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Abstract.

Tropical Africa and the North Atlantic Ocean are significantly influenced by African Easterly Waves (AEWs), which play

a fundamental role in tropical rainfall and cyclogenesis in that region. The dynamics of AEWs can be described in a potential

vorticity (PV) framework. The important impact of latent heat release by cloud processes is captured in this framework by the

diabatic generation of PV anomalies. This paper introduces an innovative approach for the identification and tracking of PV5

structures within AEWs. By employing AEW tracking and computing the wave phase of each point within the AEW domain

using a Hilbert transform, we are able to effectively identify and collect 3-D PV structures associated with specific AEWs. To

facilitate a climatological analysis, here performed over the months June to October from 2002 to 2022, these structures are

subsequently characterized by low-dimensional descriptors, including their location, intensity, and orientation.

Our climatological analysis reveals the seasonal evolution and the structural attributes of PV anomalies within AEWs over10

the study domain. PV feature locations closely align with the African Easterly Jet’s latitudinal shift during the summer season.

Analysis of the mean pressure level of the 3-D PV structures shows a remarkable shift during their life cycle, indicating

deep moist convection characteristics over land, and more shallow convection characteristics over the ocean. On average,

PV features identified within AEW troughs tilt downshear over land and equatorward over the ocean. The trough-centered

analysis reveals distinct differences between satellite-estimated and model-predicted rainfall. Agreement between the results15

of a more traditional composite analysis and our new feature analysis provides confidence in our feature approach as a novel

diagnostic tool. The feature framework provides a low-dimensional representation of AEWs’ PV structure, which facilitates

future statistical analyses of the relation of this structure to, e.g., tropical cyclogenesis or predictability of tropical rainfall.

1 Introduction

African Easterly Waves (AEWs) are synoptic-scale disturbances that play a crucial role in the weather and climate of tropical20

West Africa and the tropical Atlantic region. AEWs are quasi-periodic perturbations, typically originating over the broader Lake

Chad region in central North Africa, or being triggered by the high topography over the Ethiopian Highlands (Mekonnen et al.,

2006; Hamilton et al., 2020). These waves propagate westward across West Africa, the North Atlantic Ocean and as far as the
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eastern Pacific. They have drawn considerable attention due to their substantial impact on Atlantic tropical cyclone (TC) genesis

(e.g., Russell et al., 2017; Núñez Ocasio, 2021; Rajasree et al., 2023), rainfall variability over the West African monsoon region,25

their relation to the West African offshore rainfall maximum (e.g., Hamilton et al., 2017), and their role in extreme precipitation

events over tropical West Africa (e.g., Fink and Reiner, 2003; Crétat et al., 2015; Engel et al., 2017). Understanding the

formation, propagation, and interaction of AEWs with the ambient (thermo-)dynamical state of the troposphere is essential for

improving the prediction of North Atlantic TCs and rainfall patterns in West Africa.

The potential vorticity (PV) framework is a fundamental fluid-dynamical conceptual model widely utilized in extratropical30

meteorology, including the understanding of barotropic and baroclinic instabilities, Rossby wave propagation and amplification

(e.g., Hoskins et al., 1985), Rossby wave breaking (McIntyre and Palmer, 1983; Thorncroft et al., 1993), and the importance

of latent heat release and other diabatic processes on Rossby wave dynamics (e.g., Teubler and Riemer, 2021). Furthermore,

under a balance assumption, the wind, temperature and density fields can be derived solely from the PV field. Strong latent

heat release associated with convection or intense rainfall (Weijenborg et al., 2017; Müller et al., 2020) leads to horizontal35

and vertical dipoles of PV, and thus rich small-scale structures. Müller et al. (2020) highlighted the correlation of strong PV

anomalies and intense precipitation and suggested that PV anomalies may serve as a proxy for evaluating intense rainfall. In

the absence of non-conservative processes, PV is materially conserved, which in combination with large PV gradients in the

mid-latitudes makes it relatively straightforward to identify and track PV features associated with Rossby waves and other

large scale flow features (e.g., Teubler and Riemer, 2021; Fischer et al., 2022; Hauser et al., 2023). In the tropics, however,40

much smaller PV gradients and more prominent contributions of convective-scale latent heat release imply a more complex

and smaller-scale nature of the PV distribution, which is in particular true for AEWs. A feature-based PV perspective of AEWs

thus faces challenges that demand a more detailed investigation.

There exists a substantial body of research on AEWs, especially encompassing their dynamical interaction with the envi-

ronment and their relationship with TCs. The dry dynamics of AEWs can be understood in terms of downstream propagation45

along the African Easterly Jet (AEJ) from an upstream wave source (Thorncroft et al., 2008), with (small) amplification by

baroclinic and barotropic growth (Hall et al., 2006). As in the midlatitudes, these processes can be described from the PV

perspective. More important for AEW amplification is latent heat release associated with embedded convection (Berry and

Thorncroft, 2005; Thorncroft et al., 2008). From a PV perspective, this amplification is seen as the diabatic generation of

PV anomalies. Besides amplitude, the diabatically generated PV anomalies signify modification of AEW structure. Tomassini50

et al. (2017) investigated in detail the contributions of different parameterization schemes to diabatically modified PV in an

operational numerical model. Russell et al. (2017, 2020) give further insight into the structure and sources of PV in AEWs,

including the role of moist convection and its coupling with the background wave environment. Essentially, the diabatically

generated PV anomalies encapsulate the impact of moist processes on AEW intensity and structure that outlasts a period of

active convection.55

In terms of AEW predictability, there is strong indication that uncertainty in latent heat release can be linked to larger forecast

errors in AEW characteristics (Elless and Torn, 2018, 2019). Recently, Núñez Ocasio et al. (2020) suggested that the type of

convective organization and the location of the convection relative to the AEW trough may play a discriminating role in terms
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of AEW-related TC genesis in the North Atlantic Ocean. Dunkerton et al. (2009) provide a conceptual framework that links

AEWs and TC genesis. In this framework, the nonlinear critical layer of AEWs provides a region of recirculating air masses,60

in which moisture and PV may accumulate with time in relative isolation from the drier and thus more hostile environment.

