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RC: Reviewers’ Comment, AR: Authors’ Response, □ Manuscript Text

1. Overview

Response to Referee #1: We would like to thank the referee for the careful review throughout the paper and
the in-depth comments that help to improve our paper.

2. Grave concerns

RC: Grave concern 1: Contrary to the authors’ claims, the Neighbouring Time approach to aggregating
ensemble members is not novel.

The authors claim that their neighbouring time approach to increase ensemble sizes is novel. Unless I am
missing some detail in their manuscript, that claim is incorrect. In fact, that method has been extensively
tested. The common name for that method is "valid time shifting" (VTS). A similar, but extremely popular,
variant of this method is "time-lagged ensembles". This concern is particularly grave for this study because
this ensemble size increasing method is a huge part of this study’s supposed novelty.

Here is a sampling of papers that employed those methods.

Gasperoni, N. A., X. Wang, and Y. Wang, 2023: Valid Time Shifting for an Experimental RRFS Convection-
Allowing EnVar Data Assimilation and Forecast System: Description and Systematic Evaluation in Real
Time. Mon. Wea. Rev., 151, 1229–1245, https://doi.org/10.1175/MWR-D-22-0089.1.

Huang, B., and X. Wang, 2018: On the Use of Cost-Effective Valid-Time-Shifting (VTS) Method to
Increase Ensemble Size in the GFS Hybrid 4DEnVar System. Mon. Wea. Rev., 146, 2973–2998,
https://doi.org/10.1175/MWR-D-18-0009.1.

Xu, Q., L. Wei, H. Lu, C. Qiu, and Q. Zhao, 2008: Time-expanded sampling for ensemble-based fil-
ters: Assimilation experiments with a shallow-water equation model. J. Geophys. Res., 113, D02114,
https://doi.org/10.1029/2007JG000450.

Van den Dool, H. M., and L. Rukhovets, 1994: On the weights for an ensemble-averaged 6–10-day forecast.
Wea. Forecasting, 9, 457–465, https://doi.org/10.1175/1520-0434(1994)009<0457:OTWFAE>2.0.CO;2.

To address this concern, please remove all claims that the Neighboring Time approach is novel in your
manuscript.

AR: Thanks for the comment. We have removed all the improper statement in the paper. The corresponding papers
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are cited. Details are below:

In this paper, the standard EnKF assimilation is coupled with a valid time shifting (VTS) method (Xu
et al., 2008; Lu et al., 2011; Zhao et al., 2015; Huang and Wang, 2018) for better resolving the position
error in long-distance dust storm transport simulation. This assimilation methodology is referred to
as VTS-EnKF throughout this paper. For assimilation analysis at a given time, the background error
covariance of the simulated dust plume is calculated using not only the original ensemble simulation, but
also the same ensemble simulations at neighboring moments (a few hours earlier and later) (Gasperoni
et al., 2022, 2023). These extra ensemble members represent the potential position spread of the actual
dust plume, effectively accounting for transport errors. The resampled ensemble members quantify
the complex covariance that captures both intensity and position error dynamics, without requiring
additional processing on observations, meteorological fields, or other physical parameters. We tested
the VTS-EnKF on two severe dust storm events that occurred in 2021. Our results show superior
assimilation performance compared to the standard EnKF, particularly when position errors are present
in the simulated dust plume.

RC: Grave concern 2: Their EnKF’s struggle with positioning error is highly contrived.

The EnKF’s struggle with positioning errors is likely simply due to their choice of meteorological forcing.
Specifically, they failed to account for uncertainties in meteorological forcing. This could have been
avoided by using the ECMWF’s ensemble forecasts instead of the operational forecast. With an ensemble
of forecasts, there should be more ensemble spread in the positioning of the dust storms, thus ameliorating
the EnKF’s issue with positioning error.

To address this concern, the authors need to rerun all of their experiments using the ECMWF’s ensemble
forecast data. This will likely take months of effort. The ECMWF has archived some of its ensemble
forecasts on MARS. The ERA5’s 10-member ensemble is also available through the Climate Data Store.

