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Abstract. A novel split-explicit (SE) external mode solver for the Finite volumE Sea ice–Ocean Model (FESOM2) and its

sub-versions (example 2.5) is presented. It is compared with the semi-implicit (SI) solver currently used in FESOM2. The

split-explicit solver utilizes a dissipative asynchronous (forward–backward) time-stepping scheme. Its implementation with

Arbitrary Lagrangian-Eulerian vertical coordinates like Z-star (Z∗) and Z-tilde (Z̃) is explored. The comparisons are performed

through multiple test cases involving idealized and realistic global simulations. The SE solver demonstrates lower phase errors5

and dissipation, but maintain a simulated mean ocean state very similar to the SI solver. The SE solver is also shown to possess

better run-time performance and parallel scalability across all tested workloads.

1 Introduction

All version 2 iterations of the Finite volumE Sea ice-Ocean Model (FESOM2; Danilov et al. (2017)) as its predecessor FE-

SOM1.4, relies on an implicit algorithm for solution to the external mode. Its computational algorithm maintains elementary10

options of the Arbitrary Lagrangian Eulerian (ALE) vertical coordinate, such as z∗ or non-linear free surface, but needs mod-

ifications to incorporate more general options, beginning from z̃, where information on horizontal divergence in scalar cells

is used when taking decision about layer thicknesses on a new time level in the internal (baroclinic) mode. This work aims to

present the modified time-stepping algorithm and its extension through a split-explicit option for solution to the external mode.

Many modern ocean circulation models rely on the split-explicit method to solve for its external mode. The primary motivation15

behind such a choice is expectation of better parallel scalability in massively parallel applications. Indeed, as is well known,

the need for global communications to calculate certain global dot products, in most iterative solvers is a factor that potentially

slows down the overall performance (see e.g., Huang et al. (2016), Koldunov et al. (2019)). Although there are solutions mini-

mizing the number of global communications per iteration (see, e. g., Cools and Vanroose (2017)), as well as solutions where

global communications are avoided (e.g. Huang et al. (2016)), split-explicit methods are an obvious alternative. It is followed20

by GFDL Global Ocean and Sea Ice Model OM4 whose ocean component uses version 6 of the Modular Ocean Model MOM

(Adcroft et al. (2019)), Nucleus for European Modelling of the Ocean NEMO (Madec et al. (2019)), Regional Oceanic Mod-

eling System ROMS (Shchepetkin and McWilliams (2005)) and Model for Prediction Across Scales Ocean MPAS-O (Ringler

et al. (2013)), to mention just some widely used cases.
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A careful analysis in Shchepetkin and McWilliams (2005) discusses many details of the numerical implementation for a split-25

explicit external mode algorithm, and proposes the AB3-AM4 (Adams–Bashforth and Adams–Moulton) method which is at

present followed by several models (ROMS Shchepetkin and McWilliams (2005), CROCO Jullien et al. (2022), FESOM-C

Androsov et al. (2019) etc). However, recent analysis in Demange et al. (2019) suggests a simpler choice of dissipative forward–

backward time-stepping. The built-in dissipation in this case allows one to avoid filtering of the external mode solution (see

Shchepetkin and McWilliams (2005)). The simplest commonly used filter requires that an external mode be stepped across two30

baroclinic time steps to ensure temporal centering. This doubles the computational cost of the external mode solution. In the

forward-backward dissipative method by Demange et al. (2019) an external mode is stepped precisely across one baroclinic

time step and not beyond. This method was ultimately found to be the best choice to build a split-explicit scheme around for

our purposes. Demange et al. (2019) also showed how dissipation can be added to the AB3-AM4 method of Shchepetkin and

McWilliams (2005). We thus also explore dissipative AB3-AM4 for dissipation and phase errors.35

The rest of the paper is thus structured as follows. We begin with providing a breakdown for individual steps of Split-Explicit

schemes as adopted in FESOM2 (section 2). It is then followed by comparing the individual temporal interpolations that are

characteristic of these time-stepping schemes (section 3). We then perform various experiments comparing the new solver

against the existing one over different test cases (sections 4 and 5). Finally, we summarize the results and argue for the new

proposed scheme and its solver being a great choice for FESOM2 moving forward (section 7).40

2 Split-explicit asynchronous time-stepping

This section provides a detailed description of the proposed asynchronous time-stepping scheme for FESOM2 that incorpo-

rates a split-explicit barotropic solver. FESOM in its standard version relies on a semi-implicit barotropic solver which already

uses an asynchronous time-stepping (Danilov et al., 2017). The asynchronous time-stepping is a variant of forward-backward

time-stepping which is formulated by considering scalar and horizontal velocities as being displaced by half a time-step τ/2.45

The asynchronous time stepping is taken as the simplest option. Other time stepping options for the baroclinic part such as 3rd

order Runge-Kutta method are under consideration for future versions.

