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Abstract. Dust storms pose significant threats—to-human-risks to health and property—Aeceurate—forecasting—is—eructalfor

s-, necessitating accurate forecasting for preventive
measures. Despite advancements, dust models grapple with uncertainties arising from emission and transportfaetefs rOCESSES.

Data assimilation ean

these by integrating observations to rectify model error, enhancing forecast precision. The Ensemble Kalman Filter (EnKF)
is a widely-used assimilation algorithm that effectlvely tunes—meodelsoptimize model states, partlcularly in terms of inten-

sity adjustment. However, when

EnKF’s efficacy is challenged by position errors between modeled and observed dust features, especially under substantial
osition errors. This study introduces the Valid Time Shifting-Ensemble Kalman Filter (VTS-EnKFassimilation-methodelogy;
m%eh%hemﬂafé%ﬁeup}eé which combines stochastic EnKF with a valid time shifting methed—In-additionte

hrmechanism. By recruiting additional
ensemble members from neighboring valid times, this method not only accommodates variations in dust load but also explicitly
MMMMMMWQMMMM%SW and positional

he-thereby optimizing the
E@%‘MM&%@MVTS -EnKF e&fw&%upe%d&%&%tefmfveﬂf%&ﬂkeeeuﬁedﬁ—%pfmg%%l—%e
2-was evaluated against two severe dust storm cases from
spring 2021, demonstrating that position errors notably deteriorated forecast performance in terms of RMSE-and-NMBRoot
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Mean Square Error (RMSE) and Normalized Mean Bias (NMB), impeding the EnKF’s effective assimilation. Conversely, ané
hindered-the EnKFfrom-assimilating-valid-observations—In~eontrast-the VTS-EnKF yielded-substantial-improvements-in-beth
dust-analysisfields-and-foreeasts-improved both the analysis and forecast accuracy compared to the ErlcF—conventional EnKF.,

Additionally, to provide a more rigorous assessment of its performance, experiments were conducted using fewer ensemble
members and different time intervals.

1 Introduction

as natural meteorological disasters, are phenomena closely associated with the prevalence of potent winds over arid regions
with a loosely packed soil composition (Zhang et al., 2005; An et al., 2018). These storms enable dust particulates to ascend to
remarkable heights, traversing distances of thousands of kilometersz i i
as-high-as-theusands-of 1g-m="-(She et ak- 2048)—Meanwhile, WMM
ug m~*(She et al., 2018). During transportation, these aerosols ean-i

mmmmm&wm@ammmmm
SOz and NOz, exacerbating the severity of aerosol pollution (Song et al., 2022)-These-pose-a-great-threat-to-human-health-by
causing-damage-to-the-, thereby significantly endangering human health through respiratory and circulatory systems-system
impairments (Gross et al., 2018; Goudie, 2014). East Asia, as-ene-of the-major-dust-sources-and-affected-regtons-a dominant
source and recipient of dust activity (Hu et al., 2019), has drawn-much-attentionfrom-researchers-For-instancein-the 2021

springs-witnessed intensified scholarly focus. Notably, the spring of 2021 observed the onslaught of several super dust storms;

tn—unprecedented in intensity and geographical span over
WMM&WMM@M and China
(Gui et al., 2022; Jin et al., 2022; Tang et al., 2022). An-aceurate-earty-warning-of-Consequently, the imperative for an accurate
and timely forecasting system to dust storms is -therefore;in-essential-need-to-help-minimize-the-damagesaccentuated, aiming
to mitigate their detrimental impacts.

ak-In recent years, heightened
public concern has fueled advancements in deciphering the physical mechanisms governing dust cycle dynamics, leading
schemes have been proposed-sinee-the-early1990s;e-g--devised, including MB95 (Marticorena and Bergametti, 1995), Shao96
(Shao et al., 1996; Shao, 2004), Zender03 (Zender et al., 2003), and the more recent K14 (Kok et al., 2014). Coupled-with
Integrated within chemical transport models, dust-simutations—could—then—be—carried-out—e.g-—these frameworks facilitate
dust storm modeling exercises. exemplified by systems such as CUACE/DUST (Chinese UnifiedAtmospherie- Chemistry
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EnvironmentforDust)-(Gong and Zhang, 2008), BSC-DREAMSb (PustRegional-Atmospherie Modeling)—-(Pérez et al.,
2006; Mona et al., 2014), GEOS-Chem (Duncan Fairlie et al., 2007), and LOTOS-EUROS (Tlmmermans et al., 2017; Man-

ders et al., 2017). These dus
climatie-drivingforees,—and-alse-te-build-dust-models are instrumental in assessing health hazards, quantifying the planet’s
ecosystem responses, elucidating large-scale climate drivers, and, importantly, informing the development of early warning

-capable of predicting imminent
dust loads within timescales ranging from hours to days. Despite these advancements, the forecast skill of such models remains
constrained by inherent uncertainties tied to input variables—such as wind velocity fields and initial/boundary conditions—as
well as computational approximations necessitated by coarse spatial and temporal resolutions (Mallet and Sportisse, 2000).

Of particular note, the scientific consensus highlights the emission parameterization uncertainty as the paramount source of

error in dust storm simulations (Ginoux et al., 2001, 2012; Di Tomaso et al., 2017, 2022; Jin et al., 2019a, b). Consequentl

the predictive prowess of numerical dust models degrades-greatly-due-to-thesefactorsis notably compromised under the weight
of these combined limitations.

Observation—is—anotherfundamental-method—for—exploering—Observational studies constitute another pivotal approach in
elucidating the intensity and spatial distribution-dispersion of dust storms (Muhammad Akhlaq et al., 2012). SateHite-based

sateltites such-as-Among these, satellite-based monitoring technologies have rapidly evolved into a prevalent tool for dust
storm detection, offering expansive and detailed insights (Gui et al., 2022). Platforms like MODIS, Himawari, and Fengyun-
4A wﬁmmm%mmﬁwwmmmmwew&%mmwm
by high spatial resolution and
affected-by-elouds-and-other particles—Therefore; significant global coverage. Nonetheless, these satellite products aggregate

column-integrated information and are prone to interference from cloud cover and other atmospheric constituents, thereb
introducing substantial uncertainties and biases exi ingi

dust load estimates. Consequently, preprocessing is imperative to ensure their reliability in depicting actual dust concentrations

Jin et al., 2019b, 2022). Concurrently, ground-based observational networks, known for their reliability and fine temporal

lay a crucial role in precisely measuring aerosol

concentrations (She et al., 2018). China, in particular, has made substantial investments in constructing its ground monitorin

infrastructure, establishing an expansive network comprising over 1,600 stations nationwide. This dense grid of ground stations



furnishes a granular view of dust plume dynamics across the region (Gui et al., 2022), enriching the dataset for examining East
90 Asian dust storms and reinforcing the national observation networkprovides-rich-measurements—for-investigating-dust-storms

nEast-Asta’s capacity for comprehensive dust research.
Data assimilation 1

95 Variational-methods; such-as stands as a potent methodology that harmoniously merges model with observations. Rooted
in Bayesian principles, its objective is to ascertain the most plausible model state posterior, given the available observations,
through probabilistic estimation (Law and Stuart, 2012). The realm of data assimilation encompasses two principal methodologies:
Wmmmwmmw atm-to-retrieve-an-optimal

g-a-strive to determine an

100 optimal analysis that reconciles both prior knowledge and observational constraints over a defined temporal span, achieved

by optimizing a predefined cost function (Rabier and Liu, 2003). Vartational-methods-are-widely-used-in-inverse-modeling-of

These methods are prominently employed in tasks such as inverse modeling for initial conditions and emission fields (J inetal.,
2022; Bergamaschl et al., 2010; Corazza et al., 2011)an

105 as well as in reanalysis endeavors.

