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Abstract. Dust storms pose significant threats to human health and property. Accurate forecasting is crucial for taking pre-

cautionary measures. Dust models have suffered from uncertainties from emission and transport factors. Data assimilation

can correct model bias by incorporating available observations, leading to improved analyses and forecasts. The Ensemble

Kalman Filter (EnKF) is a widely-used assimilation algorithm that effectively tunes models, particularly in terms of intensity

adjustment. However, when the position of the simulation does not align consistently with the observations which is referred5

to as position error, the EnKF algorithm struggles. This is because when the position error is adequately large, EnKF can

hardly represent this uncertainty. EnKF can be biased for the non-Gaussian statistics. In this paper, we proposed an VTS-EnKF

assimilation methodology, in which the standard EnKF is coupled with a valid time shifting method. In addition to the orig-

inal ensembles quantifying dust loading variation, this methodology introduces extra ensembles from neighboring time for

describing the potential spread of dust position. The enlarged ensemble captures both intensity and positional errors, allowing10

observations to be thoroughly resolved into the assimilation calculations. We tested the VTS-EnKF on two super dust storm

events that occurred in spring 2021. The results show that position error significantly degraded dust forecasting in terms of

RMSE and NMB, and hindered the EnKF from assimilating valid observations. In contrast, the VTS-EnKF yielded substantial

improvements in both dust analysis fields and forecasts compared to the EnKF.

1 Introduction15

Dust storms are a natural meteorological disaster (Zhang et al., 2005), whose occurrence is attributed to frequent strong winds

over dry and loose soil texture (An et al., 2018). Dust particles can be lifted up to a few miles and transported over thousands

of kilometers away (Zhang et al., 2018), with dust aerosol concentrations as high as thousands of µg m−3 (She et al., 2018).
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Meanwhile, these aerosols can interact with SOx and NOx undergoing heterogeneous chemical reactions during transportation,

leading to further severe aerosol pollution (Song et al., 2022). These pose a great threat to human health by causing damage20

to the respiratory and circulatory systems (Gross et al., 2018; Goudie, 2014). East Asia, as one of the major dust sources and

affected regions (Hu et al., 2019), has drawn much attention from researchers. For instance, in the 2021 spring, several super

dust storms, which are recorded as the largest ones in terms of intensity and coverage in a decade (Filonchyk and Peterson,

2022), swept over East Asia and caused huge loss of lives and properties both in Mongolia and China (Gui et al., 2022; Jin

et al., 2022; Tang et al., 2022). An accurate early warning of dust storms is, therefore, in essential need to help minimize the25

damages.

The growing interest in dust storms from the public has stimulated the understanding of the physical processes associated

with the dust cycles over the past decades. To achieve the simulation of dust storms, several dust emission parameterization

schemes have been proposed since the early 1990s, e.g., MB95 (Marticorena and Bergametti, 1995), Shao96 (Shao et al.,

1996; Shao, 2004), Zender03 (Zender et al., 2003), and K14 (Kok et al., 2014). Coupled with chemical transport models, dust30

simulations could then be carried out, e.g., CUACE/DUST (Chinese Unified Atmospheric Chemistry Environment for Dust)

(Gong and Zhang, 2008), BSC-DREAM8b (Dust Regional Atmospheric Modeling) (Pérez et al., 2006; Mona et al., 2014),

GEOS-Chem (Duncan Fairlie et al., 2007), and LOTOS-EUROS (Timmermans et al., 2017; Manders et al., 2017). These dust

models help evaluate health effects, quantify Earth system impacts, and reveal the synoptic climatic driving forces, and also

to build dust early warning systems via reporting the dust loading in the few hours to few days. However, various numerical35

approximations are used to solve the dynamic dust equations, so that the model configuration (like coarse grid cell and time

step), uncertain input data (e.g., wind field and boundary/initial conditions) inevitably limit the model forecast skill (Mallet and

Sportisse, 2006). Notably, it is widely accepted that uncertainty in the emission parameterization is the largest error source of

dust simulation (Ginoux et al., 2001, 2012; Di Tomaso et al., 2017, 2022; Jin et al., 2019a, b). The performance of numerical

dust models degrades greatly due to these factors.40

Observation is another fundamental method for exploring the intensity and spatial distribution of dust storms (Muhammad

Akhlaq et al., 2012). Satellite-based observations are a rapidly developing technology that is widely used in detecting dust

storms (Gui et al., 2022). Products from satellites such as MODIS, Himawari, and Fengyun-4A provide various information

about aerosol properties with high spatial resolution and extensive coverage. However, they only retrieve column-cumulative

values and are easily affected by clouds and other particles. Therefore, significant uncertainties and biases exist, and pre-45

processing is necessary before they can accurately represent dust load (Jin et al., 2019b, 2022). Ground-based observation

networks, on the other hand, are highly reliable and have high temporal resolution, making them indispensable for measuring

dust aerosol concentration (She et al., 2018). In recent years, China has invested heavily in the construction of a ground station

network, and there are now over 1600 ground stations throughout China that provide a comprehensive picture of dust plumes

(Gui et al., 2022). The national observation network provides rich measurements for investigating dust storms in East Asia.50

Data assimilation is a powerful technique that integrates models and observations. Based on Bayesian theory, data assim-

ilation algorithm is intended to calculate the posteriori probability distribution of the model state given the observations as

accurately as possible (Law and Stuart, 2012). Two main approaches to data assimilation are variational methods and filtering
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methods. Variational methods, such as 4DVar, aim to retrieve an optimal posterior analysis that fits both the prior and measure-

ments over a time window by minimizing a cost function (Rabier and Liu, 2003). Variational methods are widely used in inverse55

modeling of initial conditions and emission fields (Jin et al., 2022; Bergamaschi et al., 2010; Corazza et al., 2011) and reanalysis

data, but they require tangent linearization or adjoint of the model, which can be challenging to develop and maintain. The cost

function minimization is computationally demanding, especially for high-dimensional and nonlinear models. Filtering meth-

ods, on the other hand, assimilate observations sequentially and are more efficient for operational forecasting systems. Various

filtering approaches, such as Kalman Filter (Kalman, 1960), Extended Kalman Filter (Brunner et al., 2012), and Particle Filter60

(Leeuwen et al., 2019), have been developed. Among all the filtering methods, the Ensemble Kalman Filter (EnKF) is the most

popular filtering method due to its ability to handle high-dimensional models, easy parallelization (Evensen, 1994; Katzfuss

et al., 2016; Houtekamer and Zhang, 2016). It uses limited ensembles to estimate the background error covariance statistics

of the model (Hamill, 2006; Houtekamer et al., 2014). Its advantages include handling non-linearity, not requiring explicit

calculation of tangent linear operators, and computational efficiency (Bannister, 2017). EnKF has been successfully applied65

in various disciplines, e.g.,weather forecasting (Houtekamer et al., 2005) and hydrology (Reichle et al., 2002). Meanwhile,

inherited from Kalman filter, EnKF relies on Gaussian distribution of error statistics (Amezcua and Van Leeuwen, 2014). For

non-Gaussian problems, EnKF can create suboptimal results (Lei et al., 2010).

