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Abstract. Reservoirs play a significant role in modifying the spatiotemporal availability of surface water to meet multi-sector 

human demands, despite representing a relatively small fraction of the global water budget. Yet the integrated modeling 

frameworks that explore the interactions among climate, land, energy, water, and socioeconomic systems at a global scale 

often contain limited representations of water storage dynamics that incorporate feedbacks from other systems. In this study, 15 

we implement a representation of water storage in the Global Change Analysis Model (GCAM) to enable exploration of the 

future role (e.g., expansion) of reservoir water storage globally in meeting demands for, and evolving in response to interactions 

with, the climate, land, and energy systems. GCAM represents 235 global water basins, operates at 5-year time steps, and uses 

supply curves to capture economic competition among renewable water (now including reservoirs), non-renewable 

groundwater, and desalination. Our approach consists of developing the GLObal Reservoir Yield (GLORY) model, which 20 

uses a Linear Programming (LP)-based optimization algorithm, and dynamically linking GLORY with GCAM. The new 

coupled GCAM-GLORY approach improves the representation of reservoir water storage in GCAM in several ways. First, 

the GLORY model identifies the cost to supply increasing levels of water supply from reservoir storage by considering regional 

physical and economic factors, such as evolving monthly reservoir inflows and demands, and the levelized cost to construct 

additional reservoir storage capacity. Second, by passing those costs to GCAM, GLORY enables exploring future regional 25 

reservoir expansion pathways and their response to climate and socioeconomic drivers. To guide the model toward reasonable 

reservoir expansion pathways, GLORY applies a diverse array of feasibility constraints related to protected land, population, 

water sources, and cropland. Finally, the GLORY-GCAM feedback loop allows evolving water demands from GCAM to 

inform GLORY, resulting in an updated supply curve at each time step, thus enabling GCAM to establish a more meaningful 

economic value of water. This study improves our understanding of the sensitivity of reservoir water supply to multiple 30 

physical and economic dimensions, such as sub-annual variations in climate conditions and human water demands, especially 

for basins experiencing socioeconomic droughts.  
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1 Introduction 

Water exists in relative abundance globally, but its spatiotemporal distribution has historically posed challenges for 

reliably meeting humanity’s water demands. For this reason, over one-third of the world’s growing population already faces 35 

water shortage for at least one month of each year (Salehi, 2022; Hoekstra et al., 2012; Wada et al., 2011; Hanasaki et al., 

2008; Oki and Kanae, 2006; Vörösmarty et al., 2000; Organization and Fund, 2000).  Humans have traditionally relied in part 

on surface water storage infrastructure, such as dams and reservoirs, to manage the spatiotemporal misalignment (i.e., scarcity) 

of water supplies and demands, and to attenuate the effects of shocks (e.g., droughts) (Zajac et al., 2017). Regional water 

scarcity can have complex societal consequences that propagate across sectors of the economy (e.g., by constraining water 40 

available for cooling power plants and growing crops) and tele-connected regions (e.g., through agricultural trade) (He et al., 

2021). Understanding the current and potential future role of water storage is central to our understanding of how future energy, 

land, and even climate systems will evolve, and in turn, how they will impact water resources (Vanderkelen et al., 2021; Scott 

et al., 2016). The emerging transdisciplinary field of Multi-sector Dynamics (MSD) is well positioned to explore these 

interactions given its focus on modeling complex systems of systems that deliver services, amenities, and products to society  45 

(Reed et al., 2022). Under the MSD umbrella, a sub-class of models simulate the integrated human-Earth system with global 

coverage by representing the integrated interactions among energy-water-land-climate-socioeconomic systems. While global 

MSD models are well-positioned in theory to explore multi-system interactions, their representation of reservoirs (especially 

future reservoir storage expansion) have remained limited (Bell et al., 2014) (See our review of reservoir representation in 

global MSD models in Table S1). Here we enhance the representation of reservoir storage in a global multi-sector model, the 50 

Global Change Analysis Model (GCAM) (Calvin et al., 2019), and demonstrate the scientific insights that can emerge as a 

result of this addition. 

Reservoirs represent just a small stock of water within the total freshwater balance (Abbott et al., 2019), yet they play 

an outsized role in satisfying human water demands (Vizina et al., 2021; Biemans et al., 2011). Over the past century, more 

than 6,000 large reservoirs and dams (e.g., storage capacity > 0.1 km3) have been built globally to meet growing demands for 55 

water supply and hydropower (Lehner et al., 2011). By 2020, there were more than 58,700 registered dams worldwide, with 

an aggregated storage capacity of 7,714 km3 (ICOLD, 2020), which represents ≈ 20% of global annual runoff (Ghiggi et al., 

2019). If accounting for impoundments with a surface area larger than 100 m2, the estimated number of dams and reservoirs 

adds up to 16.7 million, with a total reservoir area of around 30,600 km2 (Lehner et al., 2011). Although reservoirs only occupy 

1.7% of the global inland permanent surface water extent (Liu et al., 2022), reservoirs and dams have affected more than 50% 60 

of the world’s large river systems through flow regulation, river fragmentation, and water consumption (Grill et al., 2019; 

Nilsson et al., 2005). Despite the limited physical footprint occupied by reservoirs, approximately 30 to 40% of irrigated 

croplands rely on reservoirs (e.g., about 265 km3/year of storage-fed irrigation estimated by Schmitt et al., 2022), providing 

12 to 16% of global food production (Sanmuganathan et al., 2000; World Commission on Dams, 2000). Strategic usage of 
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reservoir storage can improve future global sustainable irrigation and avoid the depletion of freshwater stocks and 65 

environmental flows (Schmitt et al., 2022). 

Reservoirs can be deployed to serve one or multiple purposes (e.g., flood control, irrigation, hydropower), and the 

distribution of these purposes among and within the world’s large river basins varies substantially. Approximately half of the 

dams and reservoirs registered in the World Register of Dams (WRD) database (ICOLD, 2020) serve a single purpose, while 

17.6% have multiple purposes, leaving the remainder with undefined objectives. Irrigation, hydropower, water supply, and 70 

flood control, among other purposes, represent most of the reservoirs. The Global Reservoir and Dam (GRanD) database 

(Lehner et al., 2011) has served as a pivotal reference, cataloguing a vast array of reservoirs and dams along with the associated 

primary purposes. Figure 1 categorizes reservoirs from the GRanD database as hydropower and non-hydropower to 

demonstrate the distribution of existing storage capacity across global basins. Global hydropower and non-hydropower 

reservoirs have a total storage capacity of 3,745 km3 and 2,246 km3, respectively. Non-hydropower reservoirs dominate in the 75 

USA, Southern and Central Europe, Southern and Eastern Asia, North Africa, and Australia, while other regions are dominated 

by hydropower reservoirs. Regardless of its purpose, the most distinguishing characteristic of any large reservoir is to use 

storage to reshape streamflow variability to make it reliably available for human use across demand sectors and seasons (Zhou 

et al., 2016; Haddeland et al., 2006). Specific operational decisions on the magnitude and timing of water storage and release 

are dictated by the reservoir’s purposes, along with other factors such as hydroclimatic conditions. Thus, depending on its 80 

purposes, a reservoir may create anywhere from multi-year (i.e., inter-annual) storage to within-year (i.e., sub-annual) 

redistribution of streamflow (Gaupp et al., 2015). 
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Figure 1. Historical reservoir storage capacity (km3) for hydropower and non-hydropower reservoirs across 235 basins globally 

based on the GRanD v1.3 database. The yellow and red circles indicate hydropower and non-hydropower reservoir storage, 85 
respectively. The size of the circle indicates the total storage capacity for each of the two reservoir categories within the basin. The 

background color by which each basin is shaded quantifies the sum of the storage capacity for both reservoir categories. 

 

Given reservoirs supply water that drives activity in multiple sectors of the economy, incorporating reservoirs into 

the analysis of future multi-sector interactions among water, energy, land, and climate systems across spatiotemporal scales 90 

can bring substantial insights to our understanding of the future co-evolution of the human-Earth system (Vinca et al., 2021). 

Global MSD models (Reed et al., 2022) or other comparable models (see examples in Table S1), were developed for exploring 

inter-sectoral dynamics at regional scale with global coverage (Yoon et al., 2022; Wilson et al., 2021). Many such global MSD 

models, including GCAM (Edmonds and Reilly, 1983), were initially developed to study the energy system and its emissions 

implications, as well as global land allocation dynamics (Keppo et al., 2021; Fisher-Vanden and Weyant, 2020). Thus, for 95 

many of these models, water has only recently emerged as central to model dynamics (e.g., for GCAM, see Kim et al., 2016). 

Given these models are intended for scenario-based analysis of long-term global dynamics, and are often used in stakeholder 

and uncertainty analysis contexts, naturally they tend to be less detailed in their representation of water resources management 

(Rising, 2020). Still, even within this broad characterization of ‘coarse spatiotemporal resolution’, these models differ widely 

in their representation of water resources and reservoir management. While a detailed review of differences across models in 100 
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their representation of water resources broadly is not within the scope of this article, a notable gap exists in global MSD models 

concerning the role of reservoirs in the co-evolution of human-Earth systems – a gap we aim to contribute to filling. To tackle 

this, we conducted a comparison of key differences in the representation of reservoirs across those models (Table S1). 

Insight into the role of reservoirs in shaping the co-evolving energy-water-land-socioeconomic-climate system with 

global coverage has strong potential to inform more integrated, multi-sector strategic planning across a wide range of 105 

stakeholder groups. GCAM has been extensively used to answer questions across multiple disciplinary domains and has a long 

history of development (Calvin et al., 2019; Kim et al., 2016; Wise et al., 2009; Kim et al., 2006; Edmonds et al., 1997; 

Edmonds and Reiley, 1985; Edmonds and Reilly, 1983). Several studies have explored the economic impacts of water 

resources using GCAM by conducting uncertainty and sensitivity analysis experiments using large ensembles of global hydro-

economic futures (Birnbaum et al., 2022; Dolan et al., 2021). These studies identified that the physical water scarcity and its 110 

economic impacts (e.g., on agricultural prices and revenue) are very sensitive to the representation of reservoir storage in 

GCAM. However, prior to our study, GCAM has traditionally used an external hydrologic model (e.g., Xanthos) to pass water 

availability information one-way as a boundary condition to GCAM, while overlooking the dynamic role of existing and 

potential exploitable reservoir storage capacity in shaping water supply and demand dynamics. This approach makes 

representing future reservoir storage expansion particularly difficult, because the external model is not responding to the 115 

evolving water demand driven by sectoral interactions in GCAM.  

This paper’s objective is to represent reservoir water storage in GCAM. We improve upon GCAM’s representation 

of renewable water supply by better accounting for (1) the supply potential of existing storage capacity, considering sub-annual 

streamflow and demand patterns; (2) the expansion potential of reservoir storage capacity; and (3) the impact of socioeconomic 

change (e.g., demands) and climate conditions (e.g., socioeconomic drought) on long-term water supply. These improvements 120 

address existing research gaps by focusing on optimizing reservoir water management strategies in response to socioeconomic 

and climate change impacts at global to regional scales. We explore two scientific questions that illustrate the advantage of 

this new approach: (1) How does the cost to supply water from reservoir storage vary across global river basins, and to what 

extent is it shaped by hydrologic (e.g., reservoir inflows) versus economic (e.g., human water demand) characteristics?; and 

(2) What insights and dynamics emerge from the new approach, and to what extent can they be attributed to human-Earth 125 

system feedbacks? Through a series of scenarios focused on the implications of socioeconomic and climate change for future 

water demands and reservoir expansion needs, we illuminate the new line of research questions and a wide range of potential 

applications our methodological contribution enables, such as investigating the sensitivity of renewable water supply to 

different drivers, and identifying potential global reservoir expansion pathways across various scenario combinations. 