AR: Thanks for the in-depth comment. Now we have re-design our assimilation system: Each of our ensemble
simulation (N=32) is driven by the perturbed emission and perturbed meteorology input. European Center
for Medium-ranged Weather Forecast (ECMWF) ensemble forecast (totally 51 ensembles) are used, and 32
of them are randomly picked out for driving our ensemble simulation. It turns out that only trivial wilder
ensemble spread found and the results are quite similar to the original EnKF experiments. We believe that the
position error is mainly caused by the meteorology while ECMWF’s ensemble forecast is not sufficient to
account for the position error. By our method, the error can be alleviated.

Below are the new descriptions about the consideration of both emission and meteorology uncertainties:

Another source of the uncertainties arises from the meteorological field. In our previous papers,
uncertainties from meteorology and the position error were neither taken into account (Jin et al., 2022;
Pang et al., 2023). In this paper, European Center for Medium-ranged Weather Forecast (ECMWF)
ensemble forecast (totally 51 ensembles) are used. Each one of the model ensembles is driven by one
unique ensemble meteorology field. 32 ensemble meteorological fields are randomly selected. Its grid
resolution is about 14 km. The 6-hourly short-term meteorological forecast field is interpolated to
hourly values. The grid resolutions are also averaged to fit the model resolution.

In general, we assign the dust simulation uncertainty to both emission and meteorology. Ensemble
emission field [f1, ...,fN] are generated randomly following the emission uncertainty choice f priori
and B in Jin et al. (2022). Meteorologic field [w1, ...,wN] are randomly selected from the total 51

2



ensemble meteorology. They are used to forward the LOTOS-EUROS model M for the ensemble dust
simulations [x1, ...,xN] as:

[x1, ... ,xN] = [M(f1,w1), ... , M(fN,wN)]

N refers to the total ensemble number.

Below are the new results on assimilation analysis:

4.1 Impact on assimilation analysis

Figure 4 displays the spatial distribution of ground BR-PM10 observations (scatter) and dust field
forecasts from the average of the ensembles (panel a.1), the posteriori from EnKF analysis (panel a.2)
and EnKF with localization (panel a.3), the average of the enlarged ensembles (panel b.1), the posteriori
from VTS-EnKF analysis (panel b.2) and VTS-EnKF analysis with localization (panel b.3) at 11:00,
15th March, 2021 China Standard Time (CST). It should be noted that the average dust concentrations
in panel b.1 are calculated from the 160 ensemble simulations used in VTS-EnKF, which slightly differ
from the average of 32 ensembles. In DSE1, the RMSE and NMB from the pure ensemble model
simulation are as high as 856.36 µg m−3 and -78.31 %. Both EnKF and LEnKF assimilation analyses
achieve very limited improvement in estimating the dust state field. As shown in panel a.2 and panel
a.3, the RMSE and NMB remain high at 819.04 µg m−3 and -75.65 % in EnKF, and 782.57 µg m−3

and -73.52 % in L500. The main reason for this is the imbalanced uncertainty between the ensemble
simulations and the observations, as described in Sect. 3.2. As observed in the light blue box in panel
a.1, the simulated dust plume is located farther southeast compared to the PM10 measurements. This
snapshot exhibits an apparent position error. After EnKF analysis, the simulated dust plume in the
light blue box barely changes, as depicted in panel a.2. Numerous ground stations in this area report
high PM10 concentrations, but the assimilated dust field fails to resolve most of them. The localization
method offers limited assistance in this situation, as illustrated in panel a.3. With the unresolved
positional error, the EnKF, which focuses more on intensity correction, is much less effective.