The primary source of uncertainty in dust simulation is related to the online emission parameterization. Therefore, most

previous studies on dust storm data assimilation have focused on emission inversion. For example, Yumimoto and Takemura70

(2015) used MODIS AOD retrievals for long-term dust emission inverse modeling over Asia. Escribano et al. (2017) inves-

tigated the impact of five different satellite AOD products on dust emission inversion over northern Africa and the Arabian

Peninsula. Their results indicated that the assimilation outcome is more sensitive to model uncertainties than to observational

uncertainties in some cases. The uncertainties in model actually have a greater impact in the assimilation results. In recent

studies, we have carefully explored the variability of dust emission over the Mongolia and China Gobi desert by assimilating75

ground-based PM10 concentration (Jin et al., 2018), polar-orbiting MODIS (Jin et al., 2022), and geostationary Himawari-8

AOD measurements (Jin et al., 2019b). To effectively improve dust storm emission inversion, we introduced observation bias

correction (Jin et al., 2019a), adjoint-based emission source tracking (Jin et al., 2020), and grid distortion (Jin et al., 2021).

These works provide valuable insights into the dynamics of dust emission and quantify their impacts on the environment

and climate. However, little attention has been paid to the application of high-quality dust storm sequential forecasting us-80

ing filter methods. Recently, we have developed a data assimilation-based operational dust forecasting system by coupling

Ensemble Kalman Filter (EnKF) and Localized Ensemble Kalman Filter (LEnKF) assimilation algorithms with a chemical

transport model (LOTOS-EUROS) through an interface of our self-designed assimilation toolbox, Pyfilter (Pang, last access:

Nov. 2023). We tested this system on the super dust storms that occurred in the spring of 2021, as we will show later. Significant

improvements were found in the assimilation analysis and assimilation-based forecasts compared to the pure model results.85

Furthermore, the LEnKF algorithm with a proper localization distance threshold was consistently shown to be superior to the

EnKF algorithm.
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Despite the positive results obtained from our tests, there are still unresolved errors. One major issue is the apparent mismatch

between the observations and model in space after long-distance transport. In addition to the discrepancy in the dust intensity,

as will be illustrated in Sect. 2.4, the timing of the dust arrival and departure reported by the model simulation also differs90

heterogeneously from reality. The dust intensity is a key feature, as well as the position, when evaluating a dust forecast.

The former represents the actual dust load, while the latter reveals where the dust plume affects at a given instant. For an

operational forecasting and warning system, the position information is sometimes more important than the intensity. In terms

of mathematical metrics, such as root mean square error, the forecasting skills degraded significantly with the presence of the

position mismatch. The detailed mechanism behind this issue and its further consequences will be illustrated in Section 3.2.95

The so-called "position error" in dust aerosol simulations typically arises after long-distance transport. There are many

factors that contribute to the position error, such as simplified physical processes, coarse model resolution, uncertain physical

parameters (Ravela et al., 2007), and the uncertainty in the meteorological field and emission timing, as illustrated in our

previous work (Jin et al., 2021). Similar to the dust emission inversion studies discussed above, the deviations between the

model and observations in dust storm data assimilation are also attributed to the uncertainty in the dust emission, where100

ensemble individuals are generated with perturbed dust emission fields. However, the uncertainty in the dust plume position

is difficult to quantify and is hardly taken into account when designing the background error covariance of the simulated

dust plume. Therefore, classic dust data assimilation methodologies now focus on intensity adjustment and are not capable of

handling the imbalanced uncertainties between the observations and simulation caused by the position error.

Position error is not a mere occasional issue, but rather a cumulative error that accompanies model simulations over time.105

This type of error is quite common in forecasting phenomena such as hurricanes, dust storms, thunderstorms, and precipitation

(Dance, 2004; Nehrkorn et al., 2015; Jin et al., 2021). However, there have been relatively few studies aiming to address this

problem. Brewster (2003) proposed an objective method for identifying and correcting position errors using densely-distributed

and high-resolution observational data. Their research demonstrated that it is possible to correct position errors in Observing

System Simulation Experiments (OSSEs). Jin et al. (2021) developed a grid-distortion technique based on image morphing and110

post-processing, which successfully realigned dust plumes to better match the measurements. Both of these improvements rely

on densely distributed observations, but often the observations do not fully cover the entire domain, limiting the applicability

of these methods.

In this paper, the standard EnKF assimilation is coupled with a valid time shifting (VTS) method (Xu et al., 2008; Lu et al.,

2011; Zhao et al., 2015; Huang and Wang, 2018) for better resolving the position error in long-distance dust storm transport115

simulation. This assimilation methodology is referred to as VTS-EnKF throughout this paper. For assimilation analysis at a

given time, the background error covariance of the simulated dust plume is calculated using not only the original ensemble

simulation, but also the same ensemble simulations at neighboring moments (a few hours earlier and later) (Gasperoni et al.,

2022, 2023). These extra ensemble members represent the potential position spread of the actual dust plume, effectively ac-

counting for transport errors. The resampled ensemble members quantify the complex covariance that captures both intensity120

and position error dynamics, without requiring additional processing on observations, meteorological fields, or other physi-

cal parameters. We tested the VTS-EnKF on two severe dust storm events that occurred in 2021. Our results show superior
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assimilation performance compared to the standard EnKF, particularly when position errors are present in the simulated dust

plume.

This paper is organized as follows: Section 2 introduces the dust measurements and dust model used in the research. We also125

discuss that the major uncertainty of dust model forecast comes from the emission. But there is another problem: position error

that remains to be solved. Then in Sect. 3, we explain introducing the procedure of ensemble-based assimilation algorithm

and the mechanism of position error’s negative effect on EnKF. How the new assimilation method works is explained in detail

afterwards. To test the performance of EnKF with VTS, sequential assimilation experiments on several dust storm events are

designed. Section 4 analyses the results of experiments in terms of both the assimilation analysis and forecast performance.130

Section 5 concludes this paper.

2 Dust measurement, model and position error

In this paper, ground-based PM10 is used as the measurement with a bias-correction procedure to remove the non-dust part. The

dust model adopted is the LOTOS-EUROS. Considering the model processes, the greatest uncertainty in the dust simulation

comes from uncertainty the emission parameterization. Meanwhile, uncertainties from meteorology can also influence the135

model forecast and lead to the "Position error".

2.1 Dust measurements

Thanks to the continuous efforts and investments from the Ministry of Ecology and Environment, over 1600 ground monitoring

stations have been established across China, with some locations in northern China shown in Fig. 1. These stations provide

real-time hourly air quality data, and their hourly PM10 concentrations serve as indispensable datasets for measuring dust load,140

which are used as observations in this paper.

Despite the advantages of low uncertainty and high time resolution, PM10 observations are not assimilated directly due to

the mixed state of dust and non-dust aerosols in the original PM10 data. Anthropogenic activities, such as vehicle emissions,

coal burning, and industrial processes (Wu et al., 2018; Liu et al., 2018), along with natural sources like volcanic eruptions, sea

spray, wildfires, and wind-blown dust contribute to the total PM10 concentration. Assimilating PM10 data directly into a dust145

model may introduce biased errors and lead to model divergence (Jin et al., 2019a). Therefore, it is necessary to eliminate the

bias before data assimilation.

