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Abstract. An operational ocean and sea ice forecast model, Barents-2.5, is implemented at MET Norway for short-term

forecasting at the coast off Northern Norway, the Barents Sea, and waters around Svalbard. Primary forecast parameters are

the sea ice concentration (SIC), sea surface temperature (SST), and ocean currents. The model is also a substantial input for

drift modeling of pollutants, ice berg, and in search-and-rescue pertinent applications in the Arctic domain. Barents-2.5 has

recently been upgraded to include an Ensemble Prediction System with 24 daily realizations of the model state. SIC, SST5

and in-situ hydrography are constrained through the Ensemble Kalman Filter (EnKF) data assimilation scheme executed in

daily forecast cycles with lead time up to 66 hours. While the ocean circulation is not directly constrained by assimilation of

ocean currents, the model ensemble represents the given uncertainty in the short-term current field by retaining the current

state for each member throughout forecast cycles. Here we present the model setup and a validation in terms of SIC, SST and

in-situ hydrography. The performance of the ensemble to represent the models uncertainty, and the performance of the EnKF10

to constrain the model state are discussed, in addition to the model’s forecast capabilities for SIC and SST.

1 Introduction

Rapid changes in water mass distribution and seasonal sea ice cover are underway in the Barents Sea and the areas around

Svalbard (Lind et al., 2018). Alongside, we see changes in human activities such as shipping, oil exploration, and fisheries.

The ability to provide efficient emergency services in this region for search-and-rescue, accidental oil spills, ship drift, etc, is15

much reduced compared to mainland Norway due to the vast distances and challenging environmental conditions. Contingency

models for decision support are based on short term forecast models for the weather, surface waves, ocean circulation and sea

ice distribution, and increased predictability in these models translate directly into better emergency preparedness (Röhrs et al.,

2023). Of particular interest are upper ocean transport processes (e.g. Strand et al., 2017, 2021) and energy exchanges across

the air-ice-sea interfaces.20

1

https://doi.org/10.5194/gmd-2023-20
Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



In addition, Arctic Ocean ecosystems are vulnerable to change, and the question how projected long term decline in sea ice

cover, and the associated "Atlantification" of the Barents Sea (Asbjørnsen et al., 2020), is impacting key species at different

trophic levels are important topics for investigation (Ingvaldsen et al., 2021). Hence accurate models of upper ocean transport

processes are also important for understanding connectivity of fish stocks and other physical-biological couplings (Röhrs et al.,

2014; Strand et al., 2017)25

A high resolution (2.5 km) numerical weather prediction (NWP) system, Arome-Arctic (MET-AA), for the Barents Sea

and the areas around Svalbard was established in 2015 (Müller et al., 2017). This development paved the way for a coupled

ocean and sea ice forecast model that operates on the same horizontal grid as the NWP forcing. Here we present this coupled

ocean-sea ice forecasting system, the Barents-2.5 model.

Ocean forecasting in this region is challenging for several reasons: The first challenge is that the hydrography is poorly30

observed and in-situ data are scarce compared to other regions. We have frequent passes of polar orbiting satellites, but since

the skies seldom are clear we have relatively few high resolution observations of sea surface temperature (SST) from infrared

sensors. We do have abundant medium-resolution observations of the sea ice cover from passive microwave imagery (Spreen

et al., 2008), and frequent high-resolution images from synthetic aperture radars (SAR). Combined, these sensor technologies

provide sub-daily coverage in the region.35

A second challenge in high latitudes is that the atmospheric low pressure systems can be small but very intense (Noer et al.,

2011; Furevik et al., 2015). Correctly describing the temporal and spatial development of polar lows in the NWP system is

difficult, although progress is being made with improvements in physics (Batrak and Müller, 2019) and data assimilation (DA)

methodology (Hallerstig et al., 2021; Mile et al., 2022). We have, however, significant knowledge gaps when it comes to rapid

changes in upper ocean conditions and sea ice cover due to complex air-sea interactions including waves, and many surface40

layer processes are quite crudely parameterised in the models, if at all.

A third challenge is that the inertial period and the dominant tidal period (M2) are very similar at the latitudes considered

here (e.g. Röhrs and Christensen, 2015). Hence it is difficult to disentangle the transient Ekman dynamics from the more

predictable tidal circulation. A general lack of long observation time series of ocean currents or mean sea level imply that

we cannot easily remove the tidal component of observed drift velocities to isolate effects of air-sea interactions on the upper45

ocean transport.

Ocean forecasting in high latitudes must encompass the uncertainties that result from the above challenges. As widely applied

in NWP, Ensemble Prediction Systems (EPS) can directly quantify the uncertainty in forecasts. Ensemble prediction has not

yet been widely used in regional ocean modeling, but recent works have shown that models may predict uncertainty correctly

if the underlying ocean model exhibits statistical skill (Jacobs et al., 2021). Our goal has been to implement an operational50

EPS for the Barents Sea that assimilates the available observations in this region. The uncertainty provided by the EPS may

be used directly in forecast applications, e.g. to quantify the reliability of a prediction during decision support. In addition,

the ensemble spread can be used to estimate model background errors, which is needed in DA schemes such as the Ensemble

Kalman Filter (EnKF) applied in this work (Evensen, 1994; Sakov and Oke, 2008).
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This paper describes the operational setup of the Barents-2.5 forecast model. In section 2, we provide details on the con-55

figuration and setup of the ocean and ice model, including the coupling scheme and forcing data. Section 3 describes the DA

scheme and the assimilated observations. Section 4 documents how the model is operationalized, which includes details on the

setup as an EPS. Model performance is assessed in section 5, focusing on validation of SST and sea ice concentration (SIC) as

central state variables. Finally, in section 6 we discuss the model’s capability as forecast tool and inform about our plans for

future model development.60

2 Model physics and configuration

2.1 Ocean circulation model

Barents-2.5 is built on the Regional Ocean Modeling System (ROMS) version 3.7, which applies a topography following

coordinate system in the vertical (Shchepetkin and McWilliams, 2005) and a curvilinear horizontal grid. ROMS solves the

Boussinesq primitive equations. The modeled state variables are temperature, salinity, surface elevation, and horizontal current65

velocities. The setup in Barents-2.5 includes a second order turbulence closure scheme with turbulent kinetic energy and a

generic length scale as state variables (Warner et al., 2005).