When it comes to the VTS-EnKF analysis result, an improved dust field can be noticed. Concerning the
Root Mean Square Error (RMSE) and Normalized Mean Bias (NMB), the two priors depicted in panels
a.1 and b.1 exhibit highly similar performances. However, slight differences do exist. For instance,
the average of the expanded 160-member ensemble used in VTS-EnKF displays a marginally broader
spread. The increased ensemble size provides more room for representing background uncertainties.
The enhanced capacity for this is best illustrated in Fig. 6 (a), which exhibits the uncertainty quantified
by the enlarged ensemble simulations in VTS-EnKF formulations. High uncertainty values are seen
in pixels where large model-minus-observation errors are present, such as within the light blue box.
This allows the posterior to be adjusted in order to better conform to the observations. In contrast, the
relatively low uncertainty over these areas depicted in Fig. 1 (b.2) suggests that the EnKF method is
highly confident in the absence of aerosols and does not require any modification. The observations are
effectively assimilated in the VTS-EnKF analysis. As displayed in panel b.2, the dust plume within
the light blue box is adjusted to better match the observations. In particular, the dust to the east of the
marked region is well represented in comparison to the posteriori of EnKF. The RMSE and NMB are
reduced to 742.33 µg m−3 and -68.21 %. Moreover, the posteriori of VTS-L500 yields an improved dust
field with the RMSE and NMB further reduced to 696.1 µg m−3 and -63.93 %. The implementation of
the localization method eliminates spurious correlations and generates a background error covariance
that more accurately describes the model uncertainties. Despite the noticeable improvements achieved
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in DSE1, the residual errors, as indicated by the RMSE and NMB metrics, remain relatively high. This
is mainly due to some observations with extremely high value (exceeding 5000 µg m−3), which is far
higher than the surrounding stations and hard for the EnKF to adapt. In particular, the western extent of
the dust plume is covered by the insufficient stations, which results in an inadequate representation of
the dust load. By incorporating neighboring ensembles, the dust plume is extended wilder, as can’t be
verified by the observations.

Figure 5 presents the spatial distribution of ground-based BR-PM10 observations (scatter) and dust
concentration forecasts from the average of model ensembles (panel a.1), EnKF (panel a.2), and LEnKF
analysis (panel a.3), as well as the average of the enlarged model ensembles (panel b.1), VTS-EnKF
(panel b.2), and VTS-EnKF with localization analysis (panel b.3) at 11:00, March 28th, 2021 CST.
During this assimilation snapshot in DSE2, the model-simulated dust field is observed to have moved
further southeast, as depicted in panel a.1. As illustrated by the light blue box in panel a.1, the model-
simulated dust plume missed most of the observations with high PM10 concentrations. Consequently,
although the EnKF analysis remains effective in this case, dust in light blue box is nearly unchanged.
The RMSE and NMB are reduced to 348.13 µg m−3 and -45.96 % in the EnKF scenario, with further
reductions to 301.38 µg m−3 and -39.12 % when the localization method is employed in the L500 case.

For the enlarged ensembles, the RMSE and NMB of the priori for VTS-EnKF are 433.08 µg m−3 and
-8.93 %. With VTS-EnKF assimilation, the RMSE of the posterior further decreases to 246.23 µg
m−3, and the NMB is -31.61 % in VTS-EnKF. Unlike the EnKF, the dust plume in light blue box is
noticeably tuned to better fit the observations These error and bias values are significantly lower than
those obtained with the EnKF, thanks to the better-scaled background covariance displayed in Fig. 6.
Moreover, by incorporating localization, the RMSE and NMB are further reduced to 221.15 µg m−3

and -27.23 % in VTS-L500. The dust load within the light blue box (panel b.3) is accurately reproduced
within its actual range (2000∼3000 µg m−3).
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Figure 1. Evolution of the simulated dust plume from average of 32 model ensembles with scatter of ground
BR-PM10 observations (a.1-3). Their corresponding standard deviation from model ensembles with scatter of

the model-minus-observation differences (absolute value) (b.1-3) at 08:00, 11:00 and 14:00 15th March,
2021, respectively. Figures below are the same except the time is at 05:00 (c.1 and d.1), 08:00 (c.2 and d.2),

11:00 (c.3 and d.3) 28th March, 2021, respectively. BR-PM10: baseline-removed PM10. The colorbar in
panel a and c represents the concentrations, and the colorbar in panel b and d represents the

model-minus-observation differences (left) and standard deviation (right).