In this study, the non-dust portion of PM10 is approximated through a separate model. The dust observations assimilated are

calculated by subtracting the non-dust fraction from the original PM10 measurements. Further details regarding the baseline

removal (BR) can be found in Jin et al. (2022).150

2.2 Dust model

In this paper, the LOTOS-EUROS v2.1 is used to simulate dust storms that occurred in East Asia. Originating from the Long-

Term Ozone Simulation (LOTOS) and the European Operational Smog model (EUROS) in the 1980s, LOTOS-EUROS has
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undergone continuous development for various applications. It has been widely used in air quality forecasting (Curier et al.,

2012; Brasseur et al., 2019; Lopez-Restrepo et al., 2020; Skoulidou et al., 2021), dust/aerosol emission inversion (Yarce Botero155

et al., 2021; Jin et al., 2018, 2019a, b, 2021, 2022), and source apportionment (Kranenburg et al., 2013; Timmermans et al.,

2017; Pommier et al., 2020; Jin et al., 2020). In spring 2021, several super dust storm events occurred in East Asia, around 15th

March, 28th March. These events, referred to as DSE1 and DSE2, are used as test cases in this study. These dust storms caused

significant losses in both Mongolia and China (Jin, 2021; Chen and Walsh, 2021). Accurate forecast of such severe sandstorms

is crucial for reducing health and property damages.160

To simulate the dust storm over East Asia, LOTOS-EUROS is configured following our recent work (Jin et al., 2022): The

simulation domain is from 15◦ N to 50◦ N and 70◦ E to 140◦ E with a grid resolution of 0.25◦ × 0.25◦. The model consists of

8 layers with a top at 10 km. The boundary conditions are set to zero assuming that all the dust aerosols are emitted during the

simulation window. Dust emission, deposition, advection, diffusion and dry/wet deposition are considered within the model.

The model output is at the interval of 1 hour.165

The whole model simulation period is set from 13 to 17 March for DSE1 and 27 to 30 March for DSE2, which covering the

whole life cycles of emission and long-distance transport. More details could be found in Jin et al. (2022).

2.3 Uncertainties from emission and meteorology

The goal of this study is to calculate the dust concentration field that best fits both the a priori and observations at each

assimilation analysis. The optimized field will then be used as the initial condition for sequential dust forecasts, as explained in170

Section 3.1. It is essential to define and quantify the uncertainty in dust simulations. As previously mentioned, the uncertainty

in emission parameterization is widely believed to be the dominant error source in dust simulation (Ginoux et al., 2001, 2012;

Di Tomaso et al., 2017, 2022; Jin et al., 2019a, b). High levels of uncertainty in dust emission parameterization arise from

insufficient knowledge about windblown erosion, lack of accurate input on soil characteristics, and the models’ inability to

resolve the fine-scale variability in wind fields governing dust emission (Escribano et al., 2017; Foroutan et al., 2017; Foroutan175

and Pleim, 2017; Jin et al., 2019b).

In our recent work (Jin et al., 2022), a 4DVar-based inverse modeling approach was employed to retrieve an optimal emission

field for the three major dust storms in spring 2021 (Jin et al., 2022). The a priori emission, f priori, followed the Zender03 dust

emission parameterization scheme (Zender et al., 2003). To compensate for potential errors, a spatially varying multiplication

factor was introduced. Mathematically, it was quantified by a background error covariance matrix, B, to describe the potential180

spread of the actual dust emission flux.

Another source of the uncertainties arises from the meteorological field. In our previous papers, uncertainties from meteo-

rology and the position error were neither taken into account (Jin et al., 2022; Pang et al., 2023). In this paper, European Center

for Medium-ranged Weather Forecast (ECMWF) ensemble forecast (totally 51 ensembles) are used. Each one of the model

ensembles is driven by one unique ensemble meteorology field. N=32 ensemble meteorological fields are randomly selected.185

Its grid resolution is about 14 km. The 6-hourly short-term meteorological forecast field is interpolated to hourly values. The

grid resolutions are also averaged to fit the model resolution.
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In general, we assign the dust simulation uncertainty to both emission and meteorology. Ensemble emission field [f1, ...,fN]

are generated randomly following the emission uncertainty choice f priori and B in Jin et al. (2022). Meteorologic field

[w1, ...,wN] are randomly selected from the total 51 ensemble meteorology. They are used to forward the LOTOS-EUROS190

model M for the ensemble dust simulations [x1, ...,xN] as:

[x1, ... ,xN] = [M(f1,w1), ... , M(fN,wN)] (1)

N refers to the total ensemble number, and the choice will be explained in Section 3.3.

These ensemble individuals are used in the EnKF assimilation for representing the covariance dynamics of the dust plume,

which resulted in more accurate dust analysis and forecast as will be shown in Sect. 4. However, the ensemble realizations195

mainly represent the uncertainty in the intensity feature, and hardly help resolve the positional deviation between the observa-

tion and simulation. The presence of position error would give rise to a divergent assimilation analysis as will be illustrated in

Sect. 3.1.

2.4 Position error

For all the dust events, most of the dust particles were originated from the Mongolia Gobi desert, and carried by the prevailing200

wind towards southeast. After several thousands of kilometers transport which lasted about one to two days, they finally arrived

in the densely-populated northern China.

Position errors are clearly visible in the simulation of two dust events (DSE1 and DSE2). Examples can be best seen in

Fig. 1, which plots the evolution of LOTOS-EUROS simulated surface dust concentration alongside BR-PM10 (BR: non-dust

baseline-removed) concentration observations for DSE1 (panel a) and DSE2 (panel c). The corresponding standard deviations205

from ensemble model simulations and the model-minus-observation differences (absolute values) are also plotted in panel b

and panel d. In panel a.1, the model generally simulates a similar shape of the dust plume as indicated by the observations at

the first instance, though the dust load intensities differ to some extent. However, during the subsequent transport, positional

errors arise gradually. In panel a.2, the right part of the simulated dust plume is positioned about 100 to 200 km too far south

compared to ground-based observations. Consequently, the Root Mean Square Error (RMSE) increases significantly from210

587.83 µg m−3 at 8:00 to 856.36 µg m−3 at 11:00. This position error continues to accumulate over the following 3 hours at

14:00. The development of position errors is further clearly visible against the PM10 observations, especially in the light blue

box in panel a.3. The model simulation missed all the dust load there, while the observations indicate a significant amount

of dust aerosols. It can also be seen in panel b.3 that the model-minus-observation differences exceed 1000 µg m−3 there.