The model domain and bathymetry is shown in Fig. 1. The model resolution is approximately 2.5 km, which varies slightly

throughout the domain consisting of 737 x 947 grid points. The bathymetry is based on the GEBCO global data set and

interpolated to the model grid. Minimum depth is set to 10m. The bathymetry is smoothed to reduce pressure gradient errors70

as required in ROMS. Additionally, the coastline has been modified to match numeric grid point criteria by ROMS (i.e., every

water grid point must have at least two adjacent open boundaries).

2.1.1 Discretisation and advection schemes

The applied vertical discretization uses a stretched, topography-following coordinate system. Barents-2.5 has 42 layers with

emphasis on the upper mixed layer using the ROMS-specific parameters shown in Tab. 1. This choice of values results in an75

upper layer of approx. 0.2−1.2 m and maintains an increased resolution in the upper 100 m.

ROMS uses split explicit time stepping, solving slow baroclinic modes separately from fast barotropic modes. Barents-2.5

uses 90 second outer time steps for the baroclinic mode, solving the 3D momentum equations, and 30 inner time steps (i.e., 3

seconds) for the solution of barotropic 2D momentum such as tides.

Momentum and tracers are advected using a 3rd order upwind scheme in the horizontal and a 4th order centered scheme80

in the vertical. Turbulent kinetic energy and length scale are advected vertically and horizontally using a 4th order centered

scheme.
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2.1.2 Sub-scale processes

Vertical mixing is modeled using a second order scheme for turbulent kinetic energy (TKE) and a generic length scale (GLS).

In this setup, which is recommended in Umlauf and Burchard (2005) and Warner et al. (2005), the GLS has non-physical units85

of m2/s2 · m−0.67. Parameters for the turbulence scheme are documented Tab. 2. It is noted that turbulence dissipation rate

and turbulent length scale may be calculated from TKE and GLS according to eqs. 14 and 15 in Warner et al. (2005). The

CANUTO_A stability function is chosen for the diffusion of momentum and tracers (Canuto et al., 2001; Warner et al., 2005).

The boundary condition for TKE at the surface is based on the model of Craig and Banner (1994) using a flux condition,

wherein the energy flux at the surface is proportional to the air-side friction velocity with a factor of 100. Surface rough-90

ness is set by the wind stress using a Charnok constant of 1400. Buoyancy and shear are horizontally smoothed using the

N2S2_HORAVG pre-compiler option. The background vertical diffusivity is set to 10−6 m2/s for tracers, 10−5 m2/s for mo-

mentum and 5 · 10−6 m2/s for TKE and GLS. Furthermore, the pre-compiler options RI_SPLINES, SPLINES_VVISC and

SPLINES_VDIFF are used.

Harmonic horizontal diffusion of tracers is applied using a diffusivity of 2 m2/s. Towards the boundaries, the diffusivity is95

increased up to 10-fold within a distance of 40 grid points using an arctan shaped smooth transition.

Explicit harmonic horizontal diffusion is applied using a viscosity of 50 m2/s only in the sponge zone of 30 grid points,

increasing from zero to a viscosity of 100 m2/s using an arctangent shaped smooth transition. A harmonic horizontal diffusivity

for TKE and GLS is set to 0.1 m2/s

Tracers are mixed along surfaces of constant geopotential, while momentum is mixed along the bottom topography following100

coordinate surfaces. Quadratic bottom friction is applied using a drag coefficient of 0.003 where the water depth is greater than

100 m. In shallower regions, the bottom drag coefficient is increased up to 0.009 for the shallowest parts with a water depth

of 10 m with linear transition as a function of water depth. The bottom drag is limited such that the current cannot reverse

sign using the pre-compiler option LIMIT_BSTRESS in ROMS. Limiting the bottom drag in such fashion is useful to avoid

numeric instabilities in very shallow waters during strong storm surges. A full list of all applied pre-compiler options for105

ROMS, static files such as grid files, and run-time options are provided in a code repository for Barents-2.5 1.

2.2 Sea ice model

The sea ice model used in Barents-2.5 is the Los Alamos sea ice model (CICE), version 5.1 (Hunke et al., 2017). CICE

describes both dynamic and thermodynamic processes, using a elastic-viscous-plastic (EVP) rheology (Hunke and Dukowicz,

1997). The model solves the evolution of the sea ice state, which is described by the ice thickness distribution (ITD) function110

(Thorndike et al., 1975; Hibler III, 1980):

∂g
∂ t

=−∇ · (gu)− ∂ ( f g)
∂h

+ψ (1)

1https://doi.org/10.5281/zenodo.7607191
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where g(x,h, t)dh is defined as the fractional area covered by ice in the thickness range (h,h + dh) at a given time t and

location x = (x,y). The ice velocity u is calculated from the sea ice momentum equation that account for air and water drag,

Coriolis force, sea surface tilt, and the divergence of internal ice stress. The evolution of internal stress is described by the EVP115

rheology, with the ice strength reformulated according to (Rothrock, 1975), and the advection using the incremental remapping

scheme (Lipscomb and Hunke, 2004). The subgrid sea ice deformation and the redistribution of various ice categories follow

(Rothrock, 1975) , with a modified expression for the participation function (Lipscomb et al., 2007).

The sea ice thermodynamic growth and melting f is determined by solving the one-dimensional vertical heat balance equa-

tions for each ice thickness category and snow. The sea ice heat balance equation is solved with the mushy-layer scheme that120

also accounts for the evolution of sea ice salinity (Turner et al., 2013). The upper snow and ice boundary is assumed to be

in balance with short- and longwave radiation and the sensible, latent and conductive heat fluxes when the surface is below

freezing point. When the surface temperature reaches the melting point, it is held constant and the extra heat is used to melt the

snow and ice surface. The bottom water-ice interface is assumed to be at thermodynamic balance, such that growing or melting

results from the divergence between ice conductive heat flux and the under-ice oceanic heat flux.125

An example of the CICE input parameter file, including all choices of numeric schemes and input parameters, is provided in

a code repository for Barents-2.5 2.

