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Abstract. Dust storms pose significant risks to health and property, necessitating accurate forecasting for preventive measures.

Despite advancements, dust models grapple with uncertainties arising from emission and transport processes. Data assimilation

addresses these by integrating observations to rectify model error, enhancing forecast precision. The Ensemble Kalman Filter

(EnKF) is a widely-used assimilation algorithm that effectively optimize model states, particularly in terms of intensity adjust-

ment. However, the EnKF’s efficacy is challenged by position errors between modeled and observed dust features, especially5

under substantial position errors. This study introduces the Valid Time Shifting-Ensemble Kalman Filter (VTS-EnKF) which

combines stochastic EnKF with a valid time shifting mechanism. By recruiting additional ensemble members from neighboring

valid times, this method not only accommodates variations in dust load but also explicitly accounts for positional uncertainties.

Consequently, the enlarged ensemble better represents both the intensity and positional errors, thereby optimizing the utiliza-

tion of observational data. The proposed VTS-EnKF was evaluated against two severe dust storm cases from spring 2021,10

demonstrating that position errors notably deteriorated forecast performance in terms of Root Mean Square Error (RMSE) and

Normalized Mean Bias (NMB), impeding the EnKF’s effective assimilation. Conversely, the VTS-EnKF improved both the

analysis and forecast accuracy compared to the conventional EnKF. Additionally, to provide a more rigorous assessment of its

performance, experiments were conducted using fewer ensemble members and different time intervals.

1 Introduction15

Dust storms, identified as natural meteorological disasters, are phenomena closely associated with the prevalence of potent

winds over arid regions with a loosely packed soil composition (Zhang et al., 2005; An et al., 2018). These storms enable

dust particulates to ascend to remarkable heights, traversing distances of thousands of kilometers, with documented aerosol
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concentrations soaring to thousands µg m−3(She et al., 2018). During transportation, these aerosols further participate in

heterogeneous chemical reactions with SOx and NOx, exacerbating the severity of aerosol pollution (Song et al., 2022), thereby20

significantly endangering human health through respiratory and circulatory system impairments (Gross et al., 2018; Goudie,

2014). East Asia, a dominant source and recipient of dust activity (Hu et al., 2019), has witnessed intensified scholarly focus.

Notably, the spring of 2021 observed the onslaught of several super dust storms—unprecedented in intensity and geographical

span over the past decade (Filonchyk and Peterson, 2022)—resulting in substantial life and property losses across Mongolia and

China (Gui et al., 2022; Jin et al., 2022; Tang et al., 2022). Consequently, the imperative for an accurate and timely forecasting25

system to dust storms is accentuated, aiming to mitigate their detrimental impacts.

In recent years, heightened public concern has fueled advancements in deciphering the physical mechanisms governing

dust cycle dynamics, leading to significant strides since the 1990s. To accurately replicate dust storm behavior, numerous dust

emission parameterization schemes have been devised, including MB95 (Marticorena and Bergametti, 1995), Shao96 (Shao

et al., 1996; Shao, 2004), Zender03 (Zender et al., 2003), and the more recent K14 (Kok et al., 2014). Integrated within chemical30

transport models, these frameworks facilitate dust storm modeling exercises, exemplified by systems such as CUACE/DUST

(Gong and Zhang, 2008), BSC-DREAM8b (Pérez et al., 2006; Mona et al., 2014), GEOS-Chem (Duncan Fairlie et al., 2007),

and LOTOS-EUROS (Timmermans et al., 2017; Manders et al., 2017). These models are instrumental in assessing health

hazards, quantifying the planet’s ecosystem responses, elucidating large-scale climate drivers, and, importantly, informing the

development of early warning systems capable of predicting imminent dust loads within timescales ranging from hours to35

days. Despite these advancements, the forecast skill of such models remains constrained by inherent uncertainties tied to input

variables—such as wind velocity fields and initial/boundary conditions—as well as computational approximations necessitated

by coarse spatial and temporal resolutions (Mallet and Sportisse, 2006). Of particular note, the scientific consensus highlights

the emission parameterization uncertainty as the paramount source of error in dust storm simulations (Ginoux et al., 2001, 2012;

Di Tomaso et al., 2017, 2022; Jin et al., 2019a, b). Consequently, the predictive prowess of numerical dust models is notably40

compromised under the weight of these combined limitations.

Observational studies constitute another pivotal approach in elucidating the intensity and spatial dispersion of dust storms

(Muhammad Akhlaq et al., 2012). Among these, satellite-based monitoring technologies have rapidly evolved into a prevalent

tool for dust storm detection, offering expansive and detailed insights (Gui et al., 2022). Platforms like MODIS, Himawari, and

Fengyun-4A deliver a wealth of data on aerosol characteristics, characterized by high spatial resolution and global coverage.45

Nonetheless, these satellite products aggregate column-integrated information and are prone to interference from cloud cover

and other atmospheric constituents, thereby introducing substantial uncertainties and biases into dust load estimates. Conse-

quently, preprocessing is imperative to ensure their reliability in depicting actual dust concentrations (Jin et al., 2019b, 2022).

Concurrently, ground-based observational networks, known for their reliability and fine temporal resolution, play a crucial

role in precisely measuring aerosol concentrations (She et al., 2018). China, in particular, has made substantial investments50

in constructing its ground monitoring infrastructure, establishing an expansive network comprising over 1,600 stations nation-

wide. This dense grid of ground stations furnishes a granular view of dust plume dynamics across the region (Gui et al., 2022),
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enriching the dataset for examining East Asian dust storms and reinforcing the national observation network’s capacity for

comprehensive dust research.

Data assimilation stands as a potent methodology that harmoniously merges model with observations. Rooted in Bayesian55

principles, its objective is to ascertain the most plausible model state posterior, given the available observations, through

probabilistic estimation (Law and Stuart, 2012). The realm of data assimilation encompasses two principal methodologies:

variational techniques and filtering algorithms. Variational methodologies, exemplified by 4DVar, strive to determine an op-

timal analysis that reconciles both prior knowledge and observational constraints over a defined temporal span, achieved by

optimizing a predefined cost function (Rabier and Liu, 2003). These methods are prominently employed in tasks such as inverse60

modeling for initial conditions and emission fields (Jin et al., 2022; Bergamaschi et al., 2010; Corazza et al., 2011), as well as

in reanalysis endeavors. However, their implementation hinges on the often intricate development and maintenance of tangent

linear or adjoint model forms. Furthermore, the computational burden associated with minimizing the cost function escalates

dramatically with the complexity and dimensionality of the models. Conversely, filtering methodologies assimilate observa-

tions sequentially, aligning them favorably with operational forecasting frameworks. This class includes the Kalman Filter65

(Kalman, 1960), its extension in the Extended Kalman Filter (Brunner et al., 2012), and the more sophisticated Particle Filter

(Leeuwen et al., 2019). Prominent among these is the Ensemble Kalman Filter (EnKF), distinguished for its adeptness at man-

aging high-dimensional systems, amenability to parallel computation (Evensen, 1994; Katzfuss et al., 2016; Houtekamer and

Zhang, 2016), and reliance on ensemble members to infer background error covariance structures (Hamill, 2006; Houtekamer

et al., 2014). Its virtues encompass nonlinearity accommodation, dispensing with the necessity for explicit tangent linear calcu-70

lations, and computational efficacy (Bannister, 2017), rendering it a favored tool across domains, including weather prediction

(Houtekamer et al., 2005) and hydrological studies (Reichle et al., 2002). Despite these strengths, the EnKF, as an extension of

the Kalman Filter, presumes Gaussian error distributions (Amezcua and Van Leeuwen, 2014). When dealing with non-Gaussian

error statistics, EnKF can create suboptimal outcomes for the linearized dynamics or operators and sampling errors caused by

finite ensemble members (Lei et al., 2010).75

Uncertainty in dust storm modeling predominantly stems from the real-time estimation of dust emissions, leading to a re-

search emphasis on emission inversion through data assimilation techniques. Studies such as those conducted by Yumimoto

and Takemura (2015) leveraged long-term MODIS Aerosol Optical Depth (AOD) retrievals for emission inversion across Asia.