Similarly, for DSE2 occurring on 28th March, 2021, as shown in Fig. 1(c), discrepancies between observations and simulation215

become more explicit as time evolves, especially for the dust in the light blue box in panels c.1 and c.2. The RMSE remains

high from 542.15 µg m−3 at 8:00 to 479.6 µg m−3 at 11:00, and this error expands to a wider extent as shown in the enlarged

green box in panel c.3. This position error not only limits the pure model forecast performance but also significantly degrades

the subsequent assimilation analysis and forecast. With an ensemble-approximated background covariance unrepresentative of

position error, neither the position deviation nor the intensity deviation can be fully resolved, as will be explained in Sect. 3.2.220
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Potential sources of position error in dust model may be attributed to inaccuracies in emission timing, uncertainties in mete-

orological input data (e.g., wind fields responsible for transporting dust plumes from the Gobi Desert in Mongolia and China

to downwind regions), or a combination of these factors. Adjusting the emission timing profile, which characterizes the release

of soil particles into the atmosphere, could partially correct the position of the dust plume. Moreover, alterations in meteo-

rological conditions governing long-distance transport might also realign the dust plume’s position. To address the position225

error, a comprehensive covariance matrix is necessary to account for both the potential variations in emission temporal profiles

and the accumulation of uncertainties along the plume’s extensive trajectory. Concurrently, a significantly larger ensemble size

is required to propagate these uncertainties, featuring high degrees of freedom, into the PM10 observational space. Although

a sophisticated covariance matrix and a substantial ensemble size (resulting in considerable computational cost) may aid the

EnKF in simultaneously resolving position and intensity errors, this approach is often prohibitively expensive. Therefore, an230

efficient and cost-effective alternative solution is required.

3 Assimilation methodology and experiments

EnKF is a powerful algorithm to tune the model simulation with observations especially in intensity adjustment given the

perturbed emission spreads. However, when faced with the position error, its weakness is exposed that some model-minus-

observation inconsistency cannot be resolved by EnKF as illustrated in Section 3.1. On the contrary, our EnKF with VTS can235

correct both the position error and the intensity. Assimilation strategy is designed and embeded into a assimilation forecast

system in Section 3.2. Experiments are designed on the dust storms occur in spring, 2021, which are illutrated in Section 3.3.

3.1 EnKF

The Ensemble Kalman Filter (EnKF) was first proposed by Evensen (1994). Stemming from the Kalman Filter, it was designed

to address high-dimensional problems by employing limited ensembles to approximate the true background error covariance.240

It relies on the Gaussian distribution of errors. The EnKF has been proven to be practical and efficient in various applications,

particularly in sequential forecasting with the aid of localization (Lopez-Restrepo et al., 2020; Park et al., 2022). In any

sequential forecast system, the objective of assimilation analysis is to provide an optimized initial state or parameter field,

which, in this study, corresponds to the 3D dust concentration. This is achieved by assimilating the available measurements.

The estimated dust concentration field can then be used to onward the model for more accurate dust forecasting.245

Here we use the stochastic EnKF formulated by Burgers et al. (1998). It features the pertubated observations to maintain a

reliable ensemble spread. Starting from the prior dust concentration field xf,i
t at time t which is calculated by model integral

operator M from the dust concentration field at the previous time step xa,i
t−1.

xf,i
t =M(xa,i

t−1,f
i,wi) (2)

250

Xf = [xf,1
t ,xf,2

t , · · · ,xf,N
t ] (3)

8



μg/m3

μg/m3

μg/m3

μg/m3μg/m3

μg/m3

(d.1)

(c.1)

(b.1)

(a.1)

(d.3)

(c.3)

(b.3)

(a.3)

(d.2)

(c.2)

(b.2)

(a.2)

Figure 1. Evolution of the simulated dust plume from average of 32 model ensembles with scatter of ground BR-PM10 observations (a.1-3).

Their corresponding standard deviation from model ensembles with scatter of the model-minus-observation differences (absolute value) (b.1-

3) at 08:00, 11:00 and 14:00 15th March, 2021, respectively. Figures below are the same except the time is at 05:00 (c.1 and d.1), 08:00 (c.2

and d.2), 11:00 (c.3 and d.3) 28th March, 2021, respectively. BR-PM10: baseline-removed PM10. The colorbar in panel a and c represents

the concentrations, and the colorbar in panel b and d represents the model-minus-observation differences (left) and standard deviation (right).
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Note that for the first analysis the prior dust simulation are extracted from the model with the perturbed emissions as shown in

Eq. 1. The i represents the ensemble individual number. N is the number of ensembles. Xf is the ensemble model simulation

matrix consists of the whole ensemble individuals.

The ensemble perturbation matrix Xf ′ calculates the deviation between the ensemble individuals xf,i
t and the ensemble255

mean state xf
t .

xf
t =

1

N

N∑
i=1

xf,i
t (4)

Xf ′ = [xf,1
t −xf

t ,x
f,2
t −xf

t , · · · ,x
f,N
t −xf

t ] (5)

Then the background error covariance matrix Pf is approximated by Xf ′ as follows:260

Pf =
1

N− 1
Xf ′Xf ′T (6)

Afterwards, the Kalman gain K can be calculated with Pf and O.

K=PfHT(HPfHT +O)−1 (7)

K weights the increments given from the observations to the prior estimation. In this paper, they are the BR-PM10 observa-

tions stored in y and dust simulation stored in vector x. H is the observation operator which maps the model states into the265

observational space.

O is the observational error covariance matrix that weights the uncertainty of the measurements. In this case, it is the

uncertainties from ground-based BR-PM10 concentrations. O is defined as follows: the minimum uncertainty threshold is set

to be 200 µg m−3. Root of error from observations below the threshold is set to be 200 µg m−3 and those over it is set to be

200+(y-200)×0.2 µg m−3. This definition can prevent the posteriori from getting too close to the low value observations and270

thus leading to model divergence. O is a diagonal matrix assuming that all the observations are independent.

In the end, the posteriori estimation individual xa,i
t can be updated as follows:

xa,i
t = xf,i

t +K(y+ ϵi −Hxf,i
t ) (8)

ϵi represents the sampling error vector. It is a random vector subjecting to normal distribution. Its mean is 0 and covariance is

the root of diagonal from O.275

The equations presented above describe the Ensemble Kalman Filter (EnKF) algorithm for dust storm assimilation, which

focuses on intensity adjustment. The EnKF assimilation aims to compute an optimal posteriori estimation given a priori in-

formation and observations. It is highly dependent on the observations and the ensemble spread. In fact, the ensemble-based

background covariance matrix, Pf , utilizes the ensemble members to approximate the true background covariance. The spa-

tial distribution of the standard deviation (square root of the diagonal values in Pf ) from 32 model ensembles, along with280
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the scatter of absolute model-minus-observation differences in two cases (DSE1, DSE2), is shown in Fig. 1 (b,d). In general,

their spatial distribution corresponds well to the simulated dust field depicted in Fig. 1 (a, c). Concurrently, the uncertainty in

the light blue box decreases rapidly as the simulated dust plume moves southward, as illustrated in panels b.1 and b.2. This

suggests that our ensemble model simulations are highly confident that there are less affected by dust aerosols. However, the

observations indicate that this area remains heavily polluted. In the case of DSE2, the situation becomes more complex. The285

simulated dust plume in DSE2 covers most of the observation area with a high dust load, as demonstrated in panels c.1 and

d.1. The uncertainty, on the other hand, reveals that the ensemble model is less confident about the dust load, especially in

the light blue box displayed in panel d.2. After 3 hours, these discrepancies become more evident. The extent to which this

situation affects the EnKF assimilation will be discussed in this paper. It poses a challenge to EnKF assimilation in resolving

the high-value measurements in this region.290

The performance of EnKF deteriorates when position errors are present. The underlying mechanism can be best understood

by examining Fig. 2(a). At time point t0, there are ensemble model simulations (gray dashed lines) distributed across the

three-dimensional space. The black line and blue star represent the average of model ensembles and observations, respectively.