Additionally, we highlight challenges and opportunities in representing reservoir water dynamics within global multi-sector 130 

models. 
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2 Methodology 

In this section, we will elucidate the methodology of our novel approach for representing reservoir water storage in 

GCAM in four distinct sections. Section 2.1 will provide an overview of our interactive multi-model framework and examine 

its degree of coordination, communication frequency, and automation. In Section 2.2, we will delve into the current 135 

representation of water resource supply-demand dynamics in GCAM and delineate the aspects we intend to enhance in this 

study. Section 2.3 will introduce the innovative approach we’ve developed for the GLObal Reservoir Yield (GLORY) model 

and illuminate the construction of the input data. Section 2.4 will outline four scenarios for comparing the current and our new 

approach, thus providing a comprehensive illustration of the enhanced representation of water storage in GCAM from this 

study. 140 

2.1 Interactive Multi-Sector Dynamic Modeling Workflow 

2.1.1 Overview 

Our core contribution in this paper is GCAM-GLORY v1.0, an interactive, multi-sector dynamic modeling workflow 

(Fig. 2) that enables exploration of future reservoir storage expansion and its multi-sector implications at a global scale in the 

context of coupled human-Earth system feedbacks. This workflow consists of multiple interacting models that capture different 145 

aspects of water resource availability, use, and infrastructure (i.e., reservoirs) at variable spatiotemporal and sectoral resolution. 

GCAM is central to our workflow, though we only modified inputs to GCAM (rather than GCAM’s structure) in this paper. 

The specific utility of GCAM is to explore the implications of changing water resources availability (modulated by reservoirs) 

on the evolution of other systems (e.g., land and energy), and vice versa, at regional resolution with global coverage. GCAM 

represents 235 global water basins, operates at five-year time steps, and uses supply curves (i.e., the cost to supply increasing 150 

volumes of water) to capture economic competition among three categories of water supply: renewable surface water (e.g., via 

reservoirs), groundwater, and desalinated water. Our contribution here is to develop a new model that is dynamically linked 

with GCAM to update GCAM’s renewable water supply curves in each model time step to reflect the impacts of reservoir 

management on the cost and reliability of water supply. The interactive workflow amplifies the human-Earth system feedbacks 

in the context of water management in GCAM.  155 
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Figure 2. Interactive modeling framework that improves the representation of reservoirs in the Global Change Analysis Model 

(GCAM) by dynamically updating the renewable water supply curve in each time period. The GLObal Reservoir Yield (GLORY) 

model establishes the cost to supply water from reservoirs, receiving feedbacks from GCAM in each time step regarding sectoral 160 
water demands. GLORY ingests a wide variety of datasets, including hydrologic time series, reservoir construction costs, and land 

use patterns. 

The GLORY model, which we introduce for the first time in this paper, improves the current water supply curves in 

GCAM by better representing the cost to deliver water supply from non-hydropower reservoirs, and the physical (e.g., 

hydrologic inflows, reservoir exclusion zones) and economic (e.g., construction cost) dimensions that influence the cost of 165 

supply. GLORY is a Linear Programming (LP)-based model that operates at a monthly time step, but is dynamically linked 

with GCAM to provide GCAM, in every five-year model period, with an updated renewable water supply curve for each of 

235 global water basins. The supply curve produced by GLORY specifies the unit cost to supply increasing levels of water 

from reservoir storage. This supply curve establishes the basis for economic competition among alternative sources of water 

supply in GCAM, such as groundwater, which has its own supply curve for each basin (Turner et al., 2019). The gcamwrapper 170 

(Vernon et al., 2021) software coordinates interactions between GLORY and GCAM through a Python API that allows get 

and set operations on GCAM’s internal parameters on a per period basis. After receiving the updated supply curve from 
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GLORY (via gcamwrapper), GCAM executes a global simulation for the current model period, then passes water demand 

outputs back to GLORY to use as input to optimization in GLORY’s subsequent period. This last step advances coupled 

human-Earth system science by establishing interactive, fully automated feedbacks with GCAM. This paper represents the 175 

first application of gcamwrapper to explore human-Earth system feedbacks by coupling GCAM with an external sectoral 

model, though previous studies have used other tools (e.g., GCAM Fusion—a C++ based capability in GCAM that allows 

gcamwrapper to access internal parameters) for GCAM two-way coupling (Hartin et al., 2021).  

2.1.2 The Mechanics of Coupled Human-Earth System Feedbacks 

Multi-model coupling is becoming increasingly important in exploring human-Earth system interactions (Fisher-180 

Vanden and Weyant, 2020). There are many dimensions to model coupling that can impact modeling outcomes. We 

characterize our workflow here with respect to its degree of coordination, communication frequency (Robinson et al., 2018), 

and automation.  

The framework in Fig. 2 represents a high degree of (two-way) coordination, specifically between GCAM and 

GLORY. Coordination is the automated or manual arrangement of independently operating components and externally 185 

organized data exchange. In two-way coupling (i.e., high coordination), a software component's results render an updated state 

in one or more upstream components, whereas in one-way coupling (i.e., low coordination), a software component only 

prescribes data to one or more downstream components. 

The framework in Fig. 2 represents moderate communication frequency. Communication frequency relates to how 

often one software component gives (or receives) data to (or from) another component. Communication frequency ranges from 190 

low/none (e.g., setting initial conditions only) to high (e.g., per time-step exchange of data). In our framework, GLORY passes 

a new set of supply curves to GCAM, and GCAM passes water demand and storage capacity data back to GLORY, but only 

for use in the subsequent time step. The models do not iterate back and forth within a time step. 

The framework in Fig. 2 represents a high degree of automation. Automation is the replacement of human activity 

with systems or devices that enhance efficiency. Automation ranges from none (strictly manual) to a high degree of automation 195 

in which all data is exchanged virtually and none manually. The exchange of information in our workflow is fully automated. 

2.2 The Global Change Analysis Model (GCAM) – Current Representation of Water Resources Supply-Demand 

Dynamics 

2.2.1 Overview 

GCAM captures the interactions among climate, land, energy, water, and socioeconomic systems at regional 200 

resolution (e.g., 235 river basins) with global coverage. GCAM is a multi-sector dynamic model and the strength of these 

models is the consideration of broad sectoral context and interactions, which can strongly shape the future evolution of 

individual systems of interest (e.g., water) (Dolan et al., 2021). This exploration of broad interactions can require sacrificing 

the resolution at which individual systems (e.g., water) can be explored. This has enabled GCAM's use to study issues such as 
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the water resource implications of climate mitigation (Hejazi et al., 2014b), the economic impacts of global water scarcity 205 

(Dolan et al., 2021), sectoral responses to water scarcity (Cui et al., 2018), future virtual water flows (Graham et al., 2023, 

2020), and the regional implications of global water scarcity (Giuliani et al., 2022). 

The water sector in GCAM is represented as markets with regional detail at the level of 235 large global river basins 

(Kim et al., 2016). As with other physical flows, such as electricity and agricultural commodities, GCAM seeks to solve for 

the market prices that equate water supply and demand in every water basin. The presence of ‘markets’ and ‘prices’ in GCAM 210 

is not intended to reflect literal markets on which water quantities are traded, though such markets do exist in some places. 

Rather, prices (and the markets that set them) allow the model to establish two key facts. First, different classes of water users 

(e.g., agriculture, electricity, etc.) experience different levels of access to water resources. In some places, this differentiated 

access is controlled through prices—for example, the agriculture sector may receive subsidies that effectively increase its 

access to affordable water resources; whereas in other regions, access may be controlled by complex (and sometimes legally 215 

binding) water allocation rules. GCAM uses markets, and sectorally differentiated pricing within those markets, as a 

mechanism to reproduce historically observed water allocations. Note that, since the water basin is the smallest unit of analysis 

for GCAM, water is allocated not to individual holders of the water rights, but to a highly aggregated class of rights holders 

(e.g., farmers). Second, unsatisfied demands for water have consequences—reduced production. The amount of water in use 

is determined by the amount physically available. Thus, when demand exceeds renewable supply in the model, runoff is 220 

reduced and the amount of water physically available in the basin is reduced to a new, lower level. The “shadow price” 

of water rises because end users cannot use more water than there is in the basin, leading to exploitation of more 

expensive water sources (e.g., deeper ground water and desalinated water), shifts to more water-efficient technologies, 

reduction in crop production, or increases in trade from regions that have more affordable water supply (e.g., imports). Shadow 

prices are close to zero when renewable water supply exceeds demand (i.e., when cheaply available surface water does not 225 

pose a binding constraint).  

2.2.2 Water Demand 

Water demand is estimated for six sectors: irrigation, livestock, primary energy production and processing, electricity 

generation, industrial, and municipal use (Hejazi et al., 2014a, b). The model includes bottom-up estimates of demands in most 

sectors, based on the level of production and technology mix in each sector, which is in turn driven by socio-economic or other 230 

factors. Future irrigation water demand depends on the evolving share of irrigated land within a particular basin-region 

intersection, the individual crop classes grown on that land and their water requirements (i.e., a coefficient that establishes 

water demand per unit of output), and the cost for different water sources. Water coefficients vary by crop and region. Basin-

level irrigation (i.e., blue water) demands are specified for 12 distinct crop classes (Chaturvedi et al., 2015; Mekonnen and 

Hoekstra, 2011). Water demands per unit crop produced are gradually reduced over the century to reflect projected water 235 

efficiency improvements (based on Bruinsma, 2009). Note that land use regions are subsumed into GCAM's river basins, and 

thus GCAM's representation of land has similar regional characters to that of water, operating at the scale of 384 basin-regions, 
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which are defined as the intersections between the model’s 235 water basins and 32 energy-economy regions. Besides irrigation 

demands, various cooling technology options are considered with specific water demand coefficients for electricity generation, 

while primary energy production estimates consider water consumption per unit energy produced for each fuel. Industrial 240 

manufacturing's demands encompass self-supplied surface and groundwater, excluding power generation and municipal use, 

which are accounted for in their respective categories. Livestock water needs rely on fixed, region-specific coefficients without 

a distinction between withdrawals and consumption, while municipal use depends on population, GDP, and water prices. 

Further details about water demands are documented in the GCAM documentation (Bond-Lamberty et al., 2023). 

2.2.3 Water Supply and the Representation of Reservoir Storage 245 

In GCAM, water supply can come from renewable water, nonrenewable (i.e., fossil) groundwater, and desalinated 

water. Renewable water accessible by humans (through reservoirs and canals) is a relatively more affordable source of water 

to the human system, as it does not require the substantial energy input associated with accessing groundwater and desalinated 

water. Renewable water supply accounts for both direct surface water extraction and shallow groundwater pumping that draws 

on recharged groundwater and captured streamflow. This study focuses on improving GCAM’s renewable water supply 250 

component only, though, as we will show, these improvements can ultimately alter future water usage behavior in other supply 

categories. The process for defining a renewable water supply curve for each basin is not described in detail in previous 

publications, so we describe it in detail here to better contextualize our unique contribution described in Section 2.3. 

The current water sector in GCAM (from GCAM v5.0 to the latest v7.0 at the time of writing this paper) and GCAM’s 

data system, gcamdata (Bond-Lamberty et al., 2019), uses three key data points to establish a renewable water supply curve 255 

(Kim et al., 2016) (Fig. 3). First, the model identifies the maximum possible quantity of water that can be exploited in a basin, 

and assigns it a fixed steep price ($10/m3, all dollar amounts are in 1975 USD) to indicate the unlikelihood of accessing 100% 

of the basin’s maximum renewable water (i.e., max point in Figure 3). In the absence of climate change impacts, the long-term 

mean annual flow for each basin serves as the upper limit to available renewable supply. This value is computed using historical 

annual runoff, which is computed at gridded 0.5° spatial resolution in Xanthos, a Global Hydrological Model (GHM) (Liu et 260 

al., 2018b; Vernon et al., 2019). This upper limit represents the maximum water supply that could be derived from a fully 

regulated river basin managed to maximize water yield—meaning water users can readily access the mean flow at excess cost. 

The high cost associated with accessing this upper limit reflects the likely high cost associated with extensive reservoir 

deployment, but without modeling the unique cost of that reservoir deployment in each basin. 

Only a portion of the maximum basin runoff described above is available for immediate and relatively inexpensive 265 

use, depending on environmental flow requirements and installed infrastructure for capturing, transporting, and storing water. 

Thus, the second data point (i.e., accessible point in Figure 3) on a given basin’s cost curve establishes the quantity of water 

that is cheaply accessible, based on annual natural streamflow, annual baseflow, and existing reservoir storage capacity (Kim 

et al., 2016). GCAM assigns this second data point a fixed low price of $0.001/m3. This “accessible” portion of renewable 

water, defined in Eq. (1) below, is calculated for the majority of basins as the volume of historical annual runoff that is 270 
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potentially stable (i.e., available even in dry years; Postel et al., 1996). This volume is determined by simulating the effects of 

both baseflows and in situ storage reservoirs included in the Global Reservoir and Dams inventory (Kim et al., 2016; Lehner 

et al., 2011), with an allocation of 10% of streamflow for environmental purposes.   

