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Abstract. Measurements collected from ground monitoring stations have gained popularity as a valuable data source for

evaluating numerical models and correcting model errors through data assimilation. The penalty quantified by simulation-mi-

nus-observations drive both model evaluation and assimilation. However, the penal forces are challenged by the existence of

a spatial scale disparity between model simulations and observations. Chemical Transport Models (CTMs) divide the atmo-

sphere into grid cells, providing a structured way to simulate atmospheric processes. However, their spatial resolution often5

does not match the limited coverage of in-situ measurements, especially for short-lived air pollutants. Within a broad grid

cell, air pollutant concentrations can exhibit significant heterogeneity due to their rapid generation and dissipation. Ground

observations with traditional methods (including nearest search and grid mean) are less representative when compared to model

simulations. This study develops a new land-use-based representative (LUBR) observational operator to generate spatially

representative gridded observation for model evaluation. It incorporates high-resolution urban-rural land use data to address10

intra-grid variability. The LUBR operator has been validated to consistently provide insights that align with satellite OMI

measurements. It is an effective solution to accurately quantify these spatial scale mismatches and further resolve them via

assimilation. Model evaluations with 2015-2017 NO2 measurement in the study area demonstrate biases and errors differed

substantially when the LUBR and other operators were used, respectively. The results highlight the importance of considering

fine-scale urban-rural differences when comparing models and observations, especially for short-lived pollutants like NO2.15
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1 Introduction

Air pollution is acknowledged as a significant risk factor for chronic non-communicable diseases for its contribution

to global morbidity and mortality, surpassing all other known environmental risk factors (Al-Kindi et al., 2020). Despite

considerable improvements in air quality in recent years globally, many regions still suffer from severe air pollution, impacting

the living conditions of their residents (Li et al., 2021). Numerical models are fundamental tools in modern science, used across5

disciplines to describe complex systems, analyze observations, test hypotheses, and project future behavior. They are pivotal in

atmospheric science, serving as central tools for weather prediction, climate research, and extensively describing atmospheric

dynamics (Brasseur and Jacob, 2017). Atmospheric chemistry transport models (CTMs) utilize mathematical equations to

represent the intricate relationships between atmospheric concentrations of chemical species and the factors influencing them,

such as emissions, transport, chemistry, and deposition processes. These models can simulate the temporal-spatial patterns of10

air pollutants from the past to the future, aiding policymakers in identifying the most effective strategies for reducing emissions

(Liu et al., 2018; Zhai et al., 2021; Jin et al., 2023).

The rapid advance in computing power and atmospheric science has facilitated the development and widespread use of

numerous three-dimensional CTMs, such as GEOS-Chem (Bey et al., 2001), CESM2 (Danabasoglu et al., 2020), WRF-Chem

(Grell et al., 2005), etc., over the past few decades. Undoubtedly, these models serve as powerful tools to investigate and15

simulate the intricate behavior of atmospheric composition and chemical processes. However, these models cannot perfectly

reproduce the true atmospheric dynamics due to various factors. Matthias et al. (2018) has highlighted persistent uncertainties

in input data, including emission inventories and meteorological data. The model parameterization and simplifications are also

not perfect (Stensrud, 2009), and addressing knowledge gaps in chemical reaction mechanisms remains a challenge. Moreover,

CTMs face difficulties in accurately representing atmospheric processes at fine spatial scales and capturing rapid temporal20

variations (Goodkind et al., 2019). This challenge stems primarily from the high computational demands of conducting high-

resolution or long-term simulations (Bindle et al., 2021).

Observations, unlike CTMs simulations, offer a measurement of the real-world environment by utilizing a range of in-

struments, sensors, and techniques. Ground observation data is widely regarded as the most fundamental measurement, and

usually serves as a benchmark for calibrating the accuracy of other data, such as model results (Fang et al., 2022) and satel-25

lite data (Garane et al., 2019). Since 2013, the China Ministry of Environmental Protection (MEP) has established over 1800

ground-based stations dedicated to measuring primary pollutants including PM2.5, PM10, NO2, SO2, CO and O3 (Sheng and

Tang, 2016). These ground observations provide valuable insights into air pollution conditions and are widely used for model

evaluations (Zhu et al., 2021), and their distributions are presented in Supplement Figure S2. Concurrently, the rapid advance-

ments in satellite remote sensing and other technologies have made it possible to observe near-surface air pollutant abundances30

from space (Xu et al., 2019; Kim et al., 2021). For example, satellite onboard instruments such as the Ozone Monitoring Instru-

ment (OMI) and the Tropospheric Monitoring Instrument (TROPOMI) can facilitate the measurement of NO2 with extensive

coverage (van Geffen et al., 2022). This study primarily focuses on analyzing the disparities between model simulations and

observations of NO2 and fine particulate matter (PM2.5).
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Measurements collected by ground monitoring stations and satellite instruments are widely used for model evaluations and

for correcting model errors through the application of data assimilation techniques (Kalnay, 2002). Mathematically, observa-

tions and simulations with different scales and dimensions are not comparable directly in the model evaluations. Observations

from satellites typically have finer spatial resolution than model simulations, so the comparison between them is less affected

by spatial scale disparity. Conversely, ground observations are sparse and uneven, making it more challenging to compare them5

with the gridded simulations. To address this, two prevalent pre-processing methods are often employed. The first one entails

calculating the average value of all the observations located in a given model grid (Dang and Liao, 2019; Dai et al., 2023),

then compared to the gridded simulation. The second method conducts the nearest search for model values corresponding to

any given measurements (Jin et al., 2021). A third approach could be only using monitoring stations that are spatially and

temporally representative for the model grid cells. However, there is no standard definition for determining the extent to which10

monitoring stations can represent model grids. Additionally, this method may result in the unavoidable loss of valuable ground

observations. In the subsequent sections of this paper, these two methods will be illustrated in detail, and they are referred to as