As clearly depicted, there is a positional mismatch between the ensemble model simulations and observations. Following the

assimilation analysis, the intensity of the dust plume is adjusted to better match the observations. However, in the spatial295

domain outside the priori, the dust concentration is reduced to near-zero levels. The observations in this area, containing

valuable information about dust load, contribute little to correcting the dust load. This is due to the unanimous agreement

on the dust load from the model ensembles, which represents low uncertainty. In such cases, the assimilation analysis favors

the model results and disregards the observations. Consequently, the a posteriori estimate is biased as a result of imbalanced

uncertainties.300

3.2 VTS-EnKF

To efficiently perform the assimilation analysis with both the intensity and position errors present, we apply a "valid time

shifting" method into the EnKF. The strategy is illustrated in Fig. 2(b). Instead of using the ensemble simulations solely at the

exact assimilation analysis instant t0, as shown in panel a, ensembles at neighboring moments are also introduced to expand the

ensemble group. These resampled ensembles at neighboring times represent the potential positions of the actual dust plume.305

The enlarged ensembles exhibit a more extensive spread of the dust plume in the spatial domain compared to those displayed in

panel a. The joint ensemble model simulations then capture uncertainty in both intensity and position. The a posteriori estimate

(red line) is adjusted to better fit the observations, with both of these errors resolved.

Mathematically, the EnKF with VTS procedures are very similar to those of EnKF, except that the original Xf is replaced

by Xf,new, which stores the enlarged ensemble members at the assimilation analysis instant and neighboring times. It starts310

with

Xf,new = [xf,1
t−τ ,x

f,2
t−τ , · · · ,x

f,N
t−τ ,x

f,1
t ,xf,2

t , · · · ,xf,N
t ,xf,1

t+τ ,x
f,2
t+τ , · · · ,x

f,N
t+τ ] (9)
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Let t be the exact assimilation time, and τ be the time interval. Then t−τ represents the time in the past, and t+τ represents

the time in the future. It is noteworthy that the time axis, denoted by t−τ and t+τ , is utilized solely to illustrate the application

of ensemble simulations at different time direction in the formula. However, in practical applications, ensembles from multiple315

adjacent time instants can be incorporated, as demonstrated in the horizon choice utilized in this study (as presented in Table

1).

Subsequently, the ensemble-based background covariance Pf , Kalman gain K and posteriori state xa will be updated with

the Xf,new in Eq. 6 ∼ 8, respectively.

Figure 2. Strategy illustration of ensemble Kalman filter (EnKF) (a) and ensemble Kalman filter with VTS (VTS-EnKF) (b). Figure axis left

represents the time and right represents the position of the dust field in 3D space. The vertical axis represents the intensity of the dust.

The localization method is also adopted here to cut off the spurious correlation in Pf and constrain the background covari-320

ance to a certain distance. The localization matrix is constructed following Gaspari and Cohn (1999) (Eq. A.27) with a distance

threshold Lthres. The details about the construction of L can be found in Supporting Information. The localized Pf,local is

obtained by point to point multiply with localization matrix L.

Pf,local =Pf ◦L (10)

With the localized Pf,local, the localized posteriori estimation xa,i
t can be updated via Eq. 7 and Eq. 8.325

Both the EnKF and EnKF with VTS described above are embeded into our self-designed assimilation toolbox, PyFilter

(Pang, last access: Nov. 2023). This toolbox features a flexible interface for linking to numerical models (Pang et al., 2023),

such as the dust storm forecasting model LOTOS-EUROS used in this study.
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3.3 Experiment descriptions

DSE1 and DSE2 are chosen as the cases for the test. The first assimilation analysis did not commence until the dust plume was330

detected by the ground-based observation network and a position mismatch emerged. An identification index is also designed

to objectively discriminate the position error as can be found in Eq. S3 in Supplementary. Three sequential EnKF analyses are

conducted in each dust event at three-hour intervals. The timeline for DSE1 and DSE2 is depicted in Fig. 3.

Taking DSE1 as an example, the initial assimilation analysis is performed at 11:00 March 15, when an apparent position

error was present, as illustrated in Fig. 1 (a.2). The last analysis is carried out at 17:00 March 15. As the dust loading decreases335

rapidly when the plume moves further southeast, no additional assimilation is performed. A rolling forecast (red line with

arrow) is generated based on the optimized dust concentration field with a 24-hour horizon for the purpose of examining

forecast skill.

Mar 13 Mar 14 Mar 15

dust emission

long-distance transport

08:00 11:00 14:00 17:00

arrived in northern China

Mar 16

Mar 27 Mar 28 Mar 29

(a) DSE1

(b) DSE2

Prior

Forecast with a
horizon of 24 hours

VTS-EnKF analysis

EnKF analysis

08:00 11:00 14:00 17:00

Figure 3. Sequential assimilation time set for DSE1 (a) and DSE2 (b). Take DSE1 for instance, the assimilation analysis is performed at the

intervals of 3 hours from 11:00 to 17:00 and the rolling forecast is made with a horizon of 24 hours based on the assimilation analysis. The

EnKF with VTS and EnKF is performed in turn.

To evaluate the performance of the VTS-EnKF-implemented dust storm forecasting system, data assimilation experiments

are conducted on two spring dust events in 2021. Experiment settings are shown in Table 1. Control represents the ensemble340

model forecast throughout the entire dust storm period. EnKF and L500 denote the assimilation-based forecasts by EnKF and
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localized EnKF (LEnKF) with a localization distance threshold of 500 km, respectively. VTS-EnKF and VTS-L500 represent the

assimilation-based forecasts by VTS-EnKF and VTS-EnKF with a localization distance threshold of 500 km. Note that various

distance thresholds have been tested for localization, and a choice of 500 km is found to provide the optimal assimilation

analysis and forecast in our tested cases. The metrics, Root Mean Square Error (RMSE) and Normalized Mean Bias (NMB),345

are employed in this paper to evaluate system performance.

In EnKF-based experiments, EnKF and L500, the ensemble number N is set to 32, which is found to be sufficient to represent

the uncertainty in the dust simulation while remaining computationally affordable. Testing with N greater than 32 shows only

limited improvements. For VTS-EnKF experiments, the ensembles are expanded as they incorporate ensemble simulations

from neighboring instants. To cover the potential positions of the dust plume, neighboring times with ±1 and ±2 hours apart350

are empirically chosen in this paper. As demonstrated in Table 1, the ensemble number is extended to 160 when EnKF with VTS

is applied, and the neighboring time stamps of 9:00, 10:00, 12:00, and 13:00 are selected. The 160 ensemble dust simulations

are updated according to the EnKF principles and forwarded synchronously for the new rolling forecast; they will serve as the

prior in the subsequent assimilation analysis.

