included the nonlinear effects between direct emissions and other processes (Maji et al., 2020; Zhang et 440 

al., 2018). From the perspective of tracing back to the sources, the ultimate source of pollutants is only the emissions, but the 441 

directly emitted PM2.5 or precursors can affect other areas through meteorological transmission or chemical reactions. From a 442 

process viewpoint, it is obviously not just the emission process that should be involved. The hourly mean contribution of CE 443 

was largest during stage 3, and thus the implementation of emissions reduction during that stage would have greater weakening 444 

effects on the chemical generation of PM2.5 than in the previous two stages. M reflects the net changes in PM2.5 concentration 445 

resulting from pollutants following air masses in and out of the grid boxes of the model; plus, it is also the main way to reduce 446 

air pollution most of the time. Although its specific application in developing emission reduction strategies is not the focus of 447 

this paper, it is nonetheless worth highlighting that it can provide valuable insights into these related issues.   448 

3.4 Decoupling of nonlinear effects at different stages 449 

There are also nonnegligible nonlinear effects in each stage, and their contributions can sometimes even exceed pure 450 

contributions of meteorology, emissions, and chemistry. On the one hand, these nonlinear interactions are determined by the 451 

calculation method; whilst on the other hand, they are physically explainable. When emissions increase the concentrations of 452 

pollutants in the atmosphere, the amounts of pollutants transported by air masses will also increase, which is reflected by the 453 

nonlinear effect of EM. The emission process may increase the concentrations of precursors in the atmosphere. Based on the 454 

IPR results, CE reflects that newly emitted precursors produce secondary aerosols through chemical reactions and equilibrium 455 

partitioning. MC consists of two parts: the first part is the influence of meteorology on chemistry, in which meteorological 456 

processes can increase chemical production by transporting more precursors or decrease chemical production by reducing the 457 

concentrations of local precursors; while the second part involves the influence of chemistry on meteorology, since chemical 458 

processes can lead to an increase in the concentrations of secondary aerosols in the atmosphere. This may lead to an increase 459 

in pollutants carried by air masses in the corresponding region. MCE includes all meteorological, emission and chemical 460 

process interactions, which are complex and yield very small contributions. The hourly value of COUP ranged from −1.83 to 461 

2.44 µg∙m−3∙h−1 during this haze episode, with an average value of approximately 0.30 µg m−3 h−1. The nonlinear effect was 462 

shown to increase continuously from the beginning to heavy polluted periods. According to Table 4, from stage 1 to 3, the 463 

hourly mean value of COUP increased from 0.05 to 0.74 µg∙m−3∙h−1, and its proportion in the hourly variation of PM2.5 also 464 

increased (from −3.68% to 740%).  465 

During the entire episode, CE exhibited the largest nonlinear effect (0.27 µg∙m−3∙h−1 on average) and increased with the 466 

concentration of PM2.5, indicating that the interactions between emissions and chemistry play an important role during heavy 467 

haze. According to the vertical distribution of CE in stage 2 (Fig. 7), the contribution of CE decreased from the surface to the 468 
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upper levels owing to the vertical reductions in air temperature and emissions. The contribution of MC revealed the largest 469 

variation, with a fluctuational range up to 4.24 µg∙m−3∙h−1, because both the meteorology and chemistry are greatly influenced 470 

by diurnal variation. As shown in Fig. 7, MC also indicated that meteorological processes could decrease the chemical process 471 

in the surface layer and strengthen chemical formations in the upper layers (L3–L8), which could also be related to the 472 

phenomenon in Fig. 7(a) that meteorological processes transport PM2.5 and precursors from the lower layer to the upper layer. 473 

EM suggests that local emissions may enhance the vertical diffusion of PM2.5 from the surface layer to the upper layer. Primary 474 

emitted PM2.5 mainly occurred in the near-surface layers where the vertical wind speed was so low that vertical advection was 475 

extremely limited. Thus, PM2.5 emitted in the near-surface layers could reach the upper layers only through the process of 476 

vertical diffusion.  477 

In previous studies, the investigation of nonlinear effects was usually ignored when analysing heavy haze. The present 478 

