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Abstract. Geodetic observations are crucial for monitoring landslides, crustal movements, and volcanic activity. They are 

often integrated with data from interdisciplinary studies, including paleoseismological, geological, and interferometric 

synthetic aperture radar observations, to analyze earthquake hazards. However, outliers in geodetic observations can 10 

significantly impact the accuracy of estimation results if not reliably identified. Therefore, assessing the outlier detection 

model's reliability is imperative to ensure accurate interpretations. Conventional and robust methods are based on the additive 

bias model, which may cause type-I and type-II errors. However, outliers can be regarded as additional unknown parameters 

in the Gauss-Markov Model. It is based on modeling the outliers as unknown parameters, considering as many combinations 

as possible outliers selected from the observation set. In addition, this method is expected to be more effective than 15 

conventional methods as it is based on the principle of minimal variance and removes dependencyeliminates the 

interdependence of decisions made in iterations. The primary purpose of this study is to seek the novelan efficient outlier 

detection model in the geodetic networks. The efficiency of the proposed model was measured and compared with the robust 

and conventional methods by the Mean Success Rate (MSR) indicator for different types and magnitudes of outliers. Thereby, 

this approachmodel enhances the MSR by almost 40-45% compared to the Baarda and Danish (with the variance unknown 20 

case) method for multiple outliers (i.e., 1<m<4).. Besides, the Forward Search of Model Error (FSME)proposed model is 20-

30% more successful than the others in the low controllability observations of the leveling network. 

1 Introduction  

Conventional tests for outliers and robust M-estimation are based on the Least Squares Estimation (LSE). If an observation 

contains an outlier, the LSE method ceases to be the optimal estimation method in terms of a minimum variance unbiased 25 

estimator. Once gross errorsoutliers are detected and isolated, the LSE can be called an efficient estimation. Otherwise, an 

undetected outlier has a slight deviation from the normality assumption that may cause a smearing effect on all 

estimationestimated parameters regardless of whether using LSE directly or indirectly which may be named the local influence 
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functionInfluence Function (IF) of LSE (Gao et al. 1992; Hekimoglu et al. 2010; Nowel 2020). For different bias intervals, the 

smearing effect of LSE that behaves systematically as a function of the partial redundancy has been proven by Durdag et al, 30 

(2022). Normalized residuals, which would be exposed to the smearing effect, are investigated to identify and isolate outliers 

by conventional tests for outliers and some robust methods such as M-estimation (Zienkiewicz and Dąbrowski 2023; Wang et 

al. 2021; Batilović et al. 20202021). Thereby the falsified test result may induce type error-I. In addition to the unreliabilitylow 

efficiency of LSE results, the low success of the F-test shown by Hekimoglu led researchers to seek a more reliable and 

effective method such as the univariate method, original observations, etc. (Hekimoglu 1999; Erdogan 2014; Hekimoglu et al. 35 

2014). Although these novel methods boost the reliabilityreliabilities of the conventional methods, the identification of outliers 

in these approachesmodels is based on the same procedure as the conventional and robust methods. If the normalized residual 

exceeds three times its standard deviation (SD), also called the 3-sigma rule, an observation is flagged as an outlier (Lehmann 

2013). However, tests for outliers can be dealt with a single outlier sufficiently since the LSE has an unbounded IF 

(Duchnowski 2011; Maronna et al. 20062019; Huber 1981; Durdag et al. 2022). Studies show that the reliability of these 40 

techniques, established with the additive bias model, decreases significantly as the number of outliers increases. In the decision 

stage, the outliers that mask or swamp other observations can produce a type-I error (false negative) and type-II error (false 

positive). Multiple outliers can be identified at most the number of possible outliers (𝑚𝑚𝑎𝑥 ≤
𝑛−𝑢

2
) by repetitive test 

procedures. However, the efficiency of conventional tests is rather small when the outlier value is close to the critical value 

named as small outliers lies between 3-6σ.  45 

If the rate of successful detection of an outlier using conventional and robust methods is 50%, and one outlier is determined 

incorrectly, the probability of correctly determining two outliers remains below 50%. This condition is based on the 

interdependence of each iteration. Incorrect determination at each step also reduces the possibility of identifying more than 

one outlier in the next step. Therefore, besides modeling the outliers as unknown, the proposed method is based on two essent ial 

factors: the principle of the slightest variance and the assumption of looking at all points with suspicion in each iteration. It 50 

has been proven by Hekimoglu et al. (2015) for linear regression that the method in which outlier is modeled as an additional 

unknown gives more successful results than the conventional method.robust methods. The method suggests carrying outlier 

detection until all possible combinations are investigated. In the 𝐶𝑘
𝑛  combination, observation(s) is(are) included as an 

additional unknown parameter(s) in the proposed model. Then, observations are viewed with suspicion considering 

combinations of 𝑘 elements (groups of two, three, and so forth) selected from a set of 𝑛 elements (𝐶𝑘
𝑛), where 𝑛 is the number 55 