Similarly, Escribano et al. (2017) underscored the varying impact of distinct satellite AOD datasets on emission inversions over

northern Africa and the Arabian Peninsula, revealing instances where model uncertainties outweigh observational uncertainties80

in determining assimilation outcomes. Building upon this foundation, recent investigations have delved deeper into the intri-

cacies of dust emission variability in the Mongolian and Chinese Gobi deserts. This includes the assimilation of ground-level

PM10 concentrations (Jin et al., 2018), polar-orbiting MODIS satellite data (Jin et al., 2022), and geostationary Himawari-8

AOD measurements (Jin et al., 2019b). To refine emission inversion processes, innovations like observation bias correction

(Jin et al., 2019a), adjoint-based emission source tracking (Jin et al., 2020), and grid adjustment methodologies (Jin et al.,85

2021) have been introduced, significantly advancing our understanding of dust emission dynamics and their environmental and

climatic implications. Despite these advancements, the application of sequential forecasting methodologies utilizing filtering
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techniques for dust storms has received limited exploration. To address this gap, we have recently engineered an operational

dust forecasting framework that integrates Ensemble Kalman Filter (EnKF) with the LOTOS-EUROS model. This integra-

tion is facilitated by our custom assimilation software, Pyfilter (Pang, last access: May. 2024). Testing this system against the90

backdrop of the record-breaking dust storms of spring 2021 has demonstrated marked improvements in both the assimilated

analyses and forecast results compared to standalone model forecasts. Notably, when configured with an appropriate localiza-

tion radius, it consistently outperformed the EnKF, highlighting the potential for localized filters in enhancing the precision of

dust storm forecasting.

Despite the encouraging outcomes of our experimental assessments, several challenges persist, chief among them being95

a spatial misalignment between model forecast and observations following long-distance dust transport. This disparity not

only encompasses discrepancies in the estimated dust intensity but also manifests in inaccuracies regarding the timing of dust

arrival and departure, as will be elaborated in Sect. 2.4. In the context of dust storm forecasting evaluation, both the intensity

and the position accuracy of the dust plume are paramount. Intensity directly correlates with the amount of airborne dust,

while the position is vital for understanding where the dust plume affects at a given instant. For operational forecasting and100

warning systems, pinpointing the correct location of impending dust impacts can carry even greater urgency than estimating

dust load precisely. Quantitatively, these spatial mismatches significantly deteriorate the forecast performance when evaluated

using conventional measures like the root mean square error (RMSE). The underlying causes of this spatial discrepancy and its

broader ramifications on forecasting efficacy will be meticulously examined in Sect. 3.2.

The phenomenon labeled as "position error" in dust aerosol simulations typically emerges following long-distance transport.105

This error is multifaceted, stemming from a constellation of factors including the simplification of physical processes in models,

coarse spatial and temporal resolutions, indeterminate values of physical parameters (Ravela et al., 2007), and uncertainties

inherent to both meteorological inputs and the precise timing of dust emissions, as we previously highlighted (Jin et al., 2021).

Resembling the issues encountered in dust emission inversion, discrepancies between model forecast and observations in dust

storm data assimilation efforts can also be traced back to uncertainties in dust emission estimates, where ensemble simulations110

incorporate varied emission scenarios. The challenge lies in the quantification of position error and its subsequent inaccurate

formulation of the background error covariance matrix. Consequently, EnKF calibrates both intensity and position error, while

it cannot handle position errors if the ensemble is under-dispersive with regard to position. This deficiency curtails the capacity

of current assimilation methodologies to correct position error.

Position error is not an occasional issue. Instead, it is a error that accumulates as simulations progress, plaguing forecasts115

such as hurricanes, dust storms, convective thunderstorms, and precipitation (Dance, 2004; Nehrkorn et al., 2015; Jin et al.,

2021). However, efforts explicitly targeting the mitigation of this error have been relatively scarce. One pioneering study

by Brewster (2003) outlined an objective methodology to pinpoint and rectify position errors leveraging a wealth of high-

resolution, densely deployed observational data. Their findings in Observing System Simulation Experiments (OSSEs) affirmed

the feasibility of correcting positiona errors. Jin et al. (2021) developed a grid distortion strategy grounded in image morphing120

techniques for post-processing, effectively realigning modeled dust plumes to conform more closely with observations. While

these enhancements underscore the potential for addressing position errors, their efficacy hinges critically on the availability of
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a comprehensive and closely spaced observational network. Regrettably, in many practical scenarios, observational coverage

is patchy and incomplete, curtailing the broad application of these corrective measures.

In this paper, the EnKF is coupled with a Valid Time Shifting (VTS) strategy, referred to henceforth as VTS-EnKF, specif-125

ically tailored to mitigate position errors prevalent in long-distance dust storm transport. The VTS methodology, inspired by

prior works such as Xu et al. (2008); Lu et al. (2011); Zhao et al. (2015); Huang and Wang (2018), augments the EnKF by

incorporating temporal flexibility to better align simulated dust plumes with observations. In practice, the VTS-EnKF enhances

the background error covariance estimation for each assimilation cycle by considering not solely the immediate ensemble mem-

bers but also those from neighboring time points, slightly before and after the target moment (Gasperoni et al., 2022, 2023).130

By doing so, this approach encapsulates a broader range of potential dust plume positions, thereby inherently compensating

for transport-related inaccuracies without necessitating intricate adjustments to observations, meteorological inputs, or other

underlying physical parameters. The efficacy of the VTS-EnKF was assessed against two severe dust storm events that oc-

curred in 2021. Our findings underscore the substantial improvement offered by this hybrid method over EnKF, particularly in

scenarios where significant position errors are evident in model prior. This advancement paves the way for more precise and135

temporally coherent dust storm forecasting, especially amidst the complexities of long-distance transport.

This paper is organized as follows: Section 2 introduces the dust measurements and dust model used in the research. We also

discuss that the major uncertainty of dust model forecast comes from the emission. But there is another problem: position error

that remains to be solved. Then in Sect. 3, we explain introducing the procedure of ensemble-based assimilation algorithm

and the mechanism of position error’s negative effect on EnKF. How the new assimilation method works is explained in detail140

afterwards. To test the performance of EnKF with VTS, sequential assimilation experiments on several dust storm events are

designed. Section 4 analyses the results of experiments in terms of both the assimilation analysis and forecast performance.

