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Abstract. Measurements collected from ground monitoring stations have gained popularity as a valuable data source for cali-

brating numerical models and correcting model errors through data assimilation. Both model calibration and assimilation are

driven by the penalty quantified by simulation-minus-observations. However, the penal forces are challenged by the existence

of a spatial scale disparity between model simulations and observations. The Chemical Transport Models (CTMs) allow the

division of the atmosphere into grid cells, yet their spatial resolution may not align with the limited range of in-situ measure-5

ments, particularly for short-lived air pollutants. Within a broad grid pattern, air pollutant concentrations can exhibit significant

heterogeneity due to their rapid generation and dissipation. Ground observations with traditional methods (including nearest

search and grid mean) are less representative when compared to model simulations. This study develops a new land-use-based

representative (LUBR) observational operator to generate spatially representative gridded observation for model calibration

and evaluation. It incorporates high-resolution urban-rural land use data to address intra-grid variability. The LUBR operator10

is validated to consistently provide insights that align with satellite OMI measurements. It is an effective solution to accurately

quantify these spatial scale mismatches and further resolve them via assimilation. Model calibrations with 2015-2017 NO2

measurement in China demonstrates biases and errors differed substantially when the LUBR and other operator are used, re-

spectively. The results highlight the importance of considering fine-scale urban-rural differences when comparing models and

observations, especially for short-lived pollutants like NO2.15
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1 Introduction

Air pollution is acknowledged as a significant risk factor for chronic non-communicable diseases for its contribution

to global morbidity and mortality, surpassing all other known environmental risk factors (Al-Kindi et al., 2020). Despite

considerable improvements in air quality in recent years globally, many regions still suffer from severe air pollution, impacting

the living conditions of their residents (Li et al., 2021). Numerical models are fundamental tools in modern science, used across5

disciplines to describe complex systems, analyze observations, test hypotheses, and project future behavior. They are pivotal in

atmospheric science, serving as central tools for weather prediction, climate research, and extensively describing atmospheric

dynamics (Brasseur and Jacob, 2017). Atmospheric chemistry transport models (CTMs) utilize mathematical equations to

represent the intricate relationships between atmospheric concentrations of chemical species and the factors influencing them,

such as emissions, transport, chemistry, and deposition processes. These models can simulate the temporal-spatial patterns of10

air pollutants from the past to the future, aiding policymakers in identifying the most effective strategies for reducing emissions

(Liu et al., 2018; Zhai et al., 2021; Jin et al., 2023b).

The rapid advance in computing power and atmospheric science has facilitated the development and widespread use of

numerous three-dimensional CTMs, such as GEOS-Chem (Bey et al., 2001), CESM2 (Danabasoglu et al., 2020), WRF-Chem

(Grell et al., 2005), etc., over the past few decades. Undoubtedly, these models serve as powerful tools to investigate and15

simulate the intricate behavior of atmospheric composition and chemical processes. However, these models cannot perfectly

reproduce the true atmospheric dynamics due to various factors. Matthias et al. (2018) has highlighted persistent uncertainties

in input data, including emission inventories and meteorological data. The model parameterization and simplifications also fall

short of achieving perfection (Stensrud, 2009), and addressing knowledge gaps in chemical reaction mechanisms remains a

challenge. Moreover, CTMs face difficulties in accurately representing atmospheric processes at fine spatial scales and cap-20

turing rapid temporal variations (Goodkind et al., 2019). This challenge stems primarily the high computational demands of

conducting high-resolution or long-term simulations (Bindle et al., 2021).

Observations, unlike CTMs simulations, offer a direct measurement of the real-world environment by utilizing a range

of instruments, sensors, and techniques. Ground observation data is widely regarded as the most fundamental measurement,

and usually serves as a benchmark for calibrating the accuracy of other data, such as model results (Fang et al., 2022) and25

satellite data (Garane et al., 2019). Since 2013, the China Ministry of Environmental Protection (MEP) has established over

1800 ground-based stations dedicated to measuring primary pollutants including PM2.5, PM10, NO2, SO2, CO and O3 (Sheng

and Tang, 2016). These ground observations provide valuable insights on air pollution conditions and are widely used for

model calibrations (Zhu et al., 2021), and their distributions are presented in Supplement Figure S3. Concurrently, the rapid

advancements in satellite remote sensing and other technologies have made it possible to observe near-surface air pollutant30

abundances from space (Zhang et al., 2020; Jin et al., 2023a). For example, satellite onboard instruments such as the Ozone

Monitoring Instrument (OMI) and the Tropospheric Monitoring Instrument (TROPOMI) can facilitate the measurement of

nitrogen dioxide (NO2) with extensive coverage (van Geffen et al., 2022). This study primarily focuses on analyzing the

disparities between model simulations and observations of NO2 and fine particulate matter (PM2.5).
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Those measurements collected by ground monitoring stations and satellite instruments are widely utilized for model cali-

brations, and model error corrections through the application of data assimilation techniques (Kalnay, 2002). Mathematically,

observations and simulations with different scales and dimensions are not comparable directly in the model calibrations. To

make this, two pre-processing methods are prevalent. The first one entails calculating the average value of all the observations

located in a given model grid (Dang and Liao, 2019; Dai et al., 2023), then compared to the gridded simulation. The second5

method conducts a nearest search for model values corresponding to any given measurements (Jin et al., 2021). In the subse-

quent sections of this paper, these two methods will be illustrated in detail, and they are referred to as ’grid mean’ and ’nearest

search’, respectively. With this, the observation-minus-simulation discrepancy can be calculated and serves as the driving force

in determining the extent to how much the uncertain model parameters or states are adjusted during the calibration or assim-

ilation process. When observation biases are present together with the model errors, there is a danger of misleading model10

evaluation or divergent model estimation in the assimilation (Lorente-Plazas and Hacker, 2017). This is because failing to

account for these biases properly can lead to inaccurate attribution of the error sources. Previous studies (Bédard et al., 2015;

Eyre, 2016; Jin et al., 2019a) have highlighted the significance of addressing observation biases and their correction.

The existence of a spatial scale disparity between model simulations and observations is a persistent challenge (Schutgens

et al., 2016). The aforementioned two commonly used methods for model evaluation can be potentially unfair when considering15

the representative error in observations. The CTMs divide the atmosphere into a series of horizontal and vertical grid cells,

where each cell corresponds to a distinct spatial location and altitude (Tessum et al., 2017). As an example, for GEOS-Chem,

the nested simulation typically adopts a relatively high horizontal resolution of 0.5◦latitude by 0.625◦longitude, which is widely

used in practice keeping the balance between the complexity and computing power (Wang et al., 2004; Chen et al., 2009; Wang

et al., 2013; Yan et al., 2016). However, in-situ measurements are typically limited to a few kilometers of the surrounding20

atmosphere (Pattinson et al., 2014; Schutgens et al., 2016), and the effective spatial range for short-lived gases is even more

restricted. For instance, concentrations of ground NO2 (with a lifetime of approximately several hours as noted in Shah et al.

(2020)) exhibit significant variations between urban and rural areas (Pattinson et al., 2014). This discrepancy arises due to

anthropogenic NO2 emissions primarily occurring in the troposphere, stemming from sources such as transportation, industrial

production, and power plants (Wu et al., 2021b). The concentration of NO2 diminishes considerably as the distance from the25

emission source increases, owing to its rapid consumption through the process of photolysis after its production (Finlayson-Pitts

and Pitts Jr, 1999). Consequently, the distribution of NO2 concentrations within a large grid pattern is highly heterogeneous,

making it challenging to accurately represent the true average concentration of the grid solely by directly using the values of

several monitoring stations within the grid or simply averaging them. Meanwhile, as most of the ground monitoring sites such

as the China MEP network are located in the severe-polluted urban areas, this further prevents them from fairly representing30

the mean status of the actual atmospheric environment.

In this study, we proposed a land use-based representative (LUBR) observational operator to represent real atmospheric

pollutant concentrations, using both the ground observations and the land use information. The land use information is acquired

from nighttime light (NTL) data which can distinguish between urban and rural areas. This new operator was compared

alongside two other commonly used observational operators (‘grid mean’ and ‘nearest search’) to evaluate their performance35
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for model calibration and evaluation. Our novel observational operator was applied in both NO2 and PM2.5 model calibrations.

The latter has a relatively longer atmospheric lifetime of several days compared to the former (several hours to one day). The

temporal scope of this study spans from 2015 to 2017. Overall, the LUBR method incorporates high-resolution land use data to

account for intra-grid variability and generate observation datasets that are more spatially representative. This helps address the

scale mismatch between models and observations that has impaired robust calibration and evaluation, especially for short-lived5

gases like NO2.

This study is structured as follows. Section 2.1 and Section 2.2 describe the study domain, observations, and model used.

Details on the urban/rural scaling ratio and the LUBR algorithm are provided in Section 2.4 and Section 2.5. Section 3 discusses

the spatial and temporal evaluations of NO2 and PM2.5 pollutants either using LUBR or using the traditional grid mean/nearest

search methods. Statistical metrics quantifying their performance are also analyzed. Finally, the key findings and implications10

of developing such a spatially representative observational operator are summarized in the conclusion.

2 Materials and methods

This chapter begins by introducing the study domain and observations in Section 2.1. Following that, we present the

GEOS-Chem model utilized in our research in Section 2.2. In Section 2.3, we delve into the disparities between gridded model

simulation and observations. Moving forward to Section 2.4, we explore the variations in air pollutant concentrations between15

urban and rural areas, along with an introduction to the dynamic coefficients associated with these areas. Lastly, Section 2.5

offers an in-depth description of the LUBR algorithm for building the observational operator.

2.1 Study domain and observations

This study investigates how our observational operator benefits air quality model calibrations over the whole China as

presented in the left panel of Fig. 1. To provide a more comprehensive insight, this study focuses on two regions characterized20

by severe NO2 pollution: the North China Plain (NCP; 34–41° N, 113–119° E) and the Yangtze River Delta (YRD; 30–33° N,

119–122° E). These regions are examined in greater detail for a more elaborate illustration.

Following the deployment of the most recent earth observation satellite series, the Joint Polar-orbiting Satellite System

(JPSS), the inclusion of the Visible and Infrared Imaging Suite (VIIRS) Day Night Band on JPSS satellites has ushered in a

remarkable advancement in low-light imaging capabilities (Elvidge et al., 2017), surpassing the capabilities of its predecessor,25

the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) (Small et al., 2005). This study

employed the V2.1 annual global VIIRS nighttime lights dataset for the year 2020 (Elvidge et al., 2021) to delineate urban-

ization patterns within China. The intensity of color corresponds to the level of urbanization, where brighter colors indicate

higher urbanization levels. Building upon the findings of Shi et al. (2014), we adopted a threshold of 10 nW cm−2sr−1 for the

urbanization which will be used as an input in LUBR observational operator as will be illustrated later. Accordingly, areas with30

annual nighttime light values exceeding 10 nW cm−2sr−1 were designated as urban regions.
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In-situ measurements typically encompass only a few kilometers of the surrounding atmosphere, with an even more

constrained effective spatial range for short-lived gases, such as NO2. When assessing model simulations of ground-level NO2

against in-situ ground observations in China, it is consistently observed that the model tends to underestimate these observations

at most monitoring stations. A widely acknowledged explanation for this phenomenon is that the environmental monitoring

stations established by the China MEP are predominantly situated in urban areas (as shown in Figure S3). This geographical5

bias may contribute to an overestimation of grid-scale ground-level NO2 observations across China. Panels a and b of Fig. 1

are partially enlarged views of regions with significant local urbanization in NCP and YRD. Grid lines are simulated grids of

longitude and latitude for GEOS-Chem, with urban and rural sites represented by blue dots and red squares, respectively. Three

primary types of grids are present: U contain solely urban sites, R with only rural sites, Mix encompass both urban and rural

monitoring stations, while the rest ones lack any sites altogether. It’s noteworthy that the urban area percentage within a model10

grid, as derived from annual nighttime light data, significantly differs from the percentage of urban sites present within that

same grid as shown in Fig. 1(a) and (b).
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Figure 1. The left subplot shows the lighting in China derived from V2.1 annual global VIIRS nighttime lights, with data averaged for the

year 2020. The intensity of color corresponds to the level of urbanization, where brighter colors indicate higher urbanization levels. Subplots

a and b display regions with significant local urbanization in NCP and YRD, respectively. In these subplots, blue dots and red rectangles are

used to represent urban monitoring stations and rural monitoring stations, respectively.
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2.2 GEOS-Chem Model

The chemical transport model employed in this study is GEOS-Chem, specifically version 13.4.0, available on the Zenodo

(The International GEOS-Chem User Community, 2022). The model was driven by assimilated meteorological data from the

NASA Global Modeling and Assimilation Office’s Modern-Era Retrospective analysis for Research and Applications Version

2 (MERRA-2) as detailed in (Gelaro et al., 2017). It has a fully coupled aerosol–ozone–NOx–hydrocarbon chemistry repre-5

sentation (Park et al., 2004). We took the global simulation with a spatial resolution of 2° latitude by 2.5° longitude as the

boundary conditions. The region of interest, constituting the nested modeling domain (0–55° N, 70–140° E), was characterized

by a refined horizontal resolution of 0.5° latitude by 0.625° longitude, accompanied by 47 vertical layers. It is worth noting

that the choice of this resolution is a common practice when using the GEOS-Chem classic version, striking a balance between

computational complexity and computing power. In addition, it is also the finest resolution that remains computationally af-10

fordable when a substantial ensemble of models is required for data assimilation. The anthropogenic emissions over China are

from the Multi-resolution Emission Inventory for China (Li et al., 2017). For anthropogenic emissions outside of China, we

utilized data from the Community Emissions Data System (CEDS) inventory as detailed in (Hoesly et al., 2018). This inventory

predominantly comprises aerosols, aerosol precursors, and reactive compounds. GEOS-Chem also integrates additional NOx

emissions from diverse origins, encompassing soil and fertilizer use (Hudman et al., 2012), lightning (Murray et al., 2012),15

and shipping (Holmes et al., 2014). A preliminary 1-year spin-up simulation was conducted before the main simulation. The

detailed model validation can be found in Supplement Section 2.

2.3 The discrepancy between observation and model simulation

In our recent study, we observed an intriguing phenomenon where the NO2 simulation validation with ground-level NO2

and column-integrated NO2 measurements shows contradictory results. This contrast is vividly depicted in Fig. 2. In contrast20

to the irregular and sparse spatial distribution of ground observations, OMI observations offer high resolution and complete

spatial coverage. Different from the ground-based stations that measure the pollutants in very surrounding areas, the OMI

instrument quantified the mean status of the given pixel similarly to the gridded numerical model simulation. In this study, we

initially transformed the daily cloud-screened column NO2 product (0.25 degrees x 0.25 degrees) into monthly OMI column

NO2 data. Subsequently, we gridded it to match the GEOS-Chem horizontal resolution, which is 0.5 degrees latitude by 0.62525

degrees longitude. Therefore, the observations of OMI are fairly comparable to the gridded simulation results of GEOS-Chem.

Moving on to panels c and d, these show the spatial distribution of NO2 column concentrations, averaged from 2015 to

2017, for the GEOS-Chem simulation and OMI observations (More information about OMI NO2 product and our process-

ing procedures can be found in Supplement Section 1), respectively. The black box corresponds to the NCP region, an area

characterized by pronounced NO2 pollution. For a clearer illustration of these disparities, panel g displays the scatter plot30

comparing the monthly NO2 column concentrations from GEOS-Chem simulations with the monthly OMI NO2 observations.

Panel h presents the same comparison focused on the NCP region. Intriguingly, there is a clear overestimation by GEOS-Chem

in terms of column NO2 for both the national scale (panel g, with a positive normalized mean bias (NMB) of 50.56%) and

6
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the NCP region (panel h, with a positive NMB value of 60.04%), as evident in panels g and h. This is potentially caused by

the overestimation in the NOx emission intensity (Wu et al., 2021a), which could be estimated through assimilating the OMI

observations via an emission inversion system (Jin et al., 2018, 2019b).

Panel a displays the GEOS-Chem ground-level NO2 simulation, and panel b exhibits the corresponding observations from

environmental monitoring stations. Similarly, panel e presents a scatter plot comparing monthly ground NO2 concentrations5

between GEOS-Chem simulations and nationwide ground-level NO2 observations. Panel f offers the same comparison, specif-

ically focusing on the NCP region. In contrast, GEOS-Chem consistently underestimates NO2 concentrations, evident in both

the nationwide assessment (panel e, with a negative NMB value of -42.3%) and within the NCP region (panel f, with a negative

NMB value of -19.47%). Calibration or assimilation with these observational sources would inevitably mislead to higher NO2

simulating levels. Notably, the ground observations in Fig. 2 used for comparison with the GEOS-Chem grid results are ac-10

quired by finding the nearest observation point to each model grid cell, which is the most common method. We also conducted

tests using the ’grid mean’ method, but the results closely resembled those obtained with the ’nearest search’ method.

The incorrect vertical profile in the model simulation could explain the discrepancy mathematically, which however is not

the reason in this study. The GEOS-Chem was validated to successfully reproduce the spatial distribution of the other pollutants

like PM2.5. Due to the inherently short lifetime of NO2 results in the distribution of its concentrations within a GEOS-Chem15

grid exhibits pronounced heterogeneity, and hence the ground-based observation are not fairly comparable to the simulation

via either the ’nearest search’ or ’grid mean’ operators as will be discussed in Section 2.4. Consequently, we posit that there

should be a more effective approach to accurately represent the genuine observations within the grid.

2.4 The dynamic urban/rural factor

To reveal the pronounced heterogeneity in the distribution of atmospheric pollutant concentrations within a grid, hourly20

ground-level NO2 and PM2.5 measurements obtained from China MEP were averaged by month to reveal discrepancies be-

tween urban and rural locales. Beyond the nationwide contrasts, we also examine variations within China’s two most urbanized

regions, namely the NCP and YRD. In Fig. 3, panels (a) and (b) depict the monthly distribution of ground-level NO2 and PM2.5

concentrations in urban and rural regions. Evidently, the disparities in both NO2 and PM2.5 levels between urban and rural ar-

eas within the NCP and YRD regions are narrower compared to the national scale. This observation aligns with the notion that25

urbanization contributes to a reduction in urban-rural disparities. The disparity between urban and rural NO2 levels is notably

greater than that observed for PM2.5, a trend in agreement with the brief atmospheric lifespan of NO2 and the long atmospheric

residence time of PM2.5.

Analysis of the three-year monthly dataset reveals robust linear correlations between urban and rural NO2 as well as

PM2.5 concentrations across all scales, as depicted in Fig. 3. Consequently, we computed the dynamic urban/rural factors for30

NO2 and PM2.5 by dividing the monthly averaged urban concentrations by the monthly averaged rural concentrations. The

national monthly factor exhibits a range of values from 1.4 to 1.8, with an average of 1.6. In the case of the NCP and YRD

regions, their respective factors range from 1.2 to 1.7 and 1.0 to 1.4. The average values for NCP and YRD are 1.4 and 1.1,

respectively.
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Figure 2. The inconsistency between the observations and GEOS-Chem simulations is evident. Panels a and b depict the spatial distribution

of ground-level NO2 from GEOS-Chem and monitoring sites (average from 2015 to 2017), while panels c and d show the distribution of

column-level NO2 from GEOS-Chem and OMI. The NCP region, depicted by the black box, exhibits the most severe NO2 pollution. Panels

e and g display scatter plots of the GEOS-Chem simulations and observations (monthly value), while panels f and h focus on the NCP region.
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Figure 3. The distribution of monthly averaged observations between rural areas and urban areas. The national mean results and two clustered

megacities - namely NCP and YRD - are shown in black, red, and blue rectangles, respectively. Panel a and Panel b present the results for

NO2 and PM2.5, respectively.

2.5 The LUBR algorithm

The pseudocode outlining the LUBR algorithm is provided in Algorithm 1. The primary objective is to incorporate the

urban and rural area proportions within each model grid, enhancing the representation of actual grid-level observations. Given

the non-uniform distribution of monitoring stations, the VIIRS nighttime lights data boasts a fine resolution (Image Resolution:

15 arc seconds), enabling the differentiation between urban and rural regions. In this study, a threshold of 10 nW cm−2sr−15

is established for the VIIRS nighttime lights data to discriminate between urban and rural regions. Consequently, areas with

values exceeding 10 nW cm−2sr−1 are classified as urban areas.

Each model grid, such as GEOS-Chem nested grids in this work, can be categorized into three possible types. The first

pertains to grids exclusively encompassing urban sites, the second entails grids solely comprised of rural sites, and the third

encompasses grids containing a combination of urban and rural sites. Grids devoid of any sites fall beyond the scope of this10

study. Urban observation within a U and Mix type grid are computed either as the mean of urban sites, or as the mean of rural

sites multiplied by the urban/rural dynamic factor with a R grid. Similarly, rural observations from monitoring stations within

each R and Mix grid are calculated either as the mean of rural sites or as the mean of urban sites divided by the urban/rural

factor. Finally, the grid observations are calculated as the sum of urban observations multiplied by the proportion of urban area

and rural observations multiplied by the proportion of rural area.15
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Algorithm 1 The Land Use-Based Representation (LUBR) for gridded Observations

Input: Model grids {gridi}Ii=1, Observation data {site}, Annual VNL V2 data {vnl}, Urban/Rural factor {factorn}Nn=1

1: Initialize I =
( lat_max−lat_min

0.5
+1

)
×
( lon_max−lon_min

0.625
+ 1

)
, threshold = 10, n = month_begin (201501), N = month_end (201712)

2: for i = 1 to I do

3: Find VNL data (vnli) from {vnl} in gridi

4: Total area (TAi) = COUNT(vnli)

5: Urban area (UAi) = COUNT(vnli > threshold)

6: Find observation data (sitei) from {site} in gridi

7: for n = 201501 to N do

8: if COUNT(sitei) > 0 then

9: if sitei contains rural sites (sitesR) then

10: if sitei contains urban sites (sitesU ) then

11: Represented grid observation = MEAN(sitesR)× TAi−UAi
TAi

+ MEAN(sitesU )× UAi
TAi

12: else

13: Represented grid observation = MEAN(sitesR)× TAi−UAi
TAi

+ MEAN(sitesR)× factorn× UAi
TAi

14: end if

15: else if sitei contains urban sites (sitesU ) then

16: Represented grid observation = MEAN(sitesU )
factorn

× TAi−UAi
TAi

+ MEAN(sitesU )× UAi
TAi

17: end if

18: else

19: No observations available, pass

20: end if

21: end for

22: end for

3 Result and discussion

Results and discussions in the following structure: Section 3.1 validates the accuracy of the LUBR operator in ground

NO2 observation model calibration. Section 3.2 examines the benefit of using the LUBR operator.

3.1 LUBR operator evaluation

The model calibration using the ground NO2 observations shown in panels (e) and (f) of Fig. 2 are contradicted with5

the truth that our default simulation overestimated the atmospheric NO2 at the national scale in general. Following the im-

plementation of the LUBR observational operator, we present the corresponding scatter plots of monthly ground-level NO2

concentrations from GEOS-Chem and observation using LUBR in Fig. 4. With the LUBR operator, the comparison against

all ground stations now shows our simulation did not overestimate ground-level NO2 concentrations that much. The negative

bias is remarkably reduced from -42.7% in Fig. 2(e) to -18.37% in Fig. 4. This is more consistent with the truth revealed by10
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the OMI comparison. Despite these improvements, an overall underestimation persists. This discrepancy stems from the fact

that most of the ground observations are located in urban areas sparsely, and cannot be directly compared to OMI observa-

tions, which provide comprehensive spatial coverage at the national scale. It is fairer to compare the satellite-model calibration

against ground station-model calibration over the NCP region, where environmental monitoring stations are densely distributed

(exceeding 215 sites). Here we observe a reversal of the results presented in panel f of Fig. 2 in panel b, where the NMB shifts5

from -19.47% to 6.58%. This change aligns the overall overestimation tendency of GEOS-Chem with the comparison of OMI

(as shown in panel h of Fig. 2), where a positive NMB value is evident. The consistency of the OMI observations gives us the

confidence to use valuable ground NO2 observations in the model calibration or assimilation with the LUBR operator.

3.2 Model calibration

Comprehensive model calibration is performed. Section 3.2.1 compares the gridded observations obtained from three dif-10

ferent operators with GEOS-Chem simulations, focusing on spatially averaged results within the NCP and YRD regions. We

also examine the annual ground-level NO2 concentration patterns in China from 2015 to 2017 using three representation op-

erators. This section also analyzes model under/overestimations in different regions after applying the LUBR method. Section

3.2.2 assesses the overall difference between the LUBR operator and other common methods using metrics such as normalized

mean bias (NMB), root mean square error (RMSE), and mean absolute error (MAE). The formulas of these statistic matrics15

are given in Supplement Section 3.

3.2.1 Spatial and temporal result

To make the spatial comparison more reliable, we focus on two of the most developed megacities with dense environ-

mental monitoring stations. Fig. 5 shows the distribution of spatially averaged outcomes of the grid observations using three

operators with GEOS-Chem simulations in the NCP and YRD regions. In panel (a), the GEOS-Chem simulations persist in20

overestimating grid observations using both the ’grid mean’ (aqua-green lower triangles) and ’nearest search’ (blue triangles)

opeartors in the NCP. And there are no significant differences between using the ’grid mean’ and ’nearest search’ operators.

Conversely, in the same panel, GEOS-Chem simulations generally underestimate grid observations using the LUBR method

(red dots), which is now consistent with the underestimation indicated by the OMI satellite measurements in Fig. 2, panel

(h). Similar results are also evident in the YRD (panel b). This underscores the crucial importance of taking into account the25

representativeness of NO2 observations.

In contrast to NO2, the spatially averaged PM2.5 grid observations obtained using the LUBR operator do not exhibit

significant differences when compared to those obtained using the ’grid mean’ and ’nearest search’ operators in both the NCP

(panel c) and YRD (panel d). This suggests that PM2.5 does not exhibit a notable distinction between urban and rural areas,

likely due to its long atmospheric lifetime, allowing for relatively uniform mixing in both urban and rural regions. Hence, it30

is not that critical to consider the distinction between urban and rural areas when representing PM2.5 observations for the grid

resolution choice similar to this study (0.5◦× 0.625◦).
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a. b.

Figure 4. The scatter plot of ground-level NO2 concentrations from GEOS-Chem and observed NO2 concentrations using LUBR, based on

monthly data spanning from 2015 to 2017. Panels a and b correspond to the results for the entire nation and the NCP region, respectively.

Fig. 6 shows the annual ground NO2 concentration patterns in China from 2015 to 2017 using three different representation

operators. The ground NO2 levels from GEOS-Chem simulations (filled contours) generally capture the pollution pattern in

China, characterized by high concentrations in the eastern region and low concentrations of pollutants in the western areas.

However, the comparisons against observations (colored squares) using ’grid mean’ (panels b, e, h) and ’nearest search’ (panels

c, f, i) methods, show that GEOS-Chem simulations underestimate ground NO2 concentrations in economically developed and5

severely polluted regions such as NCP and YRD, while overestimating ground NO2 concentrations in less polluted regions.

After achieving a more accurate representation of grid observations by incorporating information on urban-rural differences

using the LUBR operator (panels a, d, g), the extent of underestimation by GEOS-Chem simulations in economically developed

regions and overestimation in less polluted regions is mitigated.

For PM2.5, as depicted in Figure S2, high PM2.5 pollution levels from GEOS-Chem simulations are observed in eastern10

China and the Sichuan Basin (SCB; 28.5–31.5° N, 103.5–107° E). Despite the pronounced overestimation of PM2.5 levels in the

SCB region, in line with previous findings (Li et al., 2016; Fang et al., 2023), GEOS-Chem generally exhibits good agreement

with actual PM2.5 concentrations in the atmosphere. No substantial difference in the annual calibration of GEOS-Chem is

observed after applying the LUBR operator compared to the ’grid mean’ and ’nearest search’ operators. This is consistent

with the previous spatial averaged results as the PM2.5 does not exhibit significant urban/rural distinctions. Specific differences15

between using different operators in terms of statistical metrics will be presented later.
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Figure 5. The distribution of spatially averaged results between ground observations and GEOS-Chem simulations. The results of LUBR,

grid mean, and nearest search observational operators are represented by red dots, aqua-green lower triangles, and blue triangles, respectively.

Panel a and b present the NO2 results, while Panel c and d present the PM2.5 results.

13

https://doi.org/10.5194/gmd-2023-216
Preprint. Discussion started: 9 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 6. The annual averaged ground NO2 from GEOS-Chem simulations (filled contours) and the represented observations of simulation

grids (colored squares) from three operators. Panels a, d, and g present results using the LUBR operator to represent grid NO2 concentrations

for 2015, 2016, and 2017, respectively. Panels b, e, and h present results using the grid mean method. Panels c, f, and i present results using

the nearest search method.
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3.2.2 The statistical evaluation

As mentioned previously, our LUBR algorithm is applicable to calculate the mean status of atmospheric pollutants over

three types of grids: U containing only urban sites, R with only rural sites, and Mix with both urban and rural sites. We will

now discuss the distinctions observed within these three grid types on a national scale. Fig. 7 shows the statistical results of

RMSE and MAE for the grid observation and GEOS-Chem simulations. The colors ice blue, rosy red, and cyan represent the5

LUBR, ’nearest search’, and ’grid mean’ operators, respectively. The sample amounts of these three types of grids are shown in

Supplement Figure S5. The gridded observations of NO2 obtained from the ’nearest search’ and ’grid mean’ operators for grid

types of U and Mix typically have higher RMSE and MAE values than the LUBR operators, indicating an inadequate represen-

tation of grid observation in terms of model calibration. Remarkably, the utilization of the ’grid mean’ operator demonstrates

significantly lower RMSE and MAE values compared to the ’nearest search’ operator when applied to the Mix grid type. This10

underscores the critical importance of considering urban-rural information within grids and the ’grid mean’ operator is better

than the ’nearest search’ operator in the grid type of Mix for model calibration. However, in grid types of U and R, the minimal

difference between these two operators is evident and easily explained, as these grid types lack urban-rural information within

a single grid. While the differences are less pronounced due to the relatively low spatial heterogeneity of PM2.5, similar trends

are also noticeable in PM2.5, as illustrated in Supplement Figure S4. During calibration with GEOS-Chem results, the LUBR15

operator exhibits substantially lower RMSE and MAE values in grid types of U and Mix, as evident in Fig. 7. The RMSE

and MAE of grid type of U decreased from 17.2 µg/m3 and 14.5 µg/m3 (the second-lowest results obtained from the ’grid

mean’ operator) to 10.1 µg/m3 and 8.1 µg/m3 after applying the LUBR method. Similarly, the RMSE and MAE of grid type

of U decreased from 13.5 µg/m3 and 11.6 µg/m3 to 11.7 µg/m3 and 9.5 µg/m3. Notably, the model bias in GEOS-Chem

simulations remains unchanged; what we achieve is a reduction in the bias of grid observations. This also reveals that GEOS-20

Chem actually performs much better in the NO2 simulation over China than our experience using the ’nearest search’ or ’grid

mean’ observational operator. The LUBR operator can also, to some extent, aid in the calibration of model simulations and

observations for PM2.5, as demonstrated in Supplementary Figure S4.

The LUBR operator demonstrates its most significant benefits in both NO2 and PM2.5 when applied to the grid type of U.

This phenomenon can be attributed to the fact that grids composed solely of urban sites typically yield a larger volume of site25

observation data, thereby enhancing the reliability of the data. In contrast, the grid type of Mix often includes only one rural

site, which is frequently situated in close proximity to urban areas due to rapid urbanization in China. These factors can lead

to an overestimation of actual rural NO2 and PM2.5 concentrations. Furthermore, we find minimal alterations in the grid type

of R following the implementation of the LUBR operator for both NO2 and PM2.5. This lack of change can be attributed to the

inherent characteristics of these grids, as they are typically situated in remote, non-urban regions and consist of just a single30

site. Consequently, the ’grid mean’ and ’nearest search’ operators produce identical results for these grids. Our evaluation of

urban areas using Nighttime Light data similarly indicated the absence of significant urban areas within these grids. Therefore,

the effectiveness of the LUBR operator may be diminished in such locations.
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Overall, the LUBR operator leads to a substantial enhancement in NO2 grid observation representation, decreasing RMSE

and MAE values by 34.5% and 37.0% when compared to the ’grid mean’ operator and by 37.1% and 39.0% when compared

to the ’nearest search’ operator. The substantial bias in the observational operator not only misled the model calibration but

caused assimilation divergence as illustrated in our recent aerosol optical depth assimilation study (Jin et al., 2023b).

Figure 7. The comprehensive statistical results, including RMSE and MAE, demonstrate the distinctions of the gridded NO2 observations

compared to the GEOS-Chem simulations. The colors ice blue, rosy red, and cyan represent the LUBR, ’nearest search’, and ’grid mean’

operators, respectively. ’Urban,’ ’Urban+Rural,’ and ’Rural’ categorize grids based on the presence of urban and rural sites. ’Urban’ includes

grids with exclusively urban sites, ’Urban+Rural’ includes both urban and rural sites, and ’Rural’ comprises grids with only rural sites.

’Total’ aggregates results by calculating the average across all three categories.

4 Conclusion5

The key finding of this work is the development of a new land-use-based observational operator (LUBR) that incorporates

high-resolution urban-rural land-use data to improve the representativeness of ground monitoring observations when they are

compared to air quality model simulations. This new operator is validated to give a better representation of grid observation

from groud-level NO2 measurements in China than the traditional operators (’nearest search’ and ’grid mean’). It can lead to

a change of up to 37% in RMSE and 39% in MAE in the context of model calibration. The results highlight the importance10

of considering fine-scale intra-grid variability, especially for short-lived pollutants like NO2 with large urban-rural gradients.
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This study provides an effective solution to address the spatial scale mismatch that has hindered robust model evaluation

against ground-based monitoring data. The LUBR operator enables more accurate model calibration and observational bias

correction, which will benefit air quality modeling and predicting capabilities. The proposed operator is broadly applicable for

model-observation calibrations of other atmospheric species with significant spatial heterogeneity within model grid cells.
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