Experiments for the VTS-EnKF with equal ensembles to EnKF are designed, as referred to VTS-EnKF-small and VTS-L500-355

small. They starts with central 8 ensembles and are extended to 32 ensembles by incorporating neighboring ±1 and ±2 hours

with 4×6 ensembles. Furthermore, to test the sensitivity of neighboring time interval, VTS-EnKF experiments with different

intervals are also designed. Time intervals ranging from 1 to 5 hours are selected to test the impact, which are referred to as

VTS-EnKF-t1, VTS-EnKF-t2, VTS-EnKF-t3, VTS-EnKF-t4 and VTS-EnKF-t5.

Table 1. Experiment settings.

Name
Running ensemble

number

Initial assimilation

time set (hour)
Ensemble set

Localization

distance (km)

Control 32 None [32] None

EnKF 32 t [32] None

L500 32 t [32] 500

VTS-EnKF 160 t− 2, t− 1, t, t+1, t+2 [32,32,32,32,32] None

VTS-L500 160 t− 2, t− 1, t, t+1, t+2 [32,32,32,32,32] 500

VTS-EnKF-small 32 t− 2, t− 1, t, t+1, t+2 [6,6,8,6,6] None

VTS-L500-small 32 t− 2, t− 1, t, t+1, t+2 [6,6,8,6,6] 500

VTS-EnKF-t1 96 t− 1, t, t+1 [32,32,32] None

VTS-EnKF-t2 96 t− 2, t, t+2 [32,32,32] None

VTS-EnKF-t3 96 t− 3, t, t+3 [32,32,32] None

VTS-EnKF-t4 96 t− 4, t, t+4 [32,32,32] None

VTS-EnKF-t5 96 t− 5, t, t+5 [32,32,32] None

VTS-EnKF-t6 96 t− 6, t, t+6 [32,32,32] None
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4 Results and discussions360

The results are discussed in the aspects of assimilation analysis and model forecast. The benefits of using our EnKF with VTS

algorithm for the dust storm simulation with position errors are emphasized.

4.1 Impact on assimilation analysis

Figure 4 displays the spatial distribution of ground BR-PM10 observations (scatter) and dust field forecasts from the average of

the ensembles (panel a.1), the posteriori from EnKF analysis (panel a.2) and EnKF with localization (panel a.3), the average of365

the enlarged ensembles (panel b.1), the posteriori from VTS-EnKF analysis (panel b.2) and VTS-EnKF analysis with localiza-

tion (panel b.3) at 11:00, 15th March, 2021 China Standard Time (CST). It should be noted that the average dust concentrations

in panel b.1 are calculated from the 160 ensemble simulations used in VTS-EnKF, which slightly differ from the average of

32 ensembles. In DSE1, the RMSE and NMB from the pure ensemble model simulation are as high as 856.36 µg m−3 and

-78.31 %. Both EnKF and LEnKF assimilation analyses achieve very limited improvement in estimating the dust state field.370

As shown in panel a.2 and panel a.3, the RMSE and NMB remain high at 819.04 µg m−3 and -75.65 % in EnKF, and 782.57

µg m−3 and -73.52 % in L500. The main reason for this is the imbalanced uncertainty between the ensemble simulations and

the observations, as described in Sect. 3.2. As observed in the light blue box in panel a.1, the simulated dust plume is located

farther southeast compared to the PM10 measurements. This snapshot exhibits an apparent position error. After EnKF analysis,

the simulated dust plume in the light blue box barely changes, as depicted in panel a.2. Numerous ground stations in this area375

report high PM10 concentrations, but the assimilated dust field fails to resolve most of them. The localization method offers

limited assistance in this situation, as illustrated in panel a.3. With the unresolved positional error, the EnKF, which focuses

more on intensity correction, is much less effective.

When it comes to the VTS-EnKF analysis result, an improved dust field can be noticed. Concerning the Root Mean Square

Error (RMSE) and Normalized Mean Bias (NMB), the two priors depicted in panels a.1 and b.1 exhibit highly similar per-380

formances. However, slight differences do exist. For instance, the average of the expanded 160-member ensemble used in

VTS-EnKF displays a marginally broader spread. The increased ensemble size provides more room for representing back-

ground uncertainties. The enhanced capacity for this is best illustrated in Fig. 6 (a), which exhibits the uncertainty quantified

by the enlarged ensemble simulations in VTS-EnKF formulations. High uncertainty values are seen in pixels where large

model-minus-observation errors are present, such as within the light blue box. This allows the posterior to be adjusted in or-385

der to better conform to the observations. In contrast, the relatively low uncertainty over these areas depicted in Fig. 1 (b.2)

suggests that the EnKF method is highly confident in the absence of aerosols and does not require any modification. The

observations are effectively assimilated in the VTS-EnKF analysis. As displayed in panel b.2, the dust plume within the light

blue box is adjusted to better match the observations. In particular, the dust to the east of the marked region is well represented

in comparison to the posteriori of EnKF. The RMSE and NMB are reduced to 742.33 µg m−3 and -68.21 %. Moreover, the390

posteriori of VTS-L500 yields an improved dust field with the RMSE and NMB further reduced to 696.1 µg m−3 and -63.93 %.

The implementation of the localization method eliminates spurious correlations and generates a background error covariance
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that more accurately describes the model uncertainties. Despite the noticeable improvements achieved in DSE1, the residual

errors, as indicated by the RMSE and NMB metrics, remain relatively high. This is mainly due to some observations with

extremely high value (exceeding 5000 µg m−3), which is far higher than the surrounding stations and hard for the EnKF to395

adapt. In particular, the western extent of the dust plume is covered by the insufficient stations, which results in an inadequate

representation of the dust load. By incorporating neighboring ensembles, the dust plume is extended wilder, as can’t be verified

by the observations.

μg/m3

μg/m3

(a.1)

(b.1) (b.2) (b.3)

(a.3)(a.2)

Average of original ensemble : 2021-03-15 11:00 CST

Posterior of VTS-L500 : 2021-03-15 11:00 CST

Posterior of EnKF : 2021-03-15 11:00 CST Posterior of L500 : 2021-03-15 11:00 CST

Average of enlarged ensemble : 2021-03-15 11:00 CST Posterior of VTS-EnKF : 2021-03-15 11:00 CST

Figure 4. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume (SDP) on surface from central

time ensemble model mean (a.1), the posteriori SDP updated by EnKF (a.2), the posteriori SDP updated by EnKF with localization (a.3),

central and neighboring time ensemble model mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2), the posteriori SDP updated by

VTS-EnKF with localization (b.3) at 11:00, 15th March 2021 (CST).