Section 5 concludes this paper.

2 Dust observation, model and position error

In this paper, ground-based PM10 is used as the dust observation to be assimilated after a bias-correction procedure to remove145

the non-dust part. The dust model adopted is the LOTOS-EUROS. Considering the model processes, the greatest uncertainty

in the dust simulation comes from uncertainty the emission parameterization. Meanwhile, uncertainties from meteorology can

also influence the model forecast and lead to the "Position error".

2.1 Ground PM10 observations

Thanks to the continuous efforts and investments from the Ministry of Ecology and Environment, over 1600 ground monitoring150

stations have been established across China, with some locations in northern China shown in Fig. 1. These stations provide

real-time hourly air quality data, and their hourly PM10 concentrations serve as indispensable datasets for measuring dust load,

which are used as observations to be assimilated in this paper.
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Despite the advantages of low uncertainty and high time resolution, PM10 observations are not assimilated directly due to

the mixed state of dust and non-dust aerosols in the original PM10 data. Anthropogenic activities, such as vehicle emissions,155

coal burning, and industrial processes (Wu et al., 2018; Liu et al., 2018), along with natural sources like volcanic eruptions, sea

spray, wildfires, and wind-blown dust contribute to the total PM10 concentration. Assimilating PM10 data directly into a dust

model may introduce biases and lead to model divergence (Jin et al., 2019a). Therefore, it is necessary to eliminate the bias

before data assimilation.

In this study, the non-dust portion of PM10 is approximated through a separate model. The dust observations assimilated are160

calculated by subtracting the non-dust fraction from the original PM10 measurements. Further details regarding the baseline

removal (BR) can be found in Jin et al. (2022).

2.2 Dust model

In this paper, the LOTOS-EUROS v2.1 is used to simulate dust storms that occurred in East Asia. Originating from the Long-

Term Ozone Simulation (LOTOS) and the European Operational Smog model (EUROS) in the 1980s, LOTOS-EUROS has165

undergone continuous development for various applications. It has been widely used in air quality forecasting (Curier et al.,

2012; Brasseur et al., 2019; Lopez-Restrepo et al., 2020; Skoulidou et al., 2021), dust/aerosol emission inversion (Yarce Botero

et al., 2021; Jin et al., 2018, 2019a, b, 2021, 2022), and source apportionment (Kranenburg et al., 2013; Timmermans et al.,

2017; Pommier et al., 2020; Jin et al., 2020). In spring 2021, several super dust storm events occurred in East Asia, around 15th

March, 28th March. These events, referred to as DSE1 and DSE2, are used as test cases in this study. These dust storms caused170

significant losses in both Mongolia and China (Jin, 2021; Chen and Walsh, 2021). Accurate forecast of such severe sandstorms

is crucial for reducing health and property damages.

To simulate the dust storm over East Asia, LOTOS-EUROS is configured following our recent work (Jin et al., 2022): The

simulation domain is from 15◦ N to 50◦ N and 70◦ E to 140◦ E with a grid resolution of 0.25◦ × 0.25◦. The model consists of

8 layers with a top at 10 km. The boundary conditions are set to zero assuming that all the dust aerosols are emitted during the175

simulation window. Dust emission, deposition, advection, diffusion and dry/wet deposition are considered within the model.

The model output is at the interval of 1 hour.

The whole model simulation period is set from 13 to 17 March for DSE1 and 27 to 30 March for DSE2, which covering the

whole life cycles of emission and long-distance transport. More details could be found in Jin et al. (2022).

2.3 Uncertainties from emission and meteorology180

The goal of this study is to calculate the dust concentration field that best fits both the a priori and observations at each

assimilation analysis. The optimized field will then be used as the initial condition for sequential dust forecasts, as explained in

Section 3.1. It is essential to define and quantify the uncertainty in dust simulations. As previously mentioned, the uncertainty

in emission parameterization is widely believed to be the dominant error source in dust simulation (Ginoux et al., 2001, 2012;

Di Tomaso et al., 2017, 2022; Jin et al., 2019a, b). High levels of uncertainty in dust emission parameterization arise from185

insufficient knowledge about windblown erosion, lack of accurate input on soil characteristics, and the models’ inability to
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resolve the fine-scale variability in wind fields governing dust emission (Escribano et al., 2017; Foroutan et al., 2017; Foroutan

and Pleim, 2017; Jin et al., 2019b).

In our recent work (Jin et al., 2022), a 4DVar-based inverse modeling approach was employed to retrieve an optimal emission

field for the three major dust storms in spring 2021 (Jin et al., 2022). The a priori emission, f priori, followed the Zender03 dust190

emission parameterization scheme (Zender et al., 2003). To compensate for potential errors, a spatially varying multiplication

factor was introduced. Mathematically, it was quantified by a background error covariance matrix, B, to describe the potential

spread of the actual dust emission flux.

Another source of the uncertainties arises from the meteorological field. In our previous papers, uncertainties from meteo-

rology and the position error were neither taken into account (Jin et al., 2022; Pang et al., 2023). In this paper, European Center195

for Medium-ranged Weather Forecast (ECMWF) ensemble forecast (totally 51 ensemble members) are used. Each one of the

model ensemble members is driven by one unique ensemble meteorology field. Its grid resolution is about 14 km. The 6-hourly

short-term meteorological forecast field is interpolated to hourly values and re-gridded to match the model resolution.

In general, we assign the dust simulation uncertainty to both emission and meteorology. Ensemble emission field [f1, ...,fN]

are generated randomly following the emission uncertainty choice f priori and B in Jin et al. (2022). Meteorologic field200

[w1, ...,wN] are randomly selected from the total 51 ensemble meteorology. They are used to forward the LOTOS-EUROS

model M for the ensemble dust simulations [x1, ...,xN] as:

[x1, ... ,xN] = [M(f1,w1), ... , M(fN,wN)] (1)

N refers to the total ensemble number, and the choice will be explained in Section 3.3.

These ensemble individuals are used in the EnKF assimilation for representing the covariance dynamics of the dust plume,205

which resulted in more accurate dust analysis and forecast as will be shown in Sect. 4. However, the ensemble realizations

mainly represent the uncertainty in the intensity feature, and hardly help resolve the positional deviation between the observa-

tion and simulation. The presence of position error would give rise to a divergent assimilation analysis as will be illustrated in

Sect. 3.1.

2.4 Position error210

For all the dust events, most of the dust particles were originated from the Mongolia Gobi desert, and carried by the prevailing

wind towards southeast. After several thousands of kilometers transport which lasted about one to two days, they finally arrived

in the densely-populated northern China.