Despite these potential applications in understanding AEW growth, predictability and their role in TC genesis, the application

of a PV-centric view, especially in three dimensions, in studying AEWs has been relatively limited.

In this study, we address this gap by providing a comprehensive tool for the PV-centric analysis of AEWs. Specifically, we

address the following objectives:65

– We propose a novel identification and tracking technique for 3-D PV features associated with AEWs. It facilitates

the quantification of feature properties in case studies and climatological analyses. By describing features by a low-

dimensional vector, statistical analyses including feature climatologies (e.g., Limbach et al., 2012), ensemble forecast

analysis (e.g., Rautenhaus et al., 2015a), and statistical postprocessing (e.g., Rasp and Lerch, 2018) can be performed.

– We perform a climatological analysis of these identified PV features to explore the properties of these features over their70

life-cycle. Furthermore, it provides confidence in the previously introduced method by comparing the identified features

to climatological PV composites.

Multiple approaches exist for objectively identifying AEWs. Early approaches by Burpee (1972), Reed et al. (1988), and

Diedhiou et al. (1999) focus on the identification of mean tracks rather than individual wave anomalies. In order to be able to

compute climatologies and to perform statistical analyses of the data, an objective identification is absolutely vital. Objective75

identification techniques for atmospheric features have proven beneficial in both atmospheric research for statistical analyses

and verification tasks, and in operational meteorology (e.g. Hengstebeck et al., 2011). Fink and Reiner (2003) summarize the

strength and weaknesses of automatic and manual approaches. Thorncroft and Hodges (2001) were the first ones to exploit

the usefulness of the vorticity measure to objectively track individual AEWs in the tropics. Other approaches include the

identification using Hovmöller diagrams (Bain et al., 2014). Berry et al. (2007) and Belanger et al. (2016) most recently used80

the advection of curvature vorticity as primary measure of AEW activity and to identify wave tracks. This measure proved to

be very robust after applying downscaling and smoothing operators.

To enhance our analysis of areas with high PV associated with AEWs, we incorporate phase filtering through the Hilbert

transform. This technique is essential because the geographic location of an AEW trough often does not match the regions

with the highest PV anomalies, due to the complex interactions between wave movements and diabatic PV influenced by85

convection. According to Shapiro (1978) and Tomassini et al. (2017), convection within AEWs typically begins ahead, or

west, of the trough over Africa, where atmospheric conditions are most conducive to convection (Reed et al., 1977; Fink and

Reiner, 2003). Conversely, over the ocean, convection generally occurs closer to, or slightly east of, the trough (Riehl, 1954).

Since convection can potentially take place across the entire trough area, accurately assigning the current phase to every point

in the domain becomes crucial for filtering PV signals in AEWs.90

To reach the aforementioned goals of this work, we employ a technique similar to the one by Belanger et al. (2016) to

get a robust position of AEWs on 700 hPa, this is outlined in Sect. 2.2 and 2.3. Then, in Sect. 2.4, we compute the wave
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phase at every point in the domain by performing a Hilbert transform, which is required to narrow down the regions around

AEWs where high PV associated with these AEWs is expected (Fink and Reiner, 2003). Then finally, in Sect. 2.5, we will

identify and extract the PV structures. The identified 3-D features are assigned geometric descriptions as low-dimensional95

representation, including a best-fitting ellipsoid. Section 3 shows results of a climatological analysis of this features, shedding

light on the distinct characteristics of the waves. Additionally, the approach is being verified through comparison with PV

composites. A trough-centered analysis highlights differences between satellite-estimated and model-predicted rainfall. The

paper is concluded in Sect. 4, where we will discuss the implications of our findings, their relevance to previous research, and

potential avenues for further investigation.100

2 Strategy

2.1 Data

For the identification of AEWs and the corresponding PV features, as well as for the analyses in this study, we utilize data

from the global ERA-5 reanalysis (Hersbach et al., 2020). Our analysis focuses on the period from June to October to align

with the West African Monsoon season, as detailed by Fink et al. (2017). The selected data is provided on a regular grid with105

a grid-point spacing of 0.5° in both latitude and longitude, with a temporal resolution of 6 hours. This time scale is sufficient

since AEW characteristics do not vary on hourly timescales. To identify the wave trough of AEWs, we use the zonal (u) and

meridional (v) wind components at 700 hPa, where the AEJ has its maximum speed (Fink et al., 2017). The study domain

covers the region of AEW activity over tropical West Africa and parts of the North Atlantic Ocean, specifically from 75°W

to 45°E and 0°N to 40°N. The PV analysis is conducted on 16 pressure levels between 200 and 900 hPa, with intervals of 50110

hPa. The PV data on pressure levels originates from the ERA-5 archive. We exclude the pressure levels beneath 900 hPa where

surface-induced effects come into play. For rainfall analyses, the satellite-gauge based GPM IMERG V06B data set (Huffman

et al., 2015) and the twice-daily ERA-5 short-range forecasts will be used to quantify rainfall in relation to AEWs and PV

occurrence.