Figure 5 presents the spatial distribution of ground-based BR-PM10 observations (scatter) and dust concentration forecasts

from the average of model ensembles (panel a.1), EnKF (panel a.2), and LEnKF analysis (panel a.3), as well as the average400

of the enlarged model ensembles (panel b.1), VTS-EnKF (panel b.2), and VTS-EnKF with localization analysis (panel b.3) at

11:00, March 28th, 2021 CST. During this assimilation snapshot in DSE2, the model-simulated dust field is observed to have

moved further southeast, as depicted in panel a.1. As illustrated by the light blue box in panel a.1, the model-simulated dust

plume missed most of the observations with high PM10 concentrations. Consequently, although the EnKF analysis remains

effective in this case, dust in light blue box is nearly unchanged. The RMSE and NMB are reduced to 348.13 µg m−3 and405

-45.96 % in the EnKF scenario, with further reductions to 301.38 µg m−3 and -39.12 % when the localization method is

employed in the L500 case.

For the enlarged ensembles, the RMSE and NMB of the priori for VTS-EnKF are 433.08 µg m−3 and -8.93 %. With VTS-

EnKF assimilation, the RMSE of the posterior further decreases to 246.23 µg m−3, and the NMB is -31.61 % in VTS-EnKF.

Unlike the EnKF, the dust plume in light blue box is noticeably tuned to better fit the observations These error and bias values410

are significantly lower than those obtained with the EnKF, thanks to the better-scaled background covariance displayed in
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Fig. 6. Moreover, by incorporating localization, the RMSE and NMB are further reduced to 221.15 µg m−3 and -27.23 % in

VTS-L500. The dust load within the light blue box (panel b.3) is accurately reproduced within its actual range (2000∼3000 µg

m−3).

μg/m3

(a.1) (a.3)(a.2)

Average of original ensemble : 2021-03-28 11:00 CST Posterior of EnKF : 2021-03-28 11:00 CST Posterior of L500 : 2021-03-28 11:00 CST

μg/m3

(b.1) (b.2) (b.3)

Posterior of L500-VTS : 2021-03-28 11:00 CSTAverage of enlarged ensemble : 2021-03-28 11:00 CST Posterior of VTS-EnKF : 2021-03-28 11:00 CST

Figure 5. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume (SDP) on surface from central

time ensemble model mean (a.1), the posteriori SDP updated by EnKF (a.2), the posteriori SDP updated by EnKF with localization (a.3),

central and neighboring time ensemble model mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2), the posteriori SDP updated by

VTS-EnKF with localization (b.3) at 11:00, 28th March 2021 (CST).

(b)

μg/m3μg/m3

(a)

Figure 6. Spatial distribution of standard deviation from model ensembles with scatter of model-minus-observation differences (absolute

value) at 11:00 in DSE1(a) and 08:00 in DSE2(b). The initial assimilation analysis is performed at these time. Colorbar left is for model-

minus-observation differences and right is for standard deviation.
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4.2 Impact on forecast skills415

In addition to the snapshots of the assimilation analysis, an comprehensive evaluation of forecast skills is also necessary to see

the performance of VTS-EnKF algorithm. A general evaluation on the forecasting skills is carried out in this section.

Figure 7 presents the time series of RMSE and NMB for the 24-hour dust forecast after three assimilation analyses in DSE1

(starting from 11:00, 14:00, and 17:00). In these cases, the Control run generates a dust field with a high RMSE (ranging from

over 800 µg m−3 to around 600 µg m−3) and a large NMB (consistently around -85 %). The EnKF analysis, however, does420

not improve this dust forecast after the initial assimilation. In fact, the RMSE and NMB of the dust forecast from the EnKF

scenario are nearly identical to the Control run, as evidenced by the comparison between the black dashed line and the blue

line in panel a. This result can be primarily attributed to the position error discussed in Sect. 2.4. The EnKF algorithm offers

minimal assistance in correcting the model simulation when position errors are present. These errors are not occasional but

cumulative, as demonstrated in the subsequent two assimilation timestamps at 14:00 and 17:00, during which the assimilation425

analysis shows limited improvement over the situation. Moreover, it has been observed that the localization method is unable

to enhance the forecast in the presence of position errors. Similar for NMB, as depicted in panel b, the improvements are also

insignificant. The NMB for the Control, EnKF, and L500 scenarios remains consistently around -85 % throughout the entire

forecast time range.

By applying the VTS-EnKF analysis, a reduction of RMSE is observed in panel a. There is an approximate decrease of 100430

µg m−3 in VTS-EnKF compared to EnKF, which indicates that the VTS-EnKF analysis effectively corrects the position error.

At the subsequent assimilation timestamps, this situation improves, with an even greater decrease in RMSE. The RMSE of

VTS-L500 is slightly lower than that of VTS-EnKF. As for NMB, quite promising results are achieved. In VTS-EnKF, the NMB

decreases stepwise at three time points, from around -75 % at 11:00 to around -70 % at 14:00, and finally to around -65 %.

The VTS-EnKF algorithm gradually takes effect over the three assimilation analyses. In VTS-L500, the localization method435

demonstrates its efficacy, especially after the third assimilation timestamp at 17:00. The NMB is reduced to around -60 %,

which is significantly lower than that of the L500.

Figure 8 displays the time series of RMSE and NMB on a 24-hour dust forecast after three assimilation analyses in DSE2.

Unlike DSE1, EnKF in DSE2 does improve the dust forecast in terms of RMSE and NMB. The RMSE drops from around

500 µg m−3 to less than 400 µg m−3 at the initial assimilation timestamp (11:00). NMB here is higher than Control due to440

the complementary effect of NMB. The overestimation is corrected while the underestimation caused by position error is not

corrected. No further reduction is observed at subsequent time points. As can be seen in panels a.2 and a.3, the RMSE of EnKF

remains almost constant compared to panel a.1. This indicates that the position error is not corrected, and it constitutes part

of the RMSE that is difficult to eliminate. The trend of NMB also reflects this situation. L500 is unable to correct the position

error, although it does help reduce the error to some extent.445

In the scenario of the VTS-EnKF analysis, an improvement in the dust forecast of DSE2 is obtained. A general reduction

of RMSE (around 50 µg m−3) in VTS-EnKF compared to EnKF can be seen in panel a.1. Furthermore, in the subsequent

forecasts, a steady decrease in RMSE is noted. The RMSE fluctuates around 250 µg m−3 after 14:00 and 200 µg m−3 after
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Figure 7. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 11:00 (a.1), 14:00 (a.2), 17:00 (a.3)

and normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), 17:00 (b.3) on 15th March 2021.

17:00. VTS-L500 exhibits a similar pattern to VTS-EnKF for most of the forecast. Considering the NMB, as shown in panel b,

the NMB of VTS-L500 demonstrates trivial superiority over VTS-EnKF. In DSE2, the EnKF and L500 have already achieved450

well-reproduced dust fields, while the VTS-EnKF and VTS-L500 can further improve these fields by correcting the position

error.

4.3 Assessment of smaller ensembles

To further assess the performance of VTS-EnKF, VTS-EnKF experiments with same ensembles as the EnKF are designed.