Position errors are clearly visible in the simulation of two dust events (DSE1 and DSE2). Examples can be best seen in

Fig. 1, which plots the evolution of LOTOS-EUROS simulated surface dust concentration alongside BR-PM10 (BR: non-dust215

baseline-removed) concentration observations for DSE1 (panel a) and DSE2 (panel c). The corresponding standard deviations

from ensemble model simulations and the model-minus-observation differences (absolute values) are also plotted in panel b

and panel d. In panel a.1, the model generally simulates a similar shape of the dust plume as indicated by the observations at

the first instance, though the dust load intensities differ to some extent. However, during the subsequent transport, positional
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errors arise gradually. In panel a.2, the right part of the simulated dust plume is positioned about 100 to 200 km too far south220

compared to ground-based observations. Consequently, the Root Mean Square Error (RMSE) increases significantly from

587.83 µg m−3at 8:00 to 856.36 µg m−3at 11:00. This position error continues to accumulate over the following 3 hours at

14:00. The development of position errors is further clearly visible against the PM10 observations, especially in the light blue

box in panel a.3. The model simulation missed all the dust load there, while the observations indicate a significant amount

of dust aerosols. It can also be seen in panel b.3 that the model-minus-observation differences exceed 1000 µg m−3there.225

Similarly, for DSE2 occurring on 28th March, 2021, as shown in Fig. 1(c), discrepancies between observations and simulation

become more explicit as time evolves, especially for the dust in the light blue box in panels c.1 and c.2. The RMSE remains

high from 542.15 µg m−3at 8:00 to 479.6 µg m−3at 11:00, and this error expands to a wider extent as shown in the enlarged

green box in panel c.3. This position error not only limits the model forecast performance but also significantly degrades the

subsequent assimilation analysis and forecast. With an ensemble-approximated background covariance unrepresentative of230

position error, neither the position deviation nor the intensity deviation can be fully resolved, as will be explained in Sect. 3.2.

Potential sources of position error in dust model may be attributed to inaccuracies in emission timing, uncertainties in mete-

orological input data (e.g., wind fields responsible for transporting dust plumes from the Gobi Desert in Mongolia and China

to downwind regions), or a combination of these factors. Adjusting the emission timing profile, which characterizes the release

of soil particles into the atmosphere, could partially correct the position of the dust plume. Moreover, alterations in meteo-235

rological conditions governing long-distance transport might also realign the dust plume’s position. To address the position

error, a comprehensive covariance matrix is necessary to account for both the potential variations in emission temporal profiles

and the accumulation of uncertainties along the plume’s extensive trajectory. Concurrently, a significantly larger ensemble size

is required to propagate these uncertainties, featuring high degrees of freedom, into the PM10 observational space. Although

a sophisticated covariance matrix and a substantial ensemble size (resulting in considerable computational cost) may aid the240

EnKF in simultaneously resolving position and intensity errors, this approach is often prohibitively expensive. Therefore, an

efficient and cost-effective alternative solution is required.

3 Assimilation methodology and experiments

EnKF is a powerful algorithm to tune the model simulation with observations especially in intensity adjustment given the

perturbed emission spreads. However, when faced with the position error, its weakness is exposed that some model-minus-245

observation inconsistency cannot be resolved by EnKF as illustrated in Section 3.1. On the contrary, our EnKF with VTS can

correct both the position error and the intensity. Assimilation strategy is designed and embeded into a assimilation forecast

system in Section 3.2. Experiments are designed on the dust storms occur in spring, 2021, which are illutrated in Section 3.3.

3.1 EnKF

The Ensemble Kalman Filter (EnKF) was first proposed by Evensen (1994). Stemming from the Kalman Filter, it was designed250

to address high-dimensional problems by employing limited ensemble members to approximate the true background error
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Figure 1. Evolution of the simulated dust plume from average of ensemble members (a.1-3). Their corresponding standard deviation from

ensemble members (b.1-3) at 08:00, 11:00 and 14:00 15th March, 2021, respectively. Figures below are the same except the time is at

05:00 (c.1 and d.1), 08:00 (c.2 and d.2), 11:00 (c.3 and d.3) 28th March, 2021, respectively. The filled circles represent ground BR-PM10

observations in (a) and (c), and the model-minus-observation differences (absolute value) at various observation sites in (b) and (d). The

colorbar in panel a and c represents the concentrations, and the colorbar in panel b and d represents the model-minus-observation differences

(left) and standard deviation (right). BR-PM10: baseline-removed PM10. CST: China Standard Time.
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covariance. It relies on the Gaussian distribution of errors. The EnKF has been proven to be practical and efficient in various

applications, particularly in sequential forecasting with the aid of localization (Lopez-Restrepo et al., 2020; Park et al., 2022). In

any sequential forecast system, the objective of assimilation analysis is to provide an optimized initial state or parameter field,

which, in this study, corresponds to the 3D dust concentration. This is achieved by assimilating the available measurements.255

The estimated dust concentration field can then be used to onward the model for more accurate dust forecasting.

Here we use the stochastic EnKF formulated by Burgers et al. (1998). It features the perturbated observations to maintain a

reliable ensemble spread. Starting from the prior dust concentration field xf,i
t at time t which is calculated by model integral

operator M from the dust concentration field at the previous time step xa,i
t−1.

xf,i
t =M(xa,i

t−1,f
i,wi) (2)260

Xf = [xf,1
t ,xf,2

t , · · · ,xf,N
t ] (3)

Note that for the first analysis the prior dust simulation are extracted from the model with the perturbed emissions as shown in

Eq. 1. The i represents the ensemble individual number. N is the number of ensemble. Xf is the ensemble model simulation

matrix consists of the whole ensemble individuals.265

The ensemble perturbation matrix Xf ′ calculates the deviation between the ensemble individuals xf,i
t and the ensemble

mean state xf
t .

xf
t =

1

N

N∑
i=1

xf,i
t (4)

Xf ′ = [xf,1
t −xf

t ,x
f,2
t −xf

t , · · · ,x
f,N
t −xf

t ] (5)270

Then the background error covariance matrix Pf is approximated by Xf ′ as follows:

Pf =
1

N− 1
Xf ′Xf ′T (6)

Afterwards, the Kalman gain K can be calculated with Pf and O.

K=PfHT(HPfHT +O)−1 (7)

K weights the increments given from the observations to the prior estimation. In this paper, they are the BR-PM10 observa-275

tions stored in y and dust simulation stored in vector x. H is the observation operator which maps the model states into the

observational space.

O is the observational error covariance matrix that weights the uncertainty of the measurements. In this case, it is the

uncertainties from ground-based BR-PM10 concentrations. O is defined as follows: the minimum uncertainty threshold is set
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to be 200 µg m−3. Standard deviation of observation error below the threshold is set to be 200 µg m−3and those over it is set280

to be 200+(y-200)×0.2 µg m−3. This definition can prevent the posteriori from getting too close to the low value observations

and thus leading to model divergence. O is a diagonal matrix assuming that all the observations are independent.

In the end, the posteriori estimation individual xa,i
t can be updated as follows:

xa,i
t = xf,i

t +K(y+ ϵi −Hxf,i
t ) (8)

ϵi represents the sampling error vector. It is a random vector subjecting to normal distribution. Its mean is 0 and variance is the285

root of diagonal from O.

The equations presented above describe the Ensemble Kalman Filter (EnKF) algorithm for dust storm assimilation, which

focuses on intensity adjustment. The EnKF assimilation aims to compute an optimal posteriori estimation given a priori infor-

mation and observations. It is highly dependent on both the observations and the ensemble spread. In fact, the ensemble-based

background covariance matrix, Pf , utilizes the ensemble members to approximate the true background covariance. The perfor-290

mance of EnKF deteriorates when position errors are present. The underlying mechanism can be best understood by examining

Fig. 2(a). At time point t0, there are ensemble model simulations (gray dashed lines) distributed across the three-dimensional

space. The black line and blue star represent the average of model ensemble and observations, respectively. As clearly depicted,

there is a positional mismatch between the ensemble model simulations and observations. Following the assimilation analysis,

the intensity of the dust plume is adjusted to better match the observations. However, in the spatial domain outside the priori,295

the dust concentration is reduced to near-zero levels. The observations in this area, containing valuable information about dust

load, contribute little to correcting the dust load. This is due to the unanimous agreement on the dust load from the model

ensemble, which represents low uncertainty. In such cases, the assimilation analysis favors the model results and disregards the

observations. Consequently, the a posteriori estimate is biased as a result of ensemble underdispersion.