𝑸𝑨𝒊
𝒕 = 𝒎𝒂𝒙(𝟎, 𝒎𝒊𝒏(𝑸𝑻𝒊

𝒕 − 𝑬𝑭𝑹𝒊, 𝑸𝑩𝒊
𝒕 − 𝑬𝑭𝑹𝒊 + 𝑹𝑺𝒊)) (1) 

where 𝑄𝐴𝑖
𝑡, 𝑄𝑇𝑖

𝑡  and 𝑄𝐵𝑖
𝑡, in 𝑘𝑚3/𝑦𝑒𝑎𝑟, represent annual volumes of accessible renewable water, natural streamflow, and 

baseflow, respectively, in basin 𝑖 and year 𝑡; 𝐸𝐹𝑅𝑖  is the environmental flow requirement for each basin, and 𝑅𝑆𝑖  is total 275 

reservoir storage capacity in each basin 𝑖 in the base year (2015 for the version of the model used for this publication). The 

𝑚𝑎𝑥 in Eq. (1) makes sure the volume does not take negative values, while 𝑚𝑖𝑛 allows using the lesser of the net accessible 

stream flow (𝑄𝑇𝑖
𝑡 − 𝐸𝐹𝑅𝑖 ) and net accessible surface water in any situation, including droughts (𝑄𝐵𝑖

𝑡 − 𝐸𝐹𝑅𝑖 + 𝑅𝑆𝑖 ). 

Streamflow and baseflow volumes are produced using Xanthos. The time series of 𝑄𝐴𝑖
𝑡 values from Eq. (1) is used to calculate 

the accessible fraction, which is defined as the ratio of the historical average annual accessible water over the historical average 280 

annual runoff. 

In basins for which estimates of historical groundwater depletion are available, or approximately one-fifth of basins, 

the accessible portion of renewable water is estimated with historical annual water withdrawals (GCAM documentation; Hejazi 

et al., 2014a) and groundwater depletion data (Scanlon et al., 2018), described in Eq. (2). This back-calculation defines 

accessible water as the maximum annual total water withdrawals from 1990 to 2015 (𝑄𝑊𝑖
𝑚𝑎𝑥) excluding the supply from 285 

groundwater depletion (𝐺𝐷𝑖) observed over a historical calibration period. Using these three points (i.e., $0.00001/m3 for no 

supply, $0.001/m3 for the accessible fraction, and $10/m3 for maximum runoff), gcamdata creates a 20-point curve (shown in 

Fig. 3), with the accessible fraction being the 10th point. 

𝑸𝑨𝒊 = 𝑸𝑾𝒊
𝒎𝒂𝒙 − 𝑮𝑫𝒊 (2) 

 

Figure 3. An example of a renewable freshwater supply curve in GCAM, which captures the cost to supply increasing quantities of 290 
water. The figure highlights how reservoirs are currently represented in GCAM, to clarify our contribution in this paper to the 

representation of reservoirs.  
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Reservoirs are represented in Eq. (1) (and thus in the resulting cost curve in Fig. 3), but there are four aspects of the 

existing approach to representing reservoirs that we seek to improve upon here. First, setting aside baseflow and environmental 

flow requirements momentarily, Eq. (1) essentially assumes that cumulative historical reservoir storage capacity in each basin 295 

represents the annual quantity of cheaply accessible water that reservoirs provide. However, the quantity of water that 

reservoirs effectively supply to meet downstream demand (referred to as the “yield”) is not limited to the maximum physical 

volume of water that can be stored in reservoirs themselves (i.e., their capacity); rather, a key value of storage (in the context 

of water supply) is the capability to release a yield for downstream use that can consistently meet sub-annually varying demand. 

The yield is strongly affected by the intra-annual variability of inflow and diverse demands over a year, in addition to the limit 300 

from the reservoir’s storage capacity. This yield may far exceed the physical storage capacity of the reservoirs in a basin. 

Second, and related to the first point, the existing GCAM’s approach does not dynamically simulate the capability of 

storage to attenuate natural inter- and intra-annual variability, including drought events. Our new approach will seek to 

overcome this limitation by directly simulating the sub-annual mass balance of water storage in each time period, to account 

for the influence of such shocks (and reservoirs’ modulation of them) on reliable water supply. For example, this allows us to 305 

explore how increasingly climate-induced variability in reservoir inflows in the future may alter the quantity of water that can 

be reliably supplied from reservoirs. 

Third, the existing approach does not account for the cost of reservoir storage itself, which is critical for establishing 

the cost of water supply, particularly as reservoir capacity expands in the future. Here, we capture the levelized cost to construct 

reservoir storage.  310 

Finally, the existing approach does not account for the endogenous, cost-based expansion of reservoir storage over 

time. Previous papers have explored the implications of potential reservoir expansion pathways (Birnbaum et al., 2022; Dolan 

et al., 2021; Turner et al., 2019), but did so by altering the exogenously assumed accessible water fraction (Eq. 1) to reflect an 

increased total storage capacity. Here reservoir expansion occurs over time based on the cost to supply water from reservoirs, 

and the level of expansion over time selected by GCAM is tracked by GLORY. We make these various improvements within 315 

the context of GCAM’s water supply cost curve approach (i.e., without making changes to GCAM’s code base) using GLORY, 

which is discussed next. 

2.3 Global Reservoir Yield (GLORY) Model 

2.3.1 Overview 

Prior to launching an optimization, GLORY processes several global input datasets (and model outputs, described in 320 

Sections 2.3.4 to 2.3.6) related to the hydrologic and economic characteristics of each global river basin (Fig. 2). These 

characteristics include reservoir inflows, which can be produced by a GHM with global coverage over a long-term time horizon 

(e.g., 2020-2100) to capture climate impacts; land exclusion layers, denoting any grid cells in the world where there are 

significant constraints to building reservoirs (e.g., protected areas); global reservoir data, including the purpose and capacity 
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of existing reservoirs; storage-physiography-cost relationship indicating the cost to build reservoirs at different locations; and 325 

historical monthly patterns of water demand, which helps to determine whether reservoir release patterns are producing yield 

consistent with the sub-annual timing of demand. We will cover each of these input datasets in detail in the following sections. 

GLORY comes pre-populated with these data with global coverage, but the user can substitute their own data sets if desired 

(e.g., a new hydrological model’s output).  

Next, GLORY launches an LP-based optimization to produce a capacity-yield curve (Loucks and Van Beek, 2017) 330 

for each basin that defines the maximum reservoir discharge (i.e., yield) that increasing levels of reservoir storage capacity can 

produce. (We use LP, as opposed to another technique (e.g., dynamic programming), because LP problems can be solved 

quickly, and many water resources problems can be formulated effectively as LP problems (Loucks and Van Beek, 2017)). 

Next, GLORY combines the capacity-yield curve with the levelized cost to build different levels of reservoir storage (using 

storage-physiography-cost relationships) to produce a renewable water supply cost curve for use by GCAM in the time period. 335 

To produce this cost curve, GLORY runs a single optimization independently for each basin. GLORY can operate using only 

the input data described above; however, it can also be operated in two-way feedback mode (as we do here), wherein it receives 

an additional input—the sectoral water demand outputs from GCAM. These water demands, to be discussed in more detail 

shortly, help to quantify (1) any discrepancy that exists in the timing of monthly reservoir inflows versus demands, and (2) the 

corresponding storage capacity (through capacity-yield curve) used or expanded to meet the demands. Ultimately, GCAM uses 340 

the supply curve produced by GLORY as one of several inputs to make decisions on how much surface water, groundwater, 

and desalinated water to deploy to meet evolving demands. GLORY’s role is to identify a ‘possibility curve’ that defines the 

cost to supply surface water, whereas GCAM ultimately makes the economics-driven decisions regarding how much storage 

to deploy, because GCAM considers information that GLORY does not, such as the cost and availability of other sources of 

water (e.g., nonrenewable groundwater). 345 

2.3.2 Mathematical Formulation 

GLORY executes 235 unique LP-based optimizations to identify a capacity-yield curve for each of the 235 global 

river basins in each five-year period, building on the implementation from Liu et al., (2018). It does so by unifying each basin’s 

distributed reservoirs into a single “virtual reservoir” that reflects the cumulative storage capacity of the basin. Importantly, 

the spatial assumption underlying the concept of the “virtual reservoir” does not necessarily position the virtual reservoir at 350 

the basin’s outlet. Rather, we assume that the “virtual reservoir” can access the all the water resources within the basin, enabling 

collaborative optimization of water supply to meet demand. Additionally, each basin’s “virtual reservoir” has a fractional sub-

annual distribution of inflows and evaporation that reflects the specific characteristics of existing distributed reservoirs within 

that basin. Further details on the construction of the sub-annual inflow and evaporation profile are provided in Section 2.3.4. 

The LP has two primary functions. Instead of seeking to reproduce historical behavior, it seeks only to sketch out a 355 

capacity-yield ‘possibility curve’ that reflects how much yield could be achieved if the system was operated to maximize yield. 

Rather than simply maximizing annual yield, the LP forces the reservoir to adhere to monthly demand patterns. This produces 
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a capacity-yield curve that defines the maximum quantity of water that can be annually supplied from a basin’s virtual reservoir 

for different levels of virtual reservoir storage capacity, K, given the discrepancy between the sub-annual distribution of inflow 

and demand. It is this discrepancy between the scale and sub-annual distribution of reservoir inflow and demand that creates 360 

the need for storage in the first place. However, once the storage capacity reaches a certain level, expanding storage capacity 

will not increase annual yield beyond the mean annual inflow over the five-year period.  

Key inputs relevant to producing this capacity-yield curve are (1) the character of basin hydrology (and thus reservoir 

inflows and evaporation) during the five-year GCAM time period; and (2) the monthly total water demand patterns for each 

basin. The capacity-yield curve is dynamically updated in each GCAM period because, while storage capacity may remain the 365 

same over time in a given basin, climate change or other influences alter hydrology and thus the renewable supply that can be 

achieved for a given level of capacity. GCAM dynamically supplies GLORY with the most recent (i.e., previous time period’s) 

level of sectoral demand, which can in turn be translated into an implied GCAM monthly demand pattern for use by the LP 

(as discussed later). Next, the capacity-yield curve is combined with data defining (1) the cost to construct different levels of 

reservoir storage capacity; and (2) constraints on the maximum levels of exploitable storage capacity (e.g., accounting for 370 

protected areas) to create an actual cost curve based on levelized ‘overnight cost’ (i.e., physical infrastructure cost). The process 

for constructing the cost curve will be introduced shortly, following the introduction of the generic LP formulation. 

The objective of the LP is to maximize the annual water yield from a given reservoir storage capacity K, subject to a 

set of constraints. The LP consists of a monthly virtual reservoir mass balance described in Eq. (4), which allows for both 

environmental flows EFt, return flow RFt, and spillage Xt, in addition to the net inflow. Eq. (5) ensures a steady-state reservoir 375 

storage, which assumes the monthly hydrologic and demand patterns repeat each year. Eq. (6) ensures reservoir storage does 

not fall below minimum storage or exceed maximum storage capacity. Eq. (7) to (9) denote the monthly release, inflow, and 

reservoir evaporation using corresponding annual volume and monthly profiles (Fig. S3, S4), described in Eq. (12) to (13). 