However, their implementation hinges on the often intricate development and maintenance of tangent linear or adjoint model
forms. Furthermore, the computational burden associated with minimizing the cost function escalates dramatically with the
Wmnmﬁmmg&wmmﬂm observations sequentiallyarnd
. aligning them favorably with

110 operational forecasting frameworks. This class includes the Kalman Filter (Kalman, 1960), its extension in the Extended
Kalman Filter (Brunner et al., 2012), and the more sophisticated Particle Filter (Leeuwen et al., 2019);-have-been-developed-
Among-att-thefiltering-metheds;—the-. Prominent among these is the Ensemble Kalman Filter (EnKF)is-the-most-popular
%Wﬁmmmmgmmmgh -dimensional medelrs—easy

115 systems, amenability to parallel computation (Evensen, 1994 Katzfuss et al., 2016; Houtekamer and Zhang, 2016), and reliance

on ensemble members to infer background error covariance statisties—of-the-medel-structures (Hamill, 2006; Houtekamer
et al., 2014). Its adva

encompass nonlinearity accommodation, dispensing with the necessity for explicit tangent linear calculations, and compu-
tational effie i h h RE

120

distribution-of-errorstatisties{Amezenaand-VanLeeuwen,2044)—For-efficacy (Bannister, 2017), rendering it a favored tool
across domains, including weather prediction (Houtekamer et al., 2005) and hydrological studies (Reichle et al., 2002). Despite
these strengths, the EnKF, as an extension of the Kalman Filter, presumes Gaussian error distributions (Amezcua and Van Leeuwen, 2014
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. When dealing with non-Gaussian preblemserror statistics, EnKF can create suboptimal results-outcomes for the linearized
dynamics or operators and sampling errors caused by finite ensemble members (Lei et al., 2010).

%W«%ﬂ%%%%tﬁ%%mmmm
stems from the real-time estimation of dust emissions, leading to a research emphasis on emission inversion through data
assimilation techniques. Studies such as those conducted by Yumimoto and Takemura (2015) leveraged long-term MODIS
Aerosol Optical Depth (AOD) retrievals for emission inversion across Asia. Similarly, Escribano et al. (2017) underscored the
&@XQWLCMMMIMMOVCF northern Africa and the Arabian Peninsula-
» Tevealing instances
@%WW observational uncertainties in sem&e&ses—Th&ﬂﬁeefeam&emﬂwdeHema&yhhave—a
'
WMWWW@W@ dust emission ever

variability in the Mongolian and Chinese Gobi deserts.
This includes the assimilation of ground-level PM;, eoneentration—concentrations (Jin et al., 2018), polar-orbiting MODIS

satellite data (Jin et al., 2022), and geostationary Himawari-8 AOD measurements (Jin et al., 2019b). To effeetively-improve
duststorm-emission-inversion-we-introducedrefine emission inversion processes, innovations like observation bias correction
(Jin et al., 2019a), adjoint-based emission source tracking (Jin et al., 2020), and grid distertion-Jinetal;202H)—These-works
WMMWMWMMMMWWNWWMM
advancing our understanding of dust emission an
mmwm%ﬂw%nmmmmm ap-
plication of hig i g Hsing nttysequential forecasting methodologies
a%ﬁmﬂa&eﬁ-baseekww operational dust forecastmg %WGWWWEnSCm—
ble Kalman Filter (EnKF)
modewith the LOTOS-EUROS WWWMW%&M&W%@%@M
facilitated by our custom assimilation software, Pyfilter (Pang, last access: May. 2024). We-tested-this-system-on-the-super
WWMWMQ&W%@%MMM
spring 2021

Wﬁmwmmm%mmmmm
analyses and forecast results compared to standalone model forecasts. Notably, when configured with an appropriate localization
radius, it consistently outperformed the EnKF, highlighting the potential for localized filters in enhancing the precision of dust
storm forecasting.
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Despite the peositi

between-the-observations-and-medeHn-spaee-afterencouraging outcomes of our experimental assessments, several challenges
ersist, chief among them being a spatial misalignment between model forecast and observations following long-distance
transport—_1n-additionto-the-diserepaney-in-the-dustintensitydust transport. This disparity not only encompasses discrepancies

in the estimated dust intensity but also manifests in inaccuracies regarding the timing of dust arrival and departure, as will be
ithastrated-elaborated in Sect. 2.4 i

Theformerrepresents—the—actual-dustlead. In the context of dust storm forecasting evaluation, both the intensity and the

osition accuracy of the dust plume are paramount. Intensity directly correlates with the amount of airborne dust, while the
latterreveals-position is vital for understanding where the dust plume affects at a given instant. For an-operational forecast-

ing and warning

metries;—sueh-as-—systems, pinpointing the correct location of impending dust impacts can carry even greater urgency than
estimating dust load precisely. Quantitatively, these spatial mismatches significantly deteriorate the forecast performance when

evaluated using conventional measures like the root mean square error ﬁhe—fefeea%mag—ﬂﬂ}l%degﬁadedﬁgmﬁe&mbwﬁh&e

in-Seetion-(RMSE). The underlying causes of this spatial discrepancy and its broader ramifications on forecasting efficacy will

be meticulously examined in Sect. 3.2.
The se-ealled-phenomenon labeled as "position error” in dust aerosol simulations typically aﬂ%e%ﬁfte%grvlgm\gvevsvaovllvovw

long-distance transport.

\IWMWW phys1ca1 parameters (Rav-

ela et al., 2007), and
Ginretal;202h-Simitar-to-the-uncertainties inherent to both meteorological inputs and the precise timing of dust emissions,
as we previously highlighted (Jin et al., 2021). Resembling the issues encountered in dust emission inversionstudies-diseussed
above;-the-deviations-between-the-medel, discrepancies between model forecast and observations in dust storm data assimila-

tion ﬁMM&W&Wm

estimates, where ensemble in

ing-simulations incorporate varied emission
scenarios. The challenge lies in the quantification of position error and its subsequent inaccurate formulation of the background

matrix. Consequently, EnKF calibrates both intensity and position error, while it cannot handle position errors if the ensemble

is under-dispersive with regard to position. This deficiency curtails the capacity of current assimilation methodologies to correct
position error.



Position error is not a1

This-type-of-error-is-quite-common-in-forecasting phenomena-an occasional issue. Instead, it is a error that accumulates as
195 simulations progress, plaguing forecasts such as hurricanes, dust storms, convective thunderstorms, and precipitation (Dance,

2004; Nehrkorn et al., 2015; Jin et al., 2021). However, there-e MMW&@MWM%
been relatively £ i
WWWWWMWWWMWM
methodology to pinpoint and rectify position errors leveraging a wealth of high-resolution, densely deployed observational data.
200 Their research-demonstrated-thatitis-possible-to-eorreetposition-errors-findings in Observing System Simulation Experiments
(OSSEs) affirmed the feasibility of correcting positiona errors. Jin et al. (2021) developed a grid-distortion-technique-based-on
WMM@WMM@POWWO%SM& which-suecessfully
W@@@%@m@l@&%@ﬁs&idw plumes to

205 of-these-methodsconform more closely with observations. While these enhancements underscore the potential for addressin
osition errors, their efficacy hinges critically on the availability of a comprehensive and closely spaced observational network.

Regrettably, in many practical scenarios, observational coverage is patchy and incomplete, curtailing the broad application of
these corrective measures.

