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1. Overview

Response to Referee #2: We would like to thank the referee for the careful review throughout the paper and
the in-depth comments that help to improve our paper.

2. Comments

RC: 1) As the other referee pointed out, similar techniques have been proposed before as the “valid time
shifting” in other applications. The authors should reconsider their novelty about the method and refer to
the proper papers.

AR: Thanks for the comment. We have removed all the improper statement in the paper. The corresponding papers
are cited. Details are below: In Line 114-124:

In this paper, the standard EnKF assimilation is coupled with a valid time shifting (VTS) method (Xu
et al., 2008; Lu et al., 2011; Zhao et al., 2015; Huang and Wang, 2018) for better resolving the position
error in long-distance dust storm transport simulation. This assimilation methodology is referred to
as VTS-EnKF throughout this paper. For assimilation analysis at a given time, the background error
covariance of the simulated dust plume is calculated using not only the original ensemble simulation, but
also the same ensemble simulations at neighboring moments (a few hours earlier and later) (Gasperoni
et al., 2022, 2023). These extra ensemble members represent the potential position spread of the actual
dust plume, effectively accounting for transport errors. The resampled ensemble members quantify
the complex covariance that captures both intensity and position error dynamics, without requiring
additional processing on observations, meteorological fields, or other physical parameters. We tested
the VTS-EnKF on two severe dust storm events that occurred in 2021. Our results show superior
assimilation performance compared to the standard EnKF, particularly when position errors are present
in the simulated dust plume.

RC: 2) The authors have confined their consideration to the issue of dust emission uncertainty in the EnKF’s
P matrix, as detailed in Section 3.1. However, given that the introduction highlights the emergence of
position errors as a result of meteorological input, Why not incorporate meteorological uncertainty within
the process of ensemble generation?

AR: Thanks for the in-depth comment. Now we have re-design our assimilation system: Each of our ensemble
simulation (N=32) is driven by the perturbed emission and perturbed meteorology input. It turns out that only
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trivial wilder ensemble spread found and the results are quite similar to the original EnKF experiments. We
believe that the position error is mainly caused by the meteorology while ECMWF’s ensemble forecast is not
sufficient to account for the position error. By our method, the error can be alleviated.

Below are the new descriptions about the consideration of both emission and meteorology uncertainties:

Another source of the uncertainties arises from the meteorological field. In our previous papers,
uncertainties from meteorology and the position error were neither taken into account (Jin et al., 2022;
Pang et al., 2023). In this paper, European Center for Medium-ranged Weather Forecast (ECMWF)
ensemble forecast (totally 51 ensembles) are used. Each one of the model ensembles is driven by one
unique ensemble meteorology field. 32 ensemble meteorological fields are randomly selected. Its grid
resolution is about 14 km. The 6-hourly short-term meteorological forecast field is interpolated to
hourly values. The grid resolutions are also averaged to fit the model resolution.

In general, we assign the dust simulation uncertainty to both emission and meteorology. Ensemble
emission field [f1, ...,fN] are generated randomly following the emission uncertainty choice f priori
and B in Jin et al. (2022). Meteorologic field [w1, ...,wN] are randomly selected from the total 51
ensemble meteorology. They are used to forward the LOTOS-EUROS model M for the ensemble dust
simulations [x1, ...,xN] as:

[x1, ... ,xN] = [M(f1,w1), ... , M(fN,wN)]

N refers to the total ensemble number.

Below are the new results on assimilation analysis:

4.1 Impact on assimilation analysis

Figure 4 displays the spatial distribution of ground BR-PM10 observations (scatter) and dust field
forecasts from the average of the ensembles (panel a.1), the posteriori from EnKF analysis (panel a.2)
and EnKF with localization (panel a.3), the average of the enlarged ensembles (panel b.1), the posteriori
from VTS-EnKF analysis (panel b.2) and VTS-EnKF analysis with localization (panel b.3) at 11:00,
15th March, 2021 China Standard Time (CST). It should be noted that the average dust concentrations
in panel b.1 are calculated from the 160 ensemble simulations used in VTS-EnKF, which slightly differ
from the average of 32 ensembles. In DSE1, the RMSE and NMB from the pure ensemble model
simulation are as high as 856.36 µg m−3 and -78.31 %. Both EnKF and LEnKF assimilation analyses
achieve very limited improvement in estimating the dust state field. As shown in panel a.2 and panel
a.3, the RMSE and NMB remain high at 819.04 µg m−3 and -75.65 % in EnKF, and 782.57 µg m−3

and -73.52 % in L500. The main reason for this is the imbalanced uncertainty between the ensemble
simulations and the observations, as described in Sect. 3.2. As observed in the light blue box in panel
a.1, the simulated dust plume is located farther southeast compared to the PM10 measurements. This
snapshot exhibits an apparent position error. After EnKF analysis, the simulated dust plume in the
light blue box barely changes, as depicted in panel a.2. Numerous ground stations in this area report
high PM10 concentrations, but the assimilated dust field fails to resolve most of them. The localization
method offers limited assistance in this situation, as illustrated in panel a.3. With the unresolved
positional error, the EnKF, which focuses more on intensity correction, is much less effective.

