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Abstract 14 

Vegetation phenological shifts impact the terrestrial carbon and water cycle and 15 

contribute to affecting local climate system through biophysical and biochemical 16 

processes. Dynamic Global Vegetation Models (DGVMs), serving as pivotal simulation 17 

tools for investigating climate impacts on terrestrial ecosystem processes, incorporate 18 

representations of vegetation phenological processes. Nevertheless, it is still a challenge 19 

to achieve accurate simulation of vegetation phenology in the DGVMs. Here, we 20 

developed and implemented spring and autumn phenology models into one of the 21 

DGVMs, LPJ-GUESS. The new phenology modules are driven by temperature and 22 

photoperiod, and are parameterized for deciduous trees and shrubs by using remote 23 

sensed phenological observations and the reanalysis data ERA5. The results show that 24 
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the LPJ-GUESS with the new phenology modules substantially improved the accuracy 25 

in capturing start and end dates of growing seasons. For the start of the growing season, 26 

the simulated RMSE for deciduous trees and shrubs decreased by 8.04 and 17.34 days, 27 

respectively. For the autumn phenology, the simulated RMSE for deciduous tree and 28 

shrubs decreased by 22.61 and 17.60 days, respectively. Interestingly, we have also 29 

found that differences in simulated start and end of the growing season also alter the 30 

simulated ecological niches and competitive relationships among different plant 31 

functional types (PFTs), and subsequentially influence the terrestrial carbon and water 32 

cycles. Hence, our study highlights the importance of accurate phenology estimation to 33 

reduce the uncertainties in plant distribution and terrestrial carbon and water cycling. 34 

Keywords: LPJ-GUESS, phenology model, model modification, ecological processes   35 
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1. Introduction 36 

Vegetation plays a pivotal role within the terrestrial ecosystem, as the interplay 37 

between vegetation and climate exerts significant influence on the mass and energy 38 

cycles across a broad range of temporal and spatial scales (Zhu et al., 2016; Piao et al., 39 

2019; Chen et al., 2022a). In recent years, with the increase of carbon dioxide 40 

concentration and land surface temperature, significant vegetation greening has been 41 

reported world widely, and the annual growth dynamics of vegetation have undergone 42 

significant changes, especially the spring and autumn phenological changes (Zhu et al., 43 

2016). A large amount of research evidences have indicated that climate change results 44 

in the advancement of spring phenology and the postponement of autumn phenology, 45 

exerting a profound influence on the carbon and water cycles within terrestrial 46 

ecosystems (Piao et al., 2019; Badeck et al., 2004; Zhou et al., 2020), and the 47 

geographic distribution of species (Chuine, 2010; Fang and Lechowicz, 2006; Huang 48 

et al., 2017). Under conditions of sufficient water supply and no radiation constraints, 49 

the extension of the growing season resulting from vegetation phenological shifts will 50 

contribute additional carbon sinks to terrestrial ecosystems (Zhang et al., 2020; Keenan 51 

et al., 2014). Longer growing seasons also lead to greater evapotranspiration, mainly in 52 

early spring and autumn, which in turn reduces watershed runoff (Huang et al., 2017; 53 

Kim et al., 2018; Chen et al., 2022b; Geng et al., 2020). Nevertheless, it is still a 54 

challenge to achieve accurate simulation of vegetation phenology in dynamic global 55 

vegetation models (DGVMs), especially in the context of climate change (Richardson 56 

et al., 2012). We urgingly caution that improving the vegetation phenology module of 57 
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DGVMs, and taking the response of vegetation phenology to climate change into 58 

consider comprehensively, which is a necessary development to improve model 59 

simulation accuracy and reduce model uncertainty.  60 

The State-of-the-art DGVMs generally include phenology modules in vegetation 61 

submodels, but the implementations vary widely, which include: 1) Using fixed and 62 

prescribed seasonal dynamics to characterize phenology, and the models using this 63 

method include SiB model, SiBCASA model, ISAM model, etc. (Sellers et al., 1986; 64 

Schaefer et al., 2008; Jain and Yang, 2005). 2) Using remote sensing data or in-situ 65 

observations directly describing the vegetation growth dynamics instead of process-66 

based simulation, SiB2, BEPS and ED2 are all based on this method to describe the 67 

vegetation growth dynamics (Sellers et al., 1996; Deng et al., 2006; Medvigy et al., 68 

2009). 3) Using vegetation phenology model which take the response of vegetation 69 

biophysiology to environment factors into account to simulate vegetation growth 70 

dynamics. In comparison to the first two methods, the third approach offers the 71 

advantage of depicting the responses of vegetation to the external environment 72 

grounded in plant physiological processes , and can trace the dynamics of vegetation 73 

growth amidst changing environment conditions, so it is adopted by several DGVMs, 74 

e.g. Biome-BGC, ORCHIDEE and LPJ-GUESS (Thornton et al., 2002; Krinner et al., 75 

2005; Sitch et al., 2003). With the evolving comprehension of the intricate response 76 

mechanisms of vegetation to external environment, vegetation phenological models 77 

have experienced substantial advancements in recent decades, which encompass shifts 78 

from single-process to multi-process mechanisms and from single-variable to multi-79 
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factor model constraints. (Liu et al., 2018a; Fu et al., 2020; Piao et al., 2019). For spring 80 

phenological models, in the early stage, temperature was the only factor considered, 81 

resulting in relatively simplistic model processes, which was also commonly adopted 82 

by DGVMs (GDD and Unified etc.) (Sarvas, 1972; Chuine, 2000). With the deepening 83 

of the understanding of spring phenological mechanism, factors such as radiation and 84 

photoperiod have been introduced into the phenological model, and the corresponding 85 

complex regulatory mechanisms have also been perfected, e.g. Sequential model, 86 

Parallel model and DORMPHOT model etc. (Hänninen, 1990; Kramer, 1994; Caffarra 87 

et al., 2011). As for the autumn phenological model, the early model form was also 88 

relatively simple (cold temperature-driven CDD model) but widely used in DGVMs, 89 

and some DGVMs used fixed leaf longevity for determination of autumn phenological 90 

dates. The development of relatively complex autumn phenological mechanism models 91 

is relatively late, and these advanced autumn phenological models take photoperiod and 92 

carbon accumulation into account in the model process, such as temperature-93 

photoperiod bioclimatic (DM) model, photosynthesis-influenced autumn phenology 94 

(PIA) model (Zani et al., 2020; Delpierre et al., 2009). Many researches have pointed 95 

out that early phenological models tend to be overly simplistic and result in biased 96 

predictions, which indicates that the vegetation phenological models of DGVMs need 97 

to be updated urgently (Kucharik et al., 2006; Ryu et al., 2008). The use of more 98 

accurate phenological models covering more complex mechanisms is of great 99 

significance to reduce the simulation errors of DGVMs and improve the simulation 100 

reliability under future climate warming. 101 
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In this study, we used the remote sensing-based phenology data and the threshold 102 

and maximum change rate methods to parameterize the spring DORMPHOT model and 103 

autumn DM model. This was applied specifically for boreal needle leaved summergreen 104 

tree (BNS), Shade-intolerant broadleaved summergreen tree (IBS), shade-tolerant 105 

temperate broadleaved summergreen tree (TeBS) and summergreen shrubs plant 106 

function types (PFTs). The new phenology module with these parameters were coupled 107 

into the LPJ-GUESS model. The objectives of this study are as follows:1) to couple 108 

more mechanistic phenology modules into LPJ-GUESS to improve the accuracy of 109 

spring and autumn phenology simulations; (2) to assess the impacts of different 110 

vegetation phenological algorithms on the carbon and water process simulations. 111 

2. Materials and methods 112 

2.1 Datasets  113 

2.1.1 GIMMS NDVI4g 114 

Normalized differential vegetation index (NDVI) is commonly used as a proxy for 115 

vegetation canopy greenness and growth condition. In the study, we used the forth-116 

generation NDVI dataset of GIMMS, which provides biweekly NDVI records with a 117 

spatial resolution of 1/12° (~8 km), during 1982-2017 to extract the start and end of 118 

growing season (Pinzon and Tucker, 2014; Tucker et al., 2005; Cao et al., 2023). This 119 

NDVI dataset has been refined and corrected for orbital drift, calibration, viewing 120 

geometry, and volcanic aerosols, which can accurately reflect the accurate growth 121 

dynamics of surface vegetation (Kaufmann et al., 2000).  122 
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2.1.2 Climate forcing field data 123 

We used CRU-NCEP V7 data with a horizontal spatial resolution of 0.5° × 0.5° as 124 

the forcing field data for driving the LPJ-GUESS model during 1901-2015. The forcing 125 

field data include monthly air temperature (1901-1978) and precipitation, wind speed, 126 

wet days, incoming shortwave radiation and relative humidity over the period 1901-127 

2015, which can be downloaded from https://rda.ucar.edu/datasets/ds314.3/. The 128 

ERA5-Land daily air temperature dataset has been used to parameterize spring and 129 

autumn phenological algorithms and force LPJ-GUESS model. The dataset is a global 130 

reanalysis dataset developed by the European Centre for Medium-Range Weather 131 

Forecasts (ECMWF), which utilises advanced data assimilation techniques combining 132 

observations from various sources, such as satellites, weather stations, and weather 133 

balloons, with numerical weather prediction models. We downloaded the ERA5 land 134 

daily air temperature at 0.5° spatial resolution (consistent with CRU NCEP V7 data, 135 

from 1979-2015) from their official website 136 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form). 137 

Due to possible bias between different data sets, we calculated the monthly average of 138 

ERA5 land daily air temperature and calculated its climatology, as well as climatology 139 

of CRU NCEP v7 monthly air temperature data, and corrected the bias of ERA5 land 140 

data according to the deviation. 141 

2.1.3 GLC 2000 land cover data 142 

Satellite remote sensing can capture the collective information from mixed pixels 143 

https://rda.ucar.edu/datasets/ds314.3/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
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comprised of various plants and also information from dominant vegetation. The data 144 

acquired through satellite remote sensing can be regarded as representative of a 145 

particular vegetation type only when the plant functional types within a gridcell exhibit 146 

a relatively homogeneous composition. Based on GLC2000 land cover types data, 147 

which are designated according to PFTs ascribed to satellite images and ground-truth 148 

by regional analysts with 1 km spatial resolution (Bartholome and Belward, 2005), we 149 

calculated the proportion of different PFTs in the 0.5°×0.5° gridcell to identify pixels 150 

dominated by a specific plant functional type (the proportion of a specific plant function 151 

type is greater than 50%, Fig. 1 and Fig. S1). 152 

Figure 1. The spatial distributions of 11 detailed regional land-cover types in the 153 

GLC2000 products. BNS: Deciduous needle forest, IBS&TeBS: Open deciduous 154 

broadleaf forest and closed deciduous broadleaf forest, Shrubs: Sparse herbaceous or 155 

sparse shrub cover and Deciduous shrub. 156 

 157 

2.1.4 VPM GPP and REA ET data 158 

We used the vegetation photosynthesis model (VPM) gross primary productivity 159 

(GPP) (Zhang et al., 2017) and REA ET (Lu et al., 2021) to compare the simulation 160 

results of carbon and water fluxes with the LPJ-GUESS model.  161 
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The VPM GPP dataset is constructed upon an enhanced light use efficiency theory, 162 

utilizing satellite data from MODIS and climate data from NCEP Reanalysis II. It 163 

incorporates an advanced vegetation index (VI) gap-filling and smoothing algorithm, 164 

along with distinct considerations for C3/C4 photosynthesis pathways. VPM GPP 165 

product can be download from https://data.nal.usda.gov/dataset/global-moderate-166 

resolution-dataset-gross-primary-production-vegetation-2000%E2%80%932016.  167 

ERA ET is a combination of three existing model-based products – the fifth-168 

generation ECMWF reanalysis (ERA5), Global Land Data Assimilation System 169 

Version 2 (GLDAS2), and the second Modern-Era Retrospective analysis for Research 170 

and Applications (MERRA-2), which using the reliability ensemble averaging (REA) 171 

method, minimizing errors using reference data, to combine the three products over 172 

regions with high consistencies between the products using the coefficient of variation 173 

(CV). The REA ET data can be accessed at https://doi.org/10.5281/zenodo.4595941 (Lu 174 

et al., 2021). 175 

2.2 Phenology dates extraction 176 

We used five phenological extraction methods, which includes three threshold-177 

based methods (i.e. Gaussian-Midpoint, Spline-Midpoint and Timesat-SG Methods) 178 

and two change rate-based methods (i.e. the HANTS-Maximum and Polyfit-Maximum 179 

methods) following previous studies (Cong et al., 2012; Savitzky and Golay, 1964; 180 

Chen et al., 2023), to retrieval spring (start of growing season, SOS) and autumn (end 181 

of growing season, EOS) phenological events (Fig.S2). Phenological extraction based 182 

on multiple methods consists of three steps: 1) smoothing and interpolating the NDVI 183 

https://data.nal.usda.gov/dataset/global-moderate-resolution-dataset-gross-primary-production-vegetation-2000%E2%80%932016
https://data.nal.usda.gov/dataset/global-moderate-resolution-dataset-gross-primary-production-vegetation-2000%E2%80%932016
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date to obtain the smooth and continuous NDVI daily time series; 2) using the threshold 184 

value (0.5 for SOS and 0.2 for EOS) or the maximum rate of change to extract the 185 

vegetation phenology from each single method (Reed et al., 1994; White et al., 1997; 186 

White et al., 2009; Piao et al., 2006); 3) averaging the phenological results obtained by 187 

different extraction methods to reduce uncertainties associated with a single method 188 

(Due to the different fitting methods, interpolation methods and threshold settings of 189 

different extraction methods) (Fu et al., 2021; Fu et al., 2023).  190 

2.3 Model description 191 

LPJ-GUESS is a process-based dynamic global vegetation model that can 192 

simulate vegetation dynamics and soil biogeochemical processes across different 193 

terrestrial ecosystems. At gridcell level, the model simulates vegetation growth, 194 

allometry competition, mortality and disturbances (Sitch et al., 2003; Morales et al., 195 

2005; Hickler et al., 2004). The PFTs within the framework of the LPJ-GUESS model 196 

encapsulate the extensive spectrum of structural and functional attributes 197 

characteristic of potential plant species. Within a given area (patch, corresponding in 198 

size approximately to the maximum area of influence of one large adult individual on 199 

its neighbors), plant growth is governed by the synergistic interplay of bioclimatic 200 

constraints and interspecific competition for spatial dominance, access to light, and 201 

vital resources. In a gridcell (stand), it’s typically simulating multiple such patches 202 

to represent different disturbance histories within a landscape, and across these 203 

patches, the modeled properties tend to coalesce towards a singular, overarching 204 

average value.  205 
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In LPJ-GUESS model, spring phenology is calculated based on spring heat and 206 

winter cold requirements (Sykes et al., 1996). Plants have certain energy 207 

requirements for budburst, which are expressed by using growing degree days above 208 

5 degrees (GDD5), while growing degree days to budburst is also related to the length 209 

of the chilling period. An increase in chilling periods can reduce the requirement for 210 

growing degree days to budburst, in other words, budburst can be delayed long 211 

enough to minimize the risk that the emerging buds will be damaged by frost 212 

(Equation 1): 213 

𝐺𝐷𝐷 = 𝑎 + 𝑏 × 𝑒−𝑘×𝐶 (1) 

Where a, b and k are PFT-specific constants, and C is the length of chilling 214 

period. GDD represents the growing degree days requirement of a specific PFT at a 215 

chilling period length of C. Growing degree days are defined as the accumulation of 216 

temperatures above the base temperature (generally 5 ℃), and the length of chilling 217 

period is defined as the days that daily mean temperature below 5 ℃.  218 

For autumn phenology, leaf longevity was used as a threshold in the LPJ-219 

GUESS model for the simple prediction of senescence. It is assumed in the model 220 

that autumn phenology occurs when the cumulative complete leaf longevity is greater 221 

than 210 days or the daily average temperature below 5℃ in autumn.  222 

Within each stand, 50 different patches (in this study) were applied to represent 223 

different disturbance histories within a landscape. The simulations over the study 224 

areas included 23 PFTs, which consist of five grass, three bryophytes, eight shrubs 225 

and seven tree PFTs, and the summergreen PFTs involved in the improvement of 226 
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vegetation phenological simulation contain BNS, IBS, TeBS and deciduous shrubs  227 

(hereafter called Shrubs), see detailed description in (Tang et al., 2023) and Rinnan 228 

et al. (2020). 229 

2.4 LPJ-GUESS phenology module extension 230 

We improved the spring and autumn phenological modules of the LPJ-GUESS 231 

model by coupling DORMPHOT model and DM model into LPJ-GUESS according to 232 

the phenological module improvement flow chart (Fig.2).  233 

Figure 2 Flowchart of spring and autumn phenological module extension in LPJ-234 

GUESS. Dotted boxes represent independent work, gray boxes represent different data 235 

sets or intermediate process results, and yellow boxes represent different calculation 236 

methods or model modules. CDD, cold degree days. 237 

The spring phenological model in LPJ-GUESS was replaced by DORMPHOT 238 

model, which introduces the effect of photoperiod on dormancy. This model refines the 239 

spring phenological model into three stages: dormancy induction, dormancy release and 240 

growth resumption (Caffarra et al., 2011). The dormancy induction process is triggered 241 
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by a short photoperiod (DRP) and a low temperature (DRT), and finishes when the 242 

cumulant of the product of DRP and DRT reaches a specific threshold (DS > Dcrit, 243 

Equation 2, 3 and 4): 244 
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Where t0 is the start date of dormancy induction, which defined at September 1st 245 

of the year preceding budburst, DS represents the state of dormancy induction (the 246 

cumulant of daily photoperiod, i.e. DRP, and temperature, i.e. DRT, effect), T is the 247 

daily mean temperature, and DL is day length on day t. aD, bD and DLcrit are model 248 

parameters that regulate the effect of photoperiod and temperature.  249 

Dormancy release and growth resumption start after dormancy induction is 250 

complete (td), which represent a parallel chilling and forcing process, respectively. The 251 

total daily rate of chilling (SC) is defined as the accumulation of daily chilling (RC) as 252 

Equation 5, and the daily forcing (Rf) is determined by both photoperiod and SC 253 

(Equation 6, 7 and 8), that the effect of photoperiod and chilling on Rf counteracts each 254 

other. The increase of photoperiod will decrease Rf while the increase of chilling will 255 

reverse the effect:  256 



14 

 

2( - ) ( - )

1

1
d d

t t

C C aC T cC T cC
t t

S R
e  +

= =
+

   (5) 

50 ( )

24

1 C crithDL S C
DL

e
 −

=
+

 (6) 

50
50 ( )

60

1
gT DL DL

T
e

 −
=

+
 (7) 

50( )

1

1
d d

t t

f f dF T T
t t

S R
e

 −
= =

+
   (8) 

Where aC, cC and Ccrit are the model parameters of chilling process, and hDL, gT 257 

and dF are the model parameters of forcing process. When the total daily rate of forcing 258 

(Sf) reaches a critical value Fcrit, vegetation completely resumes growth and spring 259 

phenological events occurred. Note that gT and hDL must be greater than zero to limit 260 

the monotonicity of Equation 6 and 7. 261 

Since the lack of process based submodule to simulate autumn phenology in LPJ-262 

GUESS model, and only a fixed leaf longevity is used to define occurrence date of 263 

autumn phenology, we introduced autumn phenology process that considers 264 

photoperiod and cold temperature effects by coupling the DM model into the LPJ-265 

GUESS model (Delpierre et al., 2009). The DM model assumes that plants will respond 266 

to low temperature (below base temperature, Tb) only when the photoperiod is below a 267 

critical value (DLcrit), and the daily rate of senescence (Rsen) on that day is determined 268 

by cold temperature and photoperiod (Equation 9,10 and 11): 269 
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Where αpn is a parameter determines that photoperiod shorter than the DLcrit 270 

threshold weaken (αpn equal to 1) or strength (αpn equal to 0) the cold-degree sum effect. 271 

x and y are the indices of the temperature and photoperiod terms in the formula, which 272 

are used to adjust the degree of influence of temperature and photoperiod on Rsen, 273 

respectively. 274 

2.5 Phenological model parameterization 275 

Utilizing the spatial distribution of predominantly homogeneous pixels 276 

corresponding to distinct vegetation types, we partitioned the remote sensing 277 

phenological dataset, and finally obtained the phenological dataset of BNS, IBS, TeBS 278 

and Shrubs for the parameterization of DORMPHOT and DM models. We divided the 279 

phenology dataset into two parts according to the odd or even number of years, the odd-280 

numbered years for model parameter internal calibration and the even-numbered years 281 

for model external calibration. Particle swarm optimization (PSO) algorithm was 282 

applied to parameterize the DORMPHOT and DM model for different PFTs, which 283 

used the mixed function that comprehensively considers multiple evaluation indicators 284 
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as the objective function ( ( )f mixed , Equation 12), and sets the upper limit of iteration 285 

to 5000 times to find the global optimal parameter (Marini and Walczak, 2015; Poli et 286 

al., 2007). The parameters of DORMPHOT model and DM model applicable to BNS, 287 

IBS&TeBS and Shrubs PFTs were found by PSO algorithm (Table S1 and S2). 288 

2( )  100*(1- ) 100*(1- ) 10*f mixed R NSE RMSE= + +  (12) 

Where R2 is coefficient of determination, NSE is Nash–Sutcliffe Efficiency, and 289 

RMSE is Root mean square error. The coefficients in front of each term of the formula 290 

are used to adjust the weights of different evaluation indicators. The smaller the 291 

objective function, the closer the simulated value of the model is to the observed value.  292 

2.6 Simulation set-up 293 

To compare the simulation performance of LPJ-GUESS which employing original 294 

phenological module and modified phenological module (the extended LPJ-GUESS). 295 

We first ran the model using CRU NCEP v7 gridded climate data over the period 1901-296 

1978 with a 500 year spin up, and saved all model state variables at the end of 1978 297 

(used the original phenological module, and the status variables associated with the 298 

extended phenological module were also updated and saved concurrently). Avoiding 299 

the differences in the simulated vegetation and soil state variables outside the study 300 

period, i.e. 1979-2015 (Viovy, 2018). Then we restarted the model simulations 301 

(applying the original phenological module and extended phenological module, 302 

respectively) with the saved model state variables at the last day of 1978 and ERA5 303 

land daily air temperature, note that other forcing data were still from CRU NCEP v7 304 
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data set, and printed start (end) of growing season of summer green PFTs, monthly grid 305 

level GPP and actual evapotranspiration (AET) of each PFT and foliar projection cover 306 

(FPC), for investigating the simulation difference which induced by phenological 307 

simulation differences. All the data processing and analysis in this study were 308 

completed in matlab 2020b (www.mathworks.com). 309 

 310 

3. Results 311 

3.1 Phenology simulation performance 312 

For spring phenology, DORMPHOT model has the best simulation performance 313 

in the IBS&TeBS region (R2 = 0.62 & NSE = 0.62), followed by in the regions 314 

dominated by BNS (R2 = 0.52 & NSE = 0.52) and Shrubs (R2 = 0.47 & NSE = 0.47) 315 

(Table 1). For autumn phenology the simulation performance was generally worse than 316 

that of spring phenology. The DM model has the best simulation performance in the 317 

Shrubs region, (R2 = 0.39 & NSE = 0.39), followed by in the regions dominated by 318 

BNS (R2 = 0.33 & NSE = 0.32) and IBS&TeBS (R2 = 0.47 & NSE = 0.47) (Table 1). 319 

Table 1 Model performances of DORMPHOT and DM models.  320 

Model 

Plant 

function 

type 

Internal calibration External calibration 

R2 NSE RMSE R2 NSE RMSE 

DORMPHOT 

BNS 0.54 0.53 7.71 0.52 0.52 7.96 

IBS&TeBS 0.61 0.61 7.92 0.62 0.62 7.91 

Shrub 0.45 0.44 11.3 0.47 0.47 11.1 

DM 

BNS 0.28 0.28 10.7 0.33 0.32 10.7 

IBS&TeBS 0.29 0.28 14.9 0.32 0.31 14.4 

Shrub 0.42 0.42 10.4 0.39 0.39 10.5 
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R2, coefficient of determination, NSE, Nash–Sutcliffe Efficiency, RMSE, Root mean 321 

square error. BNS, boreal needle leaved summergreen tree, IBS, Shade-intolerant 322 

broadleaved summergreen tree, TeBS, shade-tolerant temperate broadleaved 323 

summergreen tree and Shrubs, summergreen shrubs plant function types. 324 

 325 

Compared with remote sensing-based vegetation phenological indices, LPJ-326 

GUESS with the original phenological module estimated earlier spring onset and 327 

autumn leaf senescence. The simulated spring phenology matches better than that of 328 

autumn phenology. The extended LPJ-GUESS model has greatly improved the 329 

estimation accuracy in regions dominated by BNS, IBS&TeBS and Shrubs PFTs (Fig. 330 

3 and Fig. S3). For spring phenology, the simulated R2 (RMSE) of the extended LPJ-331 

GUESS model for regions dominated by BNS, IBS&TeBS and Shrubs PFTs were 0.53 332 

(7.84), 0.61 (7.92) and 0.46 (11.21), respectively, which increased (decreased) by 0.26 333 

(5.55), 0.12 (17.34) and 0.25 (10.53) compared with the original phenological module.  334 

We found that PFTs with larger R2 increase in spring phenological simulation also 335 

had smaller RMSE reductions for the extended model, indicating the improvements in 336 

capturing interannual change and the multi-year mean value. The autumn phenology 337 

simulation performance with was greatly improved by integrating DM model for 338 

regions dominated by BNS, IBS&TeBS and Shrubs PFTs, the simulated R2 (RMSE) of 339 

the extended LPJ-GUESS model were 0.31 (10.70), 0.31 (14.69) and 0.41 (10.42), 340 

respectively, which increased (decreased) by 0.11 (15.66), 0.31 (17.60) and 0.27 (27.50). 341 

By comparing the LPJ-GUESS simulated daily LAI before and after coupling the DM 342 

model, we also found that the autumn LAI values simulated by the extended LPJ-343 

GUESS no longer suddenly decrease to 0 over a day, but rather smoothly decrease with 344 
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the sigmoid function according to the control of cold temperature and photoperiod (Fig. 345 

S4).  346 

We also used two calibration schemes to explore the phenology simulation 347 

performance of the original phenological module of LPJ-GUESS after parameterization. 348 

The first one is based on the original LPJ-GUESS model to determine a common 349 

parameter set of all deciduous tree PFTs, and the second one is to determine a unique 350 

set of parameters for each PFTs. The results show that the phenology simulation 351 

performance of the original phenological module under the two calibration schemes 352 

was inferior to that of the new phenological module based on the cooperative control 353 

of temperature and photoperiod (Table S3) 354 
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Figure 3 Comparison of the simulated performance of spring (SOS) and autumn 355 

(EOS) phenology between the original (left blue panels) and the extended (right 356 

red panels) LPJ-GUESS. (a-d) Simulation performance of SOS using the original 357 

LPJ-GUESS, (e-h) Simulation performance of SOS using the extended LPJ-GUESS, 358 

(i-l) Simulation performance of EOS using the original LPJ-GUESS, (m-p) Simulation 359 

performance of EOS using the extended LPJ-GUESS. Blue and red boxes represent 360 

spring and autumn phenological simulations. The spatial geographic map showed the 361 

difference between the simulation results of LPJ-GUESS model and the remote sensing 362 

phenology, with blue representing the model underestimation and red representing the 363 

model overestimation. The dotted lines in the subgraph are 1:1 line.  364 

3.2 Gross primary productivity simulation  365 

Since the PFTs simulated in LPJ-GUESS model include not only BNS, IBS&TeBS 366 

and Shrubs, but also evergreen plants and grass (no development was made to its 367 

phenological simulation in the present study), we found that clear differences between 368 
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two versions of the model mainly appeared in the regions dominated by these deciduous 369 

PFTs with improved phenological modules. We only found small differences in the 370 

regions dominated by evergreen or grassland (Fig. 4c). It is also clear that the original 371 

LPJ-GUESS generally simulated higher GPP than the extended one over the study 372 

period, except for the IBS&TeBS dominated regions, where higher GPP from the 373 

original model can be only found from 1979 to 2000 (Fig. 4d-f). By comparing multiple 374 

years' monthly mean GPP values, it becomes evident that the extended phenology also 375 

influences the seasonal dynamics of GPP. In regions dominated by BNS, the differences 376 

in monthly GPP are primarily noticeable during spring (using extended phenological 377 

module resulted in a -34.9% lower GPP in May compared to original phenological 378 

module, when not specifically stated, the value is that the extended model differs from 379 

the original model, Fig. 4g). In regions dominated by IBS&TeBS, GPP differs in both 380 

spring (-2.8%) and autumn (-6.3%) and the difference is larger in autumn, which mainly 381 

contribute to annually GPP difference (Fig. 4h). In Shrubs dominate regions, we found 382 

differences in GPP in all months (-43.9%), especially in the non-growing season, 383 

indicating that some evergreen plants still exist in the region when the original 384 

phenological module is used, and that changes in vegetation phenology seems 385 

substantially affect vegetation composition in this region (Fig. 4i). Compared with 386 

VPM GPP products, we also found that LPJ-GUESS simulated GPP overestimate but 387 

spatial pattern is consistent with VPM GPP products and extended LPJ-GUESS model 388 

could simulate GPP more accurately during transition periods (Fig. S5 and S6).  389 
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Figure 4 Comparison of gross primary productivity (GPP) simulations 390 

between scenarios which used original phenological module and extended 391 

(DORMPHOT and DM) phenological module. (a) Scenario used original 392 

phenological module, (b) scenario used extended phenological module, and (c) the 393 

difference between the two scenarios mentioned above, blue represents a larger 394 

simulation value for the LPJ-GUESS model using the original phenological module, 395 

and red is smaller. (d-f) Annual average GPP for BNS, IBS&TeBS and Shrubs PFTs 396 

from 1979 to 2015. (g-i) Multi-year mean monthly GPP for BNS, IBS&TeBS and 397 

Shrubs PFTs from 1979 to 2015. 398 

 399 

The potential natural plant distribution also confirmed that the gridcells with large 400 

differences in phenological simulations between original and extended LPJ-GUESS has 401 

also large differences in dominant vegetation types (Fig. S3). We selected typical 402 

gridcells in BNS, IBS&TeBS and Shrubs region, and compared their multi-year 403 

variation pattern of FPC, it was found that phenological changes had a clearly influence 404 

on FPC changes in BNS and Shrubs region (Fig. 5). However, in the IBS&TeBS region 405 
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(the gridcell dominated by IBS was selected here), although we found that the 406 

difference in phenological simulation effects little on FPC components, due to the close 407 

proportion of IBS and BNE (fierce competition), small changes in FPC components 408 

could also lead to changes in dominant vegetation types (Fig. 5c, d). 409 

 410 
Figure 5. Shifts of foliage projection coverage (FPC) of typical gridcell in the 411 

regions dominated by BNS, IBS & TeBS and Shrubs PFTs over the period 1979 - 412 

2015. (a) BNS, (c) IBS&TeBS and (e) Shrubs typical gridcells used original LPJ-413 

GUESS model, (b) BNS, (d) IBS&TeBS and (f) Shrubs typical gridcells used extended 414 

LPJ-GUESS model. 415 

3.3 Evapotranspiration simulation 416 

By comparing the spatial pattern, we found that LPJ-GUESS simulated AET 417 

spatial pattern is consistent with REA ET products and BNS dominated the regions with 418 

large differences in the modelled AET under the two runs, and the simulation result 419 

using the original phenological module were larger by 3.9% compared with that using 420 
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the modified module (Fig.6c and S7). In the IBS&TeBS dominated region, like GPP, 421 

we found that the scenario using the original phenological module presented a larger 422 

AET during the period 1979-2000, and the two scenarios simulated AET in the Shrubs 423 

dominated region were very close (Fig. 6e-f). The seasonal dynamic patterns of AET in 424 

BNS, IBS&TeBS and Shrubs dominated regions are similar. The AET simulations get 425 

higher in spring and get lower in summer, and only in the Shrubs dominated region, the 426 

AET simulation get lower in autumn when the original phenology module is used (Fig. 427 

6g-i).  428 

 429 

Figure 6 Comparison of actual evapotranspiration simulations between scenarios 430 

which used original phenological module and extended (DORMPHOT and DM) 431 

phenological module. (a) Scenario used original phenological module, (b) scenario 432 

used extended phenological module, and (c) the difference between the two scenarios 433 

mentioned above, blue represents a larger simulation value for the LPJ-GUESS model 434 

using the original phenological module, and red is smaller. (d-f) Annual average AET 435 

for BNS, IBS&TeBS and Shrubs PFTs from 1979 to 2015. (g-i) Multi-year mean 436 
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monthly AET for BNS, IBS&TeBS and Shrubs PFTs from 1979 to 2015. 437 

4. Discussion 438 

4.1 Remote Sensing Phenology Facilitates Mixed-Pixel Phenology Modeling 439 

Whether through dynamic global vegetation model simulation or satellite remote 440 

sensing extraction, a key issue in large-scale vegetation phenology research is the scale 441 

transformation of phenology data in mixed pixels. For phenological extraction based 442 

on satellite remote sensing, which is a top-down approach, the spring phenology 443 

extracted from the mixed pixel (without specific dominant vegetation types) is the 444 

information about the dates when the earliest plant leaf-out occurs in the pixel, while 445 

the autumn phenology is the last one to senescence (Chen et al., 2018; Reed et al., 1994; 446 

White et al., 2009; Fu et al., 2014). Furthermore, previous studies also have detected 447 

temporal lags between phenology of NDVI, LAI and GPP, especially in tropical regions, 448 

the saturation of optical vegetation indices, such as NDVI and LAI can be limited the 449 

extraction of phenology, while SIF (solar-induced chlorophyll fluorescence) data could 450 

overcome this issue (Guan et al., 2015; Li et al., 2021; Hmimina et al., 2013). In 451 

addition, the greenness of understory phenology (low shrub or grass in forests) further 452 

complicates the detecting of overstory signal (Ahl et al., 2006; Tremblay and Larocque, 453 

2001). It is challenging to separate remote sensing signals into different components by 454 

filtering or decoupling methods. The more feasible method is to detect phenological 455 

changes with a few mixed species at a small spatial scale and conducting climate-456 

controlled experiments (Wolkovich et al., 2012).  457 

DGVM-based phenological simulation is based on a bottom-up method, different 458 
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from phenological extraction based on remote sensing. Many studies have investigated 459 

phenological models based on remote sensing data, and ignore the influence of mixed 460 

pixels (Keenan and Richardson, 2015; White et al., 1997), which lacks extensibility and 461 

robustness under changing circumstances, e.g. climate change. DGVMs through 462 

simulating plant individuals’ growth, development and senescence in the gridcell, 463 

which represents different signals in the mixed pixels, and finally synthesizes the 464 

vegetation signals of the whole gridcell (Sitch et al., 2003). In this study, based on top-465 

down remote sensing phenology and parameter calibrations for several relatively pure 466 

pixels with clear dominance of BNS, IBS&TeBS and Shrubs PFTs, we integrated this 467 

newly calibrated phenology module at PFT level into the LPJ-GUESS to reproduce the 468 

gridcell-level vegetation phenology for the mixed pixels. The simulation of vegetation 469 

phenology for mixed pixels enables the capture of phenological variability arising from 470 

dynamic vegetation changes, as opposed to the predefined approach reliant on specific 471 

pixel vegetation types, which also partly explains why phenological models based on 472 

predefined vegetation types are difficult to generalize spatially (Chen et al., 2018). 473 

Leveraging the advantages of wide-ranging remote sensing phenological monitoring 474 

and stable monitoring frequencies, analyzing the relationship between pixel 475 

constituents and vegetation signals, especially in cases where pixel constituents are 476 

relatively uniform, can enhance the accuracy of phenological simulation for mixed 477 

pixels.  478 

4.2 Influence of phenological shifts on ecosystem structure 479 

Our results showed that LPJ-GUESS model which using original phenological 480 
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module estimated earlier SOS in BNS, IBS&TeBS and Shrubs dominant regions than 481 

that using the extended phenological module (Fig.3). Earlier spring phenology, which 482 

is closely related to plant growth and development and has a strong influence on 483 

interspecific competition (Roberts et al., 2015; Rollinson and Kaye, 2012), also lead to 484 

a larger dominant area (Fig. S3). In high latitude regions, plants gain a competitive 485 

niche through the advancement of spring phenology if there is no damaged tissue and 486 

shoots induced by late frost and the weight of late snow fall (Augspurger, 2009; Bigler 487 

and Bugmann, 2018; Drepper et al., 2022; Liu et al., 2018b). This advancement is 488 

mediated by the early snowmelt synergistic changes of soil temperature and soil water 489 

content. It manifested in a wider window of high resource availability and low 490 

competition (Zheng et al., 2022). During this window period, plants can get more light, 491 

water and nutrient resources, and then carry out vegetative growth earlier, and finally 492 

increase the leaf area in the spring. As the community develops, changes in competitive 493 

relations at the species or functional group level in the spring will induce to changes in 494 

community composition (Morisette et al., 2009; Forrest et al., 2010). In the context of 495 

climate change, differences in the phenological responses of different species may 496 

further affect the distribution of species, and the inaccuracy of future phenological 497 

dynamic simulations of different vegetation types in DGVMs will introduce great 498 

uncertainty to the estimation of future potential natural plant distribution (Dijkstra et 499 

al., 2011). 500 

4.3 Further development of phenological models 501 

Although we have substantially improved the LPJ-GUESS’ accuracy of simulating 502 
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vegetation phenology by coupling calibrated spring (DORMPHT) and autumn (DM) 503 

phenological algorithms at PFT levels, we still see the discrepancy in the grass 504 

dominated regions, which owing to we did not employ the temperature and photoperiod 505 

phenological model for grassland phenology simulation, because many studies indicate 506 

that grassland phenology is also regulated by precipitation (Fu et al., 2021). 507 

Furthermore, the current phenology algorithms only consider the synergistic effects of 508 

temperature and photoperiod, but can be further linked to plant growth and physiology 509 

(Fu et al., 2020; Zohner et al., 2023). In different regions (under different external 510 

conditions), the driving mechanism and effective driving factors of vegetation 511 

phenology process can be different. Temperature is an important factor regulating 512 

phenology in energy limited regions, while water supply (precipitation, soil moisture 513 

etc.) control cannot be ignored in water limited regions (Prevéy et al., 2017; Fu et al., 514 

2022). For further developing phenological module in DGVMs, on the one hand, it is 515 

necessary to carry out mechanism research of phenology of different species through 516 

controlled experiments, to the end of improving the existing mechanism model. On the 517 

other hand, it is necessary to introduce new methods, such as machine learning, for the 518 

accurate generalization of some complex key nonlinear processes (Fu et al., 2020; Dai 519 

et al., 2023). Through the above two aspects of work, a comprehensive phenological 520 

module can be provided for further improving the accuracy of DGVM models in 521 

simulating the phenological dynamics of different PFTs in different environments. 522 

5. Conclusion 523 

In this study, we parameterized and constructed spring (DORMPHOT) and autumn 524 
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(DM) phenology models for BNS, IBS&TeBS and Shrubs PFTs based on the remote 525 

sensing-extracted phenology data. These parameterized DORMPHOT and DM 526 

algorithms were further coupled into the LPJ-GUESS model, and the results showed 527 

that LPJ-GUESS using the extended phenological module substantially improved in 528 

accuracy of spring and autumn phenology compared to the original phenological 529 

module. Furthermore, we found that differences in phenological estimations can have 530 

nonnegligible effects on carbon and water cycling processes by influencing plant annual 531 

growth dynamics and ecosystem structure functions. For the carbon cycle, the influence 532 

of phenological differences on BNS- and Shrubs-dominated regions was greater than 533 

that of IBS&TeBS dominated regions, and there were differences in the seasonality of 534 

monthly GPP simulations with different PFTs. For the water cycle, the AET simulations 535 

get higher in spring and get lower in summer, and only in the Shrubs dominated region, 536 

the AET simulation get lower in autumn when the original phenology module is used. 537 

We highlighted the importance of phenology estimation and its process interactions in 538 

DGVMs and propose further developments in vegetation phenology modeling to 539 

improve the accuracy of DGVM models in simulating the phenological dynamics and 540 

terrestrial carbon and water cycles.  541 
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Code and data availability 542 

LPJ-GUESS is tested, refined, and developed by a global research community, but 543 

the model code is managed and maintained by the Department of Physical Geography 544 

and Ecosystem Science, Lund University, Sweden. The code version used for this study 545 

is stored in a central code repository and can be downloaded from 546 

https://doi.org/10.5281/zenodo.10416649. Additional details can be obtained by 547 

contacting the corresponding author. Details of relevant driving data and comparison 548 

data can be obtained from the data description section in this paper. 549 
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