
Reviewer 2, Second review

Dear Reviewer, thank you for your feedback. Please find below in blue, our
replies to your comments.

The authors have provided some answers to the questions posed, and have
made a few changes to the manuscript. I must say, however, that I am still
unsatisfied with a few points that I noted in my first review and which, in my
view, need to be clarified:

When I asked to clarify the choice made for the order of integration of the
variables Ubar and eta with the modified FB (SE) scheme and the modified
AB3-AM4 (SESM) scheme, I was not asking about the order of convergence,
but about the order of integration of the two variables, i.e integrating Ubar
before eta (which allows to use the newly available value for Ubar in eta in-
tegration) or conversely integrating eta before Ubar (which allows to use the
newly available value for eta in Ubar integration). It has been noted that the
choice of integrating Ubar before eta with the SE scheme is for historical rea-
sons. However, it seems to me that the question of considering the inverse choice
arises : this would remove the term involving < Ubarn+1 > and < Ubarn > of
the right-hand side of equation 12 : this is possibly a good thing, because as the
authors note, the initialization for < Ubarn > is not well constrained (l124-126).

When we replied that the integration of ⟨⟨U⟩⟩ in SE is done first for histor-
ical reason, we could have provided another answer that we just followed the
original paper by Demange et al. (2019), as also mentioned in the footnote 2 of
our manuscript. It is possible to do either way but that should not change the
net outcome. The reviewer is right that the reverse way of integration is also
possible, but it will lead to identical damping. The new equation equivalent to
(12) will be simpler, but it will not lead to any practical advantages because
⟨⟨U⟩⟩ is accumulated by summing the velocities appearing at the rhs of equa-
tion (8). Also the the last statement by the reviewer is a misunderstanding: we
wrote that U

n
is not well constrained meaning that 3D transports are known

at semi-integer time steps, so there is no uniquely defined way to reconcile 3d
and barotropic transport. The solution we proposed is one way of reconciling
and there is no issue with U

n
. In addition, even though U

n
will be absent from

an expression in place of (12), all velocities in that expression still depend on
it. In summary, both ways of implementing SE (used by us and in Demange et
al. (2019), as well as the one proposed by the reviewer) are possible and either
can be followed as both will result in identical damping.

I asked to clarify the correction of the 3d variables after completion of the
barotropic integration, because I had suspected that this implementation might
be missing one of the two constraints which link the 2d and 3d dynamics, and
which classically appear in split-explicit algorithms. As pointed out by the au-
thors, it has been considered to correct the 3d fluxes (after having advected
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tracers) to be consistent with the instantaneous barotropic flux at n+1/2, but
that this correction seems unnecessary (l151-155). Why not instead correct the
3d fluxes with the half sum of < Ubarn + 1 > and < Ubarn > ?

There are three possibilities of imposing the ‘second correction’ in our case.
The first one is just to leave the 3d transports corrected with ⟨⟨U⟩⟩ (no ad-
ditional correction). The second one is to retrim 3d transports with the in-
stantaneous barotropic flux at n+1/2 (proposed by us), and the third one to
use the correction proposed by the reviewer. All these corrections are similar
as they are based on the estimate of the barotropic transport at n+1/2, and
they all provide coupling between 2d and 3d dynamics. These possibilities differ
by the amount of temporal averaging, which is strongest in the first case, and
absent in the second. Indeed, the barotropic transport ⟨⟨U⟩⟩ is averaged over
the entire interval from n to n+1, and the solution proposed by the reviewer is
also an average over this interval. The first option and the option proposed by
the reviewer are expected to provide a stronger feedback of forward-backward
type, but as we already mentioned, we found that even the option proposed by
us does not lead to noticeable changes compared to the first option. For this
reason we did not consider the option mentioned by the reviewer. However,
to demonstrate that it does not lead to noticeable changes, we added it and
retested our simulations. As shown below, there is hardly any difference.

Figure 1: Comparison of elevation (m) distribution snapshots for the SE solver
under the two different re-trimming (after 3 days) and their total available
potential energy density (m5/s2) time series. The number of barotropic subcyles
M = 30 and θ = 0.14. Here triangular mesh with sides of 10km and baroclinic
time-step of τ = 5min is used.

For a reminder, this test case (Section 4.2 of the manuscript) uses a simple
surface gravity wave (SGW) setup where we simulate a channel (of same ge-
ometry (as Section 4.1 of the manuscript) with an initial elevation distribution
which is meridionally gaussian, i.e., ln(η/A) = −(y − ymid)

2/σ2 where A = 3
meters is the amplitude and σ = 200 km is the half-bell width. The temperature
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is set at T = 20oc, the velocities are initialized to 0, and the simulation is run for
3 days with baroclinic time-step τ = 5 mins. As seen in Figure 1 there’s hardly
any difference in the dissipation levels between the two re-trimming methods.

This could strengthen the coherence between the 2d and 3d dynamics, mak-

ing the 3d fluxes U
n+1/2
k ‘feel’ the value < Ubarn + 1 > and < Ubarn >.

The 3d fluxes still ‘feel’ the 2d fluxes as the values of every sub-step still
goes into its correction through << Ubar >>. See the discussion above.

Such retrimming would parallel the treatment of layer thicknesses stated at
line 135. It would also give some confidence in initializing the 2d with the final
state of the previous time step, as this 2d state will have been used to correct
the 3d variables. Such retrimming could be seen as the simplest analogue in
this time-staggered context of the second constraint which classically appear in
split-explicit algorithms.

While it is true that the reviewer’s proposal would match the thickness treat-
ment as per l135, we also state in l135 itself that this is not generally the case.
While Zstar is independent of 3d flux divergences, layer algorithms like ztilde
will not be. Furthermore, some layer algorithms by design would be operat-
ing with only part of the flux divergences depending on the desired objective.
Therefore, in general, one will not be able to parallel the flux treatment with
the thickness treatment, and neither would it be desirable.

These points are at the basis of the mechanics of the mode-splitting algo-
rithm. I would be surprised if they did not affect the stability properties of the
algorithm. It is quite possible, however, that the dissipation values used for the
numerical experiments reported in the paper are so large that to counter the
consequences of any inconsistencies in the algorithm. In my opinion, a more
detailed study of the algorithm’s stability would be desirable. However, I can
imagine that this is not the purpose of the paper, which is essentially to show
that ’it works’.

While exciting, exploring all types and possibilities of mode-splitting is not
the objective of this paper. Indeed, our objective has always been to have an
improved solver for FESOM2 that ‘works’. It has been made clear from the title
and throughout the manuscript that this work explores a split-explicit approach
for ocean model FESOM2. The decisions made were centered around and mo-
tivated by the performance of FESOM2. And in regards to FESOM2, the new
solver shows sufficient stability and abundant improvement over the previous
approach across all targeted categories - dissipation, speed, and scalability.
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