2.3 Ocean-ice coupling

The ROMS-CICE coupling utilizes the Model Coupling Toolkit (MCT,Larson et al. (2005)) for intermodel exchange of state

variables and fluxes, as implemented in the metroms framework3 (Debernard et al., 2021)). The coupling was briefly explained130

in Naughten et al. (2017) and Naughten et al. (2018), and in more detail by Duarte et al. (2022). The underlying philosophy

behind the coupling is that surface fluxes are calculated in the component with most information about the surface, utilizing

required information from the other component. Finally, the heat, water and momentum fluxes are passed conservatively back

to the other component. The same fluxes are transferred as in Duarte et al. (2022). In metroms, the coupling is based on the

principle of ’levitated’ ice, so there is no actual exchange of mass between the ocean and the ice. Freshwater and salt fluxes135

from the ice model are converted to a virtual salt flux before they are used in ocean model. In this ’mass less’ state, the ice does

not displace water, and it is only seen by the ocean as a source of surface fluxes responding to the present ocean state. The ice

and ocean models are run concurrently, with exchange of information every baroclinic ocean time step (90 s, section 2.1.1).

The information used by each model is therefore time-lagged compared with its own state.

2.4 Boundary conditions and river input140

The boundary conditions for Barents-2.5 are provided by TOPAZ version 4, a coupled ocean and sea ice DA system based on

the HYCOM ocean model and a EnKF DA scheme. The model system is configured for the North Atlantic and Arctic Ocean

with a horizontal resolution of 12-16 km (Xie et al., 2017). It provides daily averages of temperature, salinity, sea surface

2https://doi.org/10.5281/zenodo.7607191
3https://github.com/metno/metroms.git
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elevation, and ocean current velocities for the ocean component. For the sea ice component it provides daily averages of SIC,

sea ice thickness, first year ice age, snow depth, and ice velocity. The inverse barometric effect due to the local atmospheric145

pressure is added to the sea surface elevation boundary conditions because TOPAZ does not include the barotropic signal of

atmospheric pressure.

The numeric schemes for boundary conditions used in ROMS are given in Tab. 3, these differ for the various state variables.

A sponge zone with up to 10-fold increased horizontal tracer diffusivities and viscosity is implemented within 40 grid points

from the boundary. Nudging of passive tracers towards the boundary fields from TOPAZ is imposed within the sponge zone.150

2D momentum anomalies are radiated out of the model domain using the tangential phase speed of the barotropic signal, using

ROMS’ RADIATION_2D pre-compiler option. Details about the implementation of boundary conditions in CICE are given in

(Duarte et al., 2022).

Point sources for river influx along the coast in the model domain are shown in Fig. 1. At each of the 318 river locations,

daily values for temperature, salinity and mass flux are specified. Climatological values for rivers on the Svalbard archipelago155

are used, while river data on mainland Norway originates from daily estimates provided by the Norwegian Water Resources

and Energy Directorate.

2.5 Atmospheric forcing

Surface forcing in Barents-2.5 is provided by ensemble forecasts from the integrated forecast system at European Centre for

Medium Weather Forecasts (ECMWF-ENS), which has a horizontal resolution of about 18km. Hourly surface fields of wind160

speed, air temperature, humidity, rain fall, and cloud cover are used by the bulk flux module of ROMS to calculate surface

fluxes as upper boundary condition in the ocean. CICE uses air temperature, humidity, density, precipitation rate and winds to

calculate surface stress, heat fluxes and snow aggregation on sea ice.

Barents-2.5 is configured as EPS with 24 members, wherein 20 members are forced with random members from ECMWF-

ENS, and four members are forced by MET-AA (Müller et al., 2017). MET-AA is nested into ECMWF’s high-resolution165

forecasts and covers the identical domain as Barents-2.5 with the same horizontal resolution of 2.5 km, hence providing higher

resolution forcing than ECMWF-ENS.

Tidal forcing is provided as amplitudes and phases of the 10 major tidal constituents in the model domain (Tab. 4). These

are obtained from the TPXO global inverse barotropic model (Egbert and Erofeeva, 2002) and imposed on velocities and free

surface elevation. The tidal signal is also added to velocities and surface elevation during the processing of boundary data.170

3 Data assimilation scheme

The model state in Barents-2.5 is constraint by a DA scheme, the EnKF, that moderates the combination of a model background

state and observations. Central in this moderation are the model error, estimated by the spread of the EPS, and the observation

errors. A new analysis is obtained on a daily basis, which is aimed to reduce the errors in the model state compared to the avail-
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able observations. The assimilated variables are SST, SIC and in-situ hydrography, i.e. salinity and temperature observations175

(Tab. 5).

3.1 Ensemble Kalman Filter

The assimilation method used is the deterministic version of the EnKF (Evensen, 1994; Burgers et al., 1998). The same DA

scheme was also applied in a preceeding setup of Barents-2.5 that assimilates sea ice variables but not the hydrography (Fritzner

et al., 2019, 2020). The EnKF is a sequential ensemble based assimilation method that has been used for various geophysical180

applications in recent years (Houtekamer and Zhang, 2016). The Deterministic Ensemble Kalman Filter (DEnKF) (Sakov and

Oke, 2008) do not require perturbation of observations to maintain ensemble spread as is required by the original formulation

of the EnKF. Perturbing observations introduces additional sampling error in the analysis, which for applications with few

ensemble members might be a significant contribution (Sakov and Oke, 2008; Whitaker and Hamill, 2002).

The standard analysis equation solved by the EnKF is given by (Evensen, 2003):185

xa = xb +PbHT (
HPbHT +R

)−1 (y−Hxb) , (2)

where xa ∈Rn×N is the analysis vector representing the updated variables after assimilation, xb ∈Rn×N the model background,

and y ∈ Rm×N is the observation vector. N is the number of ensemble members, n the number of variables multiplied by the

number of spatial grid points in our model, m the total number of observations, R ∈ Rm×m the observation covariance matrix,

and H ∈ Rm×n is the observation operator. The key property of the EnKF is that the background error covariance matrix Pb190

∈ Rn×n, providing the model uncertainty and covariance between variables and locations, is estimated as the variance of the

ensemble of background states,

Pb = ((xb−xb)(xb−xb)T ). (3)

In the equation above, the overbars signify the average operator.