’grid mean’ and ’nearest search’, respectively. With this, the observation-minus-simulation discrepancy can be calculated and

serves as the driving force in determining the extent to how much the uncertain model parameters or states are adjusted during

the evaluation or assimilation process. When observation biases are present together with the model errors, there is a danger15

of misleading model evaluation or divergent model estimation in the assimilation (Lorente-Plazas and Hacker, 2017). This is

because failing to account for these biases properly can lead to inaccurate attribution of the error sources. Previous studies

(Bédard et al., 2015; Eyre, 2016; Jin et al., 2019) have highlighted the significance of addressing observation biases and their

correction.

The existence of a spatial scale disparity between model simulations and observations is a persistent challenge (Schutgens20

et al., 2016). The aforementioned two commonly used methods for model evaluation can potentially cause large representative

errors of observations. The CTMs divide the atmosphere into a series of horizontal and vertical grid cells. Each grid cell

represents the mean state in a specific region (Yan et al., 2016). As an example, for GEOS-Chem, the nested simulation

typically adopts a relatively high horizontal resolution of 0.5◦latitude by 0.625◦longitude, which is widely used in practice

keeping the balance between the complexity and computing power (Wang et al., 2004; Chen et al., 2009; Wang et al., 2013;25

Yan et al., 2016). However, in-situ measurements are typically limited to a few kilometers of the surrounding atmosphere

(Pattinson et al., 2014; Schutgens et al., 2016), and the effective spatial range for short-lived gases is even more restricted. For

instance, concentrations of ground NO2 (with a lifetime of approximately several hours as noted in Shah et al. (2020b)) exhibit

significant variations between urban and rural areas (Pattinson et al., 2014). This discrepancy arises due to anthropogenic

NO2 emissions primarily occurring in the troposphere, stemming from sources such as transportation, industrial production,30

and power plants (Li et al., 2017). The concentration of NO2 diminishes considerably as the distance from the emission

source increases, owing to its rapid consumption through the process of photolysis after its production (Finlayson-Pitts and

Pitts Jr, 1999). Consequently, the distribution of NO2 concentrations within a large grid cell is highly heterogeneous, making

it challenging to accurately represent the true average concentration of the grid solely by directly using the values of several

monitoring stations within the grid or simply averaging them. Meanwhile, as most of the ground monitoring sites such as the35
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China MEP network are located in the severe-polluted urban areas, this further prevents them from fairly representing the mean

status of the actual atmospheric environment.

In this study, we proposed a land use-based representative (LUBR) observational operator to represent real atmospheric

pollutant concentrations, using both the ground observations and the land use information. The land use information is acquired

from nighttime light (NTL) data which can distinguish between urban and rural areas. This new operator was compared5

alongside two other commonly used observational operators (‘grid mean’ and ‘nearest search’) to evaluate their performance

for model evaluation. Our novel observational operator was applied in both NO2 and PM2.5 model evaluations. The latter

has a relatively longer atmospheric lifetime of several days compared to the former (several hours to one day). The temporal

scope of this study spans from 2015 to 2017. Overall, the LUBR method incorporates high-resolution land use data to account

for intra-grid variability and generate observation datasets that are more spatially representative. This helps address the scale10

mismatch between models and observations that have impaired robust evaluation, especially for short-lived gases like NO2.

This study is structured as follows. Section 2.1 and Section 2.2 describe the study domain, observations, and model

used. Details on the urban/rural factors and the LUBR algorithm are provided in Section 2.3 and Section 2.4. Section 3.1 first

provides the model validation, followed by the revelation of discrepancies between observations and model simulations in

Section 3.2. The comprehensive evaluation of the LUBR operator is then presented in Section 3.3. Next, Section 3.4 discusses15

the spatial and temporal evaluations of NO2 and PM2.5 pollutants either using LUBR or using the traditional grid mean/nearest

search methods. Statistical metrics quantifying their performance are also analyzed. Finally, the key findings and implications

of developing such a spatially representative observational operator are summarized in the conclusion.

2 Data and methods

This chapter begins by introducing the study domain and observations in Section 2.1. Following that, we present the20

GEOS-Chem model utilized in our research in Section 2.2. Moving forward to Section 2.3, we explore the variations in air

pollutant concentrations between urban and rural areas, along with an introduction to the dynamic factors associated with these

areas. Lastly, Section 2.4 offers an in-depth description of the LUBR algorithm for building the observational operator.

2.1 Study domain and observations

This study investigates how our observational operator benefits air quality model evaluations over the whole study area as25

presented in the left panel of Fig. 1. To provide a more comprehensive insight, this study focuses on two regions characterized

by severe NO2 pollution: the North China Plain (NCP; 34–41° N, 113–119° E) and the Yangtze River Delta (YRD; 30–33° N,

119–122° E). These regions are examined in greater detail for a more elaborate illustration.

2.1.1 Ground observations

When assessing model simulations of ground-level NO2 against in-situ ground observations in China, it is consistently30

observed that the model tends to underestimate these observations at most monitoring stations. A widely acknowledged ex-
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planation for this phenomenon is that the environmental monitoring stations established by the China MEP are predominantly

situated in urban areas (as shown in Figure S3). This geographical bias may contribute to an overestimation of grid-scale

ground-level NO2 observations across the study area. Panels a and b of Fig. 1 are partially enlarged views of regions with sig-

nificant local urbanization in NCP and YRD. Grid lines represent the simulated grids of longitude and latitude in GEOS-Chem,

where urban sites are marked with blue dots and rural sites with red squares. Three primary types of grid cells are present: U5

contain solely urban sites, R with only rural sites, Mix encompass both urban and rural monitoring stations, while the rest lack

any sites altogether. It’s noteworthy that the urban area percentage within a model grid, as derived from annual nighttime light

data, significantly differs from the percentage of urban sites present within that same grid as shown in Fig. 1(a) and (b).
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Figure 1. The left subplot shows the night lights in the study area derived from V2.1 annual global VIIRS nighttime lights, with data averaged

for the year 2020. The intensity of color corresponds to the level of urbanization, where brighter colors indicate higher urbanization levels.

Subplots a and b display regions with significant local urbanization in NCP and YRD, respectively. In these subplots, purple dots and red

rectangles are used to represent urban monitoring stations and rural monitoring stations, respectively.

2.1.2 OMI/Aura observations

Launched aboard the NASA EOS Aura satellite on July 15, 2004, OMI operates within a sun-synchronous ascending polar10

orbit. OMI conducts simultaneous measurements across a swath spanning 2600 km, partitioned into 60 Fields of View (FOVs).

These FOVs range in dimension from approximately 13km x 24km near Nadir to around 24km x 160km at the outermost FOVs.

OMI provides observations only around 13:45(local time) overpassing window and is most reliable under clear-sky conditions.

The NO2 total column concentrations utilized in this study were sourced from NASA Goddard Space Flight Center, specifically
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from the Goddard Earth Sciences Data and Information Services Center (GES DISC), through the OMI/Aura Nitrogen Dioxide

Total and Tropospheric Column 1-orbit L2 Swath 13x24 km V003 (OMNO2) (Krotkov et al., 2019). The OMI NO2 algorithm

retrieves estimated columns (total, tropospheric, and stratospheric) of nitrogen dioxide from OMI Level-1B calibrated radiance

and irradiance data. The current version, v4.0, improves on the retrievals in prior versions in several significant ways. The

OMNO2 algorithm aims to infer as much information as possible about atmospheric NO2 from OMI measurements, with5

minimal dependence on model simulations.

The following filters of pixels are applied, following Dang et al. (2023): (1) nearly clear-sky scenes, with effective cloud

fraction < 0.3; (2)surface reflectivity < 0.3; (3)solar zenith angles < 75◦; (4)viewing zenith angles < 65◦. In addition, we also

ensure that the ’vcdQualityFlag’ possesses an even integer value to align with recommended data quality standards. The air

mass factor (AMF) converts the satellite-observed slant column density (SCD) into the vertical column density (VCD) using10

the NO2 vertical profile (n) as follows:

V CD =
SCD

AMF (n)
. (1)

AMF is mainly determined by atmospheric path geometry, NO2 vertical profile, surface reflectance, and atmospheric radiative

transfer properties. NO2 exhibits optical thinness in the visible spectrum, facilitating the calculation of AMF (Lamsal et al., 2014).

This calculation involves altitude-dependent scattering weights (sw) derived from a radiative transfer model and a priori profile15

shape of NO2 as follows:

AMF =

∑
l sw ·xa∑

lxa
, (2)

where xa is the partial NO2 column, l denotes each layer, extending either from the ground to the tropopause or from the

tropopause to the stratropopause. We updated the AMF of both tropopause and stratropopause separately using the NO2 vertical

profile simulated by GEOS-Chem in this study. The total column NO2 concentration is calculated as the sum of the updated20

tropospheric vertical column density and stratospheric vertical column density. We regridded the total column amount of NO2

to match the horizontal resolution of GEOS-Chem used in this study, which is 0.5 degrees latitude by 0.625 degrees longitude.

Note that for comparison with OMI observations, we restrict our analysis to the time window between 13:00 and 14:00 local

time, ensuring consistency with the OMI observation window.

2.1.3 VIIRS nighttime lights25

Following the deployment of the most recent earth observation satellite series, the Joint Polar-orbiting Satellite System

(JPSS), the inclusion of the Visible and Infrared Imaging Suite (VIIRS) Day Night Band on JPSS satellites has ushered in a

remarkable advancement in low-light imaging capabilities (Elvidge et al., 2017), surpassing the capabilities of its predecessor,

the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) (Small et al., 2005). This study

employed the V2.1 annual global VIIRS nighttime lights dataset for the year 2020 (Elvidge et al., 2021) to delineate urban-30

ization patterns within the study area. The intensity of color corresponds to the level of urbanization, where brighter colors

indicate higher urbanization levels. Building upon the findings of Shi et al. (2014), we adopted a threshold of 10 nW cm−2sr−1
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for the urbanization which will be used as an input in LUBR observational operator as will be illustrated later. Accordingly,

areas with annual nighttime light values exceeding 10 nW cm−2sr−1 were designated as urban regions.

2.2 GEOS-Chem Model

The chemical transport model employed in this study is GEOS-Chem, specifically version 13.4.0, available on the Zenodo

(The International GEOS-Chem User Community, 2022). The model was driven by assimilated meteorological data from the5

NASA Global Modeling and Assimilation Office’s Modern-Era Retrospective analysis for Research and Applications Version

2 (MERRA-2) as detailed in (Gelaro et al., 2017). It has a fully coupled aerosol–ozone–NOx–hydrocarbon chemistry repre-

sentation (Park et al., 2004). We took the global simulation with a spatial resolution of 2° latitude by 2.5° longitude as the

boundary conditions. The region of interest, constituting the nested modeling domain (0–55° N, 70–140° E), was characterized

by a refined horizontal resolution of 0.5° latitude by 0.625° longitude, accompanied by 47 vertical layers. It is worth noting10

that the choice of this resolution is a common practice when using the GEOS-Chem classic version, striking a balance between

computational complexity and computing power. In addition, it is also the finest resolution that remains computationally af-

fordable when a substantial ensemble of models is required for data assimilation. The anthropogenic emissions over China are

from the Multi-resolution Emission Inventory for China (Li et al., 2017). For anthropogenic emissions outside of China, we

utilized data from the Community Emissions Data System (CEDS) inventory as detailed in (Hoesly et al., 2018). This inventory15

predominantly comprises aerosols, aerosol precursors, and reactive compounds. GEOS-Chem also integrates additional NOx

emissions from diverse origins, encompassing soil and fertilizer use (Hudman et al., 2012), lightning (Murray et al., 2012), and

shipping (Holmes et al., 2014). A preliminary 1-year spin-up simulation was conducted before the main simulation.

2.3 The dynamic urban/rural factor

To reveal the pronounced heterogeneity in the distribution of atmospheric pollutant concentrations within a grid, hourly20

ground-level NO2 and PM2.5 measurements obtained from China MEP were averaged by month to reveal discrepancies be-

tween urban and rural sites. Beyond the nationwide contrasts, we also examine variations within China’s two most urbanized

regions, namely the NCP and YRD. In Fig. 2, panels (a) and (b) depict the monthly distribution of ground-level NO2 and

PM2.5 concentrations in urban and rural regions. The disparities in NO2 and PM2.5 levels between urban and rural areas within

the NCP and YRD regions are narrower than the national scale. This observation aligns with the notion that urbanization con-25

tributes to a reduction in urban-rural disparities. The disparity between urban and rural NO2 levels is notably greater than that

observed for PM2.5, a trend in agreement with the brief atmospheric lifespan of NO2 and the long atmospheric residence time

of PM2.5.

The seasonality of Urban/Rural factors for NO2 is also explored in Supplement Figure S3. It reveals that the Urban/Rural

factor tends to be larger in spring and summer compared to autumn and winter, which contradicts the expected NO2 lifetime.30

However, the difference is not significant and varies with changes in the research area. This could be attributed to the combined

effects of factors like meteorological conditions, regional hotspots, human activities, biological sources, and topography. In

addition, soil NOx emissions during summer can have a significant impact, particularly as they are a primary source for rural
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areas (Lu et al., 2021). However, it is challenging to provide concrete evidence based on the available data because we cannot

distinguish the sources of NOx. Therefore, further refinement of the research area and consideration of multiple factors are

necessary rather than concluding solely from ground observations.

It is important to note that the urban/rural factor must be dynamic, as it is determined not only by the level of urbanization

but also by the level of pollution. Analysis of the three-year monthly dataset reveals robust linear correlations between urban5

and rural NO2 as well as PM2.5 concentrations across all scales, as depicted in Fig. 2. Consequently, we computed the dynamic

urban/rural factors for NO2 and PM2.5 by dividing the monthly averaged urban concentrations by the monthly averaged rural

concentrations. The national monthly factor exhibits a range of values from 1.4 to 1.8, with an average of 1.6. In the case of

the NCP and YRD regions, their respective factors range from 1.2 to 1.7 and 1.0 to 1.4. The average values for NCP and YRD

are 1.4 and 1.1, respectively.10

Figure 2. The distribution of monthly averaged ground observations between rural areas and urban areas. The national mean results and two

clustered megacities - namely NCP and YRD - are shown in black, red, and blue rectangles, respectively. Panel a and Panel b present the

results for NO2 and PM2.5, respectively.

2.4 The LUBR algorithm

The pseudocode outlining the LUBR algorithm is provided in Algorithm 1. The primary objective is to incorporate the

urban and rural area proportions within each model grid, enhancing the representation of actual grid-level observations. Given

the non-uniform distribution of monitoring stations, the VIIRS nighttime lights data boasts a fine resolution (Image Resolution:

15 arc seconds), enabling the differentiation between urban and rural regions. In this study, a threshold of 10 nW cm−2sr−115
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is established for the VIIRS nighttime lights data to discriminate between urban and rural regions. Consequently, areas with

values exceeding 10 nW cm−2sr−1 are classified as urban areas.

Each model grid cell, such as GEOS-Chem nested grids in this work, can be categorized into three possible types. The

first pertains to grid cells exclusively encompassing urban sites, the second entails grid cells solely comprised of rural sites, and

the third encompasses grid cells containing a combination of urban and rural sites. grid cells devoid of any sites fall beyond the5

scope of this study. Urban observation within a U and Mix type grid are computed either as the mean of urban sites or as the

mean of rural sites multiplied by the urban/rural dynamic factor with a R grid. Similarly, rural observations from monitoring

stations within each R and Mix grid are calculated either as the mean of rural sites or as the mean of urban sites divided by the

urban/rural factor. Finally, the grid observations are calculated as the sum of urban observations multiplied by the proportion

of urban area and rural observations multiplied by the proportion of rural area.10

Algorithm 1 The Land Use-Based Representation (LUBR) for gridded Observations

Input: Model grids {gridi}
I
i=1, Observation data {site}, Annual VNL V2 data {vnl}, Urban/Rural factor {factorn}Nn=1

1: Initialize I =
( lat_max−lat_min

0.5
+1

)
×
( lon_max−lon_min

0.625
+1

)
, threshold = 10, n= month_begin (201501), N = month_end (201712)

2: for i= 1 to I do

3: Find VNL data (vnli) from {vnl} in gridi

4: Total area (TAi) = COUNT(vnli)

5: Urban area (UAi) = COUNT(vnli > threshold)

6: Find observation data (sitei) from {site} in gridi

7: for n= 201501 to N do

8: if COUNT(sitei) > 0 then

9: if sitei contains rural sites (sitesR) then

10: if sitei contains urban sites (sitesU ) then

11: Represented grid observation = MEAN(sitesR)× TAi−UAi
TAi

+MEAN(sitesU )× UAi
TAi

12: else

13: Represented grid observation = MEAN(sitesR)× TAi−UAi
TAi

+MEAN(sitesR)× factorn× UAi
TAi

14: end if

15: else if sitei contains urban sites (sitesU ) then

16: Represented grid observation = MEAN(sitesU )
factorn

× TAi−UAi
TAi

+MEAN(sitesU )× UAi
TAi

17: end if

18: else

19: No observations available, pass

20: end if

21: end for

22: end for
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3 Result and discussion

Results and discussions in the following structure: We firstly performed the model validation in Section 3.1. Followed

by the illustration of the discrepancy between observation and model in Section 3.2. Section 3.3 validates the accuracy of the

LUBR operator in ground NO2 observation model evaluation. Section 3.4 examines the benefit of using the LUBR operator.

3.1 Model validation5

We validated the model by comparing daily simulations with ground observations collected from 2015 to 2017. The R2

values for NO2 and PM2.5 were found to be 0.73 and 0.79, respectively. These results indicate that the model is capable of

capturing the time variation in these pollutants to some extent. The NMB values for NO2 and PM2.5 were 57.68% and 20.4%,

respectively, indicating that GEOS-Chem underestimates these pollutants compared to observations. Notably, the underestima-

tion of NO2 is more severe, with its NMB being more than twice that of PM2.5.10

Figure 3. The model validation of GEOS-Chem for the simulation of ground NO2 and PM2.5. Panels a and b denote the three-year averaged

ground NO2 and PM2.5 concentrations from GEOS-Chem simulation and ground observations, respectively. The NMB and R2 for the NO2

validation is 57.68% and 0.73. The NMB and R2 for the PM2.5 validation is 20.4% and 0.79.

3.2 The discrepancy between observation and model simulation

We averaged the model output between 13:00 and 14:00 local time for consistency with the timing of the Aura overpass

for comparison with OMI observations. Fig. 4 shows inconsistent results when comparing the NO2 simulation with ground-

level NO2 and OMI total column NO2 measurements. In contrast to the irregular and sparse spatial distribution of ground

observations, OMI observations offer high resolution and complete spatial coverage. Different from the ground-based stations15

that measure the pollutants in very surrounding areas, the OMI instrument quantified the mean status of the given pixel similarly

10



to the gridded numerical model simulation. Moving on to panels c and d, these show the spatial distribution of NO2 column

concentrations, averaged from 2015 to 2017, for the GEOS-Chem simulation and OMI observations, respectively. The black

box corresponds to the NCP region, an area characterized by pronounced NO2 pollution. For a clearer illustration of these

disparities, panel g displays the scatter plot comparing the monthly NO2 column concentrations from GEOS-Chem simulations

with the monthly OMI NO2 observations. Panel h presents the same comparison focused on the NCP region. There is a5

slight underestimation by GEOS-Chem in terms of the total column NO2 for the entire study area (panel g), with a negative

normalized mean bias (NMB) of -23.53%, while a clear overestimation is observed in the NCP region (panel h), with a positive

NMB value of 47.58%. The bias arises from uncertainties in both the retrieval algorithms of OMI products and the simulation of

GEOS-Chem. For instance, Shah et al. (2020a) compared two OMI NO2 retrievals, namely the European Quality Assurance for

Essential Climate Variables (QA4ECV) project’s NO2 ECV precursor product (Boersma et al., 2018) and the Peking University10

POMINO product version 2 (Lin et al., 2015), with GEOS-Chem. They found that GEOS-Chem overestimates OMI NO2

when using the QA4ECV retrieval, while underestimating it when using POMINO. In addition, MEIC tends to overestimate

NOx emissions in cities with lower industrial emission intensities or fewer industrial facilities (Wu et al., 2021), which may

contribute to the overestimation of GEOS-Chem in these areas.

Panel a displays the GEOS-Chem ground-level NO2 simulation, and panel b exhibits the corresponding observations from15

environmental monitoring stations. Similarly, panel e presents a scatter plot comparing monthly ground NO2 concentrations

between GEOS-Chem simulations and nationwide ground-level NO2 observations. Panel f offers the same comparison, specif-

ically focusing on the NCP region. In contrast, GEOS-Chem significantly underestimates NO2 concentrations, evident in both

the nationwide assessment (panel e, with a negative NMB value of -44.61%) and within the NCP region (panel f, with a neg-

ative NMB value of -25.5%). Evaluation or assimilation with these observational sources would inevitably mislead to higher20

NO2 simulating levels. Similarly, Fig. 5 shows the results from the average of all hours from 2015 to 2017 rather than just

13:00-14:00, and the underestimation of GEOS-Chem exhibits a similar pattern. In the subsequent sections, we will concen-

trate on these monthly average ground observations for further discussion and evaluation of the LUBR algorithm. Notably, the

ground observations in Fig. 4 and Fig. 5 used for comparison with the GEOS-Chem grid results are acquired by finding the

nearest observation point to each model grid cell, which is the most common method. We also conducted tests using the ’grid25

mean’ method, but the results closely resembled those obtained with the ’nearest search’ method.

The GEOS-Chem was validated to successfully reproduce the spatial distribution of the other pollutants like PM2.5. Due

to the inherently short lifetime of NO2 results in the distribution of its concentrations within a GEOS-Chem grid exhibits

pronounced heterogeneity, and hence the ground-based observation are not fairly comparable to the simulation via either the

’nearest search’ or ’grid mean’ operators as discussed in Section 2.3. Consequently, we suggest that a more effective approach30

is needed to accurately represent the true observations within each grid cell.

3.3 LUBR operator evaluation

In panels (f) and (h) of Fig. 4, inconsistencies between observations and GEOS-Chem simulations in the NCP are evident:

GEOS-Chem underestimates ground-level NO2 while overestimating NO2 column concentrations. Although the bias between
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Figure 4. The inconsistency between the observations and GEOS-Chem simulations is evident. Panels a and b depict the spatial distribution

of ground-level NO2 from GEOS-Chem and monitoring sites, while panels c and d show the distribution of column-level NO2 from GEOS-

Chem and OMI. The NCP region, depicted by the black box, exhibits the most severe NO2 pollution. The ground observations and model

simulations represent the average conditions between 13:00 and 14:00 local time from 2015 to 2017. Panels e and g display scatter plots of

the GEOS-Chem simulations and observations (monthly value), while panels f and h focus on the NCP region.
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Figure 5. The spatial distribution and scatter plot of ground observations and GEOS-Chem simulations. Panels a and b depict the spatial

distribution of ground-level NO2 from GEOS-Chem and monitoring sites (average from 2015 to 2017). Panel e displays scatter plots of the

GEOS-Chem simulations and ground observations (monthly value), while panel d focuses on the NCP region.

model and satellite observations may not align with the bias between model and ground-based observations, as satellites

measure the column density of NO2, which captures information not only from the surface but also from the troposphere and

stratosphere, it’s worth noting that considering the model is the same and is popular and reliable, they should not diverge

in opposite directions. The spatial disparity between model simulations and ground observations can indeed result in poor

representation of grid cell observations, which is certainly one of the reasons for the differences. Therefore, our work primarily5

focuses on correcting the representativeness of ground observations and ensuring that the true correction direction closely

aligns with the comparison results between model and satellite observations. Following the implementation of the LUBR

observational operator, we present the corresponding scatter plots of monthly ground-level NO2 concentrations from GEOS-

Chem and observation using LUBR in Fig. 6. With the LUBR operator, the comparison against all ground stations now shows

our simulation did not overestimate ground-level NO2 concentrations that much. The negative bias is remarkably reduced from10

-42.3% in Fig. 5(c) to -18.37% in Fig. 6(a). This result aligns more closely with the trend of comparing GEOS-Chem and OMI

observations. Despite these improvements, most of the ground observations are located in urban areas sparsely, and cannot

be directly compared to OMI observations, which provide comprehensive spatial coverage at the national scale. It is fairer to
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compare the satellite-model evaluation against ground station-model calibration over the NCP region, where environmental

monitoring stations are densely distributed (exceeding 215 sites). Here we observe a reversal of the results presented in panel

f of Fig. 5 in panel d, where the NMB shifts from -19.47% to 6.58%. This change aligns the overall overestimation tendency

of GEOS-Chem with the comparison of OMI (as shown in panel h of Fig. 4), where a positive NMB value is evident. The

consistency of the OMI observations gives us the confidence to use valuable ground NO2 observations in the model evaluation5

or assimilation with the LUBR operator.

3.4 Model evaluation

A comprehensive model evaluation is performed. Section 3.4.1 compares the gridded observations obtained from three

different operators with GEOS-Chem simulations, focusing on spatially averaged results within the NCP and YRD regions.

We also examine the annual ground-level NO2 concentration patterns in the study area from 2015 to 2017 using three rep-10

resentation operators. This section also analyzes model under/overestimations in different regions after applying the LUBR

method. Section 3.4.2 assesses the overall difference between the LUBR operator and other common methods using metrics

such as normalized mean bias (NMB), root mean square error (RMSE), and mean absolute error (MAE). The formulas of these

statistic matrics are given in Supplement Section 1.

3.4.1 Spatial and temporal result15

To make the spatial comparison more reliable, we focus on two of the most developed megacities with dense environ-

mental monitoring stations. Fig. 7 shows the distribution of spatially averaged outcomes of the grid observations using three

operators with GEOS-Chem simulations in the NCP and YRD regions. In panel (a), the GEOS-Chem simulations persist in

overestimating grid observations using both the ’grid mean’ (aqua-green lower triangles) and ’nearest search’ (blue triangles)

opeartors in the NCP. And there are no significant differences between using the ’grid mean’ and ’nearest search’ operators.20

Conversely, in the same panel, GEOS-Chem simulations generally underestimate grid observations using the LUBR method

(red dots), which is now consistent with the underestimation indicated by the OMI satellite measurements in Fig. 4, panel

(h). Similar results are also evident in the YRD (panel b). This underscores the crucial importance of taking into account the

representativeness of NO2 observations.

In contrast to NO2, the spatially averaged PM2.5 grid observations obtained using the LUBR operator do not exhibit25

significant differences when compared to those obtained using the ’grid mean’ and ’nearest search’ operators in both the NCP

(panel c) and YRD (panel d). This suggests that PM2.5 does not exhibit a notable distinction between urban and rural areas,

likely due to its long atmospheric lifetime, allowing for relatively uniform mixing in both urban and rural regions. Hence,

distinguishing between urban and rural areas is less critical when representing PM2.5 observations for grid resolutions similar

to the one used in this study (0.5◦× 0.625◦).30

Fig. 8 shows the annual ground NO2 concentration patterns in the study area from 2015 to 2017 using three different

representation operators. The ground NO2 levels from GEOS-Chem simulations (filled contours) generally capture the pollu-

tion pattern in the study area, characterized by high concentrations in the eastern region and low concentrations of pollutants
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a. b.

Figure 6. The scatter plot of ground-level NO2 concentrations from GEOS-Chem and observed NO2 concentrations using LUBR, based on

monthly data spanning from 2015 to 2017. Panels a and b correspond to the results for the entire nation and the NCP region, respectively.

in the western areas. However, the comparisons against observations (colored squares) using ’grid mean’ (panels b, e, h) and

’nearest search’ (panels c, f, i) methods, show that GEOS-Chem simulations underestimate ground NO2 concentrations in eco-

nomically developed and severely polluted regions such as NCP and YRD, while overestimating ground NO2 concentrations

in less polluted regions. After achieving a more accurate representation of grid observations by incorporating information on

urban-rural differences using the LUBR operator (panels a, d, g), the extent of underestimation by GEOS-Chem simulations in5

economically developed regions and overestimation in less polluted regions is mitigated.

For PM2.5, as depicted in Supplement Figure S1, high PM2.5 pollution levels from GEOS-Chem simulations are observed

in eastern China and the Sichuan Basin (SCB; 28.5–31.5° N, 103.5–107° E). Despite the pronounced overestimation of PM2.5

levels in the SCB region, in line with previous findings (Li et al., 2016; Fang et al., 2023), GEOS-Chem generally exhibits good

agreement with actual PM2.5 concentrations in the atmosphere. No substantial difference in the annual evaluation of GEOS-10

Chem is observed after applying the LUBR operator compared to the ’grid mean’ and ’nearest search’ operators. This is

consistent with the previous spatial averaged results as the PM2.5 does not exhibit significant urban/rural distinctions. Specific

differences between using different operators in terms of statistical metrics will be presented later.

3.4.2 The statistical evaluation

As mentioned previously, our LUBR algorithm is applicable to calculate the mean status of atmospheric pollutants over15

three types of grids: U containing only urban sites, R with only rural sites, and Mix with both urban and rural sites. We will

now discuss the distinctions observed within these three grid types on a national scale. Fig. 9 shows the statistical results of

RMSE and MAE for the grid observation and GEOS-Chem simulations. The colors ice blue, rosy red, and cyan represent the

15



Figure 7. The distribution of spatially averaged results between ground observations and GEOS-Chem simulations. The results of LUBR,

grid mean, and nearest search observational operators are represented by red dots, aqua-green lower triangles, and blue triangles, respectively.