5



μg/m3

μg/m3

(a.1)

(b.1) (b.2) (b.3)

(a.3)(a.2)

Average of original ensemble : 2021-03-15 11:00 CST

Posterior of VTS-L500 : 2021-03-15 11:00 CST

Posterior of EnKF : 2021-03-15 11:00 CST Posterior of L500 : 2021-03-15 11:00 CST

Average of enlarged ensemble : 2021-03-15 11:00 CST Posterior of VTS-EnKF : 2021-03-15 11:00 CST

Figure 4. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume
(SDP) on surface from central time ensemble model mean (a.1), the posteriori SDP updated by EnKF (a.2),
the posteriori SDP updated by EnKF with localization (a.3), central and neighboring time ensemble model
mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2), the posteriori SDP updated by VTS-EnKF with

localization (b.3) at 11:00, 15th March 2021 (CST).
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Figure 5. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume
(SDP) on surface from central time ensemble model mean (a.1), the posteriori SDP updated by EnKF (a.2),
the posteriori SDP updated by EnKF with localization (a.3), central and neighboring time ensemble model
mean (b.1), the posteriori SDP updated by VTS-EnKF (b.2), the posteriori SDP updated by VTS-EnKF with

localization (b.3) at 11:00, 28th March 2021 (CST).

RC: Grave concern 3: The authors did not satisfactorily demonstrate that the NTEnKF’s improved performance
over EnKF is purely due to NTEnKF’s ability to handle positioning errors. The fact that the NTEnKF has
less sampling error-related under-dispersion is likely playing a role.

To address this concern, run an experiment with the NTEnKF that uses the same number of members as
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Figure 6. Spatial distribution of standard deviation from model ensembles with scatter of
model-minus-observation differences (absolute value) at 11:00 in DSE1(a) and 08:00 in DSE2(b). The initial
assimilation analysis is performed at these time. Colorbar left is for model-minus-observation differences and

right is for standard deviation.

the EnKF (i.e., run a 32-member NTEnKF experiment). I suspect that the NTEnKF’s performance will be
comparable to the EnKF’s in such a situation. Remember to use the ECMWF ensemble forecasts as your
meteorological forcings.

AR: Agree with the referee. We now run experiments with the VTS-EnKF with same ensemble number as
EnKF, which is 32. We separated the original 32 ensemble into [6,6,8,6,6] and choose the neighbouring
time following the original time set (-2, -1, 0, +1, +2 hour). We found that by this limited ensemble number,
VTS-EnKF provides slightly better performance than the EnKF. The sampling error indeed plays a role under
the smaller ensembles. However, by applying the localization, this error can be noticeably reduced. It proves
that our VTS-EnKF’s superiority in handling the position error.

4.2 Assessment of smaller ensembles

To further assess the performance of VTS-EnKF, VTS-EnKF experiments with same ensembles as
the EnKF are designed. They are referred to as VTS-EnKF-small and VTS-L500-small, respectively.
The total 32 ensembles are composed of 8 central ensembles and 4×6 ensembles from neighboring ±1
and ±2 hours. Figure 9 displays the time series of RMSE and NMB on a 24-hour dust forecast after
three assimilation analyses in DSE1. In terms of RMSE, VTS-EnKF-small only shows slightly better
performance than the EnKF. This mostly caused by the sampling error arises from limited ensembles
resampled from the central ensembles (only 8 ensembles). However, by applying the localization, the
RMSE is noticeably reduced by 100 µg m−3. The performance is comparable to the VTS-L500 (red
dash line) with totally 160 ensembles. By mitigating the sampling error, the VTS-EnKF’s capability
of handling the position error can be revealed, which can be noticed by comparison with L500 and
VTS-L500-small. This improvement can be better seen in NMB. NMB of VTS-L500-small is much lower
than the EnKF and L500. Its performance is also comparable to the VTS-L500 with 160 ensembles.