The implementation of the EnKF in Barents-2.5 is accomplished using the enkf-c software package (Sakov, 2014). The195

EnKF is executed offline, i.e., in between daily forecast cycles, thereby providing updated initial conditions xa to ROMS and

CICE at 00 UTC each day. Observations of the previous 24 hours y are synchronously evaluated and compared with the model

state xb at time 00 UTC, hence assuming that observed variables retain validity for 24 hours.

The enkf-c software package allows configuration of the DA scheme in terms of a spread reduction factor σr and a localisation

radius rloc for each observation type (Tab. 5), a global moderation factor K = 1.5, and an inflation factor that is set to 1.05 for200

all model variables except for SIC using 1.1 in order to increase ensemble spread in this variable. In addition, the impact of

observations have been moderated by means of scaling the observation errors.
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3.2 In-situ Observations

In situ observations of salinity and temperature are routinely collected from the in-situ thematic assembly centre of the Coper-

nicus Marine Environment Monitoring Service4. The data set consists of observations from a variety of platforms, such as205

drifting buoys, profiling floats, moorings, CTD casts and thermosalinographic data from monitoring cruises and the Ships-of-

Opportunity Programme. Additional in situ observations are retrieved from the Global Telecommunication System (GTS), and

from MET Norway’s observation database5. The observations are run through some basic quality control procedures prior to

assimilation, and duplicate observations between the different sources are removed.

3.3 SST observations210

Level 2P satellite SST from the infrared sensors AVHRR (Metop satellites), VIIRS (Suomi NPP and NOAA-20 satellites), and

SLSTR (Sentinel-3 mission) are used for assimilation. A bias correction scheme is applied to ensure consistency between the

different SST products. The SLSTR measurements are used as a reference because this instrument uses a dual view technique

which gives more accurate SST measurements. The bias correction scheme is described in more detail in Iversen et al. (2022).

All in-situ and SST observations are processed using the python toolbox pyromsobs 6. When more than one observation of a215

given state variable is available within the same grid cell at the same time, they are replaced with a so-called super-observation,

which is a mean of the available observations.

3.4 SIC observations

Observations of SIC are computed from microwave brightness temperature observations from the Advanced Microwave Scan-

ning Radiometer-2 (AMSR2) sensor on board of the Global Change Observation Mission – Water "Shizuku" (GCOM-W1)220

satellite. The SIC algorithm SIRANO is an evolution of that described in Lavergne et al. (2019) and involves dynamic tuning of

the algorithm coefficients, atmospheric correction of the brightness temperatures using a radiative transfer model, and per-pixel

uncertainties. Two SICs are computed independently and then combined before they are assimilated: first a low resolution, low

uncertainty SIC from the 18.7 and 36.5 GHz imagery channels, then a higher resolution, higher uncertainty SIC from the 89.0

GHz imagery channels. The two SICs are then combined using a pan sharpening method to preserve the higher resolution and225

low noise characteristics from each. Because the nominal spatial resolution of the 89.0 GHz imagery of AMSR2 is 3x5 km, the

resulting SIC fields have a spatial resolution slightly coarser than the 2.5 km grid spacing of the model.

In the operational setup, SICs are computed for each incoming satellite orbit (every 100 min) and then combined and pro-

jected to cover the geographic domain of the model in 12 hourly fields, including uncertainties. Because of the orbit of the

GCOM-W1 satellite, the domain is observed in the early morning (from 00 UTC to 04 UTC) which is adequate for an assimi-230

lation at 00 UTC model time.
4http://marine.copernicus.eu
5http://frost.met.no
6https://github.com/metno/pyromsobs
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4 Operational implementation

Barents-2.5 is executed four times daily, spreading the 24 ensemble members into 4 sets of 6 members – as visualized in Fig. 3.

While a new analysis by the EnKF is only computed at 00 UTC, each bulletin time benefits from the updated NWP forecasts.

In practise, the 00 UTC model run is executed with a six hour real-time delay to allow for enough time processing incoming235

observations. The atmospheric forcing from MET-AA is avaliable with 4 hours delay. The 06, 12 and 18 UTC model runs are

executed with a 4 hour delay as these only need to wait for the updated atmospheric forecast. The first member in each set is

forced by the most recent MET-AA forecast, the remaining by ECMWF-ENS members.

4.1 Ensemble prediction system

At each of the four bulletin times each day, six ensemble members are executed with a 66 hour forecast range. Each member240

is initialized by the state of the same member from the previous day, with individual analysis increments from the the EnKF

DA scheme. This amounts to 24 unique members. The forecast runs after 06, 12 and 18 UTC require a spin up run from the

analysis time at 00 UTC.

A conscious choice for the design of the ensemble forecast system is to initialize the ensemble runs from the model states

of previous day forecasts, instead of using perturbed states of the identical analysis which is more common in NWP. The latter245

approach yields estimate of model uncertainty when the initial condition is constrained by observation networks and most of

the uncertainty arises internally within the forecast cycle.

The Barents-2.5 EPS, however, retains the state of previous forecast runs in order to preserve sufficient ensemble spread.

The EnKF moderates the ensemble spread. Such an approach is beneficial because the initial state of the ocean circulation

is poorly observed. At the same time, the mesoscale circulation exhibit features with time scales larger than the assimilation250

window and forecast range. Therefore, small perturbation of the initial state would not yield ensemble spread in the forecast

that covers the actual uncertainty in mesoscale circulation.

To represent the actual model uncertainties in the circulation field, we initialize the EPS forecast with largely varying initial

conditions in the mesoscale circulation. At the same time, the EnKF reduces the ensemble spread for variables that are observed

well, i.e., SST and SIC. The ensemble spread for these variables is evaluated in section 5.3.255

4.2 Operationalisation

Barents-2.5 is operational in its current setup since September 2021, tagged as version 2.0. The model is implemented at MET

Norway and part of Norway’s national ocean and weather forecast system. Timely triggering of the model components, as well

as pre-processing steps for observation data, forcing and boundary conditions, are managed through ECMWF’s scheduling

software package ecflow7. Backup measures are in place to secure a reliable operation of the Barents-2.5 setup to deal with260

exceptions from normal operation:

7https://github.com/ecmwf/ecflow, accessed 2023-01-29
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– Computing and data storage facilities are setup in two physically independent data rooms at MET Norway to mitigate

the risk of hardware failures and planned hardware maintenance. All model pre- and post-processing is setup in both

rooms and there is a continuous synchronization between the data rooms. Model runs can be executed in either of the

two data rooms.265

– For pre-processing of forcing and boundary data, alternative data sources have been setup, e.g. older forecast cycles from

the ECMWF-ENS atmospheric forcing and TOPAZ model can be accessed to produce necessary input data.