Once a virtual reservoir storage capacity, K, is set as input to the LP, annual reservoir evaporation Eg can be determined based 

on the non-linear relationships between storage capacity and reservoir surface area, derived from the existing reservoirs in 380 

each basin (Fig. S7). Eq. (7) indicates that the reservoir’s monthly release must exceed monthly “demand”. The sum of these 

monthly releases equals the annual yield that is being maximized in Eq. (3). Eq. (7) reflects that the goal is not simply to 

maximize annual yield, but to do so while meeting the historical sub-annual pattern of monthly demands. Eq. (11) allows for 

a limit to be placed on total reservoir inflow, because of the potential for cascade reservoir systems to re-use water. The yield 

curve that results from this exercise is shown in Fig. S6. 385 

 

 max
𝑅𝑡

𝑌𝐴 (3) 

Subject to 

 𝑆𝑡+1 = 𝑆𝑡 + 𝐼𝑡 − 𝐸𝑡 − 𝐸𝐹𝑡 − 𝑅
𝑡

+ 𝑅𝐹𝑡 − 𝑋𝑡 (4) 

 𝑆𝑡=13 = 𝑆𝑡=1 (5) 
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 𝑆𝑚𝑖𝑛 ≤ 𝑆
𝑡

≤ 𝐾 (6) 

 𝑅𝑡 ≥ 𝑓
𝑡
𝑌𝐴 (7) 

 𝐼𝑡 = 𝑝
𝑡
𝐼𝑔 (8) 

 𝐸𝑡 = 𝑧𝑡𝐸𝑔  (9) 

 𝐸𝐹𝑡 = 0.1𝐼𝑡  (10) 

 𝑅𝐹𝑡 = 𝑚(𝑅𝑡 + 𝐸𝐹𝑡)  (11) 

 ∑ 𝑓
𝑡

12
𝑡=1 = 1  (12) 

 ∑ 𝑝
𝑡

12
𝑡=1 = 1  (13) 

 ∑ 𝑧𝑡
12
𝑡=1 = 1  (14) 

 

where, 𝑌𝐴 is the annual amount of water (“yield”) that can be provided by a particular virtual reservoir configuration, which 

we seek to maximize in this LP; 𝑆𝑡 is virtual reservoir storage in month t (t = 1, …, 12); 𝑅𝑡 is the virtual reservoir release in 390 

month t, and is the primary decision variable in this LP; 𝑋𝑡 is reservoir spillage, which will not be counted as part of “yield”; 

𝐸𝑡 is evaporation from the virtual reservoir surface in month t, which is a function of total storage capacity; 𝐼𝑡 is the monthly 

naturalized inflow (not reflecting alteration by reservoirs or consumption) to the virtual reservoir in month t; 𝐸𝐹𝑡  is the 

environmental flow requirement for the reservoir in month t, defined further in Eq. (10); 𝑅𝐹𝑡 is the return flow in the virtual 

reservoir in month t, which represents the reusable part of the release from distributed reservoirs, defined further in Eq. (11); 395 

𝐾 is any assumed storage capacity of the virtual reservoir in the GCAM model period, between 0 and future potential storage 

capacity; 𝐼𝑔  and 𝐸𝑔  are the sum of mean annual basin runoff [km3/year] and the mean annual evaporation [km3/year], 

respectively, over the GCAM model period (5 years) of interest (e.g., 2031 – 2035 for GCAM year 2035) from all distributed 

reservoirs that, in total, have a summed storage capacity K; 𝑓𝑡 , 𝑝𝑡 , 𝑎𝑛𝑑 𝑧𝑡  represent the fraction of annual water demand, inflow, 

and evaporation, respectively that occur on average in month t over the GCAM model period (5 years) of interest, where the 400 

fractions must sum to 1 over 12 months; 𝑚 is the fraction of flow released from distributed reservoirs (𝑅𝑡 + 𝐸𝐹𝑡, but not 

spillage, which is not reliably available) that’s reusable in the river system, based on consumptive water use relative to demand, 

assumed to be 0.1 (Döll et al., 2014); 𝑆𝑚𝑖𝑛  is the reservoir minimum storage requirement for functional reservoir operation, 

assumed to be 0. 

2.3.3 Calibration and Validation 405 

GLORY’s overarching purpose is to provide GCAM with information about the cost to supply water from reservoirs. 

GCAM balances water supplies and sectoral (e.g., agricultural) demands at the scale of large river basins (e.g., the entire 

Amazon basin). In sketching out the ‘possibility space’ for renewable water supply, GLORY does not seek to reproduce the 

exact water management and release strategies for the current and future reservoir storage installed in each basin. In fact, 
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observed data to do so at a global scale do not exist, even for the current stock of global reservoirs (Abeshu et al., 2023). 410 

Instead, our goal here is to identify how much water could be released from a basin’s cumulative reservoir storage to meet 

downstream demands (should the reservoir be operated to maximize yield), given the differences in sub-annual timing of 

reservoir inflows and demands. This provides a reasonable upper bound that helps to constrain GCAM’s water supply behavior. 

Rather than calibrating GLORY against observations, instead we seek to validate, and/or improve the fidelity of, the input data 

sets and constraints that guide the optimization procedure. For example, the hydrology model that produces reservoir inflows 415 

is calibrated and validated. We also conduct a form of validation of GLORY’s capacity-yield curves considering two aspects. 

The first aspect is to check that the level of annual water supply achieved with existing reservoir storage capacity (i.e., historical 

water demand data) is less than or equal to the maximum annual release (i.e., yield) that GLORY suggests for that same volume 

of the existing historical storage capacity for a given basin. We confirm this finding in Fig. S10a with global water demand 

data (Huang et al., 2018), demonstrating that our approach provides a reasonable upper bound on the water supply, without 420 

attempting to represent each basin’s unique water management behavior. The second aspect is to check that the amount of 

reservoir annual release from existing reservoir storage capacity (i.e., historical reservoir outflows) is within the range of the 

annual release (same as yield) that GLORY produces at the same volume of the existing storage capacity. We confirm this in 

Fig. S10b with reservoir outflow data ResOpsUS (Steyaert et al., 2022) for the U.S, indicating that our approach estimates 

reasonable release at basin scale. 425 

2.3.4 Input Layer: Reservoir Inflow and Demand Data 

Natural Reservoir Water Fluxes 

GLORY requires as input the average monthly profiles of reservoir inflow, evaporation, and demand. Monthly 

profiles are calculated using monthly data as the fraction of the time series variable value for each month over the sum of all 

12 months. Monthly profile of inflows to, and surface potential evaporation from, the virtual reservoir is derived from the 430 

Xanthos model’s monthly streamflow time series output at grid cells with existing reservoirs for the five-year GCAM period 

of interest. We consider this approach as a middle ground to address fine resolution from hydrologic variables and coarse 

resolution from GCAM in terms of two key aspects. First, the monthly profiles evolve with the inter-annual and intra-annual 

variability of the changing climate. Second, we initialized the inflow and evaporation profiles, focusing specifically on the grid 

cells with reservoirs to capture hydrologic patterns in reservoir-located areas. The monthly profiles for a virtual reservoir are 435 

calculated as the averaged profiles from these gridded inflows and evaporation. 

These future reservoir water flux time series can be generated for different climate change scenarios simulated using 

General Circulation Models (GCMs) with Representative Concentration Pathways (RCPs). The specific scenarios we explore 

in this paper, to be introduced shortly, include one example of a climate impact scenario (e.g., MIROC-ESM-CHEM and RCP 

6.0; see more details in section 2.4). The historical water flux is derived from Xanthos outputs forced by the reanalysis WATer 440 

and Global Change (WATCH) historical climate dataset (Weedon et al., 2011). Our simulation of the mass balance of water 
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in the reservoir (Eq. (4)), including natural shocks (e.g., droughts) in the sequence of inflows, enables us to better reflect the 

occurrence of drought events. 

 For inflow and evaporation, the monthly profiles over each 5-year window of the GCAM periods are calculated from 

2020 to 2050 (using data from 2016 to 2050). To be consistent with the dynamic recursive modeling design of GCAM, inflow 445 

and evaporation values for each month are taken as the average values over the backward 5-year window of the GCAM period. 

For example, January’s runoff is the mean of five January runoff values over 2021 – 2025 for GCAM period 2025. This 

captures the general sub-annual pattern of inflow, along with any evolving inter-annual patterns in changing water availability. 

GCAM is often fed with highly smoothed data, for purposes of assessing long-term trends in sectoral interactions, as well as 

to avoid solution failures due to its partial equilibrium structural design. Since GLORY is GCAM-considerate, the inputs and 450 

outputs of the GLORY model are designed to represent the averaged behavior during each GCAM period. GLORY is certainly 

capable of being used to explore more variable inflows, and to capture drought events, but we leave exploration of these 

dynamics to future studies. A basin’s optimization for a particular GCAM period (e.g., 2050) is executed in the absence of any 

carryover of information about reservoir storage levels in the previous five-year time period (e.g., 2045). (We feel this is a 

reasonable assumption, as the storage levels for many large reservoirs globally are uncorrelated across time lags exceeding 455 

five years). The purpose of the method we introduce here is to avoid reflecting unsustainable dynamics, such as progressive 

drawdown of reservoir levels during prolonged periods of drought. Rather, we seek to sketch out the ‘possibility space’ that 

defines how much water could be supplied if the objective was to sustainably maximize yield.  

 

Reservoir Water Demands 460 

To execute an optimization in the first model time period (2015), GLORY requires as input the monthly fractions of 

historical total annual water demand that occur in each month. We use water demand data from 2005 – 2010 for this purpose 

(Huang et al., 2018). In future time periods (e.g., starting in 2020), the demand profile is updated using annual sectoral demand 

from GCAM’s previous time step from six GCAM sectors: irrigation, livestock, municipal, electricity, industry, and primary 

energy. To do this, sectoral monthly water demands are temporally disaggregated from GCAM’s annual demands for each 465 

sector by using a historical monthly demand profile for each sector from Huang et al. (2018). This allows us to superimpose 

all sectoral monthly demand curves on top of one another to generate the total demand profile for the future time period. We 

then calculate the fraction of total demand occurring in each month, which serves as input to the LP optimization. Thus, the 

raw magnitude of demands is not used by the LP, except in the sense that they provide a weighted adjustment of the monthly 

total water demand profile. For example, if GCAM projects that future annual irrigation water withdrawals will 470 

disproportionately increase over time in a particular GCAM scenario and time period, this information will translate into 

corresponding disproportionate increase in monthly irrigation water demand compared to other sectors. Consequently, the total 

monthly demand will be predominately influenced by irrigation water demand. As a result, the profile of monthly water 

demand fraction will closely resemble that of monthly irrigation demand profile. This may increase or decrease the yield that 
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is possible to achieve with a given level of reservoir storage, depending on whether sub-annual supplies and demands are 475 

misaligned in time. We address this issue in detail in the following section. 

 

Discrepancy Between Water Demand and Surface Water Supply 

Reservoir storage plays an important role in managing or buffering the discrepancy between natural water availability 

(i.e., supply, or inflows) and demands. Our approach captures the intra-annual supply-demand discrepancies caused by the 480 

hydrological and socioeconomic drivers that previously were not considered in GCAM and explores the role of reservoir 

storage in providing water supply in different regions of the world. As captured in Eqs. (3) - (14), the capacity of a reservoir 

system to reliably supply water depends on the sub-annual variations and timing differences between streamflow, evaporation 

from the reservoir surface, and demand. Water deficit often occurs when there is not sufficient reservoir storage in place to 

spatiotemporally redistribute water and meet water demand. To quantify the intensity of water deficit that would exist under a 485 

shortage of reservoir storage, and therefore identify the regions that could benefit most from storage capacity expansion, we 

use a “socioeconomic drought” metric (Wilhite and Glantz, 1985). The socioeconomic drought intensity (SEDI) is defined as 

the ratio of total water deficit within a year (i.e., volume of demand that exceeds supply, when demand > supply) to the duration 

of the deficit, in the absence of any reservoir storage (Heidari et al., 2020).  

Figure 4 shows the average historical (i.e., 2005 - 2010) SEDI levels globally with examples of average monthly 490 

water deficit and surplus for six basins. In their unregulated states, most basins have no historical demand deficiency issues 

(i.e., 171 basins). However, numerous river basins around the world experience moderate-to-high deficit levels (e.g., 23 basins 

have log(SEDI) values higher than 1). Most of the basins with high SEDI values are noticeably clustered in the Middle East 

and Asia, though there are some regions experiencing this in the Americas. For example, in its unregulated state, the California 

basin has a severe water deficit from June to October because of increased demand for irrigation water, whereas abundant 495 

water resources become available during other times of the year when demands are lower. (The primary river source of water 

supply within the California basin includes the Sacramento River and San Joaquin River). This dynamic means that reservoir 

storage potentially offers significant value.  



19 

 

 

Figure 4. Average surplus and deficit between water supply and demand during historical 2005 – 2010 period in six selected basins. 500 
The historical demand is from Huang et al. (2018) and the historical inflow is derived from Xanthos runoff driven by WATCH 

climate forcing (Weedon et al., 2011). Surplus occurs when demand is lower than inflow (shown in green), and deficit occurs when 

demand is higher than inflow (shown in red). The global map shows the socioeconomic drought intensity (SEDI) as the ratio of total 

water deficit within a year to the duration (in months) of the deficit. The SEDI is scaled using logarithmic transformation to reduce 

the variance in the SEDI due to different magnitudes of water amount across basins. White color indicates there is no socioeconomic 505 
drought (supply > demands i.e., demands are always met using supply). 