They are referred to as VTS-EnKF-small and VTS-L500-small, respectively. The total 32 ensembles are composed of 8 central455

ensembles and 4×6 ensembles from neighboring ±1 and ±2 hours. Figure 9 displays the time series of RMSE and NMB on

a 24-hour dust forecast after three assimilation analyses in DSE1. In terms of RMSE, VTS-EnKF-small only shows slightly

better performance than the EnKF. This mostly caused by the sampling error arises from limited ensembles resampled from

the central ensembles (only 8 ensembles). However, by applying the localization, the RMSE is noticeably reduced by 100 µg

m−3. The performance is comparable to the VTS-L500 (red dash line) with totally 160 ensembles. By mitigating the sampling460

error, the VTS-EnKF’s capability of handling the position error can be revealed, which can be noticed by comparison with
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Figure 8. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 08:00 (a.1), 11:00 (a.2), 14:00 (a.3)

and normalized mean bias (NMB) starting from 08:00 (b.1), 11:00 (b.2), 15:00 (b.3) on 28th March 2021.

L500 and VTS-L500-small. This improvement can be better seen in NMB. NMB of VTS-L500-small is much lower than the

EnKF and L500. Its performance is also comparable to the VTS-L500 with 160 ensembles.

Same experiments on DSE2 are also carried out. Results can be found in Fig. S2 in supporting information. Similar to DSE1,

the VTS-EnKF-small achieves slightly better RMSE and NMB than EnKF and L500. While in VTS-L500-small, noticeable465

improvements can been found especially for the forecast after the second and last assimilation. Reduction of 100 µg m−3 in

RMSE and 20% in NMB are obtained.

4.4 Sensitivity of time interval

Previous researches have found that an improper neighboring time interval τ can lead to undesirable results, such as less-

effective ensemble members (interval too small) (τ too small) or ensemble member clustering and unrepresentative ensemble470

covariances (τ too large) (Xu et al., 2008; Gasperoni et al., 2022, 2023). To explore the sensitivity of the choice of neighboring

time interval, series of VTS-EnKF experiments with different neighboring time interval were carries out. Time intervals ranging

from 1 to 6 hour were tested. As shown in Fig. 10, snapshots from 6 experiments on DSE1 clearly depicts the trend. In general,

all the VTS-EnKF experiments show better performance than EnKF. While in terms of specific time interval, different patterns
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Figure 9. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 11:00 (a.1), 14:00 (a.2), 17:00 (a.3)

and normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), 17:00 (b.3) on 15th March 2021.

can be noticed. For short intervals including 1 and 2 hour, there is not sufficient ensemble spread to account for the position475

error. Thus there are still position error remaining and RMSE is still high. For long intervals including 5 and 6 hour, dust plume

is clustered away from central dust plume. Three dust branches are noticed in VTS-EnKF-t5 and an overly backwards dust

plume is noticed in VTS-EnKF-t6. In this case, 3-hour interval is the best choice with the lowest RMSE (696.11 µg m−3) and

NMB (-63.5 %).

Same experiments on DSE2 are also performed and snapshots are shown in Fig. S3. Similar patterns are found on DSE2.480

Lowest RMSE and NMB are achieved in VTS-EnKF-t4. Too short interval leads to inability in position error correction and

too long interval leads to excessive dust plume. Considering both cases, 3-hour interval is the preferred choice which holds the

capability to handle position and not creates excessive clustered dust plume.

5 Conclusions

The Chemistry Transport Model (CTM) is a powerful tool for air pollutant forecasting. However, as a simplified version485

of the real atmospheric world, it suffers from various deficiencies, particularly in two major uncertainties: emissions and
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Figure 10. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume (SDP) on surface from the pos-

teriori SDP updated by VTS-EnKF-t1 (a), the posteriori SDP updated by VTS-EnKF-t2 (b), the posteriori SDP updated by VTS-EnKF-t3

(c), the posteriori SDP updated by VTS-EnKF-t4 (d), the posteriori SDP updated by VTS-EnKF-t5 (e), the posteriori SDP updated by VTS-

EnKF-t6 (f) at 11:00, 15th March 2021 (CST).

meteorology. Uncertainty from meteorological fields can cause model forecast errors, especially in long-distance transport. In

dust storm forecasting applications, a position error is noted that significantly degrades the overall performance of the forecast

and prevents the EnKF assimilation algorithm from effectively incorporating observational data.

The background error covariance of EnKF is generally designed to represent the intensity and position uncertainty. However,490

when the position error is sufficiently large, the background error covariance can’t adequately represent the position error, which

is highly non-Gaussian. In the case of the long-distance dust storm tracking, the EnKF is incapable of thoroughly resolving

the observations. Observations over low model uncertainty pixels are ’ignored’ by the EnKF algorithm. To address this issue,

a valid time shifting method is coupled with EnKF . This VTS-EnKF methodology introduces uncertainty of the dust plume

position into the background error covariance by incorporating extra ensemble simulations at neighboring time instances. This495

enlarged ensemble not only reflects the uncertainty of dust intensity but also reveals the potential positions of the plume,

allowing for more accurate and effective assimilation and improving dust storm forecasting.

The VTS-EnKF algorithm was tested on two super dust storm events (DSE1 and DSE2) that occurred in Spring 2021.

Several experiments were designed to examine the performance of the VTS-EnKF algorithm in these cases, with a focus on

differences between EnKF and VTS-EnKF. In terms of assimilation analysis, the VTS-EnKF analysis corrected the position500

error in DSE1 to a large extent. Comparison between the standard deviations from posterior of EnKF and VTS-EnKF explained
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for it. The standard deviations from VTS-EnKF analysis indicated wilder potential dust spread and were more consistent with

the model-minus-observation. Observations that were ’ignored’ by EnKF were comprehensively resolved in VTS-EnKF, re-

sulting in decreased RMSE and NMB. For DSE2, the position error was not as significant as in DSE1; however, imbalanced

uncertainties were also observed. Nevertheless, VTS-EnKF still produced an improved dust field with lower RMSE and NMB505

compared to EnKF. In both cases, the localization method helped reduce RMSE and NMB. Regarding the forecast performance,

promising results were obtained. In DSE1, the RMSE and NMB revealed that EnKF provides limited improvements compared

to model run. In contrast, VTS-EnKF provided a dust field forecast with reduced errors, especially in terms of NMB. Ad-

ditionally, the localization method contributed to further reducing the error. Overall, the VTS-EnKF algorithm demonstrated

improved performance in assimilation analysis and forecasting for the tested dust storm events compared to the traditional510

EnKF approach.

Assessment of equal ensembles between EnKF and VTS-EnKF is carried out. VTS-EnKF with smaller ensembles shows

slightly improved metrics than EnKF. While by applying localization, more reduction in RMSE and NMB can be noticed and its

performance is comparable to the VTS-EnKF with larger ensembles. This is due to the corrected sampling error within limited

ensembles. Comparison between them confirms VTS-EnKF’s ability in handling position error. Sensitivity of neighboring time515

interval choice is also examined. Too short interval leads to inability in position error correction and too long interval leads to

excessive dust plume. Considering both cases, 3-hour interval is the preferred choice.

Code and data availability. The EnKF with VTS code is archived on Zenodo at https://doi.org/10.5281/zenodo.7611976 (Pang, last access:
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