– Initial states can be obtained from the previous two days forecast cycles of Barents-2.5, in case of lost forecast cycles

during temporary outages.

– The forecast runs can be executed without analysis increments by the EnKF.270

These exceptions are dealt automatically through triggering in ecflow. While the first three type of exceptions rarely occur,

a failure of the EnKF update is more common. This may occur either due to unexpected deviations during observation data

processing, or due to poorly performing statistic representations in the EnKF algorithm. In such cases, which occur about twice

a month, the model continues without DA increments.

Any type of deviations alert a triggering for the model developers at MET Norway, such that repeated failures are added to275

the exceptions that can be dealt with by the system within the ecflow scheduling software. Model developers are also alerted

24/7 if the forecasts from Barents-2.5 are delayed more than a few hours.

5 Model performance

The general performance of the Barents-2.5 model is evaluated by validating SST and SIC as key model state variables. Both

are frequently observed from satellite platforms and are of central importance as forecast parameters. Model performance is280

evaluated i) in terms of validation metrics close to model analysis time (0-24hours), ii) in terms of skill in the forecast range

up to 66 hours, and iii) ensemble spread. The spread controls the EnKF data assimilation scheme, and is in addition used to

predict forecast uncertainty.

Validation of SST is based in comparison with Sentinel-3 SLSTR swaths. Multiple swaths in the model domain may be

available each day, but only cloud free daylight conditions provide SST measurements. A composite map of comparing SST285

observations with model values available in a 24 h period are shown in Fig. 4. As the coverage of SST observations varies, the

validation of SST is not uniform in season and location, providing generally more data during spring and summer. A validation

of SIC against the SIRANO passive microwave SIC (ref. Sec. 3.4) is shown in Fig. 5. For SIC, a validation of the full model

domain is possible during most days.

5.1 Validation of model analysis290

SST is validated separately for the regions defined in Fig. 6, and displayed during the course of one year in Fig. 7. Only SST

observations from the Sentinel 3 satellite have been used in validations in order to avoid bias differences of various sensor
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platforms in the validation. These same data are also included for the assimilation in the analysis time step at 00:00 each day,

but the assimilation occurs always in the analysis cycle after the direct validation, as the model value is obtained from the exact

satellite retrieval time in forecast run closest to the analysis time. Hence, the observations are considered as independent data295

for validation.

SIC in forecast ranges of 0-24, 24-48 and 48-66 hours is validated by comparison with the SIRANO passive microwave

SIC product. The validation is carried out for data that is assimilated in the following forecast cycle, hence these are relatively

independent from the current forecast cycle. Daily validation metrics during the course of a year are shown in Fig. 8.

As a second reference for validation of SIC, a comparison with subjective ice charts is provided in Fig. 8a. The ice charts300

are based on a manual production by ice analysts, who use synthetic aperture radar and visible band satellite imagery to locate

the ice edge and ice classes on a daily basis from Monday to Friday. The ice charts provide a higher-resolution assessment of

ice conditions that is independent from the passive microwave data, and exhibits different systematic errors.

The largest anomalies in the model errors for SIC are related to the model spinup and failures in the data assimilation

scheme. During the beginning of the year in consideration, deviations occurred more frequent and during the second half of305

the displayed period very few failures of the assimilation scheme occurred, maintaining low model error. Likewise, the model

performance deteriorates within a few days when no data assimilation is applied for subsequent cycles, as seen for two periods

in March and May 2022 in Fig. 7 and 8.

5.2 Forecast skill

Predictive skill in the model forecast is assessed by computing model validation metrics as function of forecast lead time, e.g.310

the validation metrics can be obtained by comparison with a value of older forecast cycles. For SIC, we see that the model error

is larger for higher lead times, indicating skill in the model analysis (see Fig. 8). In the periods with no data assimilation, the

model error grows rapidly and is distinguished in various lead times. Hence we conclude that skill in ice forecast is provided

by assimilation of SIC.

For SST, we provide a mapping of model error as function of model lead time as averages over periods of three months.315

(Fig. 9). Time averaging of the model errors for many forecast cycles is necessary in this case, because individual days rely on

the availability of sparse SST observations, covering different regions from day to day as shown for one particular day in Fig.

4.

SST validation metrics are compared with a reference forecast (black line). As reference we are using the observation itself,

commonly referred to as persistence forecast. By this definition, the error of the persistence forecast is nil at zero lead time.320

The error of larger lead times are given by comparison with past observations, whenever there is spatial overlap between

observation times.

Skillful model predictions may be defined in two ways:

– The model has skill for lead times where the error of the model forecast is lower than the reference forecast.

– The model analysis and forecast is thought to contain skill if the model error grows with lead time.325
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The model error may be defined as root mean square error (RMSE) or mean error (ME). In order to specifically evaluate the

capability of the forecast model to predict SST changes, we define an additional forecast that is the sum of past observation

and the trend of the model forecast (dashed graphs in Fig. 9). This forecast is also nil at zero lead time, and validation of it is

only possible when there is spatial overlap between observation times.

Skill in model SST is present for forecast ranges beyond 12 hours in spring and summer time, extending beyond the forecast330

range of 66 h. For the autumn and winter time, we see that the model error is on par with the errors in the persistence forecasts

beyond 12 h lead time. In general, combining the model trend with past observations performs better at intermediate lead times,

but the valuable information content in observations vanishes for longer lead times. In this range, dynamical changes that are

resolved by the model provide superior value in predicting the ocean state conditions.

Skill in SIC analysis is concluded from the fact that the short forecast range (0-24h) yields lower errors than the longer range335

forecasts. However, the modeled SIC field exhibit large systematic errors in terms of RMSE and ME (Fig. 8). This uncertainty

is also present in the difference between the two observation types used for validation, e.g. passive microwave SIC and ice

charts. Some forecast cycles show skill compared to the persistence forecast (not shown), but most cycles do not provide a

better forecast than using the last observation as reference. Model skill is present in situations with rapid movements in the

sea ice edge that are driven by strong winds. Re-freezing of the sea ice cover in the winter are not as skillful in the model340

predictions as summer melting and dynamic response to wind forcing.