2.3.5 Input Layer: Reservoir Storage Capacity Exploitable Potential (Land Exclusion Zones) 

The potential to expand reservoir storage capacity in the future in each basin is limited to land areas where reservoirs 

can feasibly be constructed. Reservoir storage capacity exploitable potential, referred to henceforth as “exploitable potential”, 

is the sum of existing reservoir storage capacity and future exploitable storage capacity at basin scale. The exploitable potential 510 
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serves as a constraint for K in Eq. (6). We identify the exploitable areas as the overlap among four different land exclusion 

layers. Our approach is largely based on Liu et al. (2018), but we also filter out grid cells that do not contain existing water 

bodies suitable for the siting of reservoirs (i.e., rivers). The exclusion layers include regions of high population historically 

(Jones et al., 2020), historical protected areas (UNEP-WCMC and IUCN, 2022), historical cropland areas, and absence of 

water bodies (e.g., rivers and lakes). To ensure consistency with the available data, we assume that the exclusion layers remain 515 

unchanged from the 2010 historical benchmark. For the population exclusion layer, we use the 0.125-degree spatial resolution 

population trajectory (Jones et al., 2020) from 2010 under Shared Socioeconomic Pathway (SSP) 2 “middle of the road” 

(O’Neill et al., 2017). To define protected areas, we use the World Database on Protected Areas (WDPA), which specifies 

terrestrial and marine protected areas as polygon shapes. To define cropland areas, we use 5-arcminute gridded resolution 

spatial land use and land cover projection from Demeter (Vernon et al., 2018; Chen et al., 2019), which disaggregates GCAM’s 520 

basin-scale land allocation of 2010 to grid scale. Water bodies are identified using Global Lakes and Wetlands Database 

(GLWD) Level 3 (Lehner and Döll, 2004), including land types 1, 2, and 3 (lakes, reservoirs, and rivers, respectively). All 

spatial data, if not already, are rasterized, aggregated or geo-referenced to the same 0.5-degree resolution. Using these four 

layers, we identify grid cells as exclusion cells for reservoirs (i.e., where no new reservoirs can be built) if any of the following 

criteria are satisfied (see Figure S5): (1) population density for the grid cell is higher than 1,244 capita per km2; (2) the grid 525 

cell has protected land; (3) more than 10% of the land cover within the grid cell is crop land; and (4) no water bodies exist in 

the grid cell. Note that the feasibility of constructing reservoirs can be influenced by many other factors, such as geological 

and seismic stability, which we do not consider here. We have chosen to emphasize these four primary constraints due to the 

availability of data with global coverage and our assumption of a more flexible reservoir expansion policy. 

The viable grid cells that remain (after removing cells that meet these four exclusion criteria) are grouped into three 530 

grid cell types according to relative potential of building new capacity to existing capacity and mapped in Fig. 5. Type 1 

(referred to as “exploited”) indicates grid cells with existing reservoirs (based on GRanD database), where all feasible reservoir 

sites are already exploited. Type 2 (referred to as “partially exploited”) indicates grid cells that contain existing reservoirs, but 

where more reservoirs could potentially be built. Type 3 (referred to as “unexploited”) indicates grid cells with no existing 

reservoirs, but in which new reservoirs can potentially be built. The remaining grid cells (i.e., around 60971 transparent grid 535 

cells) have no reservoir exploitable potential. The color in each basin in Fig. 5 shows the ratio (fraction) of the excluded area 

to the water surface area within the basin. The primary category that drives each basin’s exclusion fraction differs by basin. 

For example, for regions with high fractions of excluded area that are also cold or dry (e.g., Australia or Greenland), the limited 

availability of surface water bodies drives the high rate of exclusion. For some basins (e.g., Zambezi basin in Africa), protected 

areas dominate. For other basins (e.g., Volga basin in Europe, Parnaiba basin in South America), several categories contribute 540 

equally to the total excluded area.  

Several hotspots emerge (in Fig. 5) that have large numbers of grid cells where reservoirs could feasibly be built, 

including in South America (e.g., Orinoco, Amazon, La Plata, Sao Francisco), Africa (e.g., Congo, Nile), and North Asia (e.g., 

Yenisey, Lena). North America, Eastern Europe, Australia, and Eastern China are clustered with existing reservoirs and 
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feasible exploitable areas are much fewer. The spatial variation of exploitable potential differentiates the supply and demand 545 

potentials across the basins, which can affect long-term development of infrastructure.  

 

Figure 5. Global existing and exploitable types (0.5-degree grid cells). Type 1 (“exploited”) indicates grid cells that contain existing 

reservoirs, and in which no additional reservoir expansion is possible. Type 2 (“partially exploited”) indicates grid that have existing 

reservoirs, but in which more reservoirs can potentially be built. Type 3 (“unexploited”) indicates grid cells with no existing 550 
reservoirs, but in which new reservoirs can potentially be built. All remaining grid cells (not shown on the map) have no reservoir 

exploitable potential. The color of each basin denotes the ratio of excluded areas to the basin’s total water surface area. 

2.3.6 Input Layer: Reservoir Construction Cost 

We adopt the methodology introduced by Wiberg and Strzepek (2005) to estimate the cost of reservoir storage 

construction in each basin. The cost of reservoir storage is affected by a diversity of factors such as dam and reservoir size, 555 

location, and physiography. Physiographic characteristics are based on various factors, such as slope, topography, vegetation, 

climate, and soil types. Wollman and Bonem (1971) developed reservoir storage and cost relationships for 11 reservoir size 

classes in 10 physiographic zones across the U.S. We are not aware of any comparable studies for non-U.S. regions. To enable 

applications of the storage capacity-cost relationship to other regions, Wiberg and Strzepek (2005) developed a relationship 

between a physiographic zone and the average slope of the zone. This generalized relationship enables a form of 560 

regionalization, where we can use slope as the regressor to assign any non-U.S. region to its nearest corresponding U.S. 

physiographic zone.  In this study, we apply the positive cost-slope relationship for various reservoir size classes (See Table 
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S2) from Wiberg and Strzepek’s study to estimate the normalized unit cost to construct reservoir storage in each of the 235 

global basins. The relationships indicate higher slope and smaller storage size will lead to higher unit cost. We re-grid slopes 

onto 0.5-degree grid resolution using slope data from the Global Multi-resolution Terrain Elevation Data 2010 dataset 565 

(GMTED). Basin average slope is calculated as the average of the slopes in the grid cells that fall into grid cell types 1 – 3 (in 

Fig. 5). The size of the new reservoir is estimated based on existing reservoir sizes within a basin to determine the size class. 

The normalized unit cost is then multiplied by the average value of unit cost for global reservoirs (Keller et al., 2000) to obtain 

the scaled units of currency. 

To make use of the relationships described in the previous paragraph (i.e., to translate new reservoir capacity in each 570 

region into an overnight construction cost), we need to make assumptions about the size of any new increment of reservoir 

storage capacity. We assume each new increment of reservoir storage capacity, referred to henceforth as the “storage expansion 

increment”, is constant in magnitude for a given basin, therein implying a construction that is identical in size for each new 

reservoir. In reality, multiple factors affect decisions surrounding the size of new reservoirs, including sub-basin physiography, 

water sources, economic constraints, non-water supply objectives, hazard concerns (e.g., vulnerability to earthquakes), policy 575 

influences, culture, and other factors. As a simplification, we assume dams and reservoirs need to be built on known water 

bodies including existing reservoirs, rivers, and natural lakes (e.g., based on HydroLAKES). This assumption excludes the 

sizes of new impoundments that result from expanding the upstream surface area when constructing reservoirs across a river 

or valley. Thus, the storage expansion increment for a basin is determined as the average size of the existing reservoirs and 

lakes located in the grid cell types 1 – 3 within the basin. For basins without any exploitable grids, we calculate a replacement 580 

value as the mean size of all existing lakes regardless of expansion zone constraints. Finally, depending on the size class into 

which the storage expansion increment falls, we estimate the normalized unit capital cost (e.g., USD/m3) for storage 

construction in each basin using equations from Table S2. Figure 6 shows the currency-scaled unit cost of reservoir 

construction across the global basins. Ultimately, the size of storage expansion increment within a basin plays an important 

role in determining the curvature of a supply curve, which we will discuss in Section3.2. 585 



23 

 

 

Figure 6. Global unit cost estimation of reservoir storage capacity construction in 2020 USD/m3. 

2.3.7 Water Supply Curve 

A supply curve in GCAM describes the relationship between the quantity of a commodity being supplied (e.g., surface 

water, or solar power) and the unit cost of that commodity. The renewable water supply curve proposed in this study allows 590 

GCAM to grow its reservoir water supply over time through incremental investments in new reservoir storage capacity. Just 

as electricity supply requires capital investments in new power plants, reliably extracting surface water supply (via reservoir 

storage) requires investments in reservoir capacity that carry substantial levelized costs. Thus far, we have only described our 

approach to generating the input elements required to construct a supply curve, rather than detailing the construction of the 

supply curve itself. Specifically, we described the generation of a capacity-yield curve in Section 2.3.2, and the cost to construct 595 

reservoir storage in Section 2.3.6. In this Section (2.3.7), we describe our approach to combining these two threads of 

information to construct each basin’s renewable water supply curve.  

The supply curve covers the entire range of possible supply quantities and associated prices. The base point of every 

supply curve is at (0.0001, 0), meaning there is a small cost ($0.0001/m3) even if the supply is zero, to account for externalities 

that occur in the absence of supply. Beyond this point, increasing quantities of supply require increasing levelized costs. This 600 

is a common characteristic among renewable resource supply curves (including for electricity technologies such as wind and 
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solar power). This upward-sloping shape reflects that exploitation of the resource becomes more costly after the best 

components of the renewable flux (e.g., the best regions or portions of the flow-duration curve for extracting flow cheaply) 

are exhausted. The shape a given basin’s curve takes depends on the amount of yield gained through reservoir expansion at 

various storage capacity expansion increments versus the corresponding capital costs of that expansion.  605 

Equations (15) - (18) describe our approach to generating the set of points that define a renewable water supply cost 

curve. The objective, captured by Eq. (18), is to identify a set of supply curve points (Yj, Pj) that define the quantity of water 

supplied (Yj) and the cumulative levelized cost (Pj) to provide that quantity for cumulative increments of storage capacity (Kj) 

expansion. To produce the cost for each new increment of investment in capacity expansion, we calculate the levelized cost of 

storage capacity (LCOSC) (Eq. (17), which is given as the ratio of equivalent annual cost (EAC) (Eq. (15) of each storage 610 

expansion increment to the yield gained from that increment (Eq. (16). The EAC comes from a capital recovery levelization 

that accounts for the cost (described in Section 2.3.6) to build reservoir storage in each basin. The gain in yield from storage 

capacity expansion comes from the nonlinear capacity – yield relationships defined in Section 2.3.2. A supply curve is then 

constructed by accumulating the yield gain (∆𝑌𝑗) as well as the corresponding levelized cost (𝐿𝐶𝑂𝑆𝐶𝑗), shown in Eq. (18), 

until the yield reaches a preliminary end point where no more supply can be reliably provided by reservoir storage. This 615 

preliminary end point is determined either as the annual runoff or as the maximum water yield from the maximum exploitable 

storage capacity (𝐾𝑚𝑎𝑥  is determined in session 2.3.5), whichever is smaller (Eq. (18). If the maximum water yield is smaller 

than the annual runoff, the supply curve can still be extended to reach the annual runoff to indicate the potential for acquiring 

water supply through other (i.e., non-reservoir based) means, such as costly water transfers and transport. To reflect the higher 

cost of these additional renewable water supply measures, we assume the levelized cost for the extended portion on the supply 620 

curve is five times the reservoir cost. 