In this paper, the standard-EnKF-assimilation-EnKF is coupled with a Vahd—rma&siﬂfﬁﬁgVahd Time Shifting (VTS) method

strategy, referred
to_henceforth a5 VTS-EnKF, specifically ailoed to mitigate position errors prevalent in long distance dust sorm tgans
portsimutation—This-assimilation-methodologyisreferred-to-as—._The VTS methodology, inspired by prior works such as
Xu et al. (2008); Lu et al. (2011); Zhao et al. (2015); Huang and Wang (2018), augments the EnKF by incorporating temporal

215 asstmﬁaﬂeﬁﬂﬁ&}ysrs—a%%gwemne—thﬁgggavg@vsvg& background error covariance etlfh&stmulafeekdﬁs%p}umets—ea}eu}ated

210

220 each assimilation cycle by considering not solely the immediate ensemble members but also those from neighboring time
oints, slightly before and after the target moment (Gasperoni et al., 2022, 2023). By doing so, this approach encapsulates a

broader range of potential dust plume positions, thereby inherently compensating for transport-related inaccuracies without
necessitating intricate adjustments to observations, meteorological fieldsinputs, or other underlying physical parameters. We

tested-The efficacy of the VTS-EnKF en-was assessed against two severe dust storm events that occurred in 2021. Our results

findings underscore the substantial improvement offered
by this hybrid method over pure EnKF, particularly swhen-in scenarios where significant position errors are presentin—the
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stmulated-dust-plameevident in model prior. This advancement paves the way for more precise and temporally coherent dust

storm forecasting, especially amidst the complexities of long-distance transport.
This paper is organized as follows: Section 2 introduces the dust measurements and dust model used in the research. We also

discuss that the major uncertainty of dust model forecast comes from the emission. But there is another problem: position error
that remains to be solved. Then in Sect. 3, we explain introducing the procedure of ensemble-based assimilation algorithm
and the mechanism of position error’s negative effect on EnKF. How the new assimilation method works is explained in detail
afterwards. To test the performance of EnKF with VTS, sequential assimilation experiments on several dust storm events are
designed. Section 4 analyses the results of experiments in terms of both the assimilation analysis and forecast performance.

Section 5 concludes this paper.

2 Dust measurementobservation, model and position error

In this paper, ground-based PMy is used as the measurement-with-dust observation to be assimilated after a bias-correction
procedure to remove the non-dust part. The dust model adopted is the LOTOS-EUROS. Considering the model processes, the
greatest uncertainty in the dust simulation comes from uncertainty the emission parameterization. Meanwhile, uncertainties

from meteorology can also influence the model forecast and lead to the "Position error”.
2.1 DustmeasurementsGround PM;, observations

Thanks to the continuous efforts and investments from the Ministry of Ecology and Environment, over 1600 ground monitoring
stations have been established across China, with some locations in northern China shown in Fig. 1. These stations provide
real-time hourly air quality data, and their hourly PM;( concentrations serve as indispensable datasets for measuring dust load,
which are used as observations to be assimilated in this paper.

Despite the advantages of low uncertainty and high time resolution, PM;( observations are not assimilated directly due to
the mixed state of dust and non-dust aerosols in the original PM; data. Anthropogenic activities, such as vehicle emissions,
coal burning, and industrial processes (Wu et al., 2018; Liu et al., 2018), along with natural sources like volcanic eruptions,
sea spray, wildfires, and wind-blown dust contribute to the total PM ;o concentration. Assimilating PM;( data directly into a
dust model may introduce biased-errors-biases and lead to model divergence (Jin et al., 2019a). Therefore, it is necessary to
eliminate the bias before data assimilation.

In this study, the non-dust portion of PM; is approximated through a separate model. The dust observations assimilated are
calculated by subtracting the non-dust fraction from the original PM;y measurements. Further details regarding the baseline

removal (BR) can be found in Jin et al. (2022).
2.2 Dust model

In this paper, the LOTOS-EUROS v2.1 is used to simulate dust storms that occurred in East Asia. Originating from the Long-
Term Ozone Simulation (LOTOS) and the European Operational Smog model (EUROS) in the 1980s, LOTOS-EUROS has
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undergone continuous development for various applications. It has been widely used in air quality forecasting (Curier et al.,
2012; Brasseur et al., 2019; Lopez-Restrepo et al., 2020; Skoulidou et al., 2021), dust/aerosol emission inversion (Yarce Botero
et al., 2021; Jin et al., 2018, 2019a, b, 2021, 2022), and source apportionment (Kranenburg et al., 2013; Timmermans et al.,
2017; Pommier et al., 2020; Jin et al., 2020). In spring 2021, several super dust storm events occurred in East Asia, around 15th
March, 28th March. These events, referred to as DSE1 and DSE2, are used as test cases in this study. These dust storms caused
significant losses in both Mongolia and China (Jin, 2021; Chen and Walsh, 2021). Accurate forecast of such severe sandstorms
is crucial for reducing health and property damages.

To simulate the dust storm over East Asia, LOTOS-EUROS is configured following our recent work (Jin et al., 2022): The
simulation domain is from 15° N to 50° N and 70° E to 140° E with a grid resolution of 0.25° x 0.25°. The model consists of
8 layers with a top at 10 km. The boundary conditions are set to zero assuming that all the dust aerosols are emitted during the
simulation window. Dust emission, deposition, advection, diffusion and dry/wet deposition are considered within the model.
The model output is at the interval of 1 hour.

The whole model simulation period is set from 13 to 17 March for DSE1 and 27 to 30 March for DSE2, which covering the

whole life cycles of emission and long-distance transport. More details could be found in Jin et al. (2022).
2.3 Uncertainties from emission and meteorology

The goal of this study is to calculate the dust concentration field that best fits both the a priori and observations at each
assimilation analysis. The optimized field will then be used as the initial condition for sequential dust forecasts, as explained in
Section 3.1. It is essential to define and quantify the uncertainty in dust simulations. As previously mentioned, the uncertainty
in emission parameterization is widely believed to be the dominant error source in dust simulation (Ginoux et al., 2001, 2012;
Di Tomaso et al., 2017, 2022; Jin et al., 2019a, b). High levels of uncertainty in dust emission parameterization arise from
insufficient knowledge about windblown erosion, lack of accurate input on soil characteristics, and the models’ inability to
resolve the fine-scale variability in wind fields governing dust emission (Escribano et al., 2017; Foroutan et al., 2017; Foroutan
and Pleim, 2017; Jin et al., 2019b).

In our recent work (Jin et al., 2022), a 4DVar-based inverse modeling approach was employed to retrieve an optimal emission
field for the three major dust storms in spring 2021 (Jin et al., 2022). The a priori emission, f ., followed the Zender03 dust
emission parameterization scheme (Zender et al., 2003). To compensate for potential errors, a spatially varying multiplication
factor was introduced. Mathematically, it was quantified by a background error covariance matrix, B, to describe the potential
spread of the actual dust emission flux.

Another source of the uncertainties arises from the meteorological field. In our previous papers, uncertainties from meteo-
rology and the position error were neither taken into account (Jin et al., 2022; Pang et al., 2023). In this paper, European Center
for Medium-ranged Weather Forecast (ECMWF) ensemble forecast (totally 51 ensemblesensemble members) are used. Each
one of the model ensembles-ensemble members is driven by one unique ensemble meteorology field. N=32 ensemble meteo-
rological fields are randomly selected. Its grid resolution is about 14 km. The 6-hourly short-term meteorological forecast field

is interpolated to hourly values. The grid resolutions are also averaged to fit the model resolution.
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In general, we assign the dust simulation uncertainty to both emission and meteorology. Ensemble emission field [f, ..., fx]
are generated randomly following the emission uncertainty choice f;.; and B in Jin et al. (2022). Meteorologic field
[w1,...,wN] are randomly selected from the total 51 ensemble meteorology. They are used to forward the LOTOS-EUROS

model M for the ensemble dust simulations [z, ..., zn] as:

[581, ,:EN] = [M(fl,wl), ceey M(fN7wN)] (1)

N refers to the total ensemble number, and the choice will be explained in Section 3.3.