of observations, and 𝑘 denotes the number of outliers. The observation with the smallest variance among 𝐶1
𝑛 combinations is 

determined. Considering the 𝐶2
𝑛  combinations, the pair of observations were regarded as a model error, and the two 

observations with the smallest variance were flagged as candidates. All possible combinations will be regarded until as much 

as the maximum number of burdened observations that would occur up to one-half of the degrees of freedom (≅ 𝑓/2) for the 

geodetic network. The potential observations are clustered separately and compared with the specified critical values for each 60 

combination step. The model errors of the potential outlier(s) exceeding the critical value wereare flagged as suspicious for 
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each combination pacestep. The test values of all potential outliers must exceed the critical value for each combination step, 

and if not, the previous candidates are detected as outliers. 

The primary purpose of this study is to apply seek the proposed outlier detection method efficiency into geodetic networks and 

to seek its efficiency. The suggested model was compared with the robust methods by the Mean Success Rate (MSR) indicator 65 

for different types and magnitude of outliers. As in the classic approachesmodels, the number of outliers is inversely 

proportional to the success of the presented method. When outliers have various magnitudes (e.g., small, large, gross, and 

extreme outliers) and specific observations are not available in the network (observations with low controllability), it has been 

found that the proposed method is quite successful compared to the conventional and robust methods. 

2 Gauss-Markov model 70 

Let 𝐀nxu be a design matrix and has full column rank, i.e. rank (A)=u and P a positive definitebe a weight matrix of the 

observations, 𝐱ux1 be a vector of the unknown parameter, 𝐥nx1 be an observation vector, 𝐂𝑙𝑙𝑛𝑥𝑛
 anbe a priori covariance matrix 

of observations, 𝐐𝑙𝑙𝑛𝑥𝑛
 be a weighted coefficient matrix of observations and 𝜎0

2 anbe a priori variance factor, where n and u 

aare the number of observation and number of unknowns, respectively. By adding 𝐯nx1 a residual vector, one can get �̂� an 

estimated vector of  unknown parameters presented in the following Gauss-Markov model (Koch, 1999) 75 

𝐥 + 𝐯 = 𝐀�̂� ;     𝐂𝑙𝑙 = σ0
2𝐏−𝟏 = σ0

2𝐐𝑙𝑙 .                                                       (1) 

�̂� = (𝐀𝐓𝐏𝐀)+𝐀𝐓𝐏𝐥                                                                                           (2) 

𝐐𝑥𝑥 = (𝐀𝐓𝐏𝐀)+                                                                                 (3) 

𝐐vv = 𝐏−𝟏 − 𝐀𝐐xx𝐀
𝐓                                                                             (4) 

Where 𝐐𝑥𝑥 denotes a cofactor matrix of the unknown parameters, 𝐐𝑣𝑣 implies the cofactor matrix of the residuals. 80 

2.1 Test for outliers 

In Geodesy, procedures for the outlier detection were developed by Baarda (1968) and Pope (1976). If the observations come 

from the normal distribution, it is called good observations whereas the burdened observations that contains outlier originate 

from another distribution. Let 𝑙𝑖 be a burdened observation has 𝛿𝑙𝑖 an outlier, the followingnull hypothesis  

𝐻0:  𝛿𝑙𝑖 = 0  against     𝐻1:  𝛿𝑙𝑖 ≠ 0                  (5) 85 

is tested. If the observations are uncorrelated and the variance 𝜎0
2 is known, the normalized residuals can be written as 

𝜏𝑖,𝐵𝑤𝑖 =
|𝑣𝑖|

𝜎0√𝑞𝑣𝑖𝑣𝑖

                                                                   

  (6) 
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where 𝜏𝑖𝑤𝑖 is the test value and 𝑞𝑣𝑣 is the cofactor of the residual for i=1…n. This is known as Baarda’s method (i.e. data-

snooping test). A posteriori variance (𝑚0
2) is calculated in Pope’s method given by 90 

𝜏𝑖,𝑃𝜏𝑖 =
|𝑣𝑖|

𝑚0√𝑞𝑣𝑖𝑣𝑖

.                                                                        

  (7) 

where 𝜏𝑖 is the test value. The observation with the biggest normalized or studentized residual is tested in one loop of the 

iterations. Test for outliers areis used iteratively if the observations contain more than one outlier. The flagged observation is 

removed when 𝐻0 is rejected. The remaining observations are adjusted once more. Until no more outliers are found, this 95 

process is repeated. However the multiple outliers cause swamping or masking effects that make it impossible to distinguish 

the burdened observations from the good ones. In the following sections; the robust and the proposed methods will be 

demonstrated to prevent the smearing effect of LSE. 

2.2 Robust methods 

M-estimation (Huber, 1964) is a generalized form of maximum likelihood estimation. In this paper M-Estimation of Huber 100 

and Danish methods, commonly chosen to handle outliers in robust statistics, were used to compare the results of the proposed 

method.  

2.2.1 M-estimation 

Re-weighted LSE is applied iteratively to the non-linear normal equation of the M-estimation as follows:  

�̂�𝑟 = (𝐀𝐓�̅�𝑟𝐀)+𝐀𝐓�̅�𝑟𝐥                                                             (8) 105 

�̅�𝑟 = 𝐏𝐖(�̅�𝑟−1),                                                                                  (9) 

𝐖(�̅�0) = 𝐄                                                                                     (10) 

�̅�𝑟 = 𝐀�̂�𝑟 − 𝐥                                                                                   (11) 

𝐖(�̅�) = 𝑑𝑖𝑎𝑔( (𝑊(�̅�1),𝑊(�̅�2), … ,𝑊(�̅�𝑛)                                                             (12) 

where �̂�𝑘�̂�𝑟 equals the �̂� from the Eq. 2 for the first iteration, 𝐄 stands for a unit matrix. 𝑟 implies a number of iterations and 110 

is chosen as 5 in this paper. The weight function of Huber’s M-estimation is given as follows  

𝑊(�̅�𝑖
𝑟) = {

1 |�̅�𝑖
𝑟| ≤ 𝑐

𝑐

|�̅�𝑖
𝑟
|

|�̅�𝑖
𝑟| > 𝑐          ;      i=1…n                                              (13) 

and the weight function of the Danish method is given by 
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  𝑊(�̅�𝑖
𝑟) = {

1 |�̅�𝑖
𝑟| < 𝑐

exp (−
|�̅�𝑖

𝑟
|

𝑐
) |�̅�𝑖

𝑟| ≥ 𝑐
    ;      i=1…n                                         (14) 

where �̅�𝑖 is the residual and c is taken as 1.5𝜎0. After the diagonal elements of the �̅� weight matrix are determined, �̅�𝑟 and �̂�𝑟 115 

are recalculated for each iteration. The residual that is computed at the final iteration is detected as an outlier if it exceeds 

3𝜎.3𝜎0.  

3 Forward search of model error  

The Gauss-Markoff model (1) is now expanded by the u x 1 vector 𝛜 of additional unknown parameters also with the n x u 

design matrix 𝐌  120 

𝐥 + 𝐯 = [𝐀 𝐌] [
�̂�
�̂�
] ;     𝐂𝑙𝑙 = 𝜎2𝐏−𝟏 = 𝜎2𝐐𝑙𝑙                                   (15) 

where the variance 𝜎2 stands for the unit weight of the augmented model and the vector 𝛜 contains the outliers which are 

subtracted from the observations. If only the outlier ∆𝑗 is present in the observation 𝑙𝑗, then one should define 𝛜 = ∆𝑗 and 𝐌 =

𝐞𝑗 where 𝐞𝑗 = [0, … ,0,1,0, … ,0] for 𝑗 = 1…𝑛. The 𝑗th component of 𝐞𝑗 gets the value one. For the 𝑗th observation with 𝐀 =

[𝐀𝟏 , … , 𝐀𝒋, … ] 𝑻 the observation equation given as  125 

𝐥𝑗 + 𝐯𝑗 = 𝐀𝒋
𝑻�̂� + ∆̂𝑗                                                               (16) 

where 𝐀𝒋
𝑻 is the 𝑗th row vector of 𝐀 and for the remainder of the observations 𝐥𝑘 + 𝐯𝑘 = 𝐀𝒌

𝑻 �̂� (𝑘 = 1,2, … , 𝑛), 𝑘 ≠ 𝑗.  If the 

outliers exist in the observations 𝛜 and 𝐌 are rewritten as follows 

𝛜 = |∆̂𝑗 , ∆̂𝑗+1 … , ∆̂𝑡|
𝑇
 and 𝐌 = [𝐞𝑗 , 𝐞𝑗+1, … , 𝐞𝑡]

𝑇
.                                (17)  

The estimated of unknown parameters of the augmented model can, therefore, be expressed as follows (Koch, 1999): 130 

[
�̂�
�̂�
] = [

𝐀𝐓𝐏𝐀 𝐀𝐓𝐏𝐌
𝐌𝐓𝐏𝐀 𝐌𝐓𝐏𝐌

]
−𝟏

[
𝐀𝐓𝐏𝐥
𝐌𝐓𝐏𝐥

]                                               (18) 

where  

                             [
𝐀𝐓𝐏𝐀 𝐀𝐓𝐏𝐌
𝐌𝐓𝐏𝐀 𝐌𝐓𝐏𝐌

]
−𝟏

=                    

                            [
(𝐀𝐓𝐏𝐀)−𝟏(𝐄 + 𝐀𝐓𝐏𝐌𝐒𝐌𝐓𝐏𝐀(𝐀𝐓𝐏𝐀)−𝟏 −(𝐀𝐓𝐏𝐀)−𝟏𝐀𝐓𝐏𝐌𝐒

−𝐒𝐌𝐓𝐏𝐀(𝐀𝐓𝐏𝐀)−𝟏 𝐒
]             (19) 

𝐒 = [𝐌𝐓(𝐏 − 𝐏𝐀(𝐀𝐓𝐏𝐀)−𝟏𝐀𝐓𝐏)𝐌]−𝟏 = (𝐌𝐓𝐏𝐐𝑣𝑣𝐏𝐌)−𝟏                                    (20) 135 
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�̂� = 𝐒𝐌𝐓𝐏(𝐄 − 𝐀(𝐀𝐓𝐏𝐀)−𝟏𝐀𝐓𝐏)𝐥                                                  (21) 

The residuals are expressed for the Gauss-Markov model in Eq.(1) by 

𝐯 = 𝐀�̂� − 𝐥 = 𝐀(𝐀𝐓𝐏𝐀)+𝐀𝐓𝐏𝐥 − 𝐥 = (𝐄 − 𝐀(𝐀𝐓𝐏𝐀)+𝐀𝐓𝐏)(−𝐥)                (22) 

whose right-hand side can be replaced in Eq. 21 as follows  

�̂� = 𝐒𝐌𝐓𝐏(𝐄 − 𝐀(𝐀𝐓𝐏𝐀)−𝟏𝐀𝐓𝐏)𝐥 = −𝐒𝐌𝐓𝐏𝐯                                    (23) 140 

and considering Eq. 20 the following equation yields   

�̂� = −(𝐌𝐓𝐏𝐐𝑣𝑣𝐏𝐌)−𝟏𝐌𝐓𝐏𝐯.                                                    (24) 

3.1  Testing Procedure 

The alternative hypothesis, in the case presence of outliers, takes the form against the null hypothesis as follows: 

𝐻0: 𝐸{𝑙} = 𝐀�̂�                                                                (25a) 145 

𝐻𝐴: 𝐸{𝑙} = [𝐀 𝐌] [
�̂�
�̂�
].                                                          (25b) 

One should consider all possible combinations of potentially burdened observations for the correct specification of the 

alternative hypothesis (Teunissen 2006). All potential alternative hypotheses 𝐶𝑏
𝑛, where n is the number of observations, and 

b is the number of potential outliers, are considered in the detection step. Firstly, the observations are assumed to be unknown 

one by one in the model. The additional unknowns of the model �̂� are calculated by rewriting the relevant rows for each 150 

observation in the coefficient matrix iteratively. The design matrix can be rewritten as follows by including a dimension in the 

model as an unknown: 

𝐀
𝑪𝟏

𝒏
𝟏,𝟏 = [𝐀 𝐌] =

[
 
 
 
 
 
1 0 0 0 −1 0 0 ¦ 1
1 0 0 0 0 −1 0 ¦ 0
1 −1 0 0 0 0 0 ¦ 0
0 −1 0 0 0 1 0 ¦ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ¦ ⋮
0 0 0 0 −1 0 1 ¦ 0]

 
 
 
 
 

, 𝐀
𝑪𝟏

𝒏
𝟏,𝟐 =

[
 
 
 
 
 
1 0 0 0 −1 0 0 ¦ 0
1 0 0 0 0 −1 0 ¦ 1
1 −1 0 0 0 0 0 ¦ 0
0 −1 0 0 0 1 0 ¦ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ¦ ⋮
0 0 0 0 −1 0 1 ¦ 0]

 
 
 
 
 

                    (26) 

where 𝐀𝑏,𝑖 denotes the matrix of coefficients for b=1,..,f/2 and i=1,…,n.  

3.1.1  Calculation steps for model error 155 

The rows of the additional column vector are rewritten iteratively for each observation, and the corresponding one is modeled 

as an unknown using calculation steps given below. 

1. After calculating the cofactor matrix, the unknowns matrix is obtained: 
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   𝑸𝑥𝑥
b = (𝐀b𝑻

𝐏𝐀b)+                                (27) 

�̂�b = (𝐀b𝐓
𝐏𝐀b)

+

𝐀b𝐓
𝐏𝐥.               (28) 160 

2. To determine the observation that gives the smallest variance value, the step of calculating the residuals is given by 

𝐯b = 𝐀b�̂�b − 𝐥.              (29) 

3. The posteriori variance is calculated as  

(sb)2 = √𝐯b𝐓
𝐏𝐯b

𝒇b⁄ 𝐯b𝐓
𝐏𝐯b

𝒇b⁄  .          