 

 𝐸𝐴𝐶𝑖 =
𝐶𝑖×𝑟

(1−(1+𝑟)−𝑛)
+ 𝑂𝑀  (15) 

 ∆𝑌𝑖 = 𝑌(𝐾𝑖) − 𝑌(𝐾𝑖−1)  (16) 

 𝐿𝐶𝑂𝑆𝐶𝑖 =
𝐸𝐴𝐶𝑖

∆𝑌𝑖
  (17) 

 
{
𝑌𝑗 = ∑ ∆𝑌𝑗

𝑗=𝑖
𝑗=1 = 𝑌(𝐾𝑗)

𝑃𝑗 = ∑ 𝐿𝐶𝑂𝑆𝐶𝑗
𝑗=𝑖
𝑗=1

, 𝑌𝑗 ≤ min (𝐼𝑔, 𝑌(𝐾𝑚𝑎𝑥))  (18) 

where 𝐶𝑖 [billion $] is the ‘overnight capital cost’ for the expansion storage at the expansion stage i; r is the discount rate that 

determines the present value for future cash flows, assumed as 0.05; n [years] is the reservoir useful lifetime, assumed as 60 

years to be conservative considering factors like sedimentation; OM [billion $] is the fixed annual operation and maintenance 625 

cost, assumed to be 0.17% of capital cost (Petheram and McMahon, 2019); Y indicates the non-linear relationship between 

storage capacity and yield; 𝐾𝑖 [km3] is the storage capacity at the expansion stage i; ∆𝑌𝑖 [km3]  is the yield gain when basin 

storage capacity increases from 𝐾𝑖−1 to 𝐾𝑖;  𝐿𝐶𝑂𝑆𝐶𝑖 [$/m3] is the levelized cost of storage capacity when increasing from 𝐾𝑖−1 
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to 𝐾𝑖, defined as the average revenue per unit water used that would be required to recover the costs of building and operating 

reservoir facilities during the project lifetime; 𝑃𝑗 [$/m3] is the water price at stage j; i indicates the ith expansion stage, 𝑖 =630 

1, … , 𝑚; m indicates the total number of expansion stages as the integer quotient of the “storage capacity exploitable potential” 

and the “expansion storage”; j indicates the jth point on the supply curve, 𝑗 = 1, … , 𝑖. We show examples of supply curves as 

part of our results in Section 3.2. 

2.4 Scenario Design 

We designed a set of stylized scenarios (Table 1) to explore two research questions that highlight the types of science 635 

questions that can be posed with this new GCAM-GLORY capability: (1) How does the cost to supply water from reservoir 

storage vary across global river basins, and to what extent is it shaped by hydrologic versus economic characteristics?; and (2) 

What insights and dynamics emerge from the new approach, and to what extent can they be attributed to human-earth system 

feedbacks? Our four scenarios, which successively build on one another, are designed to highlight key differences in water 

supply-demand dynamics that emerge from our new approach (compared to the existing approach in GCAM). The first two 640 

scenarios use GCAM as it exists now, while the latter two scenarios use the new capability presented in this study.  

The Reference scenario reflects GCAM as it exists now (i.e., without the advances proposed by our study), and thus 

establishes a baseline against which scenarios using our new approach can be compared. The Reference scenario is a “Business 

As Usual” (BAU) case, representing a future pathway that extends historical trends for socioeconomics (i.e., consistent with 

SSP2 population and GDP assumptions), climate (i.e., no climate impacts), technology, and policies (Calvin et al., 2019). The 645 

renewable water supply curve in the Reference is constructed by implementing the procedure described in Section 2.2.3, which 

includes establishing the accessible water fraction (by applying Eq. 1), using historical hydrologic time series and historical 

levels of reservoir storage capacity), as well as the supply curve’s maximum value (refers to the average historical annual 

runoff) in each basin.  

The Climate Impacts scenario adds climate change impacts (on water availability only) on top of the Reference 650 

scenario. Specifically, we impose the influence of climate change impacts on monthly regional water balances with global 

coverage using climate forcing from MIROC-ESM-CHEM (Watanabe et al., 2011) Global Climate Model (GCM) under RCP 

6.0 from the ISIMIP 2b (Frieler et al., 2017) simulation round. To build the renewable water supply curve, we establish the 

accessible water fraction in the same way we did in the Reference (i.e., applying Eq. (1), using historical hydrologic time series 

and historical levels of water storage), but the supply curve’s maximum value is different for each time step, calculated using 655 

smoothed, climate impacted future runoff time series in each basin. We do not seek here to conduct a detailed analysis of the 

implications of climate change, which we leave to a future study. Rather, we developed this Climate Impacts scenario because 

it enables a more harmonized assessment with our new, GLORY-based approach, which explicitly accounts for climate 

impacts. Despite the fact that it is perhaps more representative of reality, we did not label the Climate Impacts scenario as a 

Reference, because GCAM does not yet account for climate impacts in its default scenario. All of our scenarios, including 660 
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Climate Impacts, extend through 2050, which is approximately when the different RCPs substantially diverge in their 

trajectories. Thus, the forcing level appearing in our Climate Impacts scenario is reasonably representative of climate forcing 

and impacts across different RCPs through 2050. 

The latter two scenarios use our new, GLORY-based approach to generating cost curves. Both scenarios are built by 

ingesting the very same drivers from the Climate Impacts scenario, though the climate impacts register differently than in the 665 

first two scenarios, because of GLORY’s representation of reservoir storage dynamics, capacity expansion, and costs. The No 

Feedbacks scenario develops a new supply curve and passes it to GCAM in each time period, but does not include demand-

based feedbacks from GCAM to GLORY. In contrast, the Feedbacks scenario feeds sectoral annual water demand and solved 

water supply quantity from GCAM to GLORY in each time step (details described in Section 2.1.1 and 2.3.1). The difference 

between GLORY-based scenarios and the Climate Impact scenario offers insight into the incremental effect of our new 670 

approach to representing reservoir storage in GCAM. Comparison between the No Feedbacks and Feedbacks scenarios allows 

us to explore the sensitivity of the methodology (and its resulting GCAM outputs) to the representation of feedbacks. The latter 

comparison could offer particularly important insight given the growing interest in multi-model linkages and feedbacks in the 

multi-sector dynamics literature (Calvin and Bond-Lamberty, 2018; Weyant and Fisher-Vanden, 2020). Implementing such 

feedback mechanisms takes substantial effort and computing resources, so it is beneficial to understand the effects of including 675 

feedbacks in diverse MSD modeling contexts.  

 

Table 1. Description of scenario design. 

Scenario Modeling Approach Description 

Reference 
Existing (i.e., original) GCAM 

supply curve approach 

Default GCAM scenario without any changes. Includes 

historical trends for socioeconomics (i.e., SSP2), climate (i.e., 

no climate impacts), technology, and policies. 

Climate Impacts 
Existing (i.e., original) GCAM 

supply curve approach 

Builds on the Reference scenario by including climate 

impacts on regional water balances (with global coverage) 

using climate forcing from MIROC-ESM-CHEM GCM 

under RCP 6.0. 

No Feedbacks 

New GCAM supply curve approach 

(i.e., using GLORY), without 

GCAM-GLORY feedbacks. 

Uses the same climate forcing and variables (e.g., 

temperature and precipitation) from the Climate Impacts 

scenario, and updates GCAM in each time step with supply 

curves generated using GLORY (with no GCAM water 

demand feedbacks) in each time period. 

Feedbacks 

New GCAM supply curve approach 

(i.e., using GLORY), with GCAM-

GLORY feedbacks. 

Uses the same climate forcing and variables (e.g., 

temperature and precipitation) from the Climate Impacts 

scenario, updates GCAM in each time step with supply 

curves generated using GLORY after receiving water 

demand feedbacks from GCAM in each time period. 
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3 Results 

We begin (in Section 3.1) by exploring regional differences in the capacity-yield relationships that emerge from the 680 

GLORY model. We show results for the highest fidelity (i.e., closest to reality) representation of the two GLORY-based 

scenarios from Table 1 (Feedbacks). Section 3.2 evaluates GCAM cost curves, to which capacity-yield relationships are one 

input (for GLORY-based scenarios). This section explores cost curve differences across regions, time periods, and all 

scenarios. Section 3.3 focuses on the regional implications of the new cost curves produced by our highest fidelity scenario 

(Feedbacks), focusing on its impact on the portion of the cost curve that reflects cheaply accessible water. Section 3.4 focuses 685 

on how GCAM water withdrawal results change (across surface and groundwater withdrawals) across scenarios, to highlight 

the implications of the new approach presented here. Finally, Section 3.5 uses bivariate analysis and system feedback loop 

analysis to evaluate which aspects of our new approach (from economics to hydrology) are most strongly shaping GCAM 

water supply and demand dynamics.  

3.1 Implications of the Reservoir Capacity – Yield Relationship 690 

The volumetric yield that can be gained from expanding reservoir storage capacity varies across basins. To roughly 

capture the shape of each basin’s capacity-yield relationship, we calculate and plot the median slope of each basin’s curve 

under the Feedbacks scenario, to enable comparison (across basins) of the relative effectiveness of building reservoirs to supply 

water (Fig. 7). The magnitude of the slope is not only driven by the magnitude of annual runoff, but also by the sub-annual 

characteristics, as well as the magnitude of expanded capacity (i.e., where on the capacity-yield curve a basin is starting). For 695 

example, the median slopes in Fig. 7 show that despite the Amazon basin’s large-magnitude historical annual runoff (about 

5000 km3/year), the Amazon produces less water supply from building each unit of reservoir storage capacity in 2050 than the 

Indus basin, whose historical annual runoff is an order of magnitude lower (140 km3/year). This is because water demands in 

the Amazon are much lower than total annual runoff, while the Indus experiences a water deficit for more than half of the year 

in the absence of reservoirs (see Fig. 4). Thus, in the Amazon, natural streamflow (in the absence of reservoirs) provides more 700 

than enough water to reliably meet seasonal demands, without the need for any reservoirs to smooth out natural streamflow 

variability; whereas in the Indus, each increment of new reservoir storage provides substantial value because demands are 

large (and temporally out-of-sync) relative to runoff. The amount of supply provided by reservoir regulation is more 

meaningful when compared to the magnitude of seasonal demand. The capacity-yield relationship reveals the effectiveness of 

reservoir storage capacity in mitigating socioeconomic drought by storing the surplus during the water-abundant seasons and 705 

releasing it during the water shortage seasons. 
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Figure 7. A map of 235 global river basins, where the color of each basin reflects the median slope of the capacity – yield curve (i.e., 

annual water yield [km3/year] gain per unit increment of reservoir storage capacity [km3]) for each basin under the Feedbacks 710 
scenario in 2050. For each of six select basins with historical socioeconomic drought concerns (see Fig. 3), a chart plots the capacity 

– yield curve (black line). Each of the six charts also shows the slope of the capacity – yield curve at each storage capacity expansion 

interval (i.e., green area), representing the changing water yield gain per unit expansion of reservoir storage capacity at different 

storage capacity expansion stages; and an orange circle showing GCAM calculated water supply and its corresponding storage 

capacity in 2050 in the Feedbacks scenario. The larger median slope value indicates the potential of gaining more water from 715 
reservoir storage capacity expansion. 

The effectiveness of expanding reservoir storage capacity in supplying water decreases with continued exploitation 

of storage capacity. The non-linearity of the capacity-yield curve indicates the changing rate of increased water yield for each 

unit expansion of storage capacity. The green shapes in the six sub plots (Fig. 7) show examples of the changing rate in yield 

gain versus capacity expansion (i.e., the slope of capacity-yield curve) for six selected basins with historical socioeconomic 720 
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drought challenges (as established in Fig. 4). A slope that is initially steep, but that flattens out at increasing capacity, 

characterizes the curve for every basin, driven by the optimization formulation (e.g., constraints) described Eq. (3) – Eq. (14). 

We can roughly divide a capacity-yield curve into three sections based on the magnitude of the slopes on the curve: (1) the 

“rapid yield gain” section, where the increase in water availability to the reservoir storage capacity expansion ratio is the  

highest when a basin starts building reservoirs; (2) the “steady improvement” section, where water yield keeps increasing with 725 

storage capacity expansion, but the increasing rate is slowing down; and (3) the “reach the ceiling” section (not shown on the 

curve), where annual yield reaches a maximum equal to the annual runoff, and stops increasing with increased storage capacity. 