These ensemble individuals are used in the EnKF assimilation for representing the covariance dynamics of the dust plume,
which resulted in more accurate dust analysis and forecast as will be shown in Sect. 4. However, the ensemble realizations
mainly represent the uncertainty in the intensity feature, and hardly help resolve the positional deviation between the observa-
tion and simulation. The presence of position error would give rise to a divergent assimilation analysis as will be illustrated in

Sect. 3.1.
2.4 Position error

For all the dust events, most of the dust particles were originated from the Mongolia Gobi desert, and carried by the prevailing
wind towards southeast. After several thousands of kilometers transport which lasted about one to two days, they finally arrived
in the densely-populated northern China.

Position errors are clearly visible in the simulation of two dust events (DSE1 and DSE2). Examples can be best seen in
Fig. 1, which plots the evolution of LOTOS-EUROS simulated surface dust concentration alongside BR-PM;( (BR: non-dust
baseline-removed) concentration observations for DSE1 (panel a) and DSE2 (panel c¢). The corresponding standard deviations
from ensemble model simulations and the model-minus-observation differences (absolute values) are also plotted in panel b and
panel d. In panel a.1, the model generally simulates a similar shape of the dust plume as indicated by the observations at the first
instance, though the dust load intensities differ to some extent. However, during the subsequent transport, positional errors arise
gradually. In panel a.2, the right part of the simulated dust plume is positioned about 100 to 200 km too far south compared
to ground-based observations. Consequently, the Root Mean Square Error (RMSE) increases significantly from 587.83 ng
m—2-ug m3at 8:00 to 856.36 ttg-m—>-pg m~3at 11:00. This position error continues to accumulate over the following 3
hours at 14:00. The development of position errors is further clearly visible against the PM; observations, especially in the
light blue box in panel a.3. The model simulation missed all the dust load there, while the observations indicate a significant
amount of dust aerosols. It can also be seen in panel b.3 that the model-minus-observation differences exceed 1000 ttg-m—2
ug m~3there. Similarly, for DSE2 occurring on 28th March, 2021, as shown in Fig. 1(c), discrepancies between observations
and simulation become more explicit as time evolves, especially for the dust in the light blue box in panels c.1 and c.2. The
RMSE remains high from 542.15 ttg-m—3-pug m~3at 8:00 to 479.6 ttg-m—3-pg m~3at 11:00, and this error expands to a wider
extent as shown in the enlarged green box in panel c.3. This position error not only limits the pure model forecast performance

but also significantly degrades the subsequent assimilation analysis and forecast. With an ensemble-approximated background

10
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covariance unrepresentative of position error, neither the position deviation nor the intensity deviation can be fully resolved, as
will be explained in Sect. 3.2.

Potential sources of position error in dust model may be attributed to inaccuracies in emission timing, uncertainties in mete-
orological input data (e.g., wind fields responsible for transporting dust plumes from the Gobi Desert in Mongolia and China
to downwind regions), or a combination of these factors. Adjusting the emission timing profile, which characterizes the release
of soil particles into the atmosphere, could partially correct the position of the dust plume. Moreover, alterations in meteo-
rological conditions governing long-distance transport might also realign the dust plume’s position. To address the position
error, a comprehensive covariance matrix is necessary to account for both the potential variations in emission temporal profiles
and the accumulation of uncertainties along the plume’s extensive trajectory. Concurrently, a significantly larger ensemble size
is required to propagate these uncertainties, featuring high degrees of freedom, into the PM;( observational space. Although
a sophisticated covariance matrix and a substantial ensemble size (resulting in considerable computational cost) may aid the
EnKF in simultaneously resolving position and intensity errors, this approach is often prohibitively expensive. Therefore, an

efficient and cost-effective alternative solution is required.

3 Assimilation methodology and experiments

EnKEF is a powerful algorithm to tune the model simulation with observations especially in intensity adjustment given the
perturbed emission spreads. However, when faced with the position error, its weakness is exposed that some model-minus-
observation inconsistency cannot be resolved by EnKF as illustrated in Section 3.1. On the contrary, our EnKF with VTS can
correct both the position error and the intensity. Assimilation strategy is designed and embeded into a assimilation forecast

system in Section 3.2. Experiments are designed on the dust storms occur in spring, 2021, which are illutrated in Section 3.3.
3.1 EnKF

The Ensemble Kalman Filter (EnKF) was first proposed by Evensen (1994). Stemming from the Kalman Filter, it was designed
to address high-dimensional problems by employing limited ensembles-ensemble members to approximate the true background
error covariance. It relies on the Gaussian distribution of errors. The EnKF has been proven to be practical and efficient
in various applications, particularly in sequential forecasting with the aid of localization (Lopez-Restrepo et al., 2020; Park
et al., 2022). In any sequential forecast system, the objective of assimilation analysis is to provide an optimized initial state or
parameter field, which, in this study, corresponds to the 3D dust concentration. This is achieved by assimilating the available
measurements. The estimated dust concentration field can then be used to onward the model for more accurate dust forecasting.

Here we use the stochastic EnKF formulated by Burgers et al. (1998). It features the pertubated-perturbated observations to
maintain a reliable ensemble spread. Starting from the prior dust concentration field a:{ " at time ¢ which is calculated by model

integral operator M from the dust concentration field at the previous time step :c?fl

el = Mzl fLwd) )
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ensemble members (abseohute-vatae)-h.1-3) at 08:00, 11:00 and 14:00 15th March, 2021, respectively. Figures below are the same except the
time is at 05:00 (c.1 and d.1), 08:00 (c.2 and d.2), 11:00 (c.3 and d.3) 28th March, 2021, respectively. The filled circles represent ground

BR-PM; +basehne-remeved-PMrpobservations in (a) and (c), and the model-minus-observation differences (absolute value) at various
observation sites in (b) and (d). The colorbar in panel a and ¢ represents the concentrations, and the colorbar in panel b and d represents the

model-minus-observation differences (left) and standard deviation (right). BR-PM;(: baseline-removed PM;o. CST: China Standard Time.
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X/ =[xt a]?, - a]lN 3)

Note that for the first analysis the prior dust simulation are extracted from the model with the perturbed emissions as shown
in Eq. 1. The 7 represents the ensemble individual number. N is the number of ensemblesensemble. X/ is the ensemble model
simulation matrix consists of the whole ensemble individuals.

The ensemble perturbation matrix X/ calculates the deviation between the ensemble individuals w{ " and the ensemble

mean state E{ .

N

_ 1 ;

of = L3 ot @)
=1

XV = of' il 2f? - af™ 3] ®

Then the background error covariance matrix P is approximated by X/ as follows:

1
Pf:mxfle/rf (6)

Afterwards, the Kalman gain K can be calculated with P/ and O.
K=PH"HP/HT+0)! (7)

K weights the increments given from the observations to the prior estimation. In this paper, they are the BR-PM;( observa-
tions stored in y and dust simulation stored in vector . H is the observation operator which maps the model states into the
observational space.

O is the observational error covariance matrix that weights the uncertainty of the measurements. In this case, it is the
uncertainties from ground-based BR-PM;( concentrations. O is defined as follows: the minimum uncertainty threshold is set
to be 200 tg-m—>Root-of errorfrom-observations-ug m~ >, Standard deviation of observation error below the threshold is
set to be 200 ttg-m—>-pug m~3and those over it is set to be 200+(y-200)x0.2 tg-m—>ug m~>. This definition can prevent the
posteriori from getting too close to the low value observations and thus leading to model divergence. O is a diagonal matrix
assuming that all the observations are independent.

In the end, the posteriori estimation individual x; " can be updated as follows:
' =x]" +K(y+ € — Hax!") (®)

€' represents the sampling error vector. It is a random vector subjecting to normal distribution. Its mean is 0 and covariance is
the root of diagonal from O.

The equations presented above describe the Ensemble Kalman Filter (EnKF) algorithm for dust storm assimilation, which
focuses on intensity adjustment. The EnKF assimilation aims to compute an optimal posteriori estimation given a priori in-

formation and observations. It is highly dependent on the observations and the ensemble spread. In fact, the ensemble-based
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background covariance matrix, P7, utilizes the ensemble members to approximate the true background covariance. The spatial
distribution of the standard deviation (square root of the diagonal values in P/) from 32 model ensemblesensemble members,
along with the scatter of absolute model-minus-observation differences in two cases (DSE1, DSE2), is shown in Fig. 1 (b,d).
In general, their spatial distribution corresponds well to the simulated dust field depicted in Fig. 1 (a, c). Concurrently, the
uncertainty in the light blue box decreases rapidly as the simulated dust plume moves southward, as illustrated in panels b.1
and b.2. This suggests that our ensemble model simulations are highly confident that there are less affected by dust aerosols.
However, the observations indicate that this area remains heavily polluted. In the case of DSE2, the situation becomes more
complex. The simulated dust plume in DSE2 covers most of the observation area with a high dust load, as demonstrated in
panels c.1 and d.1. The uncertainty, on the other hand, reveals that the ensemble model is less confident about the dust load,
especially in the light blue box displayed in panel d.2. After 3 hours, these discrepancies become more evident. The extent to
which this situation affects the EnKF assimilation will be discussed in this paper. It poses a challenge to EnKF assimilation in
resolving the high-value measurements in this region.

The performance of EnKF deteriorates when position errors are present. The underlying mechanism can be best understood
by examining Fig. 2(a). At time point ¢y, there are ensemble model simulations (gray dashed lines) distributed across the
three-dimensional space. The black line and blue star represent the average of model ersembles-ensemble and observations,
respectively. As clearly depicted, there is a positional mismatch between the ensemble model simulations and observations.
Following the assimilation analysis, the intensity of the dust plume is adjusted to better match the observations. However, in the
spatial domain outside the priori, the dust concentration is reduced to near-zero levels. The observations in this area, containing
valuable information about dust load, contribute little to correcting the dust load. This is due to the unanimous agreement on the
dust load from the model ensemblesensemble, which represents low uncertainty. In such cases, the assimilation analysis favors

the model results and disregards the observations. Consequently, the a posteriori estimate is biased as a result of imbalaneed

uneertaintiesensemble underdispersion.

3.2 VTS-EnKF

To efficiently perform the assimilation analysis with both the intensity and position errors present, we apply a "valid time
shifting" method into the EnKF. The strategy is illustrated in Fig. 2(b). Instead of using the ensemble simulations solely at
the exact assimilation analysis instant ¢y, as shown in panel a, ensembies-ensemble members at neighboring moments are
also introduced to expand the ensemble group. These resampled ensembles-ensemble members at neighboring times represent
the potential positions of the actual dust plume. The enlarged ensembles—ensemble exhibit a more extensive spread of the
dust plume in the spatial domain compared to those displayed in panel a. The joint ensemble model simulations then capture
uncertainty in both intensity and position. The a posteriori estimate (red line) is adjusted to better fit the observations, with
both of these errors resolved.

Mathematically, the EnKF with VTS procedures are very similar to those of EnKF, except that the original X/ is replaced
by X/m¢® which stores the enlarged ensemble members at the assimilation analysis instant and neighboring times. It starts

with
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Let ¢ be the exact assimilation time, and 7 be the time interval. Then ¢ — 7 represents the time in the past, and ¢+ 7 represents
the time in the future. It is noteworthy that the time axis, denoted by ¢t — 7 and ¢+ 7, is utilized solely to illustrate the application
of ensemble simulations at different time direction in the formula. However, in practical applications, ensembles-ensemble
members from multiple adjacent time instants can be incorporated, as demonstrated in the horizon choice utilized in this study
(as presented in Table 1).

Subsequently, the ensemble-based background covariance P/, Kalman gain K and posteriori state 2 will be updated with

the X/"¢% in Eq. 6 ~ 8, respectively.

priori priori

priori mean

(a) posterior spread (b)

posterior mean

priori mean

N, ew €n semb, le posterior spread

posterior mean

*  observation *  observation

dust
concentration

dust
concentration

[ans 1+t

Figure 2. Strategy illustration of ensemble Kalman filter (EnKF) (a) and ensemble Kalman filter with VTS (VTS-EnKF) (b). Figure axis left

represents the time and right represents the position of the dust field in 3D space. The vertical axis represents the intensity of the dust.

The localization method is also adopted here to cut off the spurious correlation in P¥ and constrain the background covari-
ance to a certain distance. The localization matrix is constructed following Gaspari and Cohn (1999) (Eq. A.27) with a distance
threshold L;p,s. The details about the construction of L can be found in Supporting Information. The localized Pp/ilocal g

obtained by point to point multiply with localization matrix L.
Pﬁlocal :PfOL (10)

With the localized P71l the localized posteriori estimation 2" can be updated via Eq. 7 and Eq. 8.

Both the EnKF and EnKF with VTS described above are embeded into our self-designed assimilation toolbox, PyFilter
(Pang, last access: May. 2024). This toolbox features a flexible interface for linking to numerical models (Pang et al., 2023),
such as the dust storm forecasting model LOTOS-EUROS used in this study.
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3.3 Experiment descriptions

DSE1 and DSE2 are chosen as the cases for the test. The BC-PM;( observations are assimilated. The first assimilation analysis
did not commence until the dust plume was detected by the ground-based observation network and a position mismatch
emerged. An identification index is also designed to objectively discriminate the position error as can be found in Eq. S3
S6 in Supplementary. Three sequential EnKF analyses are conducted in each dust event at three-hour intervals. The timeline
for DSEI and DSE2 is depicted in Fig. 3.

Taking DSEI as an example, the initial assimilation analysis is performed at 11:00 March 15, when an apparent position
error was present, as illustrated in Fig. 1 (a.2). The last analysis is carried out at 17:00 March 15. As the dust loading decreases
rapidly when the plume moves further southeast, no additional assimilation is performed. A rolling forecast (red line with
arrow) is generated based on the optimized dust concentration field with a 24-hour horizon for the purpose of examining

forecast skill.

(a) DSE1 1
i |
long-distance transport arrived in northern China 1 -
! |
dust erﬁnission ; ) | .
f \ I
Mar 13 Mar 14 Mar 15 08:00 11:00 14:00 17:00 Mar 16
Prior
————— VTS-EnKF analysis
(b) DSE2 I .
pr— O EnKF analysis
! | Forecast with a
A I : horizon of 24 hours
| |
Mar 27 Mar 28 08:00 11:00 14:00 17:00 Mar 29

Figure 3. Sequential assimilation time set for DSE1 (a) and DSE2 (b). Take DSE1 for instance, the assimilation analysis is performed at the
intervals of 3 hours from 11:00 to 17:00 and the rolling forecast is made with a horizon of 24 hours based on the assimilation analysis. The

EnKF with VTS and EnKF is performed in turn.