Same experiments on DSE2 are also carried out. Results can be found in Fig. S2 in supporting
information. Similar to DSE1, the VTS-EnKF-small achieves slightly better RMSE and NMB than
EnKF and L500. While in VTS-L500-small, noticeable improvements can been found especially for the
forecast after the second and last assimilation. Reduction of 100 µg m−3 in RMSE and 20% in NMB
are obtained.
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Figure 9. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 11:00
(a.1), 14:00 (a.2), 17:00 (a.3) and normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), 17:00

(b.3) on 15th March 2021.

8



03-28 15:00 03-28 23:00 03-29 07:00
100

150

200

250

300

350

400

450

500
R

M
SE

s (
g/

m
3 )

(a.1)

From 2021-03-28 11:00 CST

03-28 18:00 03-29 02:00 03-29 10:00

(a.2)

From 2021-03-28 14:00 CST

03-28 21:00 03-29 05:00 03-29 13:00

(a.3)

From 2021-03-28 17:00 CST

Control
EnKF
L500
VTS-EnKF-small
VTS-L500-small
VTS-L500

03-28 15:00 03-28 23:00 03-29 07:00

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

N
or

m
al

iz
ed

 M
ea

n 
B

ia
s (

N
M

B
)

(b.1)

From 2021-03-28 11:00 CST

03-28 18:00 03-29 02:00 03-29 10:00

(b.2)

From 2021-03-28 14:00 CST

03-28 21:00 03-29 05:00 03-29 13:00

(b.3)

From 2021-03-28 17:00 CST

Figure S2. Time series of 24-hour Root Mean Square Error (RMSE) on the dust forecast starting from 11:00
(a.1), 14:00 (a.2), 17:00 (a.3) and normalized mean bias (NMB) starting from 11:00 (b.1), 14:00 (b.2), 17:00

(b.3) on 28th March 2021.

On the other hand, we have also tested the standard EnKF with more ensemble members, but very limited
improvements were obtained.

In EnKF-based experiments, EnKF and L500, the ensemble number N is set to 32, which is found
to be sufficient to represent the uncertainty in the dust simulation while remaining computationally
affordable. Testing with N greater than 32 shows only limited improvements.

3. Major concern

RC: The authors did not explore the statistical problems that surround the use of Neighbourhood time
ensembles. The primary issues are

the ensemble members are correlated with each other (i.e., the ensemble is no longer i.i.d.), causing the
estimated ensemble variance to be biased from the true forecast variance, and, the ensemble becomes
non-Gaussian, especially if time points far apart are used, strengthening the possibility that the EnKF
creates suboptimal biased analyses

AR: The choice of neighbouring time ensembles definitely affects the analysis. An improper choice of interval can
lead to undesirable analysis, such as less-effective ensemble members (interval too small) or unrepresentative
ensemble covariances (interval too large). We didn’t explore the choice of neighbouring time interval in our
original manuscript. Here, we design new experiments that use different time intervals to tell the impact of
the choice of neighbouring time. Below are the new experiment settings and results:
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Table 1. Experiment settings.

Name
Running ensemble

number
Initial assimilation

time set (hour) Ensemble set
Localization
distance (km)