3.2 VTS-EnKF300

To efficiently perform the assimilation analysis with both the intensity and position errors present, we apply a "valid time

shifting" method into the EnKF. The strategy is illustrated in Fig. 2(b). Instead of using the ensemble simulations solely at the

exact assimilation analysis instant t0, as shown in panel a, ensemble members at neighboring moments are also introduced to

expand the ensemble group. These resampled ensemble members at neighboring times represent the potential positions of the

actual dust plume. The enlarged ensemble exhibit a more extensive spread of the dust plume in the spatial domain compared to305

those displayed in panel a. The joint ensemble model simulations then capture uncertainty in both intensity and position. The

a posteriori estimate (red line) is adjusted to better fit the observations, with both of these errors resolved.

Mathematically, the EnKF with VTS procedures are very similar to those of EnKF, except that the original Xf is replaced

by Xf,new, which stores the enlarged ensemble members at the assimilation analysis instant and neighboring times. It starts

with310

Xf,new = [xf,1
t−τ ,x

f,2
t−τ , · · · ,x

f,N
t−τ ,x

f,1
t ,xf,2

t , · · · ,xf,N
t ,xf,1

t+τ ,x
f,2
t+τ , · · · ,x

f,N
t+τ ] (9)
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Let t be the exact assimilation time, and τ be the time interval. Then t−τ represents the time in the past, and t+τ represents

the time in the future. It is noteworthy that the time axis, denoted by t−τ and t+τ , is utilized solely to illustrate the application

of ensemble simulations at different time direction in the formula. However, in practical applications, ensemble members from

multiple adjacent time instants can be incorporated, as demonstrated in the horizon choice utilized in this study (as presented315

in Table 1).

Subsequently, the ensemble-based background covariance Pf , Kalman gain K and posteriori state xa will be updated with

the Xf,new in Eq. 6 ∼ 8, respectively.

Figure 2. Strategy illustration of ensemble Kalman filter (EnKF) (a) and ensemble Kalman filter with VTS (VTS-EnKF) (b). Figure axis left

represents the time and right represents the position of the dust field in 3D space. The vertical axis represents the intensity of the dust.

The localization method is also adopted here to cut off the spurious correlation in Pf and constrain the background covari-

ance to a certain distance. The localization matrix is constructed following Gaspari and Cohn (1999) (Eq. A.27) with a distance320

threshold Lthres. The details about the construction of L can be found in Supporting Information. The localized Pf,local is

obtained by point to point multiply with localization matrix L.

Pf,local =Pf ◦L (10)

With the localized Pf,local, the localized posteriori estimation xa,i
t can be updated via Eq. 7 and Eq. 8.

Both the EnKF and EnKF with VTS described above are embeded into our self-designed assimilation toolbox, PyFilter325

(Pang, last access: May. 2024). This toolbox features a flexible interface for linking to numerical models (Pang et al., 2023),

such as the dust storm forecasting model LOTOS-EUROS used in this study.

12



3.3 Experiment descriptions

DSE1 and DSE2 are chosen as the cases for the test. The BC-PM10 observations are assimilated. The first assimilation analysis

did not commence until the dust plume was detected by the ground-based observation network and a position mismatch330

emerged. An identification index is also designed to objectively discriminate the position error as can be found in Eq. S6

in Supplementary. Three sequential EnKF analyses are conducted in each dust event at three-hour intervals. The timeline for

DSE1 and DSE2 is depicted in Fig. 3.

Taking DSE1 as an example, the initial assimilation analysis is performed at 11:00 March 15, when an apparent position

error was present, as illustrated in Fig. 1 (a.2). The last analysis is carried out at 17:00 March 15. As the dust loading decreases335

rapidly when the plume moves further southeast, no additional assimilation is performed. A rolling forecast (red line with

arrow) is generated based on the optimized dust concentration field with a 24-hour horizon for the purpose of examining

forecast skill.

Mar 13 Mar 14 Mar 15

dust emission

long-distance transport

08:00 11:00 14:00 17:00

arrived in northern China

Mar 16

Mar 27 Mar 28 Mar 29

(a) DSE1

(b) DSE2

Prior

Forecast with a
horizon of 24 hours

VTS-EnKF analysis

EnKF analysis

08:00 11:00 14:00 17:00

Figure 3. Sequential assimilation time set for DSE1 (a) and DSE2 (b). Take DSE1 for instance, the assimilation analysis is performed at the

intervals of 3 hours from 11:00 to 17:00 and the rolling forecast is made with a horizon of 24 hours based on the assimilation analysis. The

EnKF with VTS and EnKF is performed in turn.

To evaluate the performance of the VTS-EnKF-implemented dust storm forecasting system, data assimilation experiments

are conducted on two spring dust events in 2021. Experiment settings are shown in Table 1. Control represents the ensemble340
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model forecast throughout the entire dust storm period. Basic and L500 denote the assimilation-based forecasts by EnKF and

localized EnKF (LEnKF) with a localization distance threshold of 500 km, respectively. VTS-EnKF and VTS-L500 represent the

assimilation-based forecasts by VTS-EnKF and VTS-EnKF with a localization distance threshold of 500 km. Note that various

distance thresholds have been tested for localization, and a choice of 500 km is found to provide the optimal assimilation

analysis and forecast in our tested cases. The metrics, Root Mean Square Error (RMSE) and Normalized Mean Bias (NMB),345

are employed in this paper to evaluate system performance. Calculation of the metrics is mentioned in supporting information.

In EnKF-based experiments, Basic and L500, the ensemble number N is set to 32, which is found to be sufficient to represent

the uncertainty in the dust simulation while remaining computationally affordable. Testing with N greater than 32 shows

only limited improvements. For VTS-EnKF experiments, the ensemble is expanded as they incorporate simulations from

neighboring instants. To cover the potential positions of the dust plume, neighboring times with ±1 and ±2 hours apart are350

empirically chosen in this paper. As demonstrated in Table 1, the ensemble number is extended to 160 when EnKF with VTS

is applied, and the neighboring time stamps of 9:00, 10:00, 12:00, and 13:00 are selected. The 160 ensemble dust simulations

are updated according to the EnKF principles and forwarded synchronously for the new rolling forecast; they will serve as the

prior in the subsequent assimilation analysis.

Experiments for the VTS-EnKF with equal ensemble members to EnKF are designed, as referred to VTS-EnKF-small and355

VTS-L500-small. They start with central 8 ensemble members and are extended to 32 by incorporating neighboring ±1 and ±2

hours with 4×6 ensemble members. Furthermore, to test the sensitivity of neighboring time interval, VTS-EnKF experiments

with different intervals are also designed. Time intervals ranging from 1 to 5 hours are selected to test the impact, which are

referred to as VTS-EnKF-t1, VTS-EnKF-t2, VTS-EnKF-t3, VTS-EnKF-t4 and VTS-EnKF-t5.

4 Results and discussions360

The results are discussed in the aspects of assimilation analysis and model forecast. The benefits of using our EnKF with VTS

algorithm for the dust storm simulation with position errors are emphasized.

4.1 Impact on assimilation analysis

There are noticeable position errors arise with the transport of dust storm. It is clearly shown in Fig. 1 (b,d) that the spatial

distribution of the standard deviation (square root of the diagonal values in Pf ) from 32 model ensemble members, along with365

the scatter of absolute model-minus-observation differences in two cases (DSE1, DSE2). In general, their spatial distribution

corresponds well to the simulated dust field depicted in Fig. 1 (a, c). Concurrently, the uncertainty in the light blue box decreases

rapidly as the simulated dust plume moves southward, as illustrated in panels b.1 and b.2. This suggests that our ensemble model

simulations are highly confident that there are less affected by dust aerosols. However, the observations indicate that this area

remains heavily polluted. In the case of DSE2, the situation becomes more complex. The simulated dust plume in DSE2 covers370

most of the observation area with a high dust load, as demonstrated in panels c.1 and d.1. The uncertainty, on the other hand,

reveals that the ensemble model is less confident about the dust load, especially in the light blue box displayed in panel d.2.
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Table 1. Experiment settings.

Name
Ensemble size used by

analysis and forecast

Initial assimilation

time set (hour)
Ensemble set

Localization

distance (km)

Control 32 None [32] None

Basic 32 t [32] None

L500 32 t [32] 500

VTS-EnKF 160 t− 2, t− 1, t, t+1, t+2 [32,32,32,32,32] None

VTS-L500 160 t− 2, t− 1, t, t+1, t+2 [32,32,32,32,32] 500

VTS-EnKF-small 32 t− 2, t− 1, t, t+1, t+2 [6,6,8,6,6] None

VTS-L500-small 32 t− 2, t− 1, t, t+1, t+2 [6,6,8,6,6] 500

VTS-EnKF-t1 96 t− 1, t, t+1 [32,32,32] None

VTS-EnKF-t2 96 t− 2, t, t+2 [32,32,32] None

VTS-EnKF-t3 96 t− 3, t, t+3 [32,32,32] None

VTS-EnKF-t4 96 t− 4, t, t+4 [32,32,32] None

VTS-EnKF-t5 96 t− 5, t, t+5 [32,32,32] None

VTS-EnKF-t6 96 t− 6, t, t+6 [32,32,32] None

After 3 hours, these discrepancies become more evident. The extent to which this situation affects the EnKF assimilation will

be discussed in this paper. It poses a challenge to EnKF assimilation in resolving the high-value measurements in this region.

Subsequent results have confirmed this theory. Figure 4 displays the spatial distribution of ground BR-PM10 observations375

(scatter) and dust field forecasts from the average of the ensemble (panel a.1), the posteriori from EnKF analysis (panel a.2)

and EnKF with localization (panel a.3), the average of the enlarged ensemble (panel b.1), the posteriori from VTS-EnKF

analysis (panel b.2) and VTS-EnKF analysis with localization (panel b.3) at 11:00, 15th March, 2021 China Standard Time

(CST). It should be noted that the average dust concentrations in panel b.1 are calculated from the 160 ensemble simulations

used in VTS-EnKF, which slightly differ from the average of 32 ensemble members. In DSE1, the RMSE and NMB from380

the ensemble model simulation are as high as 856.36 µg m−3and -78.31 %. Both EnKF and LEnKF assimilation analyses

achieve very limited improvement in estimating the dust state field. As shown in panel a.2 and panel a.3, the RMSE and NMB

remain high at 819.04 µg m−3and -75.65 % in Basic, and 782.57 µg m−3and -73.52 % in L500. The main reason for this is the

ensemble underdispersion, as described in Sect. 3.2. As observed in the light blue box in panel a.1, the simulated dust plume is

located farther southeast compared to the PM10 measurements. This snapshot exhibits an apparent position error. After EnKF385

analysis, the simulated dust plume in the light blue box barely changes, as depicted in panel a.2. Numerous ground stations in

this area report high PM10 concentrations, but the assimilated dust field fails to resolve most of them. The localization method

offers limited assistance in this situation, as illustrated in panel a.3. With the unresolved positional error, the EnKF, which

focuses more on intensity correction, is much less effective.
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When it comes to the VTS-EnKF analysis result, an improved dust field can be noticed. Concerning the Root Mean Square390

Error (RMSE) and Normalized Mean Bias (NMB), the two priors depicted in panels a.1 and b.1 exhibit highly similar perfor-

mances. However, slight differences do exist. For instance, the average of the expanded 160-member ensemble used in VTS-

EnKF displays a marginally broader spread. The increased ensemble size provides more room for representing background

uncertainties. The enhanced capacity for this is best illustrated in Fig. 6 (a), which exhibits the uncertainty quantified by the

enlarged ensemble simulations in VTS-EnKF formulations. This expansion of the uncertainty spread effectively addresses the395

issue of ensemble underdispersion, thereby boosting the EnKF’s capability to handle position errors. In contrast, the relatively

low uncertainty over these areas depicted in Fig. 1 (b.2) suggests that the EnKF method is highly confident in the absence of

aerosols and does not require any modification. The observations are effectively assimilated in the VTS-EnKF analysis. As

displayed in panel b.2, the dust plume within the light blue box is adjusted to better match the observations. In particular, the

dust to the east of the marked region is well represented in comparison to the posteriori of Basic. The RMSE and NMB are400

reduced to 742.33 µg m−3and -68.21 %. Moreover, the posteriori of VTS-L500 yields an improved dust field with the RMSE

and NMB further reduced to 696.1 µg m−3and -63.93 %. The implementation of the localization method eliminates spurious

correlations and generates a background error covariance that more accurately describes the model uncertainties. Despite the

noticeable improvements achieved in DSE1, the residual errors, as indicated by the RMSE and NMB metrics, remain relatively

high. This is mainly due to some observations with extremely high value (exceeding 5000 µg m−3), which is far higher than405

the surrounding stations and hard for the EnKF to adapt. In particular, the western extent of the dust plume is covered by the

insufficient stations, which results in an inadequate representation of the dust load. By incorporating neighboring ensemble,

the dust plume is extended wilder. In the future research, assimilating satellite-derived dust optical depth (DOD) observations

that have broader coverage may help to better constrain the enlarged ensemble.

Figure 5 presents the spatial distribution of ground-based BR-PM10 observations (scatter) and dust concentration forecasts410

from the average of model ensemble (panel a.1), EnKF (panel a.2), and LEnKF analysis (panel a.3), as well as the average of the

enlarged model ensemble (panel b.1), VTS-EnKF (panel b.2), and VTS-EnKF with localization analysis (panel b.3) at 11:00,

March 28th, 2021 CST. During this assimilation snapshot in DSE2, the model-simulated dust field is observed to have moved

further southeast, as depicted in panel a.1. As illustrated by the light blue box in panel a.1, the model-simulated dust plume

missed most of the observations with high PM10 concentrations. Consequently, although the EnKF analysis remains effective415

in this case, dust in light blue box is nearly unchanged. The RMSE and NMB are reduced to 348.13 µg m−3and -45.96 % in

the Basic scenario, with further reductions to 301.38 µg m−3and -39.12 % when the localization method is employed in the

L500 case.

For the enlarged ensemble, the RMSE and NMB of the priori for VTS-EnKF are 433.08 µg m−3and -8.93 %. With VTS-

EnKF assimilation, the RMSE of the posterior further decreases to 246.23 µg m−3, and the NMB is -31.61 % in VTS-EnKF.420

Unlike the Basic, the dust plume in light blue box is noticeably optimized to better fit the observations. RMSE and NMB are

significantly lower than those obtained with the Basic, thanks to the better-scaled background covariance displayed in Fig. 6.

Moreover, by incorporating localization, the RMSE and NMB are further reduced to 221.15 µg m−3and -27.23 % in VTS-L500.

The dust load within the light blue box (panel b.3) is accurately reproduced within its actual range (2000∼3000 µg m−3).
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Figure 4. Spatial distribution of simulated dust plume (SDP) on surface from average of ensemble members at central time (a.1), the

posteriori SDP updated by EnKF (a.2), the posteriori SDP updated by EnKF with localization (a.3), central and neighboring time ensemble

model mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2), the posteriori SDP updated by VTS-EnKF with localization (b.3) at

11:00, 15th March 2021 (CST). The filled circles are ground-based BR-PM10 observations. CST: China Standard Time.

μg/m3

(a.1) (a.3)(a.2)

Average of original ensemble : 2021-03-28 11:00 CST Posterior of Basic : 2021-03-28 11:00 CST Posterior of L500 : 2021-03-28 11:00 CST
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(b.1) (b.2) (b.3)

Posterior of L500-VTS : 2021-03-28 11:00 CSTAverage of enlarged ensemble : 2021-03-28 11:00 CST Posterior of VTS-EnKF : 2021-03-28 11:00 CST

Figure 5. Spatial distribution of simulated dust plume (SDP) on surface from average of ensemble members at central time (a.1), the

posteriori SDP updated by EnKF (a.2), the posteriori SDP updated by EnKF with localization (a.3), central and neighboring time ensemble

model mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2), the posteriori SDP updated by VTS-EnKF with localization (b.3) at

11:00, 28th March 2021 (CST). The filled circles are ground-based BR-PM10 observations. CST: China Standard Time.
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Figure 6. Spatial distribution of standard deviation from ensemble members at 11:00 in DSE1(a) and 08:00 in DSE2(b). The initial assim-

ilation analysis is performed at these time. The filled circles are model-minus-observation differences (absolute value). Colorbar left is for

model-minus-observation differences and right is for standard deviation. CST: China Standard Time.

4.2 Impact on forecast skills425

In addition to the snapshots of the assimilation analysis, an comprehensive evaluation of forecast skills is also necessary to see

the performance of VTS-EnKF algorithm. A general evaluation on the forecasting skills is carried out in this section.

Figure 7 presents the time series of RMSE and NMB for the 24-hour dust forecast after three assimilation analyses in DSE1

(starting from 11:00, 14:00, and 17:00). In these cases, the Control run generates a dust field with a high RMSE (ranging from

over 800 µg m−3to around 600 µg m−3) and a large NMB (consistently around -85 %). The EnKF analysis, however, does430

not improve this dust forecast after the initial assimilation. In fact, the RMSE and NMB of the dust forecast from the Basic

scenario are nearly identical to the Control run, as evidenced by the comparison between the black dashed line and the blue

line in panel a. This result can be primarily attributed to the position error discussed in Sect. 2.4. The EnKF algorithm offers

minimal assistance in correcting the model simulation when position errors are present. These errors are not occasional but

cumulative, as demonstrated in the subsequent two assimilation timestamps at 14:00 and 17:00, during which the assimilation435

analysis shows limited improvement over the situation. Moreover, it has been observed that the localization method only

improves the forecast slightly in the presence of position errors. Similar for NMB, as depicted in panel b, the improvements

are also insignificant. The NMB for the Control, Basic, and L500 scenarios remains consistently around -85 % throughout the

entire forecast time range.

By applying the VTS-EnKF analysis, a reduction of RMSE compared to the model run and EnKF can be observed in panel a.440

There is an approximate decrease of 100 µg m−3in VTS-EnKF compared to Basic, which indicates that the VTS-EnKF analysis

effectively corrects the position error. At the subsequent assimilation timestamps, this situation improves, with an even greater

decrease in RMSE. The RMSE of VTS-L500 is slightly lower than that of VTS-EnKF. As for NMB, quite promising results

are achieved. In VTS-EnKF, the NMB decreases stepwise at three time points, from around -75 % at 11:00 to around -70 %

at 14:00, and finally to around -65 %. The VTS-EnKF algorithm gradually takes effect over the three assimilation analyses.445
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In VTS-L500, the localization method demonstrates its efficacy, especially after the third assimilation timestamp at 17:00. The

NMB is reduced to around -60 %, which is significantly lower than that of the L500.
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Figure 7. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 11:00 (a.1), 14:00 (a.2), 17:00 (a.3)

and normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), 17:00 (b.3) on 15th March 2021. CST: China Standard Time.

Figure 8 displays the time series of RMSE and NMB on a 24-hour dust forecast after three assimilation analyses in DSE2.

Unlike DSE1, Basic in DSE2 does improve the dust forecast in terms of RMSE and NMB. The RMSE drops from around

500 µg m−3to less than 400 µg m−3at the initial assimilation timestamp (11:00). NMB here is higher than Control due to450

the complementary effect of NMB. The overestimation is corrected while the underestimation caused by position error is not

corrected. No further reduction is observed at subsequent time points. As can be seen in panels a.2 and a.3, the RMSE of Basic

remains almost constant compared to panel a.1. This indicates that the position error is not corrected, and it constitutes part

of the RMSE that is difficult to eliminate. The trend of NMB also reflects this situation. L500 is unable to correct the position

error, although it does help reduce the error to some extent.455

In the scenario of the VTS-EnKF analysis, an improvement in the dust forecast of DSE2 is obtained. A general reduction

of RMSE (around 50 µg m−3) in VTS-EnKF compared to Basic can be seen in panel a.1. Furthermore, in the subsequent

forecasts, a steady decrease in RMSE is noted. The RMSE fluctuates around 250 µg m−3after 14:00 and 200 µg m−3after

17:00. VTS-L500 exhibits a similar pattern to VTS-EnKF for most of the forecast. Considering the NMB, as shown in panel b,
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the NMB of VTS-L500 demonstrates trivial superiority over VTS-EnKF. In DSE2, the Basic and L500 have already achieved460

well-reproduced dust fields, while the VTS-EnKF and VTS-L500 can further improve these fields by correcting the position

error.
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Figure 8. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 08:00 (a.1), 11:00 (a.2), 14:00 (a.3)

and normalized mean bias (NMB) starting from 08:00 (b.1), 11:00 (b.2), 15:00 (b.3) on 28th March 2021. CST: China Standard Time.

4.3 Assessment of fewer ensemble members

To further assess the performance of VTS-EnKF, VTS-EnKF experiments with same ensemble members as the EnKF are de-

signed. They are referred to as VTS-EnKF-small and VTS-L500-small, respectively. These experiments start from 8 ensemble465

members that are driven by randomly selected emission and meteorology field from the origin ensemble. During the initial

assimilation, the extra 4×6 ensemble members from neighboring ±1 and ±2 hours are randomly sampled from these 8 ensem-

ble members. The new ensemble comprises 32 members which is equivalent to the origin ensemble number of Basic. Figure

9 displays the time series of RMSE and NMB on a 24-hour dust forecast after three assimilation analyses in DSE1. In terms

of RMSE, VTS-EnKF-small only shows slightly better performance than the EnKF. This mostly caused by the sampling error470

arises from limited ensemble members resampled from the central ensemble (only 8 ensemble members). However, by apply-

ing the localization, the RMSE is noticeably reduced by 100 µg m−3. The performance is comparable to the VTS-L500 (red
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dash line) with totally 160 ensemble members. By mitigating the sampling error, the VTS-EnKF’s capability of handling the

position error can be revealed, which can be noticed by comparison with L500 and VTS-L500-small. This improvement can be

better seen in NMB. NMB of VTS-L500-small is much lower than the Basic and L500. Its performance is also comparable to475

the VTS-L500 with 160 ensemble members.

Same experiments on DSE2 are also carried out. Results can be found in Fig. S2 in supporting information. Similar to DSE1,

the VTS-EnKF-small achieves slightly better RMSE and NMB than Basic and L500. While in VTS-L500-small, noticeable

improvements can been found especially for the forecast after the second and last assimilation. Reduction of 100 µg m−3in

RMSE and 20% in NMB are obtained.480
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Figure 9. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 11:00 (a.1), 14:00 (a.2), 17:00 (a.3)

and normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), 17:00 (b.3) on 15th March 2021. CST: China Standard Time.

4.4 Sensitivity of time interval

Previous researches have found that an improper neighboring time interval τ can lead to undesirable results, such as less-

effective ensemble members (interval too small) (τ too small) or ensemble member clustering and unrepresentative ensemble

covariances (τ too large) (Xu et al., 2008; Gasperoni et al., 2022, 2023). To explore the sensitivity of the choice of neighboring

time interval, series of VTS-EnKF experiments with different neighboring time interval were carries out. Time intervals ranging485
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from 1 to 6 hour were tested. As shown in Fig. 10, snapshots from 6 experiments on DSE1 clearly depicts the trend. In general,

all the VTS-EnKF experiments show better performance than EnKF. While in terms of specific time interval, different patterns

can be noticed. For short intervals including 1 and 2 hour, there is not sufficient ensemble spread to account for the position

error. Thus there are still position error remaining and RMSE is still high. For long intervals including 5 and 6 hour, dust plume

is clustered away from central dust plume. Three dust branches are noticed in VTS-EnKF-t5 and an overly backwards dust490

plume is noticed in VTS-EnKF-t6. In this case, 3-hour interval is the best choice with the lowest RMSE (696.11 µg m−3) and

NMB (-63.5 %).

Same experiments on DSE2 are also performed and snapshots are shown in Fig. S3. Similar patterns are found on DSE2.

Lowest RMSE and NMB are achieved in VTS-EnKF-t4. Too short interval leads to inability in position error correction and

too long interval leads to excessive dust plume. Considering both cases, 3-hour interval is the preferred choice which holds the495

capability to handle position and not creates excessive clustered dust plume.
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Figure 10. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume (SDP) on surface from the posteri-

ori SDP updated by VTS-EnKF-t1 (a), the posteriori SDP updated by VTS-EnKF-t2 (b), the posteriori SDP updated by VTS-EnKF-t3 (c), the

posteriori SDP updated by VTS-EnKF-t4 (d), the posteriori SDP updated by VTS-EnKF-t5 (e), the posteriori SDP updated by VTS-EnKF-t6

(f) at 11:00, 15th March 2021 (CST).
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5 Conclusions

The Chemistry Transport Model (CTM) is a powerful tool for air pollutant forecasting. However, as a simplified version

of the real atmospheric world, it suffers from various deficiencies, particularly in two major uncertainties: emissions and

meteorology. Uncertainty from meteorological fields can cause model forecast errors, especially in long-distance transport. In500

dust storm forecasting applications, a position error is noted that significantly degrades the overall performance of the forecast

and prevents the EnKF assimilation algorithm from effectively incorporating observational data.

The background error covariance of EnKF is generally designed to represent the intensity and position uncertainty. However,

when the position error is sufficiently large, the background error covariance can’t adequately represent the position error, which

is highly non-Gaussian. In the case of the long-distance dust storm tracking, the EnKF is incapable of thoroughly resolving505

the observations. Observations over low model uncertainty pixels are ’ignored’ by the EnKF algorithm. To address this issue,

a valid time shifting method is coupled with EnKF . This VTS-EnKF methodology introduces uncertainty of the dust plume

position into the background error covariance by incorporating extra ensemble simulations at neighboring time instances. This

enlarged ensemble not only reflects the uncertainty of dust intensity but also reveals the potential positions of the plume,

allowing for more accurate and effective assimilation and improving dust storm forecasting.510

The VTS-EnKF algorithm was tested on two super dust storm events (DSE1 and DSE2) that occurred in Spring 2021.

Several experiments were designed to examine the performance of the VTS-EnKF algorithm in these cases, with a focus on

differences between EnKF and VTS-EnKF. In terms of assimilation analysis, the VTS-EnKF analysis corrected the position

error in DSE1 to a large extent. Comparison between the standard deviations from posterior of EnKF and VTS-EnKF explained

for it. The standard deviations from VTS-EnKF analysis indicated wilder potential dust spread and were more consistent with515

the model-minus-observation. Observations that were ’ignored’ by EnKF were comprehensively resolved in VTS-EnKF, re-

sulting in decreased RMSE and NMB. For DSE2, the position error was not as significant as in DSE1; however, ensemble

underdispersion were also observed. Nevertheless, VTS-EnKF still produced an improved dust field with lower RMSE and

NMB compared to EnKF. In both cases, the localization method helped reduce RMSE and NMB. Regarding the forecast

performance, promising results were obtained. In DSE1, the RMSE and NMB revealed that EnKF provides limited improve-520

ments compared to model run. In contrast, VTS-EnKF provided a dust field forecast with reduced errors, especially in terms

of NMB. Additionally, the localization method contributed to further reducing the error. Overall, the VTS-EnKF algorithm

demonstrated improved performance in assimilation analysis and forecasting for the tested dust storm events compared to the

traditional EnKF approach.

Assessment of equal ensemble members between EnKF and VTS-EnKF is carried out. VTS-EnKF with smaller ensemble525

size shows slightly improved metrics than EnKF. While by applying localization, more reduction in RMSE and NMB can be

noticed and its performance is comparable to the VTS-EnKF with larger ensemble size. This is due to the corrected sampling

error within limited ensemble members. Comparison between them confirms VTS-EnKF’s ability in handling position error.

Sensitivity of neighboring time interval choice is also examined. Too short interval leads to inability in position error correction

and too long interval leads to excessive dust plume. Considering both cases, 3-hour interval is the preferred choice.530
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