2.2 Identification of AEW wave troughs115

To robustly identify PV features within AEWs, we build on the method by Belanger et al. (2016) to firstly identify AEW

troughs on 700 hPa. Their method is an improvement over previous work (e.g., Thorncroft and Hodges, 2001) by applying

curvature vorticity (CV) anomalies instead of absolute values of relative vorticity and by ensuring that waves are westward

propagating, more closely aligning with the characteristics of AEWs. We have improved the tracking of the waves to achieve

more robust and consistent tracks. Additionally, we introduce a data structure to facilitate the analysis of the tracks, including120

the identification of split and merge events, computation of average wave speeds, and other parameters.

A climatology of CV is computed for each month and each time of day to take into account both seasonal and diurnal effects.

Then, the CV itself is bandpass-filtered to only retain frequencies that are linked to AEW disturbances. We use a filter to keep
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frequencies between 2–8 days, following Russell et al. (2020). To identify wave troughs at a given point in time, we compute the

anomalies of the CV (CVA) by subtracting this bandpass-filtered CV from the climatology. In the idealized case of westward-125

propagating waves, positive CVAs are linked to cyclonic rotation present in the wave trough, while negative CVAs are present in

the ridge regions. Fig. 1a shows an example of CV anomalies. The bandpass-filtered wind leads to distinct alternating positive

and negative poles of CVA. Following Belanger et al. (2016), the data is smoothed twice using a 9-point local smoother, which

retains only the synoptic-scale easterly wave structure. Then, the zeros of the CVA advection are determined, which resemble

the lines where the sign of the advection changes. These are the troughs and ridges in the CVA field. Given the grid’s discrete130

nature, a cell wise computation would almost never find zero-values. Hence, we employ the Marching Squares algorithm

to interpolate line segments between grid cells that approximate these zero-lines. These segments are then merged to form

continuous lines. In Fig. 1a, the grey lines indicate zeros of CVA advection, which collocate with troughs and ridges.

For filtering purposes, following Belanger et al. (2016), two masks are applied to the identified lines:

– the zonal wind must be u <+2.5ms−1,135

– and CVA must be over the 66-th percentile of the entire reanalysis.

Furthermore, we consult second derivative of the CVA to extract only troughs in the data set, masking out the ridges. The red

lines in Fig. 1a are the result of applying the other masks and filters to the data set. This results in the identified wave troughs.

2.3 Tracking of AEW wave troughs

Research on tracking AEWs has produced various methodologies, where the most established ones are based on analyzing140

the CV field. Hollis et al. (2024), for example, utilize an approach based on the well-known TRACK algorithm, originally

proposed by Hodges (1995). This method primarily focuses on linking point features across successive time frames based on

a predefined, physically reasonable propagation speed. Lawton et al. (2022) adopt a different approach by tracking AEWs

through meridional averages of CV and velocity. Bain et al. (2014) and Brammer and Thorncroft (2015) employ Hovmöller

plots for their tracking, analyzing the longitudinal movement of waves. While each of these methodologies has proven effective145

in their respective applications and has gained popularity in the field, they predominantly focus on point features. In contrast,

our work, along with that of Belanger et al. (2016), leverages additional information provided by the identified wave trough

features.

To form tracks from the identified individual wave troughs, we employ an overlap approach. Overlap tracking has proven to

be a robust tracking technique in meteorological applications, such as tracking of Mesoscale Convective Systems (e.g., Núñez150

Ocasio and Moon, 2024; Feng et al., 2023; Prein et al., 2023) and general purpose feature extraction (e.g., Ullrich et al., 2021).

However, since our identified wave troughs are represented as line strings, they don’t directly lend themselves to traditional

overlap tracking methods.

To address this, we create area features by predicting the future positions of each trough for upcoming time steps, t+∆t

and t+2∆t, with ∆t= 6 h. This prediction uses an anticipated propagation speed to define a polygonal area that represents155

where the trough is expected to be. The presence of overlap between these predicted polygonal areas and the actual locations
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Figure 1. Illustration of the identification and tracking process for AEWs using a polygonal search approach. (a) shows the CV anomalies

and the precipitation rate according to the GPM IMERG data set at 13 September 2022, 00 UTC. Grey lines indicate the zeros of CVA

advection, and the red lines show the extracted wave troughs based on the filters introduced in Sect. 2.2. In (b), two identified wave troughs

are shown at 00 UTC (red, as in (a)), 06 UTC (orange), and 12 UTC (yellow). Red boxes sketch the polygonal search areas computed for both

wave troughs, initiated at 00 UTC. The left wave trough is compared with the +12 h wave trough, while the right wave trough is compared

with the +6 h wave trough. The 700 hPa streamlines of the bandpass-filtered wind at 00 UTC are depicted as blue lines. In panel (c), an entire

AEW track is depicted, demonstrating the continuity of the tracking process. The three wave troughs from (b) are highlighted.
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of wave troughs at future time steps facilitates the tracking. The range of expected propagation speeds, which we set from

umax =−15ms−1 to umin =+2ms−1, defines the size and shape of these polygons, as illustrated in Fig. 1b. While AEWs

typically propagate westward with a speed between 5ms−1 and 10ms−1 (Gu et al., 2004), we use a broader range to account

for sampling artifacts due to the data resolution. Nonetheless, based on the expected wavelength of AEWs (e.g., Fink et al.,160

2017), this range still ensures we do not mix up different waves into the same track. Given a time granularity ∆t, the bounds

of expected traveled distance dmin and dmax can be computed by multiplying umin and umax with the elapsed time.