Control 32 None [32] None

EnKF 32 t [32] None

L500 32 t [32] 500

VTS-EnKF 160 t− 2, t− 1, t, t+ 1, t+ 2 [32,32,32,32,32] None

VTS-L500 160 t− 2, t− 1, t, t+ 1, t+ 2 [32,32,32,32,32] 500

VTS-EnKF-small 32 t− 2, t− 1, t, t+ 1, t+ 2 [6,6,8,6,6] None

VTS-L500-small 32 t− 2, t− 1, t, t+ 1, t+ 2 [6,6,8,6,6] 500

VTS-EnKF-t1 96 t− 1, t, t+ 1 [32,32,32] None

VTS-EnKF-t2 96 t− 2, t, t+ 2 [32,32,32] None

VTS-EnKF-t3 96 t− 3, t, t+ 3 [32,32,32] None

VTS-EnKF-t4 96 t− 4, t, t+ 4 [32,32,32] None

VTS-EnKF-t5 96 t− 5, t, t+ 5 [32,32,32] None

VTS-EnKF-t6 96 t− 6, t, t+ 6 [32,32,32] None

4.4 Sensitivity of time interval

Previous researches have found that an improper neighboring time interval τ can lead to undesirable
results, such as less-effective ensemble members (interval too small) (τ too small) or ensemble member
clustering and unrepresentative ensemble covariances (τ too large) (Xu et al., 2008; Gasperoni et al.,
2022, 2023). To explore the sensitivity of the choice of neighboring time interval, series of VTS-EnKF
experiments with different neighboring time interval were carries out. Time intervals ranging from 1
to 6 hour were tested. As shown in Fig. 10, snapshots from 6 experiments on DSE1 clearly depicts
the trend. In general, all the VTS-EnKF experiments show better performance than EnKF. While in
terms of specific time interval, different patterns can be noticed. For short intervals including 1 and
2 hour, there is not sufficient ensemble spread to account for the position error. Thus there are still
position error remaining and RMSE is still high. For long intervals including 5 and 6 hour, dust plume
is clustered away from central dust plume. Three dust branches are noticed in VTS-EnKF-t5 and an
overly backwards dust plume is noticed in VTS-EnKF-t6. In this case, 3-hour interval is the best choice
with the lowest RMSE (696.11 µg m−3) and NMB (-63.5 %).

Same experiments on DSE2 are also performed and snapshots are shown in Fig. S3. Similar patterns
are found on DSE2. Lowest RMSE and NMB are achieved in VTS-EnKF-t4. Too short interval leads to
inability in position error correction and too long interval leads to excessive dust plume. Considering
both cases, 3-hour interval is the preferred choice which holds the capability to handle position and not
creates excessive clustered dust plume.
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Figure 10. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume
(SDP) on surface from the posteriori SDP updated by VTS-EnKF-t1 (a), the posteriori SDP updated by

VTS-EnKF-t2 (b), the posteriori SDP updated by VTS-EnKF-t3 (c), the posteriori SDP updated by
VTS-EnKF-t4 (d), the posteriori SDP updated by VTS-EnKF-t5 (e), the posteriori SDP updated by

VTS-EnKF-t6 (f) at 11:00, 15th March 2021 (CST).
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Figure S3. Spatial distribution of ground-based BR-PM10 observations (scatter) and simulated dust plume
(SDP) on surface from the posteriori SDP updated by VTS-EnKF-t1 (a), the posteriori SDP updated by

VTS-EnKF-t2 (b), the posteriori SDP updated by VTS-EnKF-t3 (c), the posteriori SDP updated by
VTS-EnKF-t4 (d), the posteriori SDP updated by VTS-EnKF-t5 (e), the posteriori SDP updated by

VTS-EnKF-t6 (f) at 11:00, 28th March 2021 (CST).
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4. Minor comments

RC: 1) The authors’ writing seem to imply that the Pf matrix does not normally account for position errors.
That is incorrect. The Pf matrix accounts for both intensity and position uncertainties if the forecast
ensemble has both kinds of uncertainty. However, note that the Pf matrix only adequately represents
position uncertainties if it is sufficiently small – position uncertainties result in non-Gaussian statistics if
those uncertainties are large.

AR: Thanks for the comment. We didn’t clearly explain the constitutions of the Pf . We agree that the Pf accounts
for both intensity and position errors. While when there are significant position errors, non-Gaussian statistics
can be aggravated. Which will mislead EnKF that relies on Gaussian distribution of errors. Descriptions are
made in Line 490-493. Details are below:

The background error covariance of EnKF is generally designed to represent the intensity and position
uncertainty. However, when the position error is sufficiently large, the background error covariance can’t
adequately represent the position error, which is highly non-Gaussian. In the case of the long-distance
dust storm tracking, the EnKF is incapable of thoroughly resolving the observations. Observations over
low model uncertainty pixels are ’ignored’ by the EnKF algorithm.