The specific shape (e.g., slopes of the three segments described above) taken on by the curve for a given basin is driven by 

complex interactions between the input datasets (e.g., the shapes of the monthly inflow and demand curves) and the LP 

constraints. 730 

About 60% of basins depend on reservoir storage capacity to regulate streamflow enough to satisfy the magnitude 

and timing of demands by 2050 (e.g., the six basins highlighted in Fig. 7). The rest of the basins’ demands can be satisfied by 

the maximum natural yield, which is the volume of annual water that is naturally supplied (via streamflow) by the hydrosphere, 

without the regulation of reservoirs. Meeting demand in excess of the maximum natural yield requires expanding reservoir 

storage capacity to secure additional water supply that is temporally consistent with the timing of demands. Using the water 735 

withdrawals calculated by GCAM, we use the capacity-yield curve to back-calculate the corresponding minimum storage 

capacity that is needed to meet total demand. (Note that the capacity-yield curve represents the optimum water yield from a 

given capacity. Therefore, the back-calculation using GCAM withdrawal indicates minimum storage capacity required.) The 

orange circle in each of the six example basins (Fig. 7) shows the minimum storage capacity needed to provide water for 

agricultural, domestic, industrial, and other water uses in 2050. (This orange data point reflects the minimum storage capacity 740 

required in any given time period; though if existing storage capacity exceeds this minimum, we retain that storage capacity 

in our analysis). It can be useful to compare across basins the expanded capacity relative to the maximum exploitable potential, 

and the corresponding water yield relative to the maximum potential water yield, which is the highest yield value on the 

capacity-yield curve. For example, the Indus basin is relying on 9.2 km3 of storage capacity to provide about 135 km3 of annual 

yield in 2050, which is about 96% of the maximum yield according to the hydrology and demand patterns for 2050. On the 745 

contrary, the California basin requires only 17% of the maximum yield in 2050 that can be provided from about 1.3 km3 of 

storage capacity. The Indus basin has much higher water yield gain from every unit of storage capacity expansion than the 

California basin, and the former can potentially provide more affordable water. As a result, the reservoir capacity potential is 

mostly exploited in the Indus basin. The capacity-yield relationship enhances our understanding of the role of reservoirs across 

basins by translating climate and socioeconomic dynamics into quantifiable water supplies. 750 

3.2 Comparison of Water Supply Cost Curves 

Water supply cost curves produced by the GLORY model are dynamically updated in each model time period based 

on evolving hydroclimatic (e.g., reservoir inflow) and socioeconomic (e.g., water demand) conditions. Figure 8 compares the 
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supply curves from the default GCAM (in black) with those from the GLORY model, both from the Feedbacks scenario (in 

orange) and the No Feedbacks scenario (in green). To enable a normalized comparison of supply curves across different basins 755 

with different runoff magnitudes, Fig. 8 plots the supply volume (x-axis) as a fraction of mean annual runoff. (The default 

GCAM supply curve fractions are calculated using the process described in Section 2.2.3). We only show the portion of the 

supply curves for fractions within 0 to 0.8, where water demands for most basins fall. Supply curves for 2030 and 2050 are 

highlighted (with thick lines) in the figure to demonstrate how the shape of the supply curve evolves over time under our new 

approach. The default GCAM supply curve is static for each basin throughout the simulation periods for both Reference and 760 

Climate Impacts scenarios, whereas those from the GLORY model vary by time and scenario.  

 

Figure 8. Comparison of supply curves under Reference/Climate Impacts (GCAM default), No Feedbacks, and Feedbacks scenarios 

from 2020 to 2050 in selected example basins. The multiple lines with same color under Feedbacks and No Feedbacks scenarios 
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indicate supply curves for each 5-year period from 2020 to 2050. The thick dashed and solid lines in orange and blue are for 2030 765 
and 2050 and the thin solid lines are for the rest of the periods. The thick black line represents the supply curve for the 

Reference/Climate Impacts scenarios, which is created from the existing GCAM supply curve approach described in section 2.2.3. 

We only show the available fraction from 0 – 0.8 on the supply curves to highlight the differences between original and updated 

curves. The y-axis is limited to a certain range to better visualize the curve variations. 

The variation over time in the shape of the supply curves produced by the GLORY model confirms that shifts in sub-770 

annual climate and demand (e.g., for the Feedbacks scenario) strongly shape annual reservoir supply yield and cost. This 

confirms the added value of our specific focus on discrepancies between sub-annual supply and demand relative to previous 

studies of global reservoir supply potential (e.g., Liu et al., 2018a). For example, the annual runoff for the Huang He basin 

only slightly increases 1.7% (Fig. S2) from 2030 (i.e., 93 km3) to 2050 (i.e., 94.6 km3). However, water prices in the Huang 

He basin increases by almost 60% (from 2030 to 2050) for supplying 70% of the annual runoff in the Feedbacks scenario. 775 

Higher annual runoff does not guarantee more annual supply because the storage-and-release decisions of reservoirs are 

constrained by the monthly inflow, storage capacity, and monthly demands reservoirs are optimized to satisfy. The LP 

optimization maximizes the total annual water yield subject to monthly demand patterns. In the case of the Huang He basin, 

demand will decrease from 2030 to 2050 (see Fig. S2), leading to a lower water yield in 2050 from the same size of reservoir 

capacity (Fig. S6). As a result, the price will be higher in 2050 for the same amount of water supply to reflect market 780 

competition, compared to 2030. 

Feedback from GCAM to GLORY (in the form of sectoral water demand) in each time period affects the prices of 

water, especially for basins with high socioeconomic drought intensity. Figure 8 compares supply curves for all simulation 

time periods between the Feedbacks and No Feedbacks scenarios. In general, supply curves under the Feedbacks scenario 

have higher prices for the same time period compared to the No Feedbacks scenario. Without feedback from GCAM, both the 785 

annual water demand magnitude and its disaggregation into monthly fractions are assumed to be fixed at 2020 levels. Given 

the demands are held constant, the shifts among supply curves between periods in the No Feedbacks scenario are mainly driven 

by shifts in monthly runoff patterns due to evolving climate conditions, and the response of reservoir storage to those changing 

conditions. In contrast, under the Feedbacks scenario, GLORY directly ingests demand outputs from GCAM, where most 

supply curves shift up from the No Feedbacks scenario. For example, water prices in the California basin almost doubled from 790 

the No Feedbacks to the Feedbacks scenario. With feedback from GCAM in place, monthly demand in the California basin 

significantly increased from June to October in all periods when runoff is typically low (Fig. S3), compared to the fixed 2020 

demand level (Fig. S4). The complex relationships between net inflow and demand drive the release decisions from reservoirs, 

where the California basin experiences less water yield in Feedbacks scenario (Fig. S6) due to difficulties in meeting increased 

demand during irrigation seasons. The feedback scheme ensures that the model responds correspondingly to the shifts in 795 

supply-demand timing. With the GLORY model, sub-annual climate and socioeconomic dynamics are incorporated in 

reservoir management decisions to further inform GCAM.  
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3.3 Available Low-Cost Renewable Water 

Prior to evaluating the implications of our new method for GCAM outputs, such as water withdrawals, we discuss 

the spatial and temporal changes of low-cost renewable water under the Feedbacks scenario. This complements the analysis 800 

of Fig. 8 by focusing on just the relatively inexpensive part of the cost curve and its change over time. Low-cost renewable 

water is a metric that shows the amount of water that can be provided by reservoirs at an inexpensive price (i.e., assuming 

$0.001/m3), which corresponds to the “accessible point” (explained in Section 2.2.3) on each basin’s supply curve. Affordable 

water prices can indicate a basin has not invested and expanded reservoirs much, or the basin has well-expanded storage 

capacity, but the LCOSC is relatively low. Figure 9 shows the fraction of low-cost renewable water over the total runoff in 805 

2050 (Fig. 9a) and the fractional change from 2020 to 2050 across global basins (Fig. 9b) under the Feedbacks scenario. We 

use a fraction, instead of a volume, in Fig. 9 to normalize the effect of different magnitudes of runoff across basins.  
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Figure 9. (a) Fraction of low-cost ($0.001/m3) renewable water over total runoff for 2050, and (b) Changes of low-cost fraction from 

2020 to 2050 under Feedback scenario. The fraction of low-cost renewable water is affected by runoff amount, reservoir unit 810 
construction cost and reservoir yield characteristics. Changes in the fraction of low-cost renewable water represent shifts in the 

supply curve concerning water price at $0.001/m3. 

 Most basins experience a reduction in the fraction of low-cost renewable water over total runoff from 2020 to 2050 

(Fig. 9b), leading to a lack of affordable water in some basins by 2050. The basins with high reductions are mainly in North 

America and Eastern Europe, while basins with medium to low reductions are among South America, Africa, Asia, Western 815 

Europe, and Australia. The fraction reduction implies the supply curve shifts left, which causes a higher price given the same 

quantity of water supply. Increased water cost can have differential impacts on the production of each demand sector, 
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depending on the water consumption rate varied across demand types (e.g., crop, livestock, technology), locations (e.g., land 

types), and market rules (e.g., trades) in GCAM.  

A basin with a lower fraction of low-cost renewable water over annual runoff can be caused by: (1) higher annual 820 

runoff; (2) higher unit construction cost; and (3) lower gain in water yield from building reservoirs, depending on sub-annual 

hydrologic and demand quantity and their monthly patterns (see Section 3.1). For example, the fraction of low-cost renewable 

water in the Amazon basin is low (Fig. 9a), while the basin is well-known for abundant water resources. The low water demand, 

compared to the inflow, in the Amazon basin does not require reservoirs to heavily regulate streamflow to complement demand 

that is already met by natural streamflow. Therefore, Amazon’s low fraction of low-cost renewable water is mainly driven by 825 

low demand quantity and large amount of natural runoff. On the contrary, the California basin has a low fraction of low-cost 

renewable water for a different reason. The water yield gain for each unit expansion is low (see Fig. 7) because the water 

deficit during summer (see Fig. 4) is difficult to complement with limited reservoir storage capacity. Therefore, the California 

basin experiences high water prices. 

3.4 Implications of Reservoir Storage Capacity in GCAM 830 

GCAM water withdrawals based on the new supply curves presented in this study better reflect the role of reservoir 

storage in basins with seasonal socioeconomic droughts. (As defined before, socioeconomic drought occurs when there is 

water deficit between demand and runoff in the absence of reservoir regulation.) Figure 10 shows water withdrawals by water 

sources for six example basins under all four scenarios from GCAM. The Climate Impacts scenario does not have significant 

differences from the Reference scenario. Both the No Feedbacks and Feedbacks scenarios have substantial differences from 835 

the Climate Impacts and Reference scenarios, in terms of total withdrawals and how the supply share is partitioned between 

surface water and groundwater.  
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Figure 10. Water withdrawals by source for Reference, Climate Impacts, No Feedbacks and Feedbacks scenarios in six selected basins. 

With our new GLORY-based method in place in the No Feedbacks and Feedbacks scenarios, the Huang He basin 840 

experiences lower total water withdrawals, and specifically lower surface water withdrawals, compared to the Reference and 

Climate Impacts scenarios. This occurs because our new approach captures sub-annual discrepancies between natural water 
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availability and demand, and the cost of storage required to bridge that gap. More groundwater is pumped to supplement 

surface water, which will have downstream implications for associated energy usage and emissions. Moving to the Indus basin, 

water supply will decline by more than half by 2050 in GLORY-based scenarios (relative to the original GCAM approach), 845 

where a limited reservoir supply around 100 km3/year requires a large amount of groundwater to meet water demands. 

However, as water prices increase with groundwater depletion, the affordable groundwater is exhausted around 2040. High 

water prices in the Indus basin cause considerable decreases in demand. On the contrary, basins like the Africa Northwest 

Coast experience more water yield in scenarios with reservoir storage represented by the GLORY model.  

Establishing feedbacks between GCAM and GLORY can ultimately impact surface water withdrawals, because 850 

feedbacks impact the timing of demands, the level of storage required to achieve a particular level of water supply yield, and 

thus ultimately the prices to supply water. The California basin uses less surface water and less total water through 2050 in the 

Feedbacks scenario than in the No Feedbacks scenario. We also note that the surface water withdrawals do not share the same 

trend as either annual runoff or annual demand. For example, the overall annual runoff in the California basin shows a smooth 

decreasing trend from 2020 to 2050, and the annual demand increases about 10% by 2040 and drops 15% from 2040 to 2050 855 

(see Fig. S2).  Rather, the surface water withdrawals go up and down in each time period. This is because the annual runoff 

and demand are not the only drivers to determine the amount of supply. Instead, their intra-annual patterns play a more 

important role in determining monthly release so that reservoirs are the most reliable. With feedbacks in place, monthly demand 

patterns can be better captured in the GLORY model to optimize the monthly release. 

3.5 The Compounding Influences of Drivers on GCAM Supply – Demand Dynamics 860 

The previous sections illustrated the direct and indirect impacts of drivers on capacity-yield relationships and water 

supply curves from GLORY, and water sector dynamics from GCAM, for a few example basins. This section advances our 

understanding of compounding influences of drivers on the supply and demand dynamics across the global 235 basins using 

bivariate analysis and system feedback loop analysis. These analyses are essential for two reasons: (1) they offer diagnostic 

insights to ensure the model operates as expected; and (2) they identify dominant model processes that merit further 865 

enhancement. 

Figure 11 shows the paired correlation (above diagonal) and joint density (below diagonal) between each combination 

of paired variables, and the marginal distribution (diagonal) of each variable for global basins in 2050. We select three main 

drivers (i.e., expansion cost, median water gain per unit storage expansion, socioeconomic drought intensity) and two metrics 

(i.e., water prices and water withdrawals) to explore cause-and-effects relationships. Water withdrawals can be treated as a 870 

driver for the GLORY model under the Feedbacks scenario. Note that all the variables are normalized using log transformation 

to reduce the high variance in the data due to different characteristics of basins, and to better compare the changes between 

scenarios. For pairs involving socioeconomic drought intensity, we excluded cases when values are not applicable to log 

transformation, such as zeros, in the linear regression analysis (last column in Fig. 11). The exclusion of zeros also enabled us 

to focus on the basins using reservoirs as supply sources because socioeconomic drought intensity at 0 means demand can be 875 
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met by natural runoff. The basins included in this case have water deficit issues and require reservoirs to regulate water to 

improve water supply, which yield 70 and 63 basins for the Feedbacks and No Feedbacks scenarios, respectively. 

 

Figure 11. Paired density plots (lower half) and Pearson correlation plots (upper half) among drivers and GCAM outputs in 2050 

under Feedbacks and No Feedbacks scenarios for selected basins. Drivers include cost for incremental expansion storage, median 880 
water gain per unit storage capacity expansion at GCAM solved supply level, and socioeconomic drought intensity. GCAM outputs 

include water prices and water withdrawals (or demands). The orange and blue colours denote Feedback and No Feedback scenario, 

respectively. The asterisks next to the level of correlation (e.g., three asterisks mean strong correlation). Basins are included for the 

linear regression for water gain per unit expansion and socioeconomic drought intensity if the water supply is above the maximum 

natural yield and there is a deficit between sub-annual demand and natural runoff. The maximum natural yield is the amount of 885 
natural water that can be provided without any reservoir regulation.  All variables are normalized with log transformation and both 

axes are unitless. 
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Our results reveal that multiple drivers combine to influence supply-demand dynamics in combination, rather than 

demonstrating the presence of a single dominant driver (Fig. 11). Between drivers and metrics, socioeconomic drought 

intensity and water withdrawals show the highest correlation among all paired variables. The socioeconomic drought intensity 890 

increases with increasing water withdrawals. Different from hydrologic drought, socioeconomic drought considers both 

hydrologic and socioeconomic aspects in identifying drought level regarding water supply. Higher demand means there will 

be more water deficit occurring for months with low inflow, leading to a direct impact on the storage capacity-yield relationship 

calculated in the LP model. Water withdrawals and water prices also share strong positive correlations because of the non-

linear renewable water cost curves embedded within GCAM. Expansion cost is positively correlated with water prices, 895 

confirming the model’s skill in demonstrating that constructing reservoirs in basins with less ideal climate and physiographic 

features could lead to more expensive water supply. In addition, the positive correlation between expansion cost and surface 

water withdrawals indicates that larger reservoirs (which may be required on larger rivers) may have a higher expansion cost, 

but can also be more reliable in supplying water.  

The feedback from GCAM to GLORY forms a balancing loop revolving around demand dynamics of the integrated 900 

water, energy, and land sectors (see Fig. S8). The bivariate analysis shows the positive or negative linkages between drivers 

and metrics that can transform into a causality chain. A full causal loop is closed with feedback from GCAM to GLORY, 

where the balancing loop attempts to seek equilibrium status over time. For example, in Fig. S8, although water demand can 

increase because of the development of the agriculture and energy sectors, this increase in demand can in turn reduce the 

impact of change (e.g., expanding reservoirs to supply more water) over time due to water affordability. The feedback also 905 

increases the sensitivity of water prices to socioeconomic drought intensity (compared to the No Feedbacks scenario), as their 

correlation is stronger in Fig. 11. The feedback would have greater impacts in the long-term view as evolving demand due to 

activities from other sectors will propagate to decisions on reservoir expansion pathways. For example, Fig. S9 shows 

alternative pathways of minimum reservoir storage capacity expansion for example basins from the No Feedbacks to 

Feedbacks scenario. To meet the dynamically growing demand in the Feedbacks scenario, the California basin needs double 910 

the storage capacity required in the No Feedbacks scenario in 2050. Interestingly, the doubled storage capacity in the 

Feedbacks scenario provides less surface water than the No Feedbacks scenario (see Fig. 10). This is because the evolving 

demand signal in the Feedbacks scenario almost doubled compared to demand in the No Feedbacks scenario in 2045 (see Fig. 

S4), leading to higher projected socioeconomic drought intensity that eventually raises water prices. As the California basin 

expands its reservoir storage capacity, the ability of reservoirs to supply low-cost water is inevitably reduced by the 915 

compounding influences of the climate and socioeconomic change. 

4 Conclusions  

We introduce a new multi-model approach to representing the impacts of reservoirs on the cost to supply surface 

water, and the resulting demand for that water, using the dynamically linked Global Reservoir Yield (GLORY) model and 
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Global Change Analysis Model (GCAM). GCAM is a multisector model of global climate-land-energy-water dynamics that 920 

has recently been extensively used to explore science questions about the future of regional and global water resources, such 

as the economic impacts of global water scarcity (Dolan et al., 2021), sectoral responses to water scarcity (Cui et al., 2018), 

future virtual water flows (Graham et al., 2020), and the regional implications of global water scarcity (Giuliani et al., 2022) 

among others. The representation of reservoir water storage in GCAM has remained limited, and recent large ensemble 

sensitivity analysis studies have noted the sensitivity of future global water scarcity (and its economic impacts) to GCAM’s 925 

assumptions about reservoir water storage (Birnbaum et al., 2022; Dolan et al., 2021; Turner et al., 2019). 

Here we develop a new model, the GLORY model, that determines (for each of 235 global river basins) the 

relationship between reservoir water yield and reservoir storage capacity by combining multiple physical and economic 

dimensions, such as sub-annual variations in hydroclimatic conditions and human water demands. The GLORY model then 

develops a ‘supply curve’ that defines the unit cost to supply increasing volumetric quantities of water, by combining the 930 

capacity-yield relationship with data on the cost to build reservoir storage and limitations to reservoir expansion (i.e., viable 

reservoir sites). GLORY passes updated supply curves to GCAM in each model time period and receives water demand 

information back from GCAM in a delayed two-way feedback loop. We design four scenarios to compare our newly developed 

water supply curves to GCAM’s original supply curves, and their impacts on GCAM outputs. Our results show that our multi-

model framework has a marked effect on GCAM dynamics (compared to GCAM as it exists now), including on surface water 935 

withdrawals (and, as a result, on groundwater withdrawals) in many basins. This is because our approach captures key sub-

annual dynamics, such as the temporal discrepancy between streamflow and water demand in each basin, and regional 

heterogeneity in the cost to build reservoirs. 

Our new method makes three core contributions to the literature. First, it advances the current representation of 

reservoir water storage in a widely used model (GCAM) by accounting for the various physical and economic dimensions that 940 

impact reservoir water supply potential. The strong temporal correlation between precipitation, streamflow, and reservoir 

storage dynamics (Hou et al., 2022) indicates the importance of considering annual and sub-annual variations of climate 

conditions in managing water supply. A large annual runoff volume may not guarantee that all demands can be met if the 

timing of supply and demand do not overlap. Therefore, in this study, we emphasize the importance of exploring the effect of 

timing and quantity differences between streamflow and demand (i.e., socioeconomic drought) on reservoir water supply. Our 945 

results show a strong impact of socioeconomic drought on demands and water prices calculated from GCAM. Considering 

additional physical dimensions, we also constrain reservoir storage capacity expansion potential by population, protected areas, 

croplands, and existing surface water networks. With regard to economic dimensions, we account for reservoir construction 

costs based on the reservoir storage capacity size and physiographic features to differentiate spatial variations of water prices.  

Second, to our knowledge, our new approach now represents the only existing global integrated model of climate-950 

land-energy-water dynamics that accounts for future reservoir storage expansion pathways and their potential multi-system 

impacts. Expansion of reservoir storage capacity in GCAM-GLORY results indicates more investment is required in reservoir 

infrastructure and maintenance for certain basins, which increases the levelized cost of storage capacity. On the other hand, 
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through the feedback effect we introduced in this study, the rising water prices will slow down the reservoir capacity expansion 

for basins with limited expansion potential and low water yield return from expansion. The long-term pathways of reservoir 955 

storage capacity expansion that now emerge from GCAM-GLORY analyses can help inform analyses of water resources 

infrastructure investments, disaggregation of regional storage capacity into gridded storage capacity (e.g., as is done for water 

demands through Tethys (Khan et al., 2023) and land allocation through Demeter (Vernon et al., 2018)), adaptive water 

resources planning, and potential inter-basin transfers under climate and socioeconomic changes. 

Third, we advance the state of the science on human-Earth system feedbacks by deploying multi-model feedback 960 

linkages, which is a growing area of importance in multi-sector dynamics research. We also perform an initial assessment of 

the benefits of including feedbacks via Feedbacks and No Feedbacks scenarios. Our results show that water demand feedbacks 

have substantial impacts on surface water withdrawals in basins with persistent socioeconomic drought problems. Water 

scarcity issues are more sensitive and better captured under the Feedbacks scenario, where higher water prices are seen due to 

inadequate surface water resources or increased demand driven by the energy and land sectors. For instance, the California 965 

basin experiences a 20% reduction in surface water withdrawals in the Feedbacks scenario, compared to the No Feedbacks 

scenario in 2050. Other than feedback from water demand, future work can include feedback from land use change that informs 

the estimation of storage capacity expansion potential. 

While this study improves the reservoir storage representation in GCAM for global basins, there are future 

opportunities to enhance GCAM-GLORY, including but not limited to: (1) We currently aggregate distributed reservoirs' 970 

storage capacity within a basin into a single virtual reservoir and simplify the reservoir network. This simplification is 

reasonable in the context of GCAM because of its coarse spatial (basin) and temporal (5-year) resolution. However, the timing 

and magnitude of inflow and demand vary spatially, and the release of upstream reservoirs to downstream reservoirs can alter 

the inflow shape, especially with reservoir expansion in the future. Integrating GLORY with a global distributed hydrologic 

model can potentially improve the representation of spatially distributed reservoirs and enable analysis at finer resolution. (2) 975 

More feedbacks can be represented using the GLORY framework. For example, land use change projected from GCAM can 

be used to inform the constraint layers in GLORY to update reservoir exploitable potential. (3) Reservoir unit cost for each 

basin plays an important role in determining prices on the supply curves. Reservoir unit cost for each basin can be scaled by 

the local currency of reservoir capital cost (although data is usually limited) or regional GDP, to improve the regional economic 

representation, rather than using a global averaged capital cost. (4) GCAM is technically capable of operating at a one-year 980 

time step (Zhao et al., 2021). Improving the temporal resolution for the interactions between GLORY and GCAM will enhance 

our ability to capture extreme events and allow us to create continuous representation of reservoir storage dynamics through 

time. (5) Our study explores a very limited sampling of hydrologic uncertainty (i.e., that which is embedded in the historical 

record and in a single future projection of climate impacts on runoff). It would be of value to develop capacity-yield and supply 

curve relationships in GLORY corresponding to differing levels of reliable yield (Loucks and van Beek, 2017), as increasingly 985 

reliably yields (e.g., moving from 90% to 99%) will require much higher levels of storage investment (and thus costs) to meet 

demands at those corresponding levels of reliability. 
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In summary, enhancing the explicit representation of feedbacks between reservoir water supply and demand sector in 

GCAM is important for better understanding the role of future reservoir storage pathways in shaping the co-evolution of 

climate-land-energy-water systems. As more regions experience water scarcity issues in the future, reservoirs could play an 990 

important role in mitigating drought impacts and improving water security. Representing the role of reservoir storage in the 

context of hydrology and economics will enable us to develop a more comprehensive understanding of demand and supply 

dynamics in a global multi-sector dynamic model. 
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