2.1 Momentum equation

The standard set of equations under the Boussinesq and standard approximations is solved. The equations are taken in a layer-50

integrated form, and the placement of the variables on the mesh is explained in Danilov et al. (2017). The layer-integrated

momentum equation in the flux form is,

∂tUk +∇h · (Uu)k + (wtut−wbub)k + fez ×Uk + h(∇hp + gρ∇hZ)k/ρ0 = (VhU+ (νv∂zu)t− (νv∂zu)b)k (1)

with Uk = ukhk the horizontal transports, u the horizontal velocity, hk the layer thickness Vh the horizontal viscosity operator,

νv the vertical viscosity coefficient, f the Coriolis parameter, ez a unit vertical vector, and ∇h = (∂x,∂y) with respect to a55
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constant model layer. Here k is the layer index, starting from 1 in the surface layer and increasing downward to the available

number of levels with maximum value Nl. We ignore the momentum source due to the added water W at the surface. The

term with the pressure gradient, gρ∇hZk, accounts for the fact that layers deviate from geopotential surfaces. The quantity

Zk appearing in this term is the z-coordinate of the midplane of the layer with the thickness hk. The equation for elevation is

written as,60

∂η +∇h ·U = W (2)

where U =
∑

k U, and equations for layer thicknesses hk and tracers will be presented further. Equations further in this

section are for a particular layer k and the index k will suppressed. In the implementation described here, the discrete scalar

state variables (elevation η, temperature T , salinity S and layer thicknesses h) are defined at full time steps denoted by the

upper index n, whereas 3D velocities v = (u,w) and horizontal transports U are defined at half-integer time steps (n+1/2, . . .).65

Since thicknesses and horizontal velocities are not synchronous, layer transports U are chosen as prognostic variables. By using

them we avoid the question on hn+1/2 up to the moment of barotropic correction. Note that the flux form of the momentum

advection is used in equation (1). Adjustments needed for other forms are straightforward and will not be discussed here.

First, we estimate the transport Un+1/2,∗ assuming that hn,Tn,Sn, ηn, un−1/2, Un−1/2 and wn−1/2 are known.

Un+1/2,∗−Un−1/2 = τ [(RA
U +RC

U)n + (RP
U)n + (RhV

U )n−1/2] (3)70

The terms Ri
U with i = A,C,P,hV indicate advective, Coriolis, pressure gradient, and horizontal viscosity components esti-

mated at time step n for i = A,C,P and n− 1/2 for the horizontal viscosity. The momentum advection term is,

RA
U =−∇(uU)−wu|tb

where |tb implies that the difference between the top and bottom interfaces of layer k is taken. The Coriolis term is,

RC
U =−fez ×U

Fields entering these advection and Coriolis terms are known at n−1/2 and the second or third-order Adams-Bashforth method

is used to get an estimate of RA
U and RC

U at n. For any quantity f , fAB = (3/2+β)fn−(1/2+2β)fn−1+βfn−2. For classical

third-order interpolation (AB3), β is 5/12, and β = 0 gives the second-order result (AB2). In the pressure gradient force,

RP
U =−h∇zp/ρ0 =−h∇hp/ρ0−hg∇hZ

where ∇z means differencing at constant z. Since pressure and thicknesses are known at the time level n, no interpolation

is needed. This is one of the advantages of asynchronous time-stepping. Depending on how much layer thicknesses are per-

turbed, other algorithms than written above can be applied to minimize pressure gradient errors. As a default, the approach

by Shchepetkin and McWilliams (2003) is used in FESOM. The pressure contains contributions from η, density perturbations

in the fluid column, as well as contributions from atmospheric and ice loading. The contribution from horizontal viscosity is

either of harmonic or biharmonic type. For simplicity, we write it here as,

RhV
U =∇h · (hAh∇hu)
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The implicit contribution from vertical viscosity is added as,

Un+1/2,∗∗−Un+1/2,∗ = τRvV
U = τ(Av∂zun+1/2,∗∗)|tb (4)

The latter equation is rewritten for increments ∆u = un+1/2,∗∗−un+1/2,∗ = (Un+1/2,∗∗−Un+1/2,∗)/h∗ and solved for ∆u.

At this stage of the scheme, a reliable estimate for h∗ at n+1/2 is not available but, since Av is a parameterization and this step

is first-order in time, we use h∗ = hn. When ∆u is obtained, we update τRvV
U = ∆uhn and Un+1/2,∗∗ = Un+1/2,∗+∆uhn.75

In preparation for the barotropic time step, the vertically integrated forcing from baroclinic dynamics is computed as,

R
n

=
∑

k

[(RA
U)n + (R̃P

U)n + (RhV
U )n−1/2 + (RvV

U )n+1/2]k (5)

Here, R̃P
U represents the pressure gradient force excluding the contribution of η as it will be accounted for explicitly in the

barotropic equation. The Coriolis term is also omitted for the same reason. The vertically summed contribution from vertical

viscosity is in reality the difference in surface stress and bottom stress. The bottom stress in FESOM is commonly computed80

as Cd|un−1/2
b |un−1/2

b , where ub is the bottom velocity.

2.2 Barotropic time-stepping

Next is the barotropic step where η and U =
∑

k Uk are estimated by solving,

∂tU+ fez ×U+ gH∇η = R, ∂tη +∇hU+ W = 0 (6)

Here H = H0 + η, W is the freshwater flux (positive out of ocean), and R the is the forcing from the 3D part defined above.85

These equations are solved from time step n to n + 1 as detailed below. Note that the baroclinic forcing term is taken at time

level n. Centering it at n + 1/2 would have involved a lot of additional computations and is not implemented at present. This

set of equations present a minimum model. It is sufficient for basins with simple geometry. In realistic applications it has been

found that an additional viscous regularization term is needed to suppress oscillations in narrow straits with irregular coastline.