When it comes to the VTS-EnKF analysis result, an improved dust field can be noticed. Concerning the
Root Mean Square Error (RMSE) and Normalized Mean Bias (NMB), the two priors depicted in panels
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a.1 and b.1 exhibit highly similar performances. However, slight differences do exist. For instance,
the average of the expanded 160-member ensemble used in VTS-EnKF displays a marginally broader
spread. The increased ensemble size provides more room for representing background uncertainties.
The enhanced capacity for this is best illustrated in Fig. 6 (a), which exhibits the uncertainty quantified
by the enlarged ensemble simulations in VTS-EnKF formulations. High uncertainty values are seen
in pixels where large model-minus-observation errors are present, such as within the light blue box.
This allows the posterior to be adjusted in order to better conform to the observations. In contrast, the
relatively low uncertainty over these areas depicted in Fig. 1 (b.2) suggests that the EnKF method is
highly confident in the absence of aerosols and does not require any modification. The observations are
effectively assimilated in the VTS-EnKF analysis. As displayed in panel b.2, the dust plume within
the light blue box is adjusted to better match the observations. In particular, the dust to the east of the
marked region is well represented in comparison to the posteriori of EnKF. The RMSE and NMB are
reduced to 742.33 µg m−3 and -68.21 %. Moreover, the posteriori of VTS-L500 yields an improved dust
field with the RMSE and NMB further reduced to 696.1 µg m−3 and -63.93 %. The implementation of
the localization method eliminates spurious correlations and generates a background error covariance
that more accurately describes the model uncertainties. Despite the noticeable improvements achieved
in DSE1, the residual errors, as indicated by the RMSE and NMB metrics, remain relatively high. This
is mainly due to some observations with extremely high value (exceeding 5000 µg m−3), which is far
higher than the surrounding stations and hard for the EnKF to adapt. In particular, the western extent of
the dust plume is covered by the insufficient stations, which results in an inadequate representation of
the dust load. By incorporating neighboring ensembles, the dust plume is extended wilder, as can’t be
verified by the observations.

Figure 5 presents the spatial distribution of ground-based BR-PM10 observations (scatter) and dust
concentration forecasts from the average of model ensembles (panel a.1), EnKF (panel a.2), and LEnKF
analysis (panel a.3), as well as the average of the enlarged model ensembles (panel b.1), VTS-EnKF
(panel b.2), and VTS-EnKF with localization analysis (panel b.3) at 11:00, March 28th, 2021 CST.
During this assimilation snapshot in DSE2, the model-simulated dust field is observed to have moved
further southeast, as depicted in panel a.1. As illustrated by the light blue box in panel a.1, the model-
simulated dust plume missed most of the observations with high PM10 concentrations. Consequently,
although the EnKF analysis remains effective in this case, dust in light blue box is nearly unchanged.
The RMSE and NMB are reduced to 348.13 µg m−3 and -45.96 % in the EnKF scenario, with further
reductions to 301.38 µg m−3 and -39.12 % when the localization method is employed in the L500 case.

For the enlarged ensembles, the RMSE and NMB of the priori for VTS-EnKF are 433.08 µg m−3 and
-8.93 %. With VTS-EnKF assimilation, the RMSE of the posterior further decreases to 246.23 µg
m−3, and the NMB is -31.61 % in VTS-EnKF. Unlike the EnKF, the dust plume in light blue box is
noticeably tuned to better fit the observations These error and bias values are significantly lower than
those obtained with the EnKF, thanks to the better-scaled background covariance displayed in Fig. 6.
Moreover, by incorporating localization, the RMSE and NMB are further reduced to 221.15 µg m−3

and -27.23 % in VTS-L500. The dust load within the light blue box (panel b.3) is accurately reproduced
within its actual range (2000∼3000 µg m−3).
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Figure 1. Evolution of the simulated dust plume from average of 32 model ensembles with scatter of ground
BR-PM10 observations (a.1-3). Their corresponding standard deviation from model ensembles with scatter of

the model-minus-observation differences (absolute value) (b.1-3) at 08:00, 11:00 and 14:00 15th March,
2021, respectively. Figures below are the same except the time is at 05:00 (c.1 and d.1), 08:00 (c.2 and d.2),

11:00 (c.3 and d.3) 28th March, 2021, respectively. BR-PM10: baseline-removed PM10. The colorbar in
panel a and c represents the concentrations, and the colorbar in panel b and d represents the

model-minus-observation differences (left) and standard deviation (right).