Panel a and b present the NO2 results, while Panel c and d present the PM2.5 results.
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Figure 8. The annual averaged ground NO2 from GEOS-Chem simulations (filled contours) and the represented observations of simulation

grids (colored squares) from three operators. Panels a, d, and g present results using the LUBR operator to represent grid NO2 concentrations

for 2015, 2016, and 2017, respectively. Panels b, e, and h present results using the grid mean method. Panels c, f, and i present results using

the nearest search method.
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LUBR, ’nearest search’, and ’grid mean’ operators, respectively. The sample amounts of these three types of grids are shown in

Supplement Figure S5. The gridded observations of NO2 obtained from the ’nearest search’ and ’grid mean’ operators for grid

types of U and Mix typically have higher RMSE and MAE values than the LUBR operators, indicating an inadequate represen-

tation of grid observation in terms of model evaluation. Remarkably, the utilization of the ’grid mean’ operator demonstrates

significantly lower RMSE and MAE values compared to the ’nearest search’ operator when applied to the Mix grid type. This5

underscores the critical importance of considering urban-rural information within grids and the ’grid mean’ operator is better

than the ’nearest search’ operator in the grid type of Mix for model evaluation. However, in grid types of U and R, the min-

imal difference between these two operators is evident and easily explained, as these grid types lack urban-rural information

within a single grid. The different statistics of the ’grid mean’ operator and the ’nearest search’ operator indicate that sites

within a specific grid cell can exhibit varying observations, particularly in grid type of Mix. While the differences are less10

pronounced due to the relatively low spatial heterogeneity of PM2.5, similar trends are also noticeable in PM2.5, as illustrated

in Supplement Figure S4. During evaluation with GEOS-Chem results, the LUBR operator exhibits substantially lower RMSE

and MAE values in grid types of U and Mix, as evident in Fig. 9. The RMSE and MAE of grid type of U decreased from 17.2

µg/m3 and 14.5 µg/m3 (the second-lowest results obtained from the ’grid mean’ operator) to 10.1 µg/m3 and 8.1 µg/m3 after

applying the LUBR method. Similarly, the RMSE and MAE of grid type of U decreased from 13.5 µg/m3 and 11.6 µg/m315

to 11.7 µg/m3 and 9.5 µg/m3. Notably, the model bias in GEOS-Chem simulations remains unchanged; what we achieve is

a reduction in the bias of grid observations. This also reveals that GEOS-Chem performs much better in the NO2 simulation

over China than our experience using the ’nearest search’ or ’grid mean’ observational operator. The LUBR operator can also,

to some extent, aid in the evaluation of model simulations and observations for PM2.5, as demonstrated in Supplement Figure

S4.20

The LUBR operator demonstrates its most significant benefits in both NO2 and PM2.5 when applied to the grid type of

U. This phenomenon can be attributed to the fact that grids composed solely of urban sites typically yield a larger volume of

site observation data, thereby enhancing the reliability of the data. In contrast, the grid type of Mix often includes only one

rural site, which is frequently situated close to urban areas due to rapid urbanization in China. These factors can lead to an

overestimation of actual rural NO2 and PM2.5 concentrations. Furthermore, we find minimal alterations in the grid type of R25

following the implementation of the LUBR operator for both NO2 and PM2.5. This lack of change can be attributed to the

inherent characteristics of these grids, as they are typically situated in remote, non-urban regions and consist of just a single

site. Consequently, the ’grid mean’ and ’nearest search’ operators produce identical results for these grids. Our evaluation of

urban areas using Nighttime Light data similarly indicated the absence of significant urban areas within these grids. Therefore,

the effectiveness of the LUBR operator may be diminished in such locations.30

Overall, the LUBR operator leads to a substantial enhancement in NO2 grid observation representation, decreasing RMSE

and MAE values by 34.5% and 37.0% when compared to the ’grid mean’ operator and by 37.1% and 39.0% when compared

to the ’nearest search’ operator. The substantial bias in the observational operator not only misled the model evaluation but

caused assimilation divergence as illustrated in our recent aerosol optical depth assimilation study (Jin et al., 2023).
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Figure 9. The comprehensive statistical results, including RMSE and MAE, demonstrate the distinctions of the gridded NO2 observations

compared to the GEOS-Chem simulations. The colors ice blue, rosy red, and cyan represent the LUBR, ’nearest search’, and ’grid mean’

operators, respectively. ’Urban,’ ’Urban+Rural,’ and ’Rural’ categorize grids based on the presence of urban and rural sites. ’Urban’ includes

grids with exclusively urban sites, ’Urban+Rural’ includes both urban and rural sites, and ’Rural’ comprises grids with only rural sites.

’Total’ aggregates results by calculating the average across all three categories.

4 Conclusion

The key finding of this work is the development of a new land-use-based observational operator (LUBR) that incorpo-

rates high-resolution urban-rural land-use data to improve the representativeness of ground monitoring observations when they

are compared to air quality model simulations. This new operator is validated to provide a more accurate representation of

grid-level observations from ground-level NO2 measurements in the study area compared to traditional operators like ’nearest5

search’ and ’grid mean’. It can lead to a change of up to 37% in RMSE and 39% in MAE in the context of model evalua-

tion. The results highlight the importance of considering fine-scale intra-grid variability, especially for short-lived pollutants

like NO2 with large urban-rural gradients. This study provides an effective solution to address the spatial scale mismatch

that has hindered robust model evaluation against ground-based monitoring data. The LUBR operator enables more accurate

model evaluation and observational bias correction, which will benefit air quality modeling and predicting capabilities. The10

proposed operator is broadly applicable for model-observation evaluations of other atmospheric species with significant spatial

heterogeneity within model grid cells. The LUBR algorithm, though effective, doesn’t fully correct the representation error

19



as urban/rural sites cannot fully represent the average conditions of the entire urban/rural areas within this grid cell. Future

endeavors could explore employing deep learning models to reveal the intricate relationship between the average conditions of

grid cells and various factors beyond urban/rural sites, such as meteorology, climate, and land cover.
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