5.3 Ensemble spread

The ensemble of model states is an integral part of the EnKF data assimilation scheme: it provides model error covariances

to weigh observational impact with model state in order to compute model increments in each analysis cycle through Eq. 3.

The objective of the ensemble spread is to reflect the actual uncertainty of the model, which is possible to assess by comparing345

observations with the ensemble.

A common means to verify the ensemble spread are rank histograms, which rank each observation value into the range

of model values at the same time and location. If each ensemble member has a truly equal likelihood of occurrence in the

validation, the observation ranks should be uniformly distributed across the ensemble members. The rank histogram for SST is

shown in Fig 10. We see a fair ensemble spread for this variable across the center part of the rank histogram, but note a skewed350

offset that reflects a negative overall bias in model SST. We also acknowledge that the most extreme SSTs are not represented

in the model.

The spread in SIC is evaluated using a reliability diagram, as shown in Fig. 11. The reliability diagram is a more adequate

means to assess non-gaussian distributed variables, e.g. SIC, and it allows to directly compare ranges in ice classes that are

commonly used in ice charting. Ice classes are defined by thresholds in SIC, i.e. very close drift ice (0.9 < SIC <1.0), close drift355

ice (0.7< SIC < 0.9), open drift ice (0.4 < SIC < 0.7), very open drift ice (0.1 < SIC < 0.4), open water (0.01 < SIC < 0.1) and

ice free (0 < SIC < 0.01). The latter three classes are used as one (0 < 0.1) in this analysis because they are indistinguishable in

the SIRANO SIC that is used for validation.

12

https://doi.org/10.5194/gmd-2023-20
Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



The reliability diagram compares the forecast probability for cumulative ranges of ice classes with the occurrence in the

observations for the same situations. An ideal ensemble would match the forecast probability with the validation, e.g. if 50%360

of ensemble members show a SIC below 0.4, then 50% of those cases should validate with SIC < 0.4. Deviations from the

diagonal in Fig. 11 are due to i) imperfect ensemble spread and ii) model biases. We can also distinguish the skill for various

forecast probabilities.

In Fig. 11a we assess the forecast probabilities for occurrences of open water up to a given ice class. The opposite approach

(Fig. 11b) assesses forecast probabilities of high SICs down to a certain ice class minimum. Both figures indicate an offset that365

represents a positive SIC bias of the model, e.g. forecast probabilities for ice tend to be too low from the ensemble. In addition,

the reversed S-shape in both figures indicates too low ensemble spread.

Parts of the the lack in ensemble spread owes to observation errors, however not all and there is a clear lack in variability in

SIC between ensemble members. The highest forecast probabilities of open water, e.g. 80% chance for the occurrence of 0 <

SIC < 0.4 is nevertheless addressed fairly well by the model. Also low chances of occurrences for high SIC, e.g. in the range370

0.4 < SIC < 1, is predicted accurately by the model. Addressing the lack of sufficient EPS spread, forecast probabilities would

benefit from empirical scaling to match the observed occurrence frequencies.

5.4 Analysis increments

The EnKF provides analysis increments for each ensemble member. The objective is to reduce deviations from the observa-

tion. In this section we show some characteristics of the analysis increments for an exemplary day in order to illustrate the375

functioning of the DA scheme. Similar model increments are calculated for the analysis in each forecast cycle, applied daily at

00 UTC.

Figure 12 shows forecast increments of SST, surface salinity and SIC on the 2022-12-15. The differences result from the

observations that were available in the preceeding 24 hours. The most substantial increments in model hydrography occur

where both SST observations present (Fig 2) and spread in SST is large (Fig. 12d). In-situ observations provide rather localized380

increments in surface fields. SIC increments are most pronounced in the marginal ice zone where the ensemble has large spread

(Fig. 12d).

To confirm that the DA increments move the model state towards the observed ocean state, we present a binned scatter

histogram of observed vs. model values for SST and SIC in Fig. 13. The correlation for SST is slightly improved for the

analysis compared to the background, starting at already good fit in the background model state. In the case of SIC, which385

generally has larger errors than SST, we see more radical updates to the model state in each cycle.

Ensemble spread is an essential characteristic of the EPS, and sufficient ensemble spread is required by the EnKF to yield

appropriate model increments. The spread for SST, salinity and SIC during one analysis cycle is shown in Fig. 12d-f. Spread in

SST and surface salinity is present throughout the model domain, however pronounced in certain areas as for example below

the sea ice cover. This indicates pronounced uncertainty in the model state, e.g. the present hydrography below the sea ice390

cover is not well known and the model is expected to exhibit larger errors in these areas.
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The ensemble spread is reduced in each analysis such that model state variables converge towards the observations. The

spread increment is shown in Fig. 12g-i. For SST, we see a substantial reduction in spread that is associated with coverage by

SST observations during that analysis cycle. All shown variables experience a spread reduction in the marginal ice zone, owing

to the impact of SIC observations in this area. There is little modification to ensemble spread below the dense sea ice cover and395

in other places where no observations are present during the analysis cycle.

6 Discussion

The Barents-2.5 ocean and ice forecast model provide short-term predictions on a daily basis with a forecast range up until 66

hours. This fully operational model suite has been built from various components and code repositories; the dynamic ocean

component is based on ROMS v3.7 (Shchepetkin and McWilliams, 2005), the dynamic sea ice compenent is CICE 5.1 (Hunke400

et al., 2017), model coupling is achieved by MCT, DA is handled through enkf-c (Sakov, 2014), and operational scheduling

is implemented in ecflow, including the maintanence of the ensemble. In addition, Barents-2.5 involves static data such as

the GEBCO bathymetry and TPXO tidal forcing, and a constantly updated stream of forcing data. These are the atmospheric

forcing provided by ECWMF-ENS and MET-AA, lateral boundary conditions provided by TOPAZ, and river influx. Finally,

observations of SIC, SST and in-situ hydrography are assimilated. All components combined constituate the Barents-2.5 model,405

and it is worth to stress that model capabilities and the presented validation are a consequence of the interactions between all

the components.