To evaluate the performance of the VTS-EnKF-implemented dust storm forecasting system, data assimilation experiments

are conducted on two spring dust events in 2021. Experiment settings are shown in Table 1. Control represents the ensem-
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ble model forecast throughout the entire dust storm period. Ex#&K#Basic and L500 denote the assimilation-based forecasts by
EnKF and localized EnKF (LEnKF) with a localization distance threshold of 500 km, respectively. VIS-EnKF and VTS-L500
represent the assimilation-based forecasts by VTS-EnKF and VTS-EnKF with a localization distance threshold of 500 km.
Note that various distance thresholds have been tested for localization, and a choice of 500 km is found to provide the optimal
assimilation analysis and forecast in our tested cases. The metrics, Root Mean Square Error (RMSE) and Normalized Mean
Bias (NMB), are employed in this paper to evaluate system performance. Calculation of the metrics is mentioned in supporting

In EnKF-based experiments, £rk#Basic and L500, the ensemble number N is set to 32, which is found to be sufficient to
represent the uncertainty in the dust simulation while remaining computationally affordable. Testing with N greater than 32
shows only limited improvements. For VTS-EnKF experiments, the ensembles-are-ensemble is expanded as they incorporate
ensemble-simulations from neighboring instants. To cover the potential positions of the dust plume, neighboring times with
41 and +2 hours apart are empirically chosen in this paper. As demonstrated in Table 1, the ensemble number is extended
to 160 when EnKF with VTS is applied, and the neighboring time stamps of 9:00, 10:00, 12:00, and 13:00 are selected. The
160 ensemble dust simulations are updated according to the EnKF principles and forwarded synchronously for the new rolling
forecast; they will serve as the prior in the subsequent assimilation analysis.

Experiments for the VTS-EnKF with equal ensembles-ensemble members to EnKF are designed, as referred to VI'S-EnKF-
small and VTS-L500-small. They starts-start with central 8 ensembles-ensemble members and are extended to 32 ensembles
by incorporating neighboring +1 and &2 hours with 4 x 6 ensemblesensemble members. Furthermore, to test the sensitivity of
neighboring time interval, VTS-EnKF experiments with different intervals are also designed. Time intervals ranging from 1 to
5 hours are selected to test the impact, which are referred to as VTS-EnKF-t1, VTS-EnKF-t2, VTS-EnKF-t3, VIS-EnKF-t4 and
VIS-EnKF-t5.

4 Results and discussions

The results are discussed in the aspects of assimilation analysis and model forecast. The benefits of using our EnKF with VTS

algorithm for the dust storm simulation with position errors are emphasized.
4.1 Impact on assimilation analysis

Figure 4 displays the spatial distribution of ground BR-PM; ( observations (scatter) and dust field forecasts from the average of
the ensembles-ensemble (panel a.1), the posteriori from EnKF analysis (panel a.2) and EnKF with localization (panel a.3), the
average of the enlarged ensembles-ensemble (panel b.1), the posteriori from VTS-EnKF analysis (panel b.2) and VTS-EnKF
analysis with localization (panel b.3) at 11:00, 15th March, 2021 China Standard Time (CST). It should be noted that the aver-
age dust concentrations in panel b.1 are calculated from the 160 ensemble simulations used in VT'S-EnKF, which slightly differ
from the average of 32 ensemblesensemble members. In DSE1, the RMSE and NMB from the pure ensemble model simula-
tion are as high as 856.36 t:g-m—3-ug m3and -78.31 %. Both EnKF and LEnKF assimilation analyses achieve very limited
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Table 1. Experiment settings.

Name Ensemble size used by Initial assimilation Ensemble set Localization
analysis and forecast time set (hour) distance (km)
Control 32 None [32] None
EnkFBasic 32 t [32] None
L500 32 t [32] 500
VTS-EnKF 160 t—2,t—1,t,t+1,t4+2 [32,32,32,32,32] None
VTS-L500 160 t—2,t—-1,¢t,t+1,t4+2 [32,32,32,32,32] 500
VIS-EnKF-small 32 t—2,t—-1,t,t+1,t4+2 [6,6,8,6,6] None
VTS-L500-small 32 t—2,t—1,t,t+1,t4+2 [6,6,8,6,6] 500
VTS-EnKF-t] 96 t—1,t,t+1 [32,32,32] None
VTS-EnKF-12 96 t—2,t,t+2 [32,32,32] None
VTS-EnKF-t3 96 t—3,t,t+3 [32,32,32] None
VIS-EnKF-t4 96 t—4,t,t+4 [32,32,32] None
VTS-EnKF-t5 96 t—>5,t,t+5 [32,32,32] None
VTS-EnKF-t6 96 t—6,t,t+6 [32,32,32] None

improvement in estimating the dust state field. As shown in panel a.2 and panel a.3, the RMSE and NMB remain high at 819.04
pe-m—3-pug m—3and -75.65 % in EnkFBasic, and 782.57 tg-m—3-ug m—3and -73.52 % in L500. The main reason for this is
the imbalanced-uncertainty-between-the-ensemble-simulations-and-the-observationsensemble underdispersion, as described in
Sect. 3.2. As observed in the light blue box in panel a.1, the simulated dust plume is located farther southeast compared to the
PM;( measurements. This snapshot exhibits an apparent position error. After EnKF analysis, the simulated dust plume in the
light blue box barely changes, as depicted in panel a.2. Numerous ground stations in this area report high PM; concentrations,
but the assimilated dust field fails to resolve most of them. The localization method offers limited assistance in this situation,
as illustrated in panel a.3. With the unresolved positional error, the EnKF, which focuses more on intensity correction, is much
less effective.

When it comes to the VTS-EnKF analysis result, an improved dust field can be noticed. Concerning the Root Mean Square
Error (RMSE) and Normalized Mean Bias (NMB), the two priors depicted in panels a.1 and b.1 exhibit highly similar per-
formances. However, slight differences do exist. For instance, the average of the expanded 160-member ensemble used in
VTS-EnKF displays a marginally broader spread. The increased ensemble size provides more room for representing back-

ground uncertainties. The enhanced capacity for this is best illustrated in Fig. 6 (a), which exhibits the uncertainty quantified

by the enlarged ensemble simulations in VTS-EnKF formulations. High-unecertainty—values—areseen—in—pixels—where-large

order-to-better-conform-to-the-observationsThis expansion of the uncertainty spread effectively addresses the issue of ensemble
underdispersion, thereby boosting the EnKF’s capability to handle position errors. In contrast, the relatively low uncertainty
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over these areas depicted in Fig. 1 (b.2) suggests that the EnKF method is highly confident in the absence of aerosols and does
not require any modification. The observations are effectively assimilated in the VTS-EnKF analysis. As displayed in panel
b.2, the dust plume within the light blue box is adjusted to better match the observations. In particular, the dust to the east
of the marked region is well represented in comparison to the posteriori of £rnKkFBasic. The RMSE and NMB are reduced to
742.33 pg-m—>-pug m—3and -68.21 %. Moreover, the posteriori of VTS-L500 yields an improved dust field with the RMSE
and NMB further reduced to 696.1 ttg-m—=-ug m~3and -63.93 %. The implementation of the localization method eliminates
spurious correlations and generates a background error covariance that more accurately describes the model uncertainties. De-
spite the noticeable improvements achieved in DSEI1, the residual errors, as indicated by the RMSE and NMB metrics, remain
relatively high. This is mainly due to some observations with extremely high value (exceeding 5000 tg-m—>pg m~3), which
is far higher than the surrounding stations and hard for the EnKF to adapt. In particular, the western extent of the dust plume

is covered by the insufficient stations, which results in an inadequate representation of the dust load. By incorporating neigh-

boring ensemblesensemble, the dust plume is extended wilder; ’ i ions. In the future research,

assimilating satellite-derived dust optical depth (DOD) observations that have broader coverage may help to better constrain

the enlarged ensemble.
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Figure 4. Spatial distribution of simulated dust plume (SDP) on surface from average of

ensemble members at central time ensemble-medel-mean—(a.l), the posteriori SDP updated by EnKF (a.2), the posteriori SDP updated by

EnKF with localization (a.3), central and neighboring time ensemble model mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2),
the posteriori SDP updated by VTS-EnKF with localization (b.3) at 11:00, 15th March 2021 (CST). The filled circles are ground-based
BR-PMj observations. CST: China Standard Time.