 (30) 165 

4. Determining the observation with minimum variance  

j = min(sb)2             (31) 

5. After the relevant observation is determined, the test value is calculated as given by 

𝑇 = ∆̂𝑗/(s𝟎√𝒒𝒋𝒋s0√𝒒𝒋𝒋).                      (32) 

Thus, the unit-weighted posteriori variances for each additional unknown parameter are calculated given by 170 

�̂�2 =
𝐯𝐓𝐏𝐯

𝑛−𝑢𝑘
  ; 𝑖 = 1… 𝑛                                                   (33) 

where 𝑢𝑘 = 𝑢 + 1 represents the number of the unknowns calculated for the model given in Eq. 15. The number of elements 

in the set of the posterior variances calculated for each observation appears as 𝐶1
𝑛. After the acceptance or rejection of the 𝐻0 

hypothesis is evaluated in the identification phase mentioned below, the decision is made to rewrite the model, where the 

unknowns are expanded for the observations two by two for the 𝐶2
𝑛 combination. The smallest variance value 𝑚𝑖𝑛 {�̂�𝑖

2�̂�𝑖
2} 175 

belongs to which observation is identified and the unknown of the relevant observation compared with the critical value. When 

𝑚𝑖𝑛 {�̂�𝑖
2}{�̂�𝑖

2} = �̂�𝑘
2�̂�𝑘

2, the absolute value of ∆𝑘𝑇 is compared with the 𝑡-test. If |∆𝑘| ≥ 𝑡𝑓−1,1−𝛼|𝑇| ≥ 𝑡𝑓−1,1−𝛼, 𝐻0 is rejected 

and 𝑘th observation is flagged as an outlier. If the null hypothesis is accepted, the process ends. The model is expanded for 

another alternative hypothesis which assume two potential blunder in case 𝐻0 is rejected. The coefficients matrix is rewritten 

for each combination of 𝐶2
𝑛 given by 180 
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𝐀
𝑪𝟐

𝒏
𝟐,𝟏 =  

[
 
 
 
 
 
1 0 0 0 −1 0 0 ¦ 1 0
1 0 0 0 0 −1 0 ¦ 0 1
1 −1 0 0 0 0 0 ¦ 0 0
0 −1 0 0 0 1 0 ¦ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ¦ ⋮ ⋮
0 0 0 0 −1 0 1 ¦ 0 0]

 
 
 
 
 

, 𝐀
𝑪𝟐

𝒏
𝟐,𝟐 =  

[
 
 
 
 
 
1 0 0 0 −1 0 0 ¦ 1 0
1 0 0 0 0 −1 0 ¦ 0 0
1 −1 0 0 0 0 0 ¦ 0 1
0 −1 0 0 0 1 0 ¦ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ¦ ⋮ ⋮
0 0 0 0 −1 0 1 ¦ 0 0]

 
 
 
 
 

.   (34) 

An important point to be emphasized here is; that all combinations are taken into account independently of the previous result 

(i.e. regardless of the biased observation flagged in the previous step). For example; all potential 𝐶2
𝑛  combinations are 

considered, neglecting the previous result where the 𝑘th observation was flagged. The absolute valuetest values of model errors 

(∆𝑖 , ∆𝑗) for i=1…n and j=1…n and 𝑖 ≠ 𝑗, which have the smallest variance, are compared with the 𝑡𝑓−1,1−𝛼 threshold value 185 

where 𝛼 = 0.05. , whether the model errors of the observations that give the smallest variance value are higher than the critical 

value or not. If both are greater than the critical value, the relevant observations are flagged as outliers It is sought for 𝐶3
𝑛 

possible combinations, and the coefficient matrix rewritten as follows: 

𝐀
𝑪𝟑

𝒏
𝟑,𝟏 =  

[
 
 
 
 
 
1 0 0 0 −1 0 0 ¦ 1 0 0
1 0 0 0 0 −1 0 ¦ 0 1 0
1 −1 0 0 0 0 0 ¦ 0 0 1
0 −1 0 0 0 1 0 ¦ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ¦ ⋮ ⋮ ⋮
0 0 0 0 −1 0 1 ¦ 0 0 0]

 
 
 
 
 

,    𝐀
𝑪𝟑

𝒏
𝟑,𝟐 =  

[
 
 
 
 
 
1 0 0 0 −1 0 0 ¦ 1 0 0
1 0 0 0 0 −1 0 ¦ 0 1 0
1 −1 0 0 0 0 0 ¦ 0 0 0
0 −1 0 0 0 1 0 ¦ 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ¦ ⋮ ⋮ ⋮
0 0 0 0 −1 0 1 ¦ 0 0 0]

 
 
 
 
 

,.  (35) 

whether the model errors of the observations that give the smallest variance value are higher than the critical value or not. If 190 

all three values of unknowns exceed the critical value, they are flagged as outliers. This process is repeated for four or more 

combinations until all the combinations of potentially burdened observations have been considered. The �̂� vector of the 

observations corresponding to the minimum variance value calculated for each combination step is compared with the critical 

value. If at least one of the relevant unknowns of the observations does not exceed the critical value, the 𝐻0 hypothesis is 

accepted and the observations flagged in the previous step (i.e. the latest rejected 𝐻0) are approved as outliers. The flowchart 195 

of the FSME (Forward Search of Model Error) approachmodel is presented in Fig.1.   
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Figure 1: Flowchart of the forward search of model error 

4 Leveling network  200 

In statistics, there are different indicators to measure the reliability of tests and estimators. Hekimoglu and Koch (2000) have 

shownshowed that a finite-sample breakdown point determined the global reliability of an estimator and a test procedure were 

determined by finite-sample breakdown point. Using the power function of the global test, a capacity in deformation networks 

is explored as suggested by Niemeier (1985). Also, it has been shown that the MSR results of the two testing procedures (chi-

square and f-test) are identical to their respective test powers known beforehand (Aydın, 2012). MSR depends on the number 205 

of outliers, the magnitude of an outlier, the number of unknowns, the number of observations, and the type of outliers. Since 

it considers these different cases, MSR is more reliable, whereas the power of the test is the same for all disparate conditions. 
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Also, Erdogan et al. (2019) havehas proven that the MSR is the empirical estimation of the power of the test in outlier detection. 

In this study, therefore, MSR is used to specify the ability of the conventional, robust, and proposed approachesmodels. By 

this purpose three different leveling networks have been simulated. The random errors 휀𝑖 for i=1…n, were generated using a 210 

normal distribution N(0, 𝜎2) with a mean of zero and a variance of 𝜎2. Also, the good and biasedcontaminated observations 

were acquired by simulation technique as described in detail by Hekimoglu and Erenoglu (2007). Since the outliers are 

produced through simulation, it is easy to determine whether an observation is burdened before analyzing. The method is 

deemed successful if the observation recognized as an outlier matches the really burdened observation. The process is 

considered unsuccessful if it fails. When the simulated observation is chosen randomly, the successful rate indicates the global 215 

MSR and the local MSR can be computed for each particular observation in the leveling network for 10 000 samples. The 

same samples were subjected to conventional, robust, and novelproposed methods to compare their MSRs with different 

scenarios. This study simulated outliers randomly chosen from small and large magnitudes outliers (variously described gross 

and influential outliers) for three leveling networks. An influential outlier is a situation that, either independently or when 

combined with other biased observations, adversely affects the outcomes of an analysis. Even a single influential outlier may 220 

ruin the estimation parameters. A leveling network used for the simulation has 7 points and 15 observations as seen in Fig. 2. 

The precision is considered to be 𝜎𝑖
2 = 𝜎0/√𝑆  where 𝑆 is the length of the leveling line in km and  𝜎0 = 1𝑚𝑚/√1𝑘𝑚. MSRs 

for 10 000 samples were calculated for each method when there were different magnitudes and different numbers of outliers 

in the network. The small and large outliers were generated in the intervals of [3-6σ] and [6-12σ], respectively. 

 225 

 

Figure 2: Leveling network 

As Table I shows, even if the number of outlier changes, the MSRs of the proposed method increases significantly compared 

to the conventional and robust methods. In cases where there is no outlier (e.g. m=0), the results, in which the 𝐻0 hypothesis 
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is rejected, are also seen in Table 1. The proposed method generated type-2 error at the rate of 5%, where the significance level 230 

was at 0.05. 

 

Table 1: MSR of models (small outliers) 

m Baarda Pope 
Danish Huber 

FSME 
* ** * ** 

0 99.99  95.96  85.00 94.97 96.99  99.00 95.00 

1 56.71 36.70 69.76 72.44 63.41 52.93 88.78 

2 24.48 2.32 49.26 27.21 38.45 19.92 70.40 

3 7.86 0.04 29.58 6.32 20.25 10.36 46.15 

4 1.26 0.00 15.27 2.22 8.93 5.20 21.17 

 

Two cases which the variance is known and unknown were considered for Robustrobust methods as follows:  235 

* The Aa priori variance is known: ForHere, the robust techniques, c was taken to be 1.5. where c=1.5𝜎0 and 𝜎0=1. When the 

residual from the robust techniques exceeded the 3𝜎3𝜎0 threshold value, it was regarded as an outlier. In the case where the A 

priori variance is known, it can be seen in Table 1 that the MSRs of the robust methods are higher than the Baarda test with 𝛼 

considered by 0.001. Pope's test had a lower MSR than Baarda's didtest. However, the MSRs of the FSME (Forward Search 

of Model Error) are higher than the robust methods in both cases where the a priori variance is known and unknown. 240 

** The Aa priori variance is unknown: The standard deviation from the first iteration (LSE) was obtained for robust methods. 

So the c was taken from 1.5𝑚0. The 𝛼 was chosen as 0.05 for the Pope's test, which had a lower MSR than Baarda's. Except 

for the Danish* method, all other approachesmodels identified an excellent observation as an outlier with a risk ranging from 

0.01% to 5% if there was no outlier in the observations. The a posteriori variance negatively impacted the robust method's 

results, and the outlier's spoilt variance significantly contributed to the false detection. The a priori variance significantly 245 

impactsaffects how reliable the procedures are.  

Additionally, the a posteriori variance is easily influenced by outliers in the data set, which harms the abilities of methods that 

use the a posteriori variance. The a posteriori variance from LSE is typically utilized as a threshold value instead of the a priori 

variance if the a priori variance is unknown. Therefore, the MSRs of the robust techniques of the former case are higher than  

the latter. As a result of these findings, only the case where the variance is known, which is less affected by an outlier, is taken 250 

into account in the results shown in the tables (Tables 2-8) to compare with FSME hereafter. 

5 Results 

Extensive experiments have been done, for comparing the proposed method with Robust methods, such as Danish and Huber 

methods, besides the conventional outlier detection procedures (i.e. Baarda and Pope). The redundancies are an important 
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indicator to recognize the most vulnerable observations to bias (Durdag, 20202022). The redundancy matrix is calculated from 255 

R = H – E where 𝐇 =  𝐀(𝐀𝐓𝐏𝐀)−𝟏𝐀𝐓𝐏 is a hat matrix. The local MSRs have been calculated for the specific observations 

with the highest and lowest redundancy in the leveling network. Among the observations, those with the two largest 

redundancies are ℎ13 and ℎ9, and the three lowest are ℎ1, ℎ7 and ℎ8. As can be seen from the table below MSRs increase as 

the redundancy does. 

 260 

Table 2: Local MSRs (small outliers) 

ℎ𝑖 Baarda Pope Danish Huber FSME Redundancy 

ℎ1 45.47 27.78 54.16 45.84 84.14 0.50 

ℎ7 43.53 30.66 51.66 42.65 80.07 0.50 

ℎ8 41.76 27.48 55.02 39.46 80.28 0.48 

ℎ9 66.52 42.23 80.04 77.40 93.33 0.69 

ℎ13 68.08 45.02 81.97 80.47 94.69 0.71 

 

It is apparent from Table 2 that the highest MSRs for the biased observation ℎ1 amongst the conventional and robust methods 

is Danish 54%. In addition, the MSR of the proposed method is higher than the Danish by 30%. The highest MSR has been 

obtained by FSME as %94 for the observation with highest redundancy ℎ13. As the redundancy gets smaller, the difference in 265 

MSR between the proposed method and other methods increases. 

 

Table 3: MSR of models (large outliers) 

m Baarda Pope Danish Huber FSME 

1 99.50 90.97 91.46 94.69 99.92 

2 92.66 19.64 82.95 77.77 94.11 

3 74.57 0.27 68.44 51.76 78.22 

4 44.31 0.01 48.60 29.96 50.16 

 

As shown in Table 3, the highest MSRs are obtained by FSME in contrast with other techniques for different numbers of 270 

outliers. When Tables 1 and 3 are compared, the MSRs increase with the enlargement in the magnitude of outlier.  

The smearing effect of LSE, almost equivalent to its SC (Sensitivity Curve), behaves systematically as a function of the partial 

redundancy (Durdag, 20212022).  For this reason, the MSRs have been calculated for the pair of observations with the lowest 

and largest partial redundancy with small outliers in Table 4. The neighboring observations, especially the point that has three 

leveling lines, are one of the most vulnerable to bias (e.g. ℎ6, ℎ7 and ℎ8, ℎ7) in the leveling network (Fig. 2). The local MSRs 275 

are lower than the global MSRs, in case m=2 in Table 1, for ones with both lowest and highest redundancies as shown in Table 

4. 
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Table 4: The effect of large and low partial redundancies on MSRs for pair of observations  280 

𝑚 = 2 Baarda Pope Danish Huber FSME Redundancy 

ℎ6, ℎ7 0.67 4.45 20.95 27.39 30.47 0.21 

ℎ8, ℎ7 0.16 2.68 16.44 24.02 25.51 0.30 

ℎ11, ℎ15 12.73 3.22 28.28 28.54 54.37 0.15 

ℎ10, ℎ3 33.01 0.76 54.30 37.98 80.17  0.00 

ℎ5, ℎ11 28.20 0.88 41.77 29.23 75.80 0.00 

ℎ13, ℎ1 30.78 1.53 50.94 34.97 80.53 0.00 

 

The results, as shown in Table 4, indicate that the MSRs of observations  

ℎ6, ℎ7 with the highest partial redundancies increases compared to ℎ13, ℎ1 with the lowest ones by almost 30% for Baarda and 

Danish approachesmodels, and 50% for FSME approachmodel.  

 285 

Table 5: MSRs for gross and influential outliers 

Scenario m Baarda Pope Danish Huber FSME 

I  
1 99.69 99.74 90.87 92.24 100 

2 92.79 10.77 85.92 61.39 90.52 

II 
1 99.69 93.25 91.53 6.91 100 

2 92.70 2.94 90.05 2.10 90.41 

 

It is apparent from Table 5 that Baarda and Danish are the two most successful methods against gross and influential outliers  

among classical and robust methods. In the case of small outliers with gross or influential outliers, the robustness of the models 

has been tested. Different types of outliers have been generated to evaluate the MSRs of the models for various scenarios as 290 

follows: I. Gross outlier (50σ), II. Influential outliers (1000σ), III. A small outlier and a gross outlier, IV. A small outl ier and 

an influential outlier, V. Two small outliers and a gross outlier VI. Two small outliers and an influential outlier.  

 

Table 6: MSRs for small outliers with a gross or an influential outliers 

Scenario Baarda Pope Danish Huber FSME 

III 52.55 19.17 53.82 48.17 70.40 

IV 52.55 19.17 56.7 4.5 70.40 

V 20.17 0.58 24.85 22.87 63.34 

VI 20.17 0.58 31.66 2.62 63.36 
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 295 

Comparing Table 5 with Table 6, it was observed how MSRs of these two methods were affected in case of one or two small 

outliers. If a small outlier occur, the MSRs drop dramatically by about 40%. The MSRs drop to 20% with two small outliers 

in the network. Furthermore, this loss is around 35-40% for the proposed method. FSME, however, stands out as the 

approachmodel with an MSR of 60-70% in scenarios involving small outliers.  

 300 

  

2a)                                                                           2b) 

Figure 3: Leveling networks 2a and 2b with low redundancy 

 

When the redundancyredundancies of the observations decreases in the leveling network, difficulties arise in determining the 305 

outliers due to the swamping and masking effects. Two different leveling networks are considered to obtain the MSR of the 

methods in such cases. In the first of these, the MSR of the approachesmodels has been compared by excluding an observation 

of the network. As seen in Table 7, the MSR decreased by 30% in all approachesmodels when m=2 compared with the case 

m=1. Although the number of small outliers changes, the highest MSRs have been obtained by FSME for the leveling network 

2a. The network is further weakened, so only two lines of the corner point P.5 remain in the leveling network 2b.  310 

 

Table 7: MSR of models (small outliers) for leveling network 2a 

m Baarda Pope Danish Huber FSME 

1 49.55 24.15  63.31  53.72  83.78 

2 15.19 0.37  36.99  26.88  55.08 

3 2.38 0.00 16.69   10.97 23.54  

 

The results, as shown in Table 8, indicate that the FSME is the approachmodel with the highest MSR for m=1. When m>1 

compared with the case m=1 in Table 8, MSRs of the conventional and robust methods show more dramatic decrease than 315 
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FSME approachmodel. Comparing the estimated results for the network 2a and 2b reveals an approximate 15% drop in MSR 

values when m=1. MSRs decrease as the controllability of the observations in the network decreases. 

 

Table 8. MSR of models (small outliers) for leveling network 2b 

m Baarda Pope Danish Huber FSME 

1 36.59 10.13 52.93 37.82 68.32 

2 5.43 0.04 23.69 14.31 24.57 

3 0.13 0.00 8.07 4.90 3.89 

6 Conclusion 320 

Since geodetic observations are utilized in studies requiring high accuracy for determining deformations, detecting and 

identifying outliers become increasingly critical. Researchers commonly favor conventional and robust methods based on the 

additive bias model. However, this study contributes to our understanding by advancing the modeling of outliers as an 

additional unknown parameter within the Gauss-Markov model. The aim of this study was to evaluate the suitability of the 

FSME method within geodetic networks. To achieve this objective, the FSME method was applied to a leveling network.The 325 

present study was designed to determine the usability of the presented method in geodetic leveling networks. The design of 

the FSME (Forward Search of the Model Error) approach wasmethod is based on identifying the minimum variance from all 

possible combinations that assume observations as model errors in the Gauss-Markov model. This approachAlthough, only 

leveling network has been simulated, the functional and stochastic models of FSME methods can be applied to all type of 

geodetic networks. This model gives yields more reliable results by preventing the swamping and masking effect. The MSRs 330 

of the suggested method was obtained for various kinds of outliers in three different leveling network. The results of this 

investigation show that FSME is a more efficient approachmodel than the robust and conventional methods. Specifically Tthe 

proposed method enhanced the MSR by almost 40-45% compared to the Baarda and Danish (with the variance unknown case) 

method for multiple outliers (i.e., 1<m<4). Moreover, in scenarios where specific observations were absent at corner points in 

leveling network-1, the proposed method exhibited 20-30% greater success than alternative methods. In cases where the 335 

leveling network-1 does not have specific observations at the corner point, the proposed method was 20-30% more successful 

than the others. Despite the proposed model demonstrating higher MSR than other methods, the FSME method may encounter 

numerous combinations depending on the presence of observations and outliers. To address this challenge, particularly in real-

world applications, the MSS (Maximum Subsample Method) proposed by Neitzel (2004) and Ebeling (2014) offers a 

promising approach to reduce the number of combinations in outlier detection procedures. As demonstrated by Ebeling in 340 

deformation monitoring, MSS holds potential as a valuable tool to enhance the applicability of the proposed method, 

particularly within extensive geodetic networks. 
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