In such cases we add,90

R
hV

=∇h · (HAh∇hU/H) (7)

to the right hand side of momentum equation (6), and subtract the initial value of this term from R on each baroclinic time

step. Here Ah is the viscosity coefficient tuned experimentally to ensure stability in narrow shallow regions. We express it as

a combination of some background viscosity and a flow-dependent part which is proportional to the differences of barotropic

velocity across cell edges. The mentioned subtraction serves to minimize the inconsistency created by adding the new term.95

Note that in coastal applications, one generally keeps bottom drag acting on the barotropic flow as well as barotropic momentum

advection (Klingbeil et al., 2018). We treat them as slow processes here, but modifications might be needed for possible future

applications.
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As a default time-stepping for the barotropic part the forward-backward dissipative time-stepping by Demange et al. (2019)

is used. It is abbreviated as SE (for split-explicit) further.100

U
n+(m+1)/M

= U
n+m/M − (τ/M)[(1/2)fez × (U

n+(m+1)/M
+U

n+m/M
)− gHn+m/M∇hηn+m/M −R

n
]

ηn+(m+1)/M = ηn+m/M − (τ/M)∇h ·
[
(1 + θ)U

n+(m+1)/M − θU
n+m/M

]
(8)

Here M is the total number of barotropic substeps per the baroclinic step τ , and θ controls dissipation. The value of θ = 0.14 is

mentioned by Demange et al. (2019) as being sufficient. We also used another version that is based on the AB3-AM4 (Adams-

Bashforth – Adams-Moulton) approach of Shchepetkin and McWilliams (2005) with dissipative corrections as proposed in

Demange et al. (2019) (abbreviated as SESM further). The specific versions of AB3 and AM4 used are,105

fAB3 = (3/2 +β)fm− (1/2 +2β)fm−1 + βfm−2

fAM4 = δfm+1 + (1− δ− γ− ζ)fm + γfm−1 + ζfm−2 (9)

with appropriate values of β,δ,γ,ζ discussed later. The time-stepping takes the form,

ηn+(m+1)/M − ηn+m/M = (τ/M)[−∇h ·U
AB3−W ]

U
n+(m+1)/M −U

n+m/M
= (τ/M)[−fez ×U

AB3− gHAM4∇hηAM4 +R
n
] (10)

2.3 Reconcilation of barotropic and baroclinic mode

Note that the use of dissipative time-stepping in (8) or (10) allows one to abandon filtering of η and U at the end of the110

barotropic step that would be needed if non-dissipative forward-backward (θ = 0) or the original AB3-AM4 schemes were

applied instead (see Shchepetkin and McWilliams (2005)). The most elementary form of filtering involves integration to n +

2 with subsequent averaging to n + 1, which would double the computational expenses for the barotropic solver. To be in

agreement with the traditional notation, we write ⟨η⟩n+1 = ηn+m/M and ⟨U⟩n+1 = U
n+m/M

for m = M (there would be a

difference if filtering were needed). By summing the elevation equations over M substeps, one gets for the forward-backward115

dissipative case (8),

⟨η⟩n+1−⟨η⟩n =−τ∇h · ⟨⟨U⟩⟩n+1/2

(11)

where,

⟨⟨U⟩⟩n+1/2 =
1
M

M∑

m=1

U
n+m/M

+
θ

M

(
⟨Un+1⟩− ⟨Un⟩

)
(12)

While η is consistently initialized with ⟨η⟩n for m = 0, there is no good answer for U. One can use the last available ⟨U⟩n120

but, because 3D and barotropic velocities are integrated using different methods, this may lead to divergences with time unless

some synchronization with 3D velocities is foreseen. We return to this topic below. On time level n + 1 the total thickness
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becomes Hn+1 = H0 + ⟨η⟩n+1. The horizontal transport is finalized by making the vertically integrated transport equal to the

value obtained from the barotropic solution.

Un+1/2
k = Un+1/2,∗∗

k − h
n+1/2
k∑

k h
n+1/2
k

(
∑

k

Un+1/2,∗∗
k −⟨⟨U⟩⟩n+1/2) (13)125

2.4 Finalization of baroclinic mode

The estimate of the thickness at n + 1/2 depends on the option of the ALE vertical coordinate and will be detailed further.

In treating the scalar part we are relying on the V-ALE approach in the terminology of Griffies et al. (2020). It is assumed

that there is some external procedure to predict hn+1
k = htarget

k constrained by the condition
∑

k hn+1
k = H0 + ⟨η⟩n+1. In the

simplest case, this is the z∗ vertical coordinate with hn+1
k = h0

k(H/H0). Here, as well as in other cases when the decision on130

htarget = hn+1 does not depend on layer horizontal divergences, hn+1/2 in (13) is half sum of n and n + 1 values. In more

complicated cases, such as z̃ (Leclair and Madec (2011), Petersen et al. (2015), Megann et al. (2022)), the horizontal divergence

in layers ∇ ·Un+1/2
k is needed to predict hn+1

k , and a reliable estimate of hn+1/2 is not immediately available. Enforcing that

hn+1
k is smooth and positive and also satisfies the barotropic constraint

∑
k hn+1

k = H0 + ⟨η⟩n+1 could be a non-trivial task

and may require a special procedure (see Hallberg and Adcroft (2009) and Megann et al. (2022)) which simultaneously adjusts135

Un+1/2
k and hn+1. The description of the current implementation of z̃ in FESOM is presented in Appendix B. The potential

presence of such complications is the reason why the decision on hn+1 is delayed to the end and the discretization of momentum

equation is performed in terms of U. Once the new thickness is determined, the thickness equation,

hn+1
k = hn

k − τ [∇h ·U+ w|tb]k − τWδk1 (14)

is used to estimate the diasurface velocity w. Tracers are then advanced first taking into account advection and horizontal140

(isoneutral) diffusion before being trimmed by implicit vertical diffusion.

(hn+1T ∗)k = (hT )n
k − τ [∇(UT ) + (wT )|tb]k − τWTW δk1 + (∇(hK)∇T )n

k

(hn+1Tn+1)k = (hn+1T ∗)k + τ(Kv∂zT
n+1)k|tb (15)

Here TW it the value of scalar T in freshwater flux. In this procedure, if Tn = const, the second equation will return this

constant in T ∗. The two equations above could have being combined into a single one. We treat them separately to avoid loss

of some significant digits (and ensuing errors in constancy preservation). Before solving the last equation in (15), it is rewritten145

for the increment ∆T = Tn+1−T ∗.

While Un+1/2
k trimmed as given by (13) ensures by virtue of the first equation in (15) that

∑
k hn+1

k = h0 + ⟨η⟩n+1 as

required for perfect volume conservation, its vertical sum
∑

k Un+1/2
k = ⟨⟨U⟩⟩n+1/2 deviates from the barotropic transport

at time level n + 1/2 (i.e for m = M/2). We tried to compensate for this difference, by saving U
n+m/M

for m = M/2 in

the barotropic step and re-trimming the 3D transports once tracers are advanced, but this has been found to be redundant in150

practice. The number of barotropic substeps M depends on the quality of meshes with varying resolution. It can always be

estimated based on mesh cell size and local depth. The presence of particularly small cells on deep water may limit the scheme
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globally even if the rest of the mesh is regular. Such limitations are absent in the present version of FESOM that is based on

an implicit barotropic solver. Appendix A summarizes the changes needed to extend it (Danilov et al. (2017)) to more general

ALE options.155

3 Temporal Interpolations for Barotropic Solver

This section provides a detailed numerical analysis of the new external mode solver when using SE, or SESM time-stepping

against the current Semi-Implicit solver (Danilov et al. (2017)) of FESOM2 which uses a first-order implicit time-stepping in

global simulations. Although parts of these implementations are already known, we repeat them here for clarity and compari-

son. A simple prototype system relevant for this analysis is,160

∂tũ =−cp∂xη̃

∂tη̃ =−cp∂xũ (16)

where cp = (gH0)1/2 is the phase velocity, ũ the dimensionless vertically averaged velocity (ū/cp), and η̃ the dimensionless

surface elevation (η/H). It will be assumed that η̃, ũ∼ eikx, where k is the wave number.

3.1 Characteristic Matrix Forms

3.1.1 Semi-implicit method165

We begin with the Semi-Implicit method used in current FESOM2 Danilov et al. (2017) which was adapted from FESOM 1.4

Wang et al. (2014) and can be written as,

η̃n+1 = η̃n− ic
[
αũn+1 + (1−α)ũn

]

ũn+1 = ũn− ic
[
θη̃n+1 + (1− θ)η̃n

]
(17)

Here, 1/2≤ θ,α≤ 1 are control parameters and c = cpkτ is the Courant number. The characteristic matrix form for this

scheme is,170




η̃n+1

ũn+1



 =

1
αθc2 + 1


αθc2−αc2 + 1 −ic

−ic αθc2− θc2 + 1








η̃n

ũn



 (18)

3.1.2 Explicit method of Shchepetkin and McWilliams (2005)

For the explicit method of Shchepetkin and McWilliams (2005) based on an advanced forward-backward method combining

AB3 and AM4 steps, it can be expressed as,

η̃n+1 = η̃n− ic
[
(3/2 +β) ũn− (1/2 +2β) ũn−1 + βũn−2

]

ũn+1 = ũn− ic
[
δη̃n+1 + (1− δ− γ− ζ)η̃n + γη̃n−1 + ζη̃n−2

]
(19)175
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Here too, β,δ,γ,ζ are the control parameters. Its characteristic matrix form is then,




η̃n+1

η̃n

η̃n−1

ũn+1

ũn

ũn−1





=




1 0 0 −ic(3/2 +β) ic(1/2 +2β) −icβ

1 0 0 0 0 0

0 1 0 0 0 0

−ic(1− γ− ζ) −icγ −icζ 1− c2δ(3/2 +β) c2δ(1/2 +2β) −c2δβ

0 0 0 1 0 0

0 0 0 0 1 0








η̃n

η̃n−1

η̃n−2

ũn

ũn−1

ũn−2





(20)

3.1.3 Split-explicit method by Demange et al. (2019)

Finally, the SE method by Demange et al. (2019) can be expressed as,

η̃n+1 = η̃n− ic
[
(1 + θ)ũn+1− θũn

]

ũn+1 = ũn− icη̃n

(21)180

with θ being the control parameter. Its characteristic matrix form is,




η̃n+1

ũn+1



 =


1− c2(1 + θ) −ic

−ic 1








η̃n

ũn



 (22)

3.2 Dissipation and Phase Analysis

Depending on the control parameters the schemes above may lead to different dissipation and phase errors. Let the characteristic

matrices of equations (18), (20) and (22) be denoted by Mc. For I being an identity matrix of same rank as Mc and λ an185

eigenvalue of Mc, the characteristic polynomials for each scheme, given by det(Mc−λI) are,

P (λ)i=SE =−c2θi + 1+ (c2θi + c2− 2)λ + λ2

P (λ)i=SI =
αic

2θi−αic
2− c2θi + c2 + 1

αic2θi + 1
+

(−2αic
2θi + αic

2 + c2θi− 2
αic2θi + 1

)
λ + λ2

P (λ)i=SESM = βiζic
2 + c2

(
βi(γi− 2ζi)−

ζi

2

)
λ +−c2

(
(δi + 3γi− 1)βi +

γi

2
− 3ζi

2

)
λ2

+
c2

2
(βi(6δi + 6γi + 4ζi− 4) + δi + 4γi + ζi− 1)λ3 +

(
1 +

c2

2
(βi(−6δi− 2γi− 2ζi + 2)− 4δi− 3γi− 3ζi + 3)

)
λ4

+
(
−2 +

c2δi

2
(2βi + 3)

)
λ5 + λ6

(23)

Here, the index i serves to distinguish between SE, SI, and SESM schemes and their control parameters. The equations were

obtained using the symbolic solver of Maple. If λ is an eigenvalue, then P (λ)i = 0. Given that the physical eigenvalue should

closely resemble the continuous solution λ = eic, we can expand it for small c as,190

λ = 1 + mc + nc2 + qc3 + O(c4) (24)

8

https://doi.org/10.5194/gmd-2023-208
Preprint. Discussion started: 10 January 2024
c© Author(s) 2024. CC BY 4.0 License.