4



μg/m3

μg/m3

(a.1)

(b.1) (b.2) (b.3)

(a.3)(a.2)

Average of original ensemble : 2021-03-15 11:00 CST

Posterior of VTS-L500 : 2021-03-15 11:00 CST

Posterior of EnKF : 2021-03-15 11:00 CST Posterior of L500 : 2021-03-15 11:00 CST

Average of enlarged ensemble : 2021-03-15 11:00 CST Posterior of VTS-EnKF : 2021-03-15 11:00 CST

Figure 4. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume
(SDP) on surface from central time ensemble model mean (a.1), the posteriori SDP updated by EnKF (a.2),
the posteriori SDP updated by EnKF with localization (a.3), central and neighboring time ensemble model
mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2), the posteriori SDP updated by VTS-EnKF with

localization (b.3) at 11:00, 15th March 2021 (CST).
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Figure 5. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume
(SDP) on surface from central time ensemble model mean (a.1), the posteriori SDP updated by EnKF (a.2),
the posteriori SDP updated by EnKF with localization (a.3), central and neighboring time ensemble model
mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2), the posteriori SDP updated by VTS-EnKF with

localization (b.3) at 11:00, 28th March 2021 (CST).

RC: 3) The decision to merge information from five distinct time points, centering around the central time,
is mentioned, yet the rationale behind selecting these specific time points for combination is not fully
explained. Could you please elaborate on the relevance of this choice?

AR: Thanks for the comment. We agree that the choice of neighbouring time ensembles can affect the analysis.
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Figure 6. Spatial distribution of standard deviation from model ensembles with scatter of
model-minus-observation differences (absolute value) at 11:00 in DSE1(a) and 08:00 in DSE2(b). The initial
assimilation analysis is performed at these time. Colorbar left is for model-minus-observation differences and

right is for standard deviation.

An improper choice of interval can lead to undesirable analysis, such as less effective ensemble members
(interval too small) or unrepresentative ensemble covariances (interval too large). We didn’t explore the
choice of neighbouring time interval in our original manuscript. Here, we design new experiments that use
different time intervals to tell the impact of the choice of neighbouring time. The experiment settings and new
section are added:

Table 1. Experiment settings.

Name
Running ensemble

number
Initial assimilation

time set (hour) Ensemble set
Localization
distance (km)

Control 32 None [32] None

EnKF 32 t [32] None

L500 32 t [32] 500

VTS-EnKF 160 t− 2, t− 1, t, t+ 1, t+ 2 [32,32,32,32,32] None

VTS-L500 160 t− 2, t− 1, t, t+ 1, t+ 2 [32,32,32,32,32] 500

VTS-EnKF-small 32 t− 2, t− 1, t, t+ 1, t+ 2 [6,6,8,6,6] None

VTS-L500-small 32 t− 2, t− 1, t, t+ 1, t+ 2 [6,6,8,6,6] 500

VTS-EnKF-t1 96 t− 1, t, t+ 1 [32,32,32] None

VTS-EnKF-t2 96 t− 2, t, t+ 2 [32,32,32] None

VTS-EnKF-t3 96 t− 3, t, t+ 3 [32,32,32] None

VTS-EnKF-t4 96 t− 4, t, t+ 4 [32,32,32] None

VTS-EnKF-t5 96 t− 5, t, t+ 5 [32,32,32] None

VTS-EnKF-t6 96 t− 6, t, t+ 6 [32,32,32] None
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4.4 Sensitivity of time interval

Previous researches have found that an improper neighboring time interval τ can lead to undesirable
results, such as less-effective ensemble members (interval too small) (τ too small) or ensemble member
clustering and unrepresentative ensemble covariances (τ too large) (Xu et al., 2008; Gasperoni et al.,
2022, 2023). To explore the sensitivity of the choice of neighboring time interval, series of VTS-EnKF
experiments with different neighboring time interval were carries out. Time intervals ranging from 1
to 6 hour were tested. As shown in Fig. 10, snapshots from 6 experiments on DSE1 clearly depicts
the trend. In general, all the VTS-EnKF experiments show better performance than EnKF. While in
terms of specific time interval, different patterns can be noticed. For short intervals including 1 and
2 hour, there is not sufficient ensemble spread to account for the position error. Thus there are still
position error remaining and RMSE is still high. For long intervals including 5 and 6 hour, dust plume
is clustered away from central dust plume. Three dust branches are noticed in VTS-EnKF-t5 and an
overly backwards dust plume is noticed in VTS-EnKF-t6. In this case, 3-hour interval is the best choice
with the lowest RMSE (696.11 µg m−3) and NMB (-63.5 %).