With this approach, wave tracks can persist even when a trough is detected at t and t+2∆t, but not at t+∆t. This happens,

when one of the above-mentioned identification masks is not fulfilled for this time step, but for the ones before and after.

Consequently, maintaining longer continuous wave tracks, rather than multiple short tracks, enhances the quality of the tracking165

results.

Using the identified connections, a connection graph G= (W,E) is formed, akin to the approach outlined by Limbach

et al. (2012). This structure enables the application of graph theory concepts and algorithms to our identified features, as

also employed by Whitehall et al. (2015) in their analysis of MCS. W represents the set of all wave troughs and serves as

the nodes in the graph, while E denotes the edges connecting elements of W . A pair of wave troughs w1,w2 ∈W forms an170

edge (w1,w2) ∈ E if they represent the same entity, thus, fulfilling the overlap strategy outlined above. This graph provides

a concise representation of the union of all wave troughs and their evolution over time. For instance, if there exist two wave

troughs w1,w2 following wave trough w, such that (w,w1) ∈ E and (w,w2) ∈ E, the wave trough splits in two, indicating a

split event. The connection graph is being simplified by removing transitive edges that are primarily introduced through the

comparison of wave troughs from non-consecutive time steps. Thus, if all {(w1,w2),(w2,w3),(w1,w3)} ⊆ E, then (w1,w3)175

is eliminated from E.

After the connection graph has been simplified, tracks are extracted from the graph. Each track T i itself is a graph T i =

(W i,Ei), based on a subset of wave troughs W i ⊆W and connections Ei ⊆ E. The tracks T i are disjoint subsets of the

overall connection graph G. The extraction of tracks poses challenges: During a wave trough’s life cycle, it interacts with

the dynamic environment and might split into multiple parts (e.g., due to a weakening at the center part of the trough), and180

potentially merge again later. Therefore, different sets of tracks can be justified as a solution to this problem. Here, we adhere

to the rule to generate tracks with the longest possible lifespan. This makes it easier to investigate the life cycle of these waves.

Alternative heuristics, such as extracting connected sub-graphs or initiating new tracks at every split and merge event, were

considered. Extracting connected sub-graphs could reduce the number of tracks and inherently capture split and merge events

within a single track. However, this approach is sensitive to inaccuracies in feature identification and overlooks the origins of185

merged features, connecting too many features into one. On the other hand, creating new tracks at each split or merge event

significantly increases the number of tracks, making life span analyses unfeasible.

To generate tracks with the longest possible lifespan, the graph G is scanned and each node is assigned a time until dis-

sipation. Then, tracks are formed starting from the nodes with the longest time until dissipation. In case of split events, only

the track with the longest time until dissipation is continued, the other sub-track forms a different track. Subsequently, the190

extracted tracks T i can be individually analyzed and filtered. For each identified wave trough being part of a track, we compute
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its current speed as the average speed over a 2-day window centered around the trough’s time step along this track. For this

purpose, the position of a wave trough is defined by the center of its bounding box. We discard parts of tracks with an average

speed of less than 3 ms−1 at any given point in time. This removes stationary features based on orographic effects. Furthermore

following Belanger et al. (2016), we also remove tracks with a lifetime of less than 2 days from the track set.195

Figure 1c shows the full life-cycle of one tracked AEW from (b). Each AEW trough represents a node in the graph. The

troughs of the depicted track are linked using edges: The w0 manifestation of the wave is connected to w1, thus (w0,w1) ∈ E.

w1 itself is connected downstream to the next trough w2, and so on. When the track splits, both ways can be continued in this

way. We refer to Limbach et al. (2012) for a detailed introduction on this type of data structure.

The output of the tracking algorithm consists of a list of AEW troughs with unique identifiers and their descriptions, and a200

list of tracks where each track is defined by a list of edges defining that track. The location of the AEW is defined as a line

string, thus a list of latitude-longitude points. The computed AEW trough data set, spanning the entire ERA-5 reanalysis period

from 1940 to 2022, is available as detailed in the data availability section. Also, a near real-time implementation displaying

identified waves from the ECMWF, GFS and ICON deterministic forecasts is available1.

2.4 Phase Computation205

Although an AEW trough defines the line of maximum CV, its location does not necessarily coincide with the expected region

of maximum PV anomalies, which could occur in the entire trough phase. This discrepancy underscores the need to compute

the wave phase for each point across the domain. Looking at the meridional wind component v in the background flow, the

trough area can be assigned a phase between −π to 0, and the ridge a phase between 0 and π. However, it is not straightforward

to extract the phase information from a real-valued field, since all frequencies in the bandpass-filtered range of 2–8 days can210

contribute to it.

Zimin et al. (2003) faced a similar problem and utilized digital signal processing methods to extract amplitude and phase

information of Rossby wave packets. Using the so-called Hilbert transform (see a practical introduction in Purves, 2014),

a complex (consisting of a real and imaginary) field can be computed from a real-valued field, which provides additional

information such as amplitude and phase. This method involves performing a Fourier transform on the signal and then applying215

a back-transform only to the positive part of the frequency spectrum. This approach is suitable for wave patterns that encompass

a range of wavenumbers, like tropical waves do. Following Zimin et al. (2003), we look at the meridional wind component v

along a latitude circle and perform a 2-D Discrete Fourier Transform over both the wavenumber and time domains:

Vf,k =

T−1∑
t=0

N−1∑
n=0

v(t,n)e−2πj(f t
T +k n

N ), (1)

where t denotes the time step in the data set consisting of T time steps, and n the longitude index out of N indices, while f220

and k denote the frequency and wavenumber coefficients of the transformed signal. Following Reed et al. (1977) and Russell

et al. (2020), we choose a wavelength of 2000–6500 km and a wave frequency of 2–8 days to identify perturbances that can