If the schemes are to be at least second-order dissipative with respect to c (see Demange et al. (2019), λ must also obey the

relationship,

|λ|= 1−χc2 + O(c4) (25)

where χ is a parameter characterizing dissipation. Similarly, the phase tan−1(ℑ(λp)/ℜ(λp)) must also closely resemble the195

ideal phase c. The two conditions (24) and (25) then tie all control parameters together. From the requirement to remain

formally second-order dissipative, one gets the conditions,

SE(θ), 2χ = θ

SI(θ,α), 2χ = θ + α− 1

SESM(δ,γ,ζ), 2χ = δ− γ− 2ζ − 1
2 (26)

with the requirement that m = i. Note that here i =
√
−1 and that each equation in (26) admits its own set of parameters, i.e.,

θSI ̸= θSE , etc. We also reject the possibility of m =−i as it immediately gives the wrong phase.200

SE(θ), n =−1
2
(1 + θ), q =− i

8
(1 + θ)2

SI(θ,α), n =−1
2
(α + θ), q =− i

8
(α2 + θ2 + 6αθ)

SESM(δ,γ,ζ,β), n =−1
2

(
1
2

+ δ− γ− 2ζ

)
, q =− i

8

(
1
4
[ζ(16γ− 16δ + 24)+ γ(−8δ + 4)− 7] + 4ζ2 + γ2 + δ2 + 3δ + 4β

)

(27)

Note that here too like (26) the parameters will be different for each scheme, i.e., θSI ̸= θSE , etc. At this point, only the SE

scheme is fully defined. The other schemes still have free parameters in need for optimisation - α for SI and β,γ,ζ for the

SESM scheme. As in Shchepetkin and McWilliams (2005), β can be set to 0.281105 for the largest stability limit. Given that

dissipation is now the same (up to the second-order), one can seek to optimise for phase errors. If third-order phase accuracy205

is desirable, then for the SI scheme, it is only possible if α = χ + 1/2± (1/6)
√

6 +72χ2. For the SESM scheme, this gives

γ =−χ2−3ζ+1/3−β. This still leaves ζ open for optimization. It can either be obtained through further optimizing for phase

accuracy or stability limit. If optimizing for stability limit, the limit can be pushed much higher like Demange et al. (2019) if

one relaxes the third-order phase accuracy constraint. The results of both optimisations are as follows,

With O(c3) phase accuracy, ζ ≈−0.123c + 0.223− 0.169β− 0.169χ2, γ = 1/3−β− 3ζ −χ2

Without O(c3) phase accuracy, ζ ≈ 0.010− 0.135χ, γ = 0.083− 0.514χ (28)210

Here, β,δ retain their earlier description. To demonstrate the benefit in terms of phase accuracy for these split-explicit schemes,

we analyse their net amplitude and phase errors per baroclinic time step assuming that it consists of M = 30 barotropic steps

in Figure 1, together with the errors of the SI scheme, against the baroclinic CFL number c = cpτk, where τ is the baroclinic
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time step. This CFL number can take high values at the largest k→ π/∆x, where ∆x is the mesh size. The barotropic CFL

is M times smaller and stays within the stability bounds of the explicit schemes. Figure 1 shows how all tested schemes in215

reality are able to maintain low dissipation even for high baroclinic CFLs. The choice is then made based on phase accuracy

which is very different between the implicit and explicit schemes. It is seen that both SE, and SESM schemes have orders of

magnitude lower phase error compared to the SI scheme. For high c, the SI scheme has to be used with parameters α and θ

ensuring strong damping of wavenumbers with large dispersive errors. Also, between the SESM and SE schemes, the SESM

seems to be the most accurate, even for same dissipation. To conclude the tests on phase accuracy, we report that irrespective of220

dissipation level, the split-explicit schemes will always by design provide orders of magnitude better phase accuracy compared

to the semi-implicit implementation, specially in the range of high CFL numbers i.e., smaller wavelength.

Figure 1. Comparison of amplitude and phase error for different schemes using same dissipation χ = 0.07 and maintaining at least second

order accuracy, i.e., ζ ≈ 0.010− 0.135χ,γ = 0.083− 0.514χ for the SESM scheme as per equation 28. Additionally, the SI scheme is also

plotted using its recommended configuration θ,α = 1 which successfully damps high phase error solutions corresponding to large CFLs.

4 Numerical Experiments

This section compares measurements from the new external mode solver to the existing one of FESOM2. The tests are done

for both, an idealized case, and a realisitic global setup. The idealized case is expected to highlight threshold performance of225

the new solver compared to the global case where its impact will also be governed by mesh non-uniformity, the presence of

external forcing, complicated boundaries and bottom topography. The global case will however, crucially assess the practicality

of this new solver.