Same experiments on DSE2 are also performed and snapshots are shown in Fig. S3. Similar patterns
are found on DSE2. Lowest RMSE and NMB are achieved in VTS-EnKF-t4. Too short interval leads to
inability in position error correction and too long interval leads to excessive dust plume. Considering
both cases, 3-hour interval is the preferred choice which holds the capability to handle position and not
creates excessive clustered dust plume.

(a) (b) (c)

μg/m3
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(d) (e) (f)

Posterior of VTS-EnKF-t1 : 2021-03-15 11:00 CST Posterior of VTS-EnKF-t2 : 2021-03-15 11:00 CST Posterior of VTS-EnKF-t3 : 2021-03-15 11:00 CST

Posterior of VTS-EnKF-t4 : 2021-03-15 11:00 CST Posterior of VTS-EnKF-t5 : 2021-03-15 11:00 CST Posterior of VTS-EnKF-t6 : 2021-03-15 11:00 CST

Figure 10. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume
(SDP) on surface from the posteriori SDP updated by VTS-EnKF-t1 (a), the posteriori SDP updated by

VTS-EnKF-t2 (b), the posteriori SDP updated by VTS-EnKF-t3 (c), the posteriori SDP updated by
VTS-EnKF-t4 (d), the posteriori SDP updated by VTS-EnKF-t5 (e), the posteriori SDP updated by

VTS-EnKF-t6 (f) at 11:00, 15th March 2021 (CST).
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Figure S3. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume
(SDP) on surface from the posteriori SDP updated by VTS-EnKF-t1 (a), the posteriori SDP updated by

VTS-EnKF-t2 (b), the posteriori SDP updated by VTS-EnKF-t3 (c), the posteriori SDP updated by
VTS-EnKF-t4 (d), the posteriori SDP updated by VTS-EnKF-t5 (e), the posteriori SDP updated by

VTS-EnKF-t6 (f) at 11:00, 28th March 2021 (CST).

RC: 4) It would be helpful to clarify the methodology for detecting the occurrence of position error, especially
in light of the rapid evolution of dust storms. Is it automatically detected or manually chosen? What
criteria do the authors employ to determine the appropriate timing for implementing the NTEnKF?

AR: Thanks for the comment. In this paper, we decide the timing manually. To better identify the emergence of
position error, a simple identification index is designed. Descriptions are made in Supplementary. Details are
shown below:

2. Identification of position error

To objectively identify the position error, a simple identification index is designed, which is the
interquartile range of Hx − y. This index is often used to describe the spread of the data. Here, it
depicts the error statistics transiting from Gaussian to non-Gaussian distribution with emergence of
position error:

IQR = Q3(Hx− y)−Q1(Hx− y) (1)

IQR is referred to as interquartile range. Q3 is the third quartile (75 % of the data) and Q1 is the first
quartile (25 % of the data).

Figure S1 is the time series of the IQR in two cases. It can be clearly seen in both cases that the IQR
increases dramatically with the long -term transport of dust. It is a sign that the mismatch between
model and observation (position error) is becoming obvious.

8



03-14 13:00 03-14 23:00 03-15 09:00 03-15 19:00 03-16 05:00

100

200

300

400

500

In
te

rq
ua

rti
le

 R
an

ge
 (

g 
m

3 )

(a)
DSE1

03-27 13:00 03-27 23:00 03-28 09:00 03-28 19:00 03-29 05:00

30

40

50

60

70

80

90 (b)
DSE2

Figure S1. Time series of interquartile range in DSE1 (a) and DSE2 (b).

RC: 5) In both Figure 4 (b.2) and Figure 7 (b.2), there are conspicuously high values located to the west of the
dust plumes following the NTEnKF analysis. I’m curious if, in the absence or scarcity of observations,
applying the NTEnKF could lead to the generation of false or overly extensive dust plumes, potentially
exacerbating the inaccuracies of the original model simulation.

AR: Thanks for the comment. We agree that it is possible that EnKF with VTS exacerbate the dust plume in the
absence of surrounding observations. Therefore, we only used neighbouring ±1 and ±2 hour to weaken the
impact. Sensitivity tests concerning the neighbouring time interval choice is presented in Comment 3).

In particular, the western extent of the dust plume is covered by the insufficient stations, which results
in an inadequate representation of the dust load. By incorporating neighbouring ensembles, the dust
plume is extended wilder, as can’t be verified by the observations.

RC: 6) The scatters depicted in all the figures are too small to recognize, making it challenging for readers
to quickly grasp the information being conveyed. Consider magnifying these visuals or narrowing the
focus of the map to enhance the visibility of the dust shapes and allow for a more immediate and clear
interpretation.

AR: Thanks for the comment. We have enlarged most of the figures. It should be easier to follow now.
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