Figure 5 presents the spatial distribution of ground-based BR-PM;( observations (scatter) and dust concentration forecasts
from the average of model ensembles—ensemble (panel a.1), EnKF (panel a.2), and LEnKF analysis (panel a.3), as well as
the average of the enlarged model ensembles-ensemble (panel b.1), VTS-EnKF (panel b.2), and VTS-EnKF with localization
analysis (panel b.3) at 11:00, March 28th, 2021 CST. During this assimilation snapshot in DSE2, the model-simulated dust
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field is observed to have moved further southeast, as depicted in panel a.1. As illustrated by the light blue box in panel a.1,
the model-simulated dust plume missed most of the observations with high PM; concentrations. Consequently, although the
EnKF analysis remains effective in this case, dust in light blue box is nearly unchanged. The RMSE and NMB are reduced to
348.13 prg-m—3-ug m~3and -45.96 % in the £nKFBasic scenario, with further reductions to 301.38 tg-m=3-ptg m~3and -39.12
% when the localization method is employed in the L500 case.

For the enlarged ensemblesensemble, the RMSE and NMB of the priori for VTS-EnKF are 433.08 ttg-m—>-ug m—3and -8.93
%. With VTS-EnKF assimilation, the RMSE of the posterior further decreases to 246.23 ttg-m—>pug m~3, and the NMB is
-31.61 % in VTS-EnKF. Unlike the £rnKFBasic, the dust plume in light blue box is noticeably tuned-optimized to better fit the
observationsThese-error-and-bias—values-, RMSE and NMB are significantly lower than those obtained with the £#KFBasic,
thanks to the better-scaled background covariance displayed in Fig. 6. Moreover, by incorporating localization, the RMSE and
NMB are further reduced to 221.15 tg-m—3-ug m~3and -27.23 % in VTS-L500. The dust load within the light blue box (panel
b.3) is accurately reproduced within its actual range (2000~3000 ttg-m—>pug m—3).
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Figure 5. Spatial distribution of ground-basedBR-PMro-observations{seatter)-and-simulated dust plume (SDP) on surface from average of
ensemble members at central time ensemble-model-mean—(a.l), the posteriori SDP updated by EnKF (a.2), the posteriori SDP updated by

EnKF with localization (a.3), central and neighboring time ensemble model mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2),
the posteriori SDP updated by VTS-EnKF with localization (b.3) at 11:00, 28th March 2021 (CST). The filled circles are ground-based
BR-PM observations. CST: China Standard Time.

4.2 TImpact on forecast skills

In addition to the snapshots of the assimilation analysis, an comprehensive evaluation of forecast skills is also necessary to see
the performance of VTS-EnKF algorithm. A general evaluation on the forecasting skills is carried out in this section.

Figure 7 presents the time series of RMSE and NMB for the 24-hour dust forecast after three assimilation analyses in DSE1
(starting from 11:00, 14:00, and 17:00). In these cases, the Control run generates a dust field with a high RMSE (ranging
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Figure 6. Spatial distribution of standard deviation from m
vatae)ensemble members at 11:00 in DSE1(a) and 08:00 in DSE2(b). The initial assimilation analysis is performed at these time. The filled
circles are model-minus-observation differences (absolute value). Colorbar left is for model-minus-observation differences and right is for

standard deviation. CST: China Standard Time.

from over 800 tg-m—3-ug m>to around 600 te-m—2ug m~?) and a large NMB (consistently around -85 %). The EnKF
analysis, however, does not improve this dust forecast after the initial assimilation. In fact, the RMSE and NMB of the dust
forecast from the £nk#Basic scenario are nearly identical to the Control run, as evidenced by the comparison between the
black dashed line and the blue line in panel a. This result can be primarily attributed to the position error discussed in Sect.
2.4. The EnKF algorithm offers minimal assistance in correcting the model simulation when position errors are present. These
errors are not occasional but cumulative, as demonstrated in the subsequent two assimilation timestamps at 14:00 and 17:00,
during which the assimilation analysis shows limited improvement over the situation. Moreover, it has been observed that the
localization method is-unable-to-enhanee-the-forecast-only improves the forecast slightly in the presence of position errors.
Similar for NMB, as depicted in panel b, the improvements are also insignificant. The NMB for the Control, EnkFBasic, and
L500 scenarios remains consistently around -85 % throughout the entire forecast time range.

By applying the VTS-EnKF analysis, a reduction of RMSE is-compared to the model run and EnKF can be observed in panel
a. There is an approximate decrease of 100 ttg-m—2-ptg m~3in VTS-EnKF compared to £#&FBasic, which indicates that the
VTS-EnKEF analysis effectively corrects the position error. At the subsequent assimilation timestamps, this situation improves,
with an even greater decrease in RMSE. The RMSE of VTS-L500 is slightly lower than that of VTS-EnKF. As for NMB, quite
promising results are achieved. In VTS-EnKF, the NMB decreases stepwise at three time points, from around -75 % at 11:00 to
around -70 % at 14:00, and finally to around -65 %. The VTS-EnKF algorithm gradually takes effect over the three assimilation
analyses. In VTS-L500, the localization method demonstrates its efficacy, especially after the third assimilation timestamp at
17:00. The NMB is reduced to around -60 %, which is significantly lower than that of the L500.

Figure 8 displays the time series of RMSE and NMB on a 24-hour dust forecast after three assimilation analyses in DSE2.
Unlike DSE1, £rKFBasic in DSE2 does improve the dust forecast in terms of RMSE and NMB. The RMSE drops from
around 500 ste-m—3-pg m3to less than 400 we-m—>-ug m~3at the initial assimilation timestamp (11:00). NMB here is higher
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Figure 7. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 11:00 (a.1), 14:00 (a.2), 17:00 (a.3)
and normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), 17:00 (b.3) on 15th March 2021. CST: China Standard Time.

than Control due to the complementary effect of NMB. The overestimation is corrected while the underestimation caused by
position error is not corrected. No further reduction is observed at subsequent time points. As can be seen in panels a.2 and a.3,
the RMSE of £nk#FBasic remains almost constant compared to panel a.1. This indicates that the position error is not corrected,
and it constitutes part of the RMSE that is difficult to eliminate. The trend of NMB also reflects this situation. L500 is unable
to correct the position error, although it does help reduce the error to some extent.

In the scenario of the VTS-EnKF analysis, an improvement in the dust forecast of DSE2 is obtained. A general reduction
of RMSE (around 50 ttg-m—3pg m=3) in VIS-EnKF compared to £#KFBasic can be seen in panel a.1. Furthermore, in the
subsequent forecasts, a steady decrease in RMSE is noted. The RMSE fluctuates around 250 tg-m—2-ug m~3after 14:00 and
200 ttg-m—3-pg m—3after 17:00. VTS-L500 exhibits a similar pattern to VTS-EnKF for most of the forecast. Considering the
NMB, as shown in panel b, the NMB of VTS-L500 demonstrates trivial superiority over VTS-EnKF. In DSE2, the £nk#-Basic
and L500 have already achieved well-reproduced dust fields, while the VTS-EnKF and VTS-L500 can further improve these

fields by correcting the position error.
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Figure 8. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 08:00 (a.1), 11:00 (a.2), 14:00 (a.3)
and normalized mean bias (NMB) starting from 08:00 (b.1), 11:00 (b.2), 15:00 (b.3) on 28th March 2021. CST: China Standard Time.

4.3 Assessment of smaller-ensemblesfewer ensemble members

To further assess the performance of VIS-EnKF, VTS-EnKF experiments with same ensembles-ensemble members as the
EnKF are designed. They are referred to as VIS-EnKF-small and VTS-L500-small, respectively. The total 32 ensembles
ensemble members are composed of 8 central ensembles-ensemble members and 4x6 ensembles-ensemble members from
neighboring +1 and £2 hours. Figure 9 displays the time series of RMSE and NMB on a 24-hour dust forecast after three as-
similation analyses in DSEI. In terms of RMSE, VTS-EnKF-small only shows slightly better performance than the EnKF. This
mostly caused by the sampling error arises from limited ensembles-ensemble members resampled from the central ensembles
ensemble (only 8 ensemblesensemble members). However, by applying the localization, the RMSE is noticeably reduced by
100 ttg—m—3pg m~>. The performance is comparable to the VTS-L500 (red dash line) with totally 160 ensemblesensemble
members. By mitigating the sampling error, the VTS-EnKF’s capability of handling the position error can be revealed, which
can be noticed by comparison with L500 and VTS-L500-small. This improvement can be better seen in NMB. NMB of VTS-
L500-small is much lower than the £rnkFBasic and L500. Its performance is also comparable to the VIS-L500 with 160
ensemblesensemble members.
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Same experiments on DSE2 are also carried out. Results can be found in Fig. S2 in supporting information. Similar to
DSEL, the VIS-EnKF-small achieves slightly better RMSE and NMB than Exr&K#Basic and L500. While in VTS-L500-small,
noticeable improvements can been found especially for the forecast after the second and last assimilation. Reduction of 100 g
m—2-1g m~3in RMSE and 20% in NMB are obtained.
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Figure 9. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 11:00 (a.1), 14:00 (a.2), 17:00 (a.3)
and normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), 17:00 (b.3) on 15th March 2021. CST: China Standard Time.

4.4 Sensitivity of time interval

Previous researches have found that an improper neighboring time interval 7 can lead to undesirable results, such as less-
effective ensemble members (interval too small) (7 too small) or ensemble member clustering and unrepresentative ensemble
covariances (7 too large) (Xu et al., 2008; Gasperoni et al., 2022, 2023). To explore the sensitivity of the choice of neighboring
time interval, series of VTS-EnKF experiments with different neighboring time interval were carries out. Time intervals ranging
from 1 to 6 hour were tested. As shown in Fig. 10, snapshots from 6 experiments on DSE1 clearly depicts the trend. In general,
all the VTS-EnKF experiments show better performance than EnKF. While in terms of specific time interval, different patterns
can be noticed. For short intervals including 1 and 2 hour, there is not sufficient ensemble spread to account for the position

error. Thus there are still position error remaining and RMSE is still high. For long intervals including 5 and 6 hour, dust plume
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is clustered away from central dust plume. Three dust branches are noticed in VT'S-EnKF-t5 and an overly backwards dust
plume is noticed in VTS-EnKF-t6. In this case, 3-hour interval is the best choice with the lowest RMSE (696.11 #e-m—3pg
m~2) and NMB (-63.5 %).

Same experiments on DSE2 are also performed and snapshots are shown in Fig. S3. Similar patterns are found on DSE2.
Lowest RMSE and NMB are achieved in VTS-EnKF-t4. Too short interval leads to inability in position error correction and
too long interval leads to excessive dust plume. Considering both cases, 3-hour interval is the preferred choice which holds the

capability to handle position and not creates excessive clustered dust plume.
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Figure 10. Spatial distribution of ground-based BR-PM; observations (scatter) and simulated dust plume (SDP) on surface from the poste-
riori SDP updated by VFS-EakF-t+-VTS-EnKF-tI (a), the posteriori SDP updated by VFS-EnkF-t2-VTS-EnKF-12 (b), the posteriori SDP
updated by VFS-EaKF-t3-VIS-EnKF-13 (c), the posteriori SDP updated by VFS-EnkF-t4-VTS-EnKF-t4 (d), the posteriori SDP updated by
VFS-EakF-t5-VTS-EnKF-t5 (e), the posteriori SDP updated by VFS-EakF-t6-VTS-EnKF-16 (f) at 11:00, 15th March 2021 (CST).

5 Conclusions

The Chemistry Transport Model (CTM) is a powerful tool for air pollutant forecasting. However, as a simplified version
of the real atmospheric world, it suffers from various deficiencies, particularly in two major uncertainties: emissions and
meteorology. Uncertainty from meteorological fields can cause model forecast errors, especially in long-distance transport. In
dust storm forecasting applications, a position error is noted that significantly degrades the overall performance of the forecast

and prevents the EnKF assimilation algorithm from effectively incorporating observational data.
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The background error covariance of EnKF is generally designed to represent the intensity and position uncertainty. However,
when the position error is sufficiently large, the background error covariance can’t adequately represent the position error, which
is highly non-Gaussian. In the case of the long-distance dust storm tracking, the EnKF is incapable of thoroughly resolving
the observations. Observations over low model uncertainty pixels are “ignored’ by the EnKF algorithm. To address this issue,
a valid time shifting method is coupled with EnKF . This VTS-EnKF methodology introduces uncertainty of the dust plume
position into the background error covariance by incorporating extra ensemble simulations at neighboring time instances. This
enlarged ensemble not only reflects the uncertainty of dust intensity but also reveals the potential positions of the plume,
allowing for more accurate and effective assimilation and improving dust storm forecasting.

The VTS-EnKF algorithm was tested on two super dust storm events (DSE1 and DSE2) that occurred in Spring 2021.
Several experiments were designed to examine the performance of the VTS-EnKF algorithm in these cases, with a focus on
differences between EnKF and VTS-EnKF. In terms of assimilation analysis, the VTS-EnKF analysis corrected the position
error in DSE] to a large extent. Comparison between the standard deviations from posterior of EnKF and VTS-EnKF explained
for it. The standard deviations from VTS-EnKF analysis indicated wilder potential dust spread and were more consistent
with the model-minus-observation. Observations that were *ignored’ by EnKF were comprehensively resolved in VTS-EnKF,
resulting in decreased RMSE and NMB. For DSE2, the position error was not as significant as in DSE1; however, imbalanced
uneertainties-ensemble underdispersion were also observed. Nevertheless, VTS-EnKF still produced an improved dust field
with lower RMSE and NMB compared to EnKF. In both cases, the localization method helped reduce RMSE and NMB.
Regarding the forecast performance, promising results were obtained. In DSEI1, the RMSE and NMB revealed that EnKF
provides limited improvements compared to model run. In contrast, VTS-EnKF provided a dust field forecast with reduced
errors, especially in terms of NMB. Additionally, the localization method contributed to further reducing the error. Overall, the
VTS-EnKF algorithm demonstrated improved performance in assimilation analysis and forecasting for the tested dust storm
events compared to the traditional EnKF approach.

Assessment of equal ensembles-ensemble members between EnKF and VTS-EnKF is carried out. VTS-EnKF with smaller
ensembles-ensemble size shows slightly improved metrics than EnKF. While by applying localization, more reduction in RMSE
and NMB can be noticed and its performance is comparable to the VTS-EnKF with larger ensemblesensemble size. This is due
to the corrected sampling error within limited ensemblesensemble members. Comparison between them confirms VTS-EnKF’s
ability in handling position error. Sensitivity of neighboring time interval choice is also examined. Too short interval leads to
inability in position error correction and too long interval leads to excessive dust plume. Considering both cases, 3-hour interval

is the preferred choice.

Code and data availability. The EnKF with VTS code is archived on Zenodo at https://doi.org/10.5281/zenodo.7611976 (Pang, last access:
May. 2024). The PM data used in this study is also archived on Zenodo at https://doi.org/10.5281/zenodo.6459866 (Jin, 2022). The real-
time PMo data established by the Ministry of Ecology and Environment is available to the public at https:/quotsoft.net/air (Wang, last
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