1www.kit-weather.de/aew_deterministic_maps.php (last accessed at 15 Feb 2024)
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be assigned to AEWs. Therefore, the back transformation is only applied for the subset the positive wavenumbers kmin ≤ k ≤
kmax and positive frequencies fmin ≤ f ≤ fmax corresponding to the chosen wavelength and frequency criteria:

vH(t,n) =
2

TN

fmax∑
f=fmin

kmax∑
k=kmin

Vf,ke
2πj(f t

T +l n
N ). (2)225

This process can be described as a bandpass-filter that generates complex wave information. The real part of the restored signal

represents the bandpass-filtered data. Additionally, the imaginary part allows for the computation of the phase at any point in

the domain using the equation:

θ(vH) = arctan(
Im[vH ]

Re[vH ]
). (3)

Figure 2 provides an illustration of a wind field at 700 hPa, along with the identified wave troughs highlighted in red. To230

remove phase signals in the trough area (−π . . .0) that are not near any AEW trough at all (e.g., vorticity anomalies from other

tropical and extratropical waves), we restrict the validity of the phase to a radius of 1000 km around the trough line, depicted

by the red contour in Fig. 2. Since the transform is performed for wavelength greater than 2000 km, this ensures we consider a

substantial area that does not interfere with signals of other waves. The shading represents the phase of the wave at each point

in the domain periodically from −π to π. The wave troughs clearly align with a phase of −π
2 (white areas). The hatched area235

in Fig. 2 represents the designated search area for PV, called "trough area" from hereon, which is determined by the areas in

the trough phase and near a wavetrough (within the red radius).

This highlights that the Hilbert transform produces correct results with regard to the expected wave signal. In areas less

conducive to AEW activity, the Hilbert transform’s reliability diminishes, leading to increased noise and less accurate results

in the phase field. This outcome is anticipated, as different types of atmospheric waves and other atmospheric disturbances240

overshadow the AEW signal in these locations. In addition, the green iso-contours in Fig. 2 indicate the vertically averaged PV

in the lower and mid troposphere, highlighting the regions of high PV. Notably, these high PV areas align well with the phase

and proximity to the wave troughs.

2.5 Identification of PV features

These previously identified trough areas in Sect. 2.4 delineate the search area for PV. Analyses of the PV field (e.g., Fig. 3),245

supported by 3-D analyses using Met.3D (Rautenhaus et al., 2015b), have indicated that a threshold of 0.7 PVU retains the

strong signal associated with the waves while effectively separating the clusters. Therefore, we identify all grid points within

trough areas that have a PV value exceeding 0.7 PVU. Figure 3a displays a raw 3-D PV field in the tropics, visualized using

the 0.7 PVU iso-contour. The noisy PV field highlights the need for a procedure to extract PV that is linked to AEWs. In Fig.

3b, the PV areas over this threshold areas have been confined based on the trough areas defined in Sect. 2.4, and displayed250

as yellow volumetric objects. Additionally, a so-called morphological opening filter got applied to these objects to refine the

features. A comprehensive overview of these morphological filters is provided by Najman and Talbot (2013), with a recent

implementation for extratropical PV features applied in Fischer et al. (2022). These filters process the 3-D volumetric features

9



Figure 2. Visualization of the computed wave phase using a Hilbert transform (shading), and the identified wave troughs with a 1000 km

radius in red at 13 September 2022, 00 UTC. The hatched region represents the intersection of the expected phase and the vicinity area of

the wave trough, delineating the search area for high PV. High PV regions are indicated by the green iso-contours (light green 0.4 PVU, dark

green 0.8 PVU), which are based on the averaged PV values between 900 and 300 hPa.

by eliminating small, isolated outliers and smoothing out noisy areas, while preserving their general structure. Based on the

proximity to the 2-D wave trough lines, each PV feature can be linked to such a wave trough. Furthermore, the tracks of the 3-D255

PV anomalies can be inferred from the tracks of the 2-D wave troughs, as introduced in Sect. 2.3. A set of feature descriptions

is computed for each PV feature, consisting of bounding box, maximum and average PV value, volume, and as outlined next,

a set of image moments and a geometric representation.

2.6 Ellipsoid Computation

To facilitate statistical analyses of the identified features, it is desirable to represent them using a set of intuitive and well-suited260

parameters. Previous studies have revealed that the structure and orientation of PV features in AEWs depend on different fac-

tors, for example their location and the (thermo-)dynamic constraints of the environment (Tomassini et al., 2017; Russell et al.,

2020; Núñez Ocasio and Rios-Berrios, 2023). Ellipsoids are deformed spheres and can be defined by their center and their

three main axes. This simple representation encapsulates information about the shape’s position, size, orientation, and elonga-

tion, while being defined by only four vectors. It has been termed as the "most economical representation" for meteorological265

observations by Smith and Woolf (1976), is also employed in various other scientific fields, including robotics and metrology.

Various approaches have been considered for computing a best-fit ellipsoid. Minimizing the squared error between the sur-

face of the feature and the ellipsoid is computationally expensive and problematic on discrete grids (see an overview in Turner

et al., 1999). An ellipsoid with the minimum volume that fully encloses the PV feature can be computed using Khachiyan’s al-

gorithm (Khachiyan, 1996), but this approach is not robust against noise. We have determined that the most suitable method for270

computing ellipsoids is to calculate so-called image moments of the feature. Image moments have been widely used in image
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Figure 3. A 3-D visualization of the PV across the North Atlantic Ocean and West Africa at 13 September 2022, 00 UTC, created using

Met.3D, is depicted. In (a), the 0.7 PVU iso-contour is displayed with shading corresponding to atmospheric pressure, identified wave troughs

in red, and the trough phase ranging from −π to 0 is highlighted in blue. (b) showcases the identified PV objects in yellow as outlined in

Sect. 2.5, while (c) illustrates the ellipsoids representing the identified features from (b).
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analysis and pattern recognition (e.g., Teague, 1980; Papakostas et al., 2010) as they compactly describe the spatial character-

istics and geometric properties of a feature. We refer to Mukundan and Ramakrishnan (1998) for a detailed introduction of this

concept. Importantly, we will exploit the second-order moments to compute the main orientation of a feature.

For a discrete setting, as for our grid, the 3-D moments Mijk of order i+ j+ k for the function PV are defined as275

Mijk =
∑
x

∑
y

∑
z

xiyjzkPV (x,y,z)V (x,y,z), (4)

where PV represents the PV restricted to the identified volumetric feature (e.g., yellow structure in Fig. 3b), V the volume

of the grid cell, and x, y, and z are the grid dimensions (longitude, latitude, pressure levels). Calculating the moments up to

the second order provides multiple interesting characteristics of the shape. The 0th moment M000 represents the PV-weighted

volume of the object, while the vector280

(xc,yc,zc) = (
M100

M000
,
M010

M000
,
M001

M000
) (5)

represents the centroid of the feature weighted by PV. The second order moments represent the variance and covariance between

each pair of dimensions. Therefore, we can construct the covariance matrix Σ of the feature as

Σ=


µ′
200 µ′

110 µ′
101

µ′
110 µ′

020 µ′
011

µ′
101 µ′

011 µ′
002

 , (6)

where µ′
ijk =

Mijk

M000
−xi

cy
j
cz

k
c are the second order central moments. As demonstrated in Jackson (2005), the eigenvectors of285

the covariance matrix Σ correspond to the main axes of the feature, while the length of the main axes si can be computed

from the eigenvalues λi as si = 2
√
λi. These principal axes are determined for each PV feature, defining the best-fit ellipsoid

by spanning these three axes. An example is illustrated in Fig. 3c, where the ellipsoids are the ones computed for the yellow

objects in (b). Furthermore, ellipsoids are invariant under projections: Projecting ellipsoids on any 2-D plane yields ellipses

(see Hartley and Zisserman, 2003), which in turn can be characterized by two main axes. We compute the projected ellipses on290

the three axis-aligned planes (xy, xz, and yz plane), and define these ellipses by their main axes.

3 Climatology

To assess the data set generated by the identification algorithm and provide an overview of the features, a climatological analysis

is conducted. Figure 4 presents a climatology depicting the occurrence of wave troughs and geometrical representations. In

this context, occurrence represents the fraction of time steps within a given month where a grid point resides within the trough295

area introduced in Sect. 2.4, indicated by the colored shading. The climatological mean zonal wind at 700 hPa, representing the

AEJ, exhibits a latitudinal movement and coincides with regions of higher wave trough occurrence. Additionally, for specific

longitudes, the histogram in Fig. 4f displays the amount of identified wave troughs centered at each longitude. It indicates

whether a geometric representation, as defined in Sect. 2.6, has been assigned to the respective feature. Errors during the
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Figure 4. Occurrence percentages of trough areas for the months of (a) June to (e) October at a specific point, along with iso-lines depicting

mean zonal wind at 700 hPa (-5 and -10 ms−1). (f) shows the number of identified wave troughs at various longitudes based on their bounding

box center, and indicates the ratio of wave troughs which have been assigned a geometric 3-D PV representation. The ERA-5 reanalysis of

2002 to 2022 has been used.

computation of the ellipsoid (e.g., due to an insufficient amount of data points exceeding the PV threshold) may prevent the300

generation of a geometric representation for a PV feature. The plot reveals that in regions where well-developed AEWs are

expected, the majority of these waves exhibit a distinct PV signal. However, the PV signal weakens in the genesis region of

northern East Africa due to the lack of deep moist convection, and the western end of the study domain, where almost half of

the waves moving towards northern South America are accompanied with inhibition of precipitation (Giraldo-Cardenas et al.,

2022).305

Additionally, Fig. 5 illustrates the changes in PV feature occurrence between the months shown in Fig. 4. The mount of

PV features increase from June to July, corresponding to the West African Monsoon season’s onset. Warmer and moister

atmospheric conditions favor PV anomaly formation. Then, going into August, the PV activity increases further over tropical

West Africa, aligning with peak convective activity during the monsoon season and the peak of wave activity in general

(Fink et al., 2017). Inversely to panel (a), September shows a decline in PV activity, mainly over the Atlantic Ocean, as the310
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Figure 5. Differences in occurrence percentage of consecutive months in the June–October season, based on the monthly data from Fig. 4.

Intertropical Convergence Zone (ITCZ) shifts southward. Towards October, PV activity over West Africa retreats southward as

well in tandem with the monsoon’s withdrawal.

As 3-D reference, Figure 6 shows a composite of the PV anomalies relative to the identified wave troughs, categorized in

Ocean and Land. The categorization is based on whether the midpoint of the wave trough’s bounding box is situated over

tropical West Africa (Land) or the Atlantic Ocean (Ocean). For each grid point along each identified wave trough being part315

of a track, the data is split into bins based on the longitude offset ahead and behind the trough. This leads to a zonal cross

section of the climatologically average AEW, looking from the south into it. Additionally, below the 3-D composites, the

estimated rainfall (based on GPM-IMERG satellite retrievals), and the ERA-5 modeled rainfall is shown. The latter one is

an 18-hour forecast initialized twice a day (06 UTC, 18 UTC) with hourly data available. The lead times from +6 h to +18 h

are concatenated to avoid model spin up effects. Then, both the forecast’s and satellite retrieval’s data is centered to 6-hourly320

around the given wave trough time to get a estimate of the rainfall rates at a given location by both data sources.

Over land, the PV column exhibits a noticeable downshear tilt (the lower tropospheric shear vector points westward due

to the AEJ), whereas over the ocean, the PV column appears upright in relation to this cross-section. Centered around the

wave trough, a clear dipole structure in the meridional wind can be observed, with a maximum around 650-700 hPa, falling in

line with the maximum intensity of the AEJ (e.g., Burpee, 1972). Moreover, over land high PV values extend higher into the325

troposphere than over ocean. The composite structure over land is reminiscent of the deep convection that occurs ahead of the

trough (Fink and Reiner, 2003). This is corroborated by the ERA-5 model rainfall that peaks slightly ahead of the trough. Over

land clear differences occur, with higher estimated rainfall intensities well ahead of the trough line. As discussed in Fink and

Reiner (2003), squall lines are initiated ahead of the trough, but move about twice as fast as the trough into the preceding ridge

where they tend to dissipate. This is one potential explanation of the rainfall intensities increasing west of the trough in the330
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composite. Over ocean, the PV tower is shallower and centered on the trough. The shallower PV object over ocean is related to

less deep convection over ocean due to lower CAPE values. The largest model rainfall is found at and to the east of the trough

axis. This is consistent with an AEW evolution described in Riehl (1954) and Russell et al. (2020). The satellite-based rainfall

estimations match the model rainfall in phase and amplitude quite well over ocean.

In Figure 7, a similar composite is presented from an other viewing angle. It shows the latitude-pressure cross-section335

perspective, viewing from east to west into the PV anomalies. To get a composite of PV structures independent on their current

latitude, we use here the computed center of the ellipsoid as reference latitude in the center (red line). Areas to the left indicate

locations south of the center of the PV anomaly, and areas to the right denote areas north. This view validates the PV feature

locations, aligning well with the red reference line. Over land, the PV column is upright, extending higher in the vertical,

signifying intense deep convection. Over the ocean, anomalous PV to the north of the features can be observed, especially in340

the 600–700 hPa range, which coincides with the peak intensity zone of the AEJ. The contours in the Figure distinctly mark

the core of the AEJ just north of the wave centers. This lets us suggest that this PV anomaly in the composite can be traced

back to PV advection taking place from tropical West Africa to the Atlantic Ocean.

The ERA-5 modeled precipitation and rainfall estimated by satellite retrievals further match with the interpretation from the

first composite. Both data sets reveal good agreement over the ocean, while significant differences appear over land. Centered345

around the trough, much less precipitation is observed. Following the argument by Fink and Reiner (2003), squall lines tend to

move faster than the trough, and therefore move out of the displayed latitude-pressure cross-section.

Figure 8a shows box plots depicting the orientation of PV features along the longitude-pressure plane. As described in

Sect. 2.6, projecting a 3-D ellipsoid results in an ellipse, which is defined by two main axes. The more vertically oriented axis

is used to calculate the angle of the PV feature relative to the pressure axis. The plot clearly illustrates distinct orientation350

patterns of PV features depending on their location. Over land, the features exhibit a downshear tilt, while over the ocean, the

PV column appears upright, aligning with the composite shown in Fig. 6, validating the structure of the identified ellipsoids.

Figure 8b showcases similar box plots for the latitude-pressure plane, which can be visualized by observing the PV features

looking from east to west. While the longitude-pressure cross-section is visible in Fig. 6 and has been studied in the literature

(e.g., Russell et al., 2020), the latitude-pressure cross-section (composite in Fig. 7) remains relatively unexplored. Here, a clear355

tilt pattern is evident as well, which differs between ocean and land. Over the Atlantic Ocean, the PV column tilts to the south,

while it appears more upright over land, as also evident in the composite. As explained earlier, we propose that this southern tilt

results from PV advection along the AEJ, inducing PV anomalies on the northern flank of the waves at lower levels and creating

this asymmetry. Further research could explore the decoupling of PV sources to validate this advection process, distinguishing

advection from diabatically generated PV, similar to Tomassini et al. (2017).360

Figure 9 shows key characteristics of identified PV features within the study area split by longitude, more specifically their

mean level and volume. As the AEWs progress from their genesis region towards 0°W, there is a noticeable upward trend in

the mean level of the PV features. This upward trend in altitude suggests the evolution of the convective structure associated

with the wave, evolving into deep convective structures. Subsequently, beyond 0°W, the mean level gradually decreases until

approximately 40°W, indicating a descent of the diabatic heating centers in the AEWs and a shift towards lower atmospheric365

15



Figure 6. Composite of PV anomalies relative to the identified wave troughs along a longitude-pressure cross-section for June–October

2002–2022 based on the ERA-5 reanalysis. The red line indicates the longitude of the wave trough, with regions to the left denoting positions

ahead (west) of the trough and those to the right indicating positions behind (east) of the trough. Line contours denote the mean meridional

wind around the identified troughs in ms−1. Shown are: (a) all identified wave troughs which are part of tracks, (b) focuses on the subset

of troughs over the North Atlantic Ocean, and (c) focuses only on wave troughs over West Africa. In the lower panels, 6-hourly centered

satellite-estimated (GPM-IMERG) and model-predicted (ERA-5 short-range forecasts) rainfall along this cross-section is visualized.

levels. This is consistent with the composite figures and reflects less deep convection over the ocean. Changes in PV feature

volume mirror the evolution of convection and diabatic processes. Peak volumes correspond to the mature phase of convective

activity, aligning with the deep convection phase in these regions (Maranan et al., 2018). The orientation of the features depicted

by the grey line also confirms the findings from the box-plots in Fig. 8. An abrupt change in orientation is visible across the

land-ocean transition zone, which shows the different dynamical behaviors in these contrasting environments.370

4 Summary & Conclusion

In this study, we have introduced a novel identification and tracking strategy for 3-D PV features within AEWs, allowing for

in-depth analysis of their characteristics and statistical properties. Our algorithm builds on a robust identification and tracking

of AEW troughs in 2-D at 700 hPa. Identified wave troughs and tracks for the entire ERA-5 reanalysis 1940–2022 are provided,
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Figure 7. Similar to Fig. 6, this composite displays the latitude-pressure cross-section for the same data set, broken down in the same fashion,

with the same precipitation data. The contours indicate the mean zonal wind in ms−1. The red line denotes the image moment based latitude

center of the identified PV anomalies, as outlined in Sect. 2.6.

Figure 8. Orientation of projected ellipsoids on the (a) longitude-pressure plane and the (b) latitude-pressure plane. Box plots depict the

orientation split by location: Land contain ellipsoids centered over West Africa, Ocean over the North Atlantic Ocean, and All indicate all

identified features. Positive angles indicate a tilt towards higher longitude (latitude) values with height.
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Figure 9. Graph showing the mean pressure level (in red), volume (in blue), and angle along the longitude-pressure plane relative to the

vertical (in grey) for all identified PV features from June to October, spanning 2002 to 2022, plotted against longitude. The horizontal green

line marks the zero angle, indicating a perfectly vertical orientation. The grey area highlights the region where features transition from land

to ocean within our study domain.

along with the framework for identifying and tracking meteorological features (see data availability section). The framework375

offers support for parallel execution and supports output in JSON or Protobuf formats. Furthermore, a near real-time web-page

displays wave troughs for ECMWF, GFS, and ICON forecasts. These 2-D wave troughs, combined with the computed wave

phase at every point in the study domain, serve as input for the 3-D extension of our strategy, where we extract PV features

associated with specific AEWs. Within the identified trough area, we collect and process PV in the column above to create

cohesive structures. These PV features are further represented using best-fitting ellipsoids, enabling statistical analyses.380

An evaluation of the feature climatology demonstrates the robustness and relevance of our approach. The occurrence, ex-

tent, and orientation of the identified PV features closely align with established expert knowledge. By focusing our composite

analysis on PV across longitude-pressure and latitude-pressure cross-sections from a trough-centric perspective, we achieved

a consistent analysis framework that is not influenced by the seasonal north-south migration of the waves. This climatolog-

ical review, spanning June to October for the years 2002 to 2022, validates our feature identification approach, particularly385

highlighting the concurrence between the orientation of PV features in our analysis and existing climatological data.

Additionally, we undertook a comparative analysis of these PV features with estimated (GPM-IMERG) and NWP simulated

(ERA-5 short-range forecast) rainfall data. Notable differences in the spatial distribution and intensity of rainfall between the

simulated and the estimated data can be observed. These disparities are primarily attributed to variations in the movement of

squall lines over tropical West Africa, where satellite estimates show a much faster progression of these lines. A prominent390

tilt of PV features over tropical West Africa and over the North Atlantic Ocean can be observed both in the composites and in

the statistical evaluation of the main axes. An identified southern tilt of these features over the Atlantic suggests PV advection

along the AEJ originating from the convective activity over northern Africa. Along with additional feature descriptors, like
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mean level and volume of the PV feature, the life-cycle of these waves can be investigated, originating as small disturbance, to

deep moist convection over Africa, and towards less deep convection over the Atlantic Ocean.395

The data generated through our strategy has diverse applications. Besides the generation of feature climatologies, it can

be utilized as input for statistical forecasting techniques. Links between PV features and TC activity can be explored by

using the features as input to statistical or mixed statistical-dynamical models (Maier-Gerber et al., 2021), as well as for

forecasts of tropical rainfall over Western Africa (Vogel et al., 2021). Furthermore, our strategy enables detailed case studies

and facilitates in-depth investigations of AEWs. One particular focus here could be on the relation between the 3-D PV feature400

evolution and the propensity of an AEW to undergo TC genesis (e.g., Dunkerton et al., 2009; Núñez Ocasio et al., 2020). In

all these applications, an important aspect is the sensitivity of the gross characteristics of PV features to different reanalyses or

models, because the PV features can be expected to be strongly influenced by the representation of convection. In this context,

differences in models with parameterized and explicit convection are considered most worthy of further study. In combination

with state-of-the-art interactive 3-D visualization techniques (Rautenhaus et al., 2018), objective features also open the door405

for comprehensive case studies.

In conclusion, our study significantly contributes to the field of AEW research by providing a tool to comprehensively

analyze PV features within AEWs, and thus to make the PV perspective more easily applicable to AEWs. The identification

and tracking strategy, along with the availability of comprehensive 3-D data, opens up new avenues for studying individual

cases, understanding AEW dynamics, improving forecasts, and gaining a deeper understanding of the role of AEWs in the410

weather and climate of tropical West Africa and the North Atlantic Ocean.
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