QDA results demonstrate that ignoring these nonlinear effects may cause bias when studying the pure contributions of 479 

meteorology, emissions or chemistry to PM2.5. For example, when discussing the effect of the pure contribution of emissions 480 

on PM2.5, if the effects in CE, EM and MCE are ignored, an uncertainty ranging from −0.86 to 1.86 µg∙m−3∙h−1 (CE +EM+MCE) 481 

occurs on the hourly scale, especially during the worst polluted period, and this uncertainty may accumulate with time. This 482 

suggests that quantitative analysis of the nonlinear effects is necessary to evaluate the process contributions in heavy-haze 483 

episodes.  484 

3.5 Discussion and evaluation of QDA 485 

3.5.1 Chemical compositions 486 

The E calculated by the QDA method is influenced directly by the emissions inventory used in the simulations. Thus, we 487 

mainly evaluated the calculated contributions of M and C in this study. However, there were no observational data linked to 488 

the pure contributions of emissions or chemistry that could be used to verify the QDA method directly. Hence, the method was 489 

evaluated with indirect results. Since the contribution from chemistry to PM2.5 is mainly related to the formation of secondary 490 

aerosols, the conversion rates of nitrate (NOR) and sulfate (SOR), as defined in Eqs. (32) and (33), were calculated to evaluate 491 

the temporal variation in the chemical contribution obtained with the QDA method. Daily PM2.5 composition data measured 492 

by the Beijing Ecological Environment Monitoring Center were used to calculate NOR and SOR values in the different stages 493 

of this haze episode: 494 

NOR =
���

�

���
�����

            (32) 495 

SOR =
���

��

���
������

            (33) 496 

We found that NOR and SOR increased by 0.09 and 0.02, respectively, from stage 1 to stage 2. NOR and SOR both 497 

reached their maximum value (0.54 and 0.38, respectively) in stage 3. In stage 4, NOR and SOR both experienced a significant 498 

decline. Other haze cases have also revealed that SOR and NOR greatly increased with PM2.5 concentration (Song et al., 2019; 499 
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Xu et al., 2017; Yan et al., 2015a) and the proportion of secondary aerosols often increases with worsening haze (Xu et al., 500 

2019a; Li et al., 2017). Process analysis has also shown that the chemical reactions of PM2.5 in the WRF-Chem model are 501 

stronger during the day than that at night (Chen et al., 2019a), which is consistent with this study. In the QDA results, the 502 

amount that can represent the chemical reaction intensity is C+CE. It can be seen that its total contribution had been increasing 503 

from stage 1 to stage 3, and in stage 4 had decreased to its lowest level. This evidence, together with the QDA analysis results, 504 

explains the importance of chemical reactions in heavy haze (Huang et al., 2019).  505 

We also analysed the QDA results for SIAs, including nitrate, sulfate and ammonium, as well as their precursors, 506 

including NOx, SO2, and NH3, to provide further insight into the roles of chemical formations during haze episodes. Figure 8 507 

shows the QDA results for SIAs, as well as their precursors, during the different stages of the episode. Notably, there were 508 

small contributions of E to the sulfate concentrations because we parameterized 2.5% of sulfate primary emissions to consider 509 

the particle formation on the sub-grid scale. As we can clearly see from Fig. 8, the chemical production of nitrate, sulfate and 510 

ammonium agreed well with the chemical depletion of their precursors, suggesting good capability of the QDA method in 511 

representing the chemical processes in the model. For example, during the first stage, the values of C for NOx, SO2, and NH3 512 

were all negative where the C values for nitrate, sulfate and ammonium were positive, reflecting the conversion of reactive 513 

gases to PM2.5. Consistent with the QDA results for PM2.5 concentration, the QDA results for SIAs and their precursors showed 514 

that chemistry provided an increasingly important role in the elevation of PM2.5 concentrations. From stage 1 to stage 2, the 515 

values of C for NOx and SO2 changed from −0.18 to −0.27 µg∙m−3∙h−1 and from −0.01 to −0.02 µg∙m−3∙h−1, respectively. 516 