RC: 2) Line 64: Please acknowledge that the EnKF is suboptimal for non-Gaussian problems. Though the
EnKF can be employed in such situations, the EnKF is probably injecting some kind of bias because it is
designed specifically for Gaussian problems.

AR: Thanks for your comment. We agree that EnKF is Gaussian-dependent. It is added in Line 66-68.

Meanwhile, inherited from Kalman filter, EnKF relies on Gaussian distribution of error statistics
(Amezcua and Van Leeuwen, 2014). For non-Gaussian problems, EnKF can create suboptimal results
(Lei et al., 2010).

RC: 3) Given the centrality of the EnKF to the paper, it seems unusual that only 3 papers are cited between
lines 60-67. In particular, the sentences in lines 66 and 67 are missing supporting references. Here’s a
good review paper about the EnKF that you can use to find more EnKF references: Houtekamer, P. L.,
and F. Zhang, 2016: Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation. Mon.
Wea. Rev., 144, 4489–4532, https://doi.org/10.1175/MWR-D-15-0440.1.

Also, the stochastic EnKF scheme you are using is not the one that Geir Evensen formulated. It is the one
Burgers formulated. Here’s the paper: Burgers, G., P. Jan van Leeuwen, and G. Evensen, 1998: Analysis
Scheme in the Ensemble Kalman Filter. Mon. Wea. Rev., 126, 1719–1724, https://doi.org/10.1175/1520-
0493(1998)126<1719:ASITEK>2.0.CO;2.

Peter Jan van Leeuwen of Colorado State University (Evensen’s good friend), recently published a much
more satisfactory explanation of the stochastic EnKF than Burgers et al (1998): van Leeuwen PJ. A
consistent interpretation of the stochastic version of the Ensemble Kalman Filter. QJR Meteorol Soc. 2020;
146: 2815–2825. https://doi.org/10.1002/qj.3819

AR: Thanks for these strong supporting reference. We have added more references when describing the EnKF in
Line 58-68:
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Filtering methods, on the other hand, assimilate observations sequentially and are more efficient
for operational forecasting systems. Various filtering approaches, such as Kalman Filter (Kalman,
1960), Extended Kalman Filter (Brunner et al., 2012), and Particle Filter (Leeuwen et al., 2019), have
been developed. Among all the filtering methods, the Ensemble Kalman Filter (EnKF) is the most
popular filtering method due to its ability to handle high-dimensional models, easy parallelization
(Evensen, 1994; Katzfuss et al., 2016; Houtekamer and Zhang, 2016). It uses limited ensembles to
estimate the background error covariance statistics of the model (Hamill, 2006; Houtekamer et al.,
2014). Its advantages include handling non-linearity, not requiring explicit calculation of tangent linear
operators, and computational efficiency (Bannister, 2017). EnKF has been successfully applied in
various disciplines, e.g.,weather forecasting (Houtekamer et al., 2005) and hydrology (Reichle et al.,
2002). Meanwhile, inherited from Kalman filter, EnKF relies on Gaussian distribution of error statistics
(Amezcua and Van Leeuwen, 2014). For non-Gaussian problems, EnKF can create suboptimal results
(Lei et al., 2010).

As to the Peter Jan van Leeuwen’s new explanation of the stochastic EnKF, we are quite interested in this
interpretation and will examine the impact in the future. Thanks for the recommendation!

RC: 4) Eq. 9 – The notation can be mistaken as summing up matrices containing the ensemble members at
different time points. Please find another way to mathematically express the idea that you are concatenating
ensembles across time. Perhaps you can refer to the valid time shifting papers that I referenced earlier.

AR: Thanks for the comment. We have used better expression of the idea. Details are below:

Xf,new = [xf,1
t−τ ,x

f,2
t−τ , · · · ,x

f,N
t−τ ,x

f,1
t ,xf,2

t , · · · ,xf,N
t ,xf,1

t+τ ,x
f,2
t+τ , · · · ,x

f,N
t+τ ]
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