4.1 Idealized channel

In section 3 (see Figure 1), the primary characteristics of the new schemes were already explored. In this idealized case, the230

solvers are tested for correct representation of the system dynamics. We use a zonally reentrant channel described in Soufflet
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et al. (2016). It is 2000 km long (North-South), 500 km wide (East-West) and 4 km deep. We test 10 km meshes of different

types (triangular, quadrilateral) and unequally spaced vertical levels (40, 60). The baroclinic time step is τ = 720 s, and surface

gravity wave speed cp = (gH0)1/2 = 200 m/s, so that a mesh cell is crossed by waves in less than 50 s. We take M = 30 for

the Split-Explicit solver, which means τ/M = 24 s. The initial density stratification due to temperature corresponds to a zonal235

jet. The zonally mean stratification and velocity are relaxed to their initial distributions. Some initial temperature perturbation

leads to an onset of baroclinic instability which is maintained through the relaxation of the zonal mean profiles. Simulations

are run for 20 years, and the last 13 years are used to compute means. Figure 2 shows that mean depth profiles for this case

are not affected by implementation of the new solver regardless of mesh configuration i.e. different mesh structure and number

of vertical layers. We can guess that this is related to the predominantly baroclinic character of the flow, so that the lower240

dissipation in the new solver is not necessarily seen. The slight visible differences cannot be attributed to the new solver as

the channel undergoes large fluctuations throughout its run-time which can be verified by comparing time-evolution plots, or

temperature gradients (not shown here).

Figure 2. Comparison of area-averaged mean depth profiles for eddy kinetic energy (m2/s2), root mean square vertical velocity (m/s) and

buoyancy flux (m2/s3), with number of barotropic subcyles M = 30. Here ∆, [] means triangular and quadrilateral mesh respectively. The

meshes used have a fixed horizontal resolution of 10 km but varying vertical resolution (40 or 60 layers).
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4.2 Realistic global ocean245

For this case, we now test a more complicated case of a global ocean-sea ice simulation similar to the one used by Scholz

et al. (2022). We use the standard coarse mesh of FESOM2 with a minimum resolution of 25 km north of 250 N and a coarse

resolution of around 1.50 in the interior of the ocean, with further moderate refinements in the equatorial belt and around

Antarctica. The mesh configuration consists of 47 vertical levels with a minimum layer thickness of 10 m near the surface,

up to 250 m near the abyssal depth. The baroclinic time step is τ = 2700 s and we take M = 50 for the split-explicit solver,250

which means that τ/M = 54 s. The simulations were forced with the JRA-55do v1.4.0 reanalyses data covering the period

from 1958-2019. To show the differences in the simulations carried out with the SI and the SE barotropic solvers we only show

mean elevation, surface temperature and kinetic energy over the last twenty years (1999-2019) of the simulation period. Due to

high similarity of SE and SESM results (as seen earlier in Figure 2 for the idealized case), only SE results are shown in Fig. 3.

The differences in sea surface elevation are found to be rather small. The pattern of difference in the sea surface temperature is255

most likely associated with transient variability which is different in two setups. The eddy kinetic energy increases everywhere

outside the equatorial belt. This increase could be associated with the reduction in overall dissipation due to use of the SE

barotropic solver and the observation that the barotropic kinetic energy contributes most to the overall kinetic energy budget at

mid and high latitudes, as shown in Aiki et al. (2011).

In summary, no significant difference in terms of time-averaged measurements from the new SE external mode solver was260

observed. For both the idealized, and the global test cases, the new SE external mode solver maintained mean dynamics close

to those reported by the current SI solver.

5 Run-time performance and Parallel Scalability

This section compares parallel scalability of the new external mode solver to the existing one of FESOM2. Like in section 4,

we again utilize the two test cases - idealized, and global, described earlier. Additionally, the two cases are also executed on265

different compute clusters providing for even better estimation of their general performance. Again, because of high similarities

between SE and SESM parallel scalability in comparison to SI, the plots of SESM are omitted. In reality, SESM was found to

be slightly less scalable than SE. The simulations are run for many model steps, and the mean total time per task the model

spends for the barotropic solver is measured.

For the idealized case, the simulations were performed using the Ollie HPC of Alfred Wegener Institute equipped with Intel270

Xeon E5-2697 v4 (Broadwell) CPUs (308 nodes with 36 cores). To ensure sufficient amount of workload, we used a fine 2 km

triangular mesh with 60 vertical layers on the same channel setup as in Soufflet et al. (2016). The mesh contains approximately

2.5×105 vertices, so that the setup is expected to scale almost linearly to about 103 cores according to our previous experience

(Koldunov et al., 2019). The baroclinic time step has been reduced to τ = 144 s, and M was left without changes. For this

case, the simulations were run for 600 steps, i.e., 1 simulated day. As seen from figure 4 (left panel), the new external mode275

solver (SE) scales significantly better and is faster than the current SI solver of FESOM across all workloads. In reality, the

relative speed of SE versus SI solver will depend on M and on the efficiency of the preconditioner in SI, and may change.
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Figure 3. Comparison of biases in sea surface heights (m), temperatures (0C), diffusivities (m2/s), and eddy kinetic energies (m2/s2) using

M = 50 barotropic subcyles. The SE solver uses dissipation parameter θ = 0.14, and depth dependent fields are at 100 m.

Since the barotropic solver takes only a part of total time step (10−20%), the improved scalability of the SE solver contributes

noticeably to to the reduction of total computing time only after approximately 400 surface vertices/core, as shown in the left

panel of Figure 4. Its impact becomes significant only when parallelized beyond this limit.280

For the global case, the measurements were performed using the Albedo HPC of Alfred Wegener Institute with 2xAMD Epyc-

7702 CPUs (240 nodes with 128 cores). It uses the same setup and mesh from the global case of section 4. The mesh contains

approximately 1.27× 105 vertices. The baroclinic time step, and M has been left unchanged to τ = 2700 s, and M = 50

respectively. Here, simulation were run for 11680 steps, i.e., 1 simulated model year. Similar to the findings from the idealized

channel case, Figure 4 (right panel) shows the new SE solver scaling similarly faster and further also for the global case. We285
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again observe a perceivable difference across all workloads. Also like the idealized case these performance improvements only

become significant for highly parallelized workflows, i.e. less than 400 vertices/core.

In summary, the performance of the SE solver shows visible improvement in parallelization and computing time over the SI

Solver across all tested workloads. The behaviour remained same over different test cases (idealized and global), and different

compute resources (Ollie HPC, Albedo HPC). For less parallel workloads, the benefits are marginal but they become significant290

for highly parallelized workflows, i.e. approximately when vertices/core less than 400.

Figure 4. Scaling results for the idealized test case with 2 km uniform mesh on Ollie HPC and the global test case with 60-25 km unstructured

mesh on Albedo HPC clusters. The black line indicates linear scaling and the coloured lines give the mean computing time over the parallel

partitions for the solver part of the code. Here, the wall-clock time measured corresponds to a model run-time per baroclinic step.

6 Data and Code Availability

A preliminary implementation of the new split-explicit external mode solver within sea-ice model FESOM2 as proposed in

this paper including the test cases can be found in the public repository, https://zenodo.org/doi/10.5281/zenodo.10040943.

7 Conclusions295

The new split-explicit external mode solver proposed in this paper is more phase accurate, faster, and scalable than the SI solver

used in FESOM (Danilov et al. (2017)). The dissipative asynchronous time-stepping scheme of Demange et al. (2019) is able to

deliver phase accuracy orders of magnitude higher than the first order SI scheme used before. It also provides comparable phase

accuracy and dissipation to the dissipatively modified AB3-AM4 scheme of Shchepetkin and McWilliams (2005) (SESM). No

filtering of fast dynamics is required due to the dissipative character of SE solver. It is easier to implement compared to the300

SESM, and leads to very similar results as the SESM in practice. The new SE solver is a part of the adjusted time stepping of

FESOM that facilitates the use of Arbitrary-Lagrangian-Eulerian vertical coordinate. As a demonstration, we extended Z∗ in
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FESOM2 to the Z̃ vertical coordinate in the development version of FESOM2. The implementation of Z̃ is outlined in appendix

B, but still needs to be tested in realistic simulations. Across different test cases using different mesh geometries and computing

resources the new solver is shown to represent mean dynamics, similar to the existing solver with no significant difference.305

In the case of run-time performance and parallel scalability, it is shown to improve across all workloads. The improvements

are shown to be specially significant for highly parallelized workloads.Kang et al. (2021) presents a semi-implicit solver for

MPAS showing in contrast to the present work, that it is more computationally efficient than their split-explicit solver. While a

detailed answer to the question why an opposite conclusion is reached needs a separate study, here we can only mention that

by following Demange et al. (2019) we perform less external time steps per baroclinic time step than in MPAS (Ringler et al.310

(2013)).

We note that on unstructured meshes, a semi-implicit method can be more forgiving than a split-explicit one to the size of

mesh elements. A small element on deep water will hardly affect the solution of the semi-implicit solver, but may require an

increased number of barotropic substeps in a split-explicit method. This is why the semi-implicit option will be maintained in

FESOM alongside the novel split-explicit option. It will however, be modified to allow more general ALE options as described315

in Appendix A. To conclude, this work suggest the new Split-Explicit external mode solver to be a good alternative to the

existing solver of FESOM2.
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Appendix A: Adaptation of Semi-Implicit scheme in FESOM2

The main difference to the Split-Explicit method is that the elevation η has to be defined at the same time levels as the

horizontal velocity. The elevation is therefore detached from the thicknesses, which creates some conceptual difficulty. We320

consider quantities at n− 1/2 and n to be known (to start from velocity).

– Predictor step

U∗ = Un−1/2 + τ(RA
U +RC

U + R̃PGF
U )n + τ(RhV

U )v − τghn∇hηn−1/2τ

Here tilde implies that the contribution from the elevation to the PGF is omitted. It is taken into account explicitly (the

last term). However, since ηn+1/2 is unknown, we take the value from the current time level n− 1/2. Our intention is

to get the Semi-Implicit form θηn+1/2 +(1− θ)ηn−1/2, 1/2≤ θ ≤ 1 in the end. The momentum advection and Coriolis

terms are AB2 or AB3 interpolated to n. Implicit vertical viscosity is taken into account by solving

U∗∗ = U∗+ τ(Av∂zu∗∗)|tb

It is solved similarly as in the Split-Explicit asynchronous case.

– Corrector step

Un+1/2 = U∗∗− τθghn∇h(ηn+1/2− ηn−1/2)

This step is only written, but is evaluated after ηn+1/2 is available.

– The elevation step. We write

ηn+1/2− ηn−1/2 =−τ∇h ·
∑

k

(αUn+1/2
k + (1−α)Un−1/2

k )

Here 1/2≤ α≤ 1, which is needed for stability. This equation has to be solved together with the corrector equation. We

express Un+1/2 from the corrector equation and insert the corrector step into the elevation equation to get

δη = gθατ2∇h ·Hn∇hδη− τ∇h ·
∑

k

(αU∗∗
k + (1−α)Un

k )

This equation is solved for δη = ηn+1/2− ηn−1/2, giving ηn+1/2 = ηn−1/2 + δη.

– The corrector step is used to compute Un+1/2.325

– ALE step. We write

hn+1
k −hn

k =−τ [∇ ·Un+1/2
k + w|tb]

These equations are summed vertically to give

Hn+1−Hn =−τ∇h ·
∑

k

Uk.

The quantity Hn+1−H0 is the elevation at time step n+1. It is used to define hn+1 for the z∗ vertical coordinate. The

extension to z̃ follows similarly to the SE case. After hn+1 is defined, w is found from the thickness equation.
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– Tracers

(Th)n+1
k − (Th)n

k =−τ
[
∇ · (Un+1/2

k T
n+1/2
k ) +wT

n+1/2
k |tb

]
+ τ(∇hnK · ∇3T

n)k + τ(Kv∂zT
n+1)|tb

– By virtue of the thickness equation above,

ηn+1/2− ηn−1/2 =
∑

k

[α(hn+1
k −hn

k ) + (1−α)(hn
k −hn−1

k )]

(We ignore freshwater flux for simplicity, but it can be added.) The solution is

ηn+1/2 =
∑

k

(αhn+1
k + (1−α)hn

k )−H0

If satisfied initially on cold start by formally taking η−1/2 = 0 and h−1
k = h0

k, this relationship will persist with time.330

However, to avoid accumulation of round-off errors, we reset ηn+1/2 to the right hand side of the last expression after

the computations of hn+1
k . This new ηn+1/2 will be used only in the next time step. The point here is that ηn+1/2

is computed by an iterative solver, whereby some significant digits are lost. The reset compensates for that. α = 1/2

provides centering in time.

Both Split-Explicit and Semi-Implicit asynchronous schemes are relatively straightforward to implement. The Semi-Implicit335

method with θ = 1/2 and α = 1/2 is non-dissipative, and dissipation is added by shifting θ toward 1. As explained above, even

though the dissipation can be well controlled by offsetting θ = 1/2 only slightly, there are dispersive errors. Since the SI

method is used with large Courant numbers for surface gravity waves, the contributions from such waves will come with large

phase errors and should be damped. To keep centering of η, we may take α = 1/2 and θ > 1/2. FESOM in most applications

uses θ = 1 and α = 1, which implies more dissipation.340

Appendix B: Implementation of z̃ in FESOM2

In the case of z̃ vertical coordinate (Leclair and Madec (2011)) the horizontal divergence in a layer is split into fast and

slow contributions. The fast one modifies layer thickness, and the slow one leads to diasurface w. Examples of practical

implementation are provided by Petersen et al. (2015) and Megann et al. (2022). Our implementation presents a simplified

version of both. The desired layer thickness is computed as,

hn+1
k = htarget

k = h∗k + hhf
k

where h∗k corresponds to the z∗ coordinate, and hhf
k is the high-frequency component that augments z∗ to z̃. They will be

defined below. The bottom depth in FESOM is cell-wise constant, whereas elevation and layer thicknesses are defined at

vertices. For this reason, for a given vertex v, we modify thicknesses of K ′ = K ′(v) layers that do not touch topography (see

Danilov et al. (2017)). The total number of layers under vertex v will be denoted K = K(v). We take

(h∗k)n+1 = h0
k(1 + ηn+1/H ′), H ′ =

K′∑

1

h0
k
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An alternative definition would be to stretch layers proportionally to their actual thickness, but Megann et al. (2022) warn that

some drift in h∗ may present in such a case. Excluding the fixed layers, we split the divergence Dk =∇ · (Uk) into a quasi-

barotropic part that corresponds to h∗k and the remaining quasi-baroclinic part (’quasi’ because we are limited to K ′ layers)

345

Dk = D∗k + D′k, D∗k = h0
kD/H ′ (B1)

where D =
∑K

k=1 Dk is the vertically integrated divergence (note that all layers contribute in D). We will be interested in D′k,

which is computed as the difference between Dk and D∗k. We use the available thicknesses hn
k for h

n+1/2
k in (13) to determine

transports Un+1/2
k featuring in Dk. After hn+1

k is fully specified, we re-trim Un+1/2
k using hn+1/2 defined as a half sum of

thicknesses at full steps. Our treatment of the barotropic part is admittedly less accurate than in Petersen et al. (2015) and

Megann et al. (2022), and some barotropic wave will contaminate hhf
k . However, because of fixed bottom layers, we already

introduce uncertainty from the very beginning. Since ∂th
∗
k =−D∗k,

∑K
k=1 D′k = 0. The high-frequency thickness hhf

k will be

related to D′k and should sum to zero vertically. D′ is split into low and high frequency parts,

D′k = Dlf
k + Dhf

k

The low-frequency part is nudged to D′k as,

∂tD
lf
k = (2π/τlf )(D′k −Dlf

k )

where τlf is the time scale (about 5 days in Petersen et al. (2015), but larger values can be of interest according to Megann et al.

(2022)). The fast frequency part is obtained by subtracting the low frequency part from D′k. The high-frequency contribution

to thickness is,

∂th
hf
k =−Dhf

k − (2π/τhf )hhf +∇h(Khf∇hhhf
k ) (B2)350

The second term on the RHS damps hhf
k to zero over the time scale τhf (about 30 days). The last term will smooth the

thickness, and the diffusivity Khf is determined experimentally. If Khf is vertically constant,
∑K

k=1 hhf
k = 0 if it was initially

so. A potential difficulty with (B2) is that hhf
k is not bounded. A simple procedure is implemented at present. Equation (B2) is

stepped implicitly with respect to the relaxation term, and diffusion is applied in a separate step. If (hhf
k )n+1 is outside bounds

for any k in the column at vertex v, τhf is adjusted for the entire column on this time step to ensure that (hhf
k )n+1 will be355

within the bounds, and computations of (hhf
k )n+1 is repeated. While this procedure is sufficient for simple channel test case,

it remains to be seen whether it will be sufficient in more realistic cases or solutions reported by Megann et al. (2022) will be

needed. The field hhf is always damped stronger on locations close to topography to eliminate possible inconsistencies with

hhf = 0 in cells touching bottom topography. After (hhf
k )n+1 is estimated, hn+1 is available; the transports Un+1/2

k can be

re-trimmed, and diasurface velocities can be estimated from the thickness equations.360
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