Correspondingly, the values of C for nitrate and sulfate increased from 0.21 to 0.26 µg∙m−3∙h−1 and from 0.02 to 0.03 µg∙m−3∙h−1, 517 

respectively. Consistent with the NOR and SOR analysis, chemical processes yielded the largest contribution during stage 3, 518 

in which the values of C for NOx and SO2 reached −0.45 and −0.06 µg∙m−3∙h−1, respectively, which was 66.7% and more than 519 

twice as much as during stage 2. Correspondingly, the C value for sulfate increased from 0.03 to 0.08 µg∙m−3∙h−1 from stage 2 520 

to stage 3. However, the C value for nitrate and ammonium was found to decrease in stage 3. In addition, the values of CE for 521 

nitrate and ammonium were much larger in stage 3 than during stage 1 or stage 2, which reached up to 0.46 and 0.15 µg∙m−3∙h−1, 522 

respectively. More NH3 was also consumed by the interaction between chemistry and emissions during stage 3, with the value 523 

of CE reaching −0.15 µg∙m−3∙h−1. This is because NH3 was deficient during stage 3. Although more NOx was oxidized to HNO3 524 

during stage 3, most of the newly formed HNO3 remained in the gas phase owing to the limited NH3, leading to small C value 525 

for nitrate but large C values for NOx. In addition, the newly emitted NH3 would react quickly with the pre-existing HNO3 to 526 

form nitrate and ammonium. That is why the values of CE for nitrate and ammonium were much larger in stage 3 than in 527 

previous stages. On the contrary, stage 1 and stage 2 were in an NH3-rich condition, so the newly formed HNO3 and H2SO4 528 

could react with the sufficient pre-existing NH3 to form nitrate and sulfate without relying on fresh emissions of NH3. Therefore, 529 

there was good consistency between the C values of precursors and SIAs during stage 1 and stage 2. These results suggest that 530 

the QDA method is capable of reflecting different chemical environments during different stages of haze episodes, and 531 

emphasize that different emission control strategies should be adopted in different stages. For example, strict emissions control 532 

should be performed for NOx and SO2 emissions during stage 1 and stage 2, while during stage 3, when the PM2.5 concentration 533 
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is highest, the control of NH3 emissions would be a more efficient approach. The high efficiency of reducing NH3 emissions 534 

in alleviating heavy haze has been attested in studies based on both observations and model results (Liu et al., 2022; Xu et al., 535 

2019b; Qi et al., 2023; Zhai et al., 2021; Ge et al., 2019). However, these studies did not elucidate when is the most effective 536 

time to control NH3. Not only can the QDA method quantitatively explain the role of NH3 in heavy haze, but it can also provide 537 

valuable information on when and where controlling NH3 emissions is more effective. Therefore, this method can provide 538 

policymakers with valuable insights into the development of efficient emission control strategies during different stages of 539 

pollution.  540 

3.5.2 Meteorological processes 541 

The contributions of meteorological processes were quantitively evaluated via the analysis of weather conditions. Figure 542 

S6 clearly shows that, during stage 1, Beijing and its surrounding areas were influenced by a high-pressure system in 543 

northeastern Inner Mongolia and a low-pressure system in the southwest with high wind speeds, which promoted PM2.5 544 

advection across the Beijing area. With the low-pressure system in Inner Mongolia moving slowly eastwards and finally 545 

disappearing under the influence of westerly winds, Beijing was increasingly controlled by a uniform pressure field and 546 

affected by weak southerly winds, which facilitated the transportation of air pollution from the southern BTH region to Beijing. 547 

The small-scale high-pressure centre to the north of Beijing also blocked the airflow originating from the south, leading to the 548 

accumulation of air pollutants in Beijing, which is consistent with the positive pure meteorological contribution (M>0) in stage 549 

2. The potential source contribution function (PSCF) index can reflect the potential contribution of the inflow trajectory, 550 

revealing that Baoding, Shijiazhuang and Cangzhou in Hebei in southern Beijing were the main sources of PM2.5 transmission 551 

in this case (Yan et al., 2015b). Research revealed that the transportation process in this case under the influence of weak 552 

southerly winds from 19 to 20 February, along with the Parameter Linking Air-quality to Meteorological conditions/haze index 553 

(PLAM), indicated a positive correlation between PM2.5 and atmospheric stability (Zhong et al., 2018b). An inversion layer 554 

occurred owing to the radiative cooling effect of the transported particles, which further aggravated aerosol accumulation 555 

(Zhong et al., 2018a) (Fig. 9). The key role of transmission in the formation of high concentrations of PM2.5 has also been 556 

found in other haze events  (Sun et al., 2016; Huang et al., 2020; Zhang et al., 2019b). 557 

In stage 3, the northern high-pressure system was compressed by the northwest low-pressure air system and moved to the 558 

southeast sea area. The isobaric lines in Beijing became increasingly dense and the wind speed increased, which was conducive 559 

to the diffusion of pollutants (M<0). However, due to the positive contribution of emissions and chemistry, the air quality did 560 

not improve significantly. In stage 4, the northeast low-pressure system continued to develop and intensified, confronting the 561 

Mongolian high-pressure system, resulting in a strong northwesterly airflow in North China that transported air pollutants to 562 

the southeast sea area and greatly improved the air quality in Beijing. Therefore, the hourly contribution of M at this stage was 563 

the largest, reflecting a strong cleaning effect. This is also consistent with the analysis of this pollution case in other studies 564 

(Zhong et al., 2018b; Zhong et al., 2018a). 565 
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4 Conclusions and perspectives 566 

In this study, a new QDA method targeting PM2.5 was developed and applied to analyse a typical heavy-pollution case in 567 

Beijing. By quantitatively decomposing the pure contribution of meteorology, chemical reactions, emissions, and their 568 

nonlinear interactions in the hourly change of the PM2.5 concentration, the formation process of heavy haze can be analysed 569 

from a new perspective. The QDA method innovatively combines the advantages of the FS and IPR methods and highlights 570 

the differences and connections between pure contributions and nonlinear interactions in air pollution problems from the 571 

perspective of process contributions and conservation of mass as a constraint. 572 

The atmosphere is a typical nonlinear system. Unfavorable meteorological conditions are a frequently discussed issue in 573 

haze events and their quantification can be biased by nonlinear effects such as EM and MC. Separating pure contributions and 574 

nonlinear interactions can clearly reveal the timing and effect of favorable or unfavorable meteorological conditions. We 575 

divided the haze event in this study into four stages according to the characteristics of PM2.5 concentration. It was found that 576 

the M during the accumulation stage (stage 2) was 0.34 µg∙m−3∙h−1, while in other stages it was negative on average, indicating 577 

that the pure meteorological contribution only in the accumulation stage favored the accumulation of PM2.5. This means M 578 

mainly acts as a cleaner for PM2.5 most of the time. However, when M continues for a period of time without removing 579 

pollution (M>0), PM2.5 would lose its main mechanism to descend and therefore tend to grow rapidly under the superimposed 580 

influence of emissions and chemical processes, which would probably become the beginning of a heavy pollution event. 581 

Commonly, the effect of meteorological accumulation is the direct cause of haze formed by transportation and accumulation 582 

of PM2.5, and QDA provides a clearer interpretation of this. For the atmosphere of the entire boundary layer in particular, the 583 

direct cumulative effect of M on PM2.5 is not high. M usually plays the role of the most efficient cleaner, but it is no longer 584 

effective under the circumstances of unfavorable meteorological conditions, resulting in the PM2.5 (which formed by emissions 585 

and chemical reactions) not being cleaned up in time, which is why unfavorable meteorological conditions may play a dominant 586 

role in the formation of haze. The aim of this study was to develop a new analysis method rather than study its application, so 587 

QDA was only applied to one typical haze event, meaning more cases in different regions and periods should be studied in the 588 

future. The consideration of nonlinear effects provides a useful way to handle the nonlinear characteristics of the atmosphere, 589 

thus filling the gaps in traditional methods in terms of nonlinear uncertainty. The importance of nonlinear effects includes, 590 

firstly, eliminating the interference of other processes in quantifying the contribution of the target process and obtaining a more 591 

purified result; and secondly, some important implications, as follows. For chemical products, the change in the ratio of CE to 592 

C is helpful in evaluating the overall speed of the chemical processes; and the higher the proportion, the faster these processes 593 

might be. The contributions of C+CE play a significant role in stage 2 and 3, indicating that chemical reactions are more 594 

important in the most polluted period than in other periods. For the precursors (like NH3), the smaller the value of CE, the 595 

scarcer they are, and reducing their emissions in that period would have the most efficient controlling effect on the air pollution. 596 

For example, when SO2 is rich and NH3 is deficient, the CE values of nitrate and ammonium are usually large and that of 597 

sulfate is small. This provides a standard for judging NH3-rich or -poor periods. In addition, when EM or CE makes strong 598 
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positive contributions to PM2.5, the suggestion is that additional benefits can be obtained by reducing PM2.5 emissions at that 599 

time. These implications can contribute to the formulation of refined emission reduction strategies.  600 

The QDA method yields a strong general applicability and practical application prospects. Although the method was only 601 

applied to PM2.5, its components, and precursors in NAQPMS in this study, not only can it also be applied to any 3D 602 

atmospheric chemistry model, but also to study any other pollutant. It can analyse the causes of pollution from different 603 

substances. For example, application to the analysis of oxidants (e.g., O3 and oxidative radicals), which are of wide concern in 604 

CTMs, could enable in-depth studies of the nonlinear effects of chemical processes in the atmosphere. QDA can be used to 605 

track the chain reactions caused by the changes in physical parameterization schemes or chemical reactions in CTMs, so as to 606 

improve and test new mechanisms. Not only does this technique provide new reference ideas for the treatment of air pollution, 607 

but it is also an important tool for further studying the formation processes of heavy pollution and the influence of different 608 

physicochemical mechanisms.  609 

Code and data availability 610 

The observational data used in this study and the source codes of the QDA method are available online via ZENODO 611 
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Tables & Figures: 927 

Table 1. Definitions of different factors considered in the QDA method 928 

Note: The order of capital letters under “Notation” does not represent the order of operators. For example, ME and EM can represent the 929 
same meaning, so it is uniformly expressed by ME in this paper. 930 
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Table 2. Descriptions of the built-in scenario simulations in the QDA method  946 

 
Simulation 

notation 
Processes included in the simulations 

Target values  

(e.g., model step of t to t+1) 

Base simulation base All model processes 
�(��, ��, ��), 

�(0,0,0) 

Built-in scenario 
simulations  

S1 Only emission process �(��, 0,0) 

S2 Only meteorological process �(0, ��, 0) 

S3 Only chemical process �(0,0, ��) 

S13 Emission and chemical processes  �(��, 0, ��) 

S23 Meteorological and chemical processes �(0, ��, ��) 

S12 Emission and meteorological processes �(��, ��, 0) 

 947 

 948 

Table 3. Descriptions of different processes considered in the IPR method 949 

Description Abbreviation 

Emissions (local primary 

emissions in model) 
emit 

Horizontal advection advhor 

Vertical advection advvert 

Horizontal diffusion difhor 

Vertical diffusion difvert 

Wet deposition wetdep 

Dry deposition drydep 

Gas chemistry gaschem 

Inorganic aerosol chemistry ISORR 

Secondary aerosol chemistry SOA 
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 951 

 952 

Table 4. Hourly average QDA results in different stages (unit: µg∙m−3∙h−1) 953 

 Stage 1 Stage 2 Stage 3 Stage 4 

Hourly 

change 

−1.36 1.79 0.1 −11.84 

M −2.60 191.18% 0.34 18.99% −1.75 −1750.00% −12.62 106.59% 

E 0.88 −64.71% 0.82 45.81% 0.88 880.00% 0.63 −5.32% 

C 0.31 −22.79% 0.37 20.67% 0.23 230.00% −0.08 0.68% 

COUP 0.05 −3.68% 0.26 14.53% 0.74 740.00% 0.23 −1.94% 

EM −0.08 5.88% −0.08 −4.47% −0.09 −90.00% −0.11 0.93% 

CE 0.10 −7.35% 0.13 7.26% 0.67 670.00% 0.43 −3.63% 

MC −0.01 0.74% 0.20 11.17% 0.03 30.00% −0.14 1.18% 

MCE 0.04 −2.94% 0.01 0.56% 0.13 130.00% 0.05 −0.42% 

Note: Hourly change=M+C+E+COUP; COUP=EM+CE+MC+MCE. 954 

 955 

Table 5. Hourly average IPR results in different stages (unit: µg∙m−3∙h−1) 956 

 emit advhor advvert difhor difvert gaschem drydep ISORR wetdep SOA 

Stage 1 0.88 −3.32 0.94 −0.002 −0.28 0.00 −0.02 0.44 0.00 0.02 

Stage 2 0.82 0.03 0.58 −0.01 −0.34 0.00 −0.03 0.71 0.00 0.02 

Stage 3 0.88 0.18 −1.45 −0.01 −0.57 0.00 −0.04 1.07 0.00 0.04 

Stage 4 0.63 −13.26 0.71 −0.002 −0.22 0.00 −0.03 0.32 0.00 0.003 
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 958 

Figure 1. Graph theory of the QDA method. The total area of the colour graphics represents the hourly change in the PM2.5 959 
concentration between t and t+1, which can be resolved into seven quantitative analytical factors—see Table 1 for meanings of the 960 
abbreviations. 961 

 962 
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 964 

Figure 2. Flow chart of the QDA method [see Eqs. (15)–(24) in Sect. 2.3 for the QDA post-processing module]. 965 

https://doi.org/10.5194/gmd-2023-22
Preprint. Discussion started: 2 May 2023
c© Author(s) 2023. CC BY 4.0 License.



35 
 

 966 

Figure 3. (a) Model domain and (b) observation sites in Beijing for the evaluation in this study. 967 
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 969 

Figure 4. Observations (OBS) and simulation results (MOD) for (a) PM2.5, (b) NO2 and (c) SO2 in Beijing. All simulation and 970 
observation results are averaged over the Beijing area. The three grey dotted lines indicate 35, 75 and 115 µg∙m−3.  971 

 972 

 973 

 974 

 975 

 976 

 977 
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 981 

Figure 5. (a) QDA results and PM2.5 hourly concentration change (black line) between adjacent hours and (b) scatterplot of the sum 982 
of all contributions versus the PM2.5 hourly concentration change. The scattered points all fall on the 1:1 diagonal line, indicating 983 
that the PM2.5 concentration change can be fully resolved by the QDA results. 984 

 985 

 986 

 987 

 988 
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 991 

Figure 6. Vertical mean hourly contribution of each factor in (a–d) QDA and (e–h) its IPR results that influence the hourly mean 992 
PM2.5 change within the model height in different stages. There is correspondence between the upper and lower subgraphs and the 993 
bar values are available in Tables 4 and 5. Taking the M bar in (a) for example, M is composed of six contributing parts as displayed 994 
in the M bar of (e): ‘advhor’, ‘advvert’, ‘difhor’, ‘difvert’, ‘drydep’ and ‘wetdep’, respectively.  995 

 996 

 997 
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 1001 

Figure 7. Vertical process decomposition of the QDA results in stage 2 (the black arrow and coloured lines indicate the average 1002 
change in the PM2.5 concentration, and the results for other stages are shown in Figs. S7–S9; unit: µg∙m−3∙h-1). The layer heights, 1003 
L1–L12 are: 112, 222, 361, 531, 740, 989, 1279, 1627, 2046, 2555, 3163, and 3890 m.  1004 
 1005 

 1006 

 1007 

 1008 
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 1009 

Figure 8. QDA results for (a–d) NOx, (e–h) SO2, (i–l) NH3, (m–p) nitrate, (q–t) sulfate, and (u–x) ammonium, during different stages 1010 
of the episode.  1011 
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 1015 

Figure 9. Vertical distribution of (a) RH, (b) temperature and (c) wind field from 17 to 28 February 2014 over the Beijing area in a 1016 
sigma-p vertical coordinate. The white dotted frames in (b) represent a temperature inversion. The vector diagram in (c) represents 1017 
the horizontal wind field, and the shading denotes the wind speed. 1018 
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