6.1 Forecast capabilities

Forecast skill and validation metrics have been presented for SST and SIC. These are central variables describing the state of

ocean and sea ice conditions that are frequently observed by satellite imagery. Forecast skill and ensemble spread for surface410

currents are the subject of a separate investigation 8.

Barents-2.5 shows predictive skill in temperature forecasts (Fig. 9) compared to the persistence reference by Sentinel-3 SST

imagery. Forecast skill is better during spring and summer time when SST observations are more abundant and solar radiation

drives rapid changes in SST. Mismatches in the modeled ice edge dominate the SST errors in the marginal ice zone, therefore

all regions that contain ice have been excluded in the consideration for SST validation. SST fields are directly needed in forecast415

applications, e.g. to warn about icing on ships (Samuelsen, 2018) and to provide surface forcing in NWP models (e.g. Müller

et al., 2017).

Skillful SST predictions in the forecast range are a consequence from the models capability to represent realistic air-sea

fluxes, vertical mixing and water mass transport (Janssen, 2012). A requirement for low errors at the analysis time is the

successful constraint by observations. Without a functioning DA scheme, the model state tends to drift away from temperature420

fields, owing to compounding of systematic model errors. Such model state drift is particularly evident for SIC, during the

periods when no DA is applied (ref. Fig.8). SST validation is not comparable between daily cycles, but similar drift is expected.

8Idzanovic et al., Forecast uncertainty and ensemble spread in surface currents from a regional ocean model, manuscript in preparation
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For ice concentration, we see that the model state looses skill within few days without DA. Deterioration of model skill within

few days is generally expected when DA is halted in regional ocean models (e.g. Moore et al., 2011).

Validation of SST indicates larger errors during summer time (Fig. 7) but also a higher skill compared to the persistence425

forecast (Fig. 9). Variability in SST during the summer time is generally higher, resulting from the availability of direct sunlight

to heat up the surface. Most of the model region is in high latitudes with midnight sun. The diurnal effect may dominate in early

spring time, while in the summer the solar heating is largely controlled by cloud cover. Skilful SST predictions by the ocean

model thus require accurate cloud cover and atmospheric radiative fluxes, highlighting the role of the used NWP models. Due

to the strong coupling with the atmosphere, SST in summer time changes more rapidly than in the winter season. Barents-2.5430

is forced by hourly fields from Arome-Arctic, giving SST forecasts an advantage over the persistence forecast that is shown as

reference in Fig. 9.

While errors in SIC are variable throughout the validated year (Fig. 8), we see a persistent advantage of short lead times

compared to longer lead times. The model analysis is hence skillful, but the remaining systematic model errors make it dif-

ficult to use predicted ice concentration fields directly in forecasting applications. Use of ice charts based on remote sensing435

alongside model forecast remains necessary. Predictions of ice drift in ocean-ice forecast models have been shown to be skillful

(Schweiger and Zhang, 2015), resulting from the skilfull NWP and realistic description of sea ice rheology. The freezing and

melting along the ice edge, however, depends on a number of thermodynamic processes (Fichefet and Maqueda, 1997), and

these are critically sensitive to water mass properties and higher resolution details in the atmospheric forcing (Kusahara et al.,

2017).440

6.2 Configuration of the ensemble and assimilation schemes

The information provided by the EPS is useful in two ways. Firstly, ensemble spread guides the DA scheme. Secondly, the

ensemble allows to assess model uncertainty in the forecast range. Spread in SST is satisfactory (Fig. 10), with only slight

underestimation of extremes in SST. Spread in ice concentration is too low (Fig. 11), but the model shows a capability to predict

the uncertainty in ice forecasts. Difficulties in representing ice concentration spread in similar EnKF setups have previously445

been reported by Lisæter et al. (2003).

The initialisation of ensemble in each forecast cycle is based on an approach where the individual members retain their

identity. DA increments are provided for each member. The spread is hence reduced in each cycle but the differences that

resulted from previous cycles remain. The major difference between the ensemble members does therefore result from subse-

quent diverging history of the members. Each member is also forced by different atmosphere ensemble members, but the most450

important spread in mesoscale ocean circulation stems from the history of the EPS.

The full EPS and EnKF system requires time to spin up the ensemble and DA increments, due to the system dependence on

its own history of ensemble spread. Initialisation of the EPS took place for during March 2021, and the EnKF was activated in

September 2021. About 3 months were required for a sufficient spin-up of the full DA system.

The choice of a 24 hour analysis cycle is based on the practical need to issue daily forecasts. The assimilation cycle length455

is a compromise between amount of observations, the models ability to maintain spread, and need for rapidly updated forecast
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cycles. The number of ensemble members is limited by computational resources. The EnKF DA scheme relies on a statistical

description of possible model states compared to the available observations, and therefore the ensemble needs to cover the

degrees of freedom for the ocean state within a localisation radius (Tab. 5), which is maintained in the current setup using 24

ensembles.460

6.3 Integration with contingency models

The Barents-2.5 model forecasts are routinely used in trajectory models that serve as decision support tools in emergency

response situations. The OpenDrift framework (Dagestad et al., 2018) encompasses oil spill transport, ice berg drift forecasts,

and leeway drift (e.g. person-in-water, large floating objects) applications. All of these models require timely computation of

trajectory forecasts that are based on surface current, wave, and wind forecasts. Among these forcing variables, surface current465

forecasts exhibit by far the largest uncertainty (Dagestad and Röhrs, 2019). OpenDrift make use of the Barents-2.5 EPS by

issuing ensembles of trajectory forecasts that is based on the ensemble spread form Barents-2.5 currents and respective wind

forcing, allowing to assess the uncertainty of trajectory simulations in a given situation. In practise, the difference in trajectory

forecasts from various ensemble members varies from case to case. The Barents-2.5 model is useful to distinguish cases of low

and high uncertainty in drift applications (de Aguiar et al., 2023).470

6.4 Model development history and outlook

An earlier implementation of the Barents-2.5 has been operational since March 2019, with DA scheme for sea ice concentra-

tions using a combined optimal interpolation and nudging scheme (Fritzner et al., 2018). The most notable refinements in the

herein described model version 2.0 marks the implementation as EPS with 24 members and the introduction of the EnKF DA

scheme for both ice and ocean variables. Forecast skill of SST are a direct consequence of these developments.475

A number of future developments are planned to further improve forecast capabilities. Asynchronous assimilation of ice

concentration data, i.e. swath data, are in a development stage. SST assimilation will also benefit from asynchronous assimila-

tion. In asynchronous DA, each satellite swath is compare to the model field at the respective retrieval time instead of applying

observations at a fixed time of the day. This may lead to a reduction of the representation error in observations and hence

introduce a tighter constraint on the model state.480

The lack of ensemble spread in SIC is a major weakness in the current model setup. A more explicit perturbation of ice

variables is planned to introduce larger spread in SIC, using either a perturbation of the initial conditions or physics perturbation

in the sea ice component, e.g. by variation of empirical parameters in CICE. Constraint of mesoscale ocean current fields

beyond assimilation of SST is planned by assimilation of sea level anomaly from satellite altimetry and HF radar currents.

A stronger coupling with NWP models and wave prediction models is foreseen as soon as such coupling is shown to improve485

forecasts. Atmosphere models require SSTs as lower boundary conditions, and these may benefit from skillful predictions of

SST by Barents-2.5, provided that the coupling will not introduce artifacts through poorly defined feedback loops. At present,

the NWP model Arome-Arctic, which provides surface forcing for Barents-2.5, uses static SST fields based on a daily satellite

retrieval product. Coupling can either be implemented as fully coupled online, or by using SST forecasts of the previous
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forecast cycle. A coupling with wave prediction models is foreseen, in which the wave prediction model provides surface wave490

dissipation as boundary condition for turbulent kinetic energy of the ocean (Breivik et al., 2015, e.g.). Such coupling has been

shown to improve SST predictions in the global ocean forecast model at the ECMWF (Janssen, 2012).

Code and data availability. A source code for the coupled ROMS/CICE ocean and sea ice model is available through https://doi.org/10.5281/

zenodo.5067164 tagged as version 0.4.1 of the METROMS repository. Specific configuration and grid files for Barents-2.5 are archived at

https://doi.org/10.5281/zenodo.7607191. The source code for the enkf-c v.2.9.9 is obtained from https://github.com/sakov/enkf-c.git, commit495

7eea4d8 as of Jul 8, 2021. The source code for the ecflow scheduling software is available at https://github.com/ecmwf/ecflow.

Archived data from the operational model runs of Barents-2.5 is disseminated on https://thredds.met.no/thredds/fou-hi/barents_eps.html.

Observations of satellite SST and in-situ hydrography are retrieved from CMEMS https://doi.org/10.48670/moi-00036. Observations of sea

ice concentration are available through https://thredds.met.no/thredds/osisaf/osisaf_seaiceconc.html .
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Transform function Stretching function θS θB Hc

2 4 6. 0.3 100m
Table 1. Parameters for the setup of the topography following vertical coordinate

P M N Kmin Pmin CMU0* C1 C2 C3M* C3P SIGK SIGP

2.0d0 1.0d0 -0.67d0 1.0d-8 1.0d-8 0.5270d0 1.0d0 1.22d0 0.05d0 1.0d0 0.8d0 1.07d0
Table 2. Parameters for the GLS turbulence scheme used in Barents-2.5. *) parameters associated with the choice of stability function, which

is set using the Canuto_A pre-compiler option.

Variable numeric scheme

free surface Chapman exlicit

2D momentum Shchepetkin

3D momentum oblique radiation and nudging

salinity and temperature oblique radiation with nudging

TKE and GLS gradient
Table 3. Numeric boundary solution schemes used in the ocean component for Barents-2.5. All four model boundaries use the same schemes.

Nudging towards the boundary TOPAZ fields is imposed within an area of 40 grid points from the boundaries with decaying nudging

coefficients.
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constituent K2 S2 M2 N2 K1 P1 O1 MN4 M4 MS4

period [h] 11.96723 12 12.4206 12.65835 23.93447 24.06589 25.81934 6.269174 6.210301 6.103339
Table 4. Tidal constituents used for tidal forcing in Barents-2.5.

SIC SST in-situ temperature in-situ salinity

σr 10 10 4 10

rloc 50 km 50 km 8m km 80 km

platform AMSR-E AVHRR, VIIRS, SLSTR profiling floats, drifting buoys, moorings, CTD casts, ships
Table 5. Observation platforms of assimilated variables and configuration parameters for observation types in EnKF-c.

Figure 1. Bathymetry of Barents-2.5 plotted within TOPAZ4 model, explicitly showing the Barents-2.5 domain. The locations of river input

are marked by black dots, with dot sizes representing the yearly mean of river transport. The sea ice edge, here represented by 15% sea

ice concentration, is shown at the time of minimal (blue) and maximal (red) sea ice extent for each model (Barents-2.5 in solid lines, and

TOPAZ4 in dashed lines).
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Figure 2. In-situ data coverage during the assimilation cycle at 2022-12-15
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Figure 3. Work flow diagram for operational ensemble prediction system. Each horizontal bar represents a group 6 individual model runs.

At each 00 UTC bulletin time, the EnKF DA scheme provides an analysis as new initial conditions for all 24 members. Every subsequent

bulletin time (06,12,18 UTC) includes a short spin up run from the analysis time at 00 UTC, and a forecast run of 66 hours using updated

atmospheric forcing.
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Figure 4. Difference between model SST and observed SST from Sentinel-3. The displayed data includes all swaths that pass the model

domain during a 24 h period (2022-12-15). The respective model values for computing differences are taken from the satellite retrieval time.

Figure 5. Difference between model and observed SIC at 2022-12-15.
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Figure 6. Definition of regions used in SST validation. Areas that include the marginal ice zone (without color) are excluded from the SST

validation.

26

https://doi.org/10.5194/gmd-2023-20
Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 7. Time evolution of ME (a) and RMSE (b) for SST, separated for various regions in the model domain as defined by the colours in

Fig. 6. For each available swath, Sentinel-3 SLSTR observations are compared with the model value that is closest to the satellite retrieval

time in the 0-24h forecast range. Monthly averages of available data are shown.
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Figure 8. Time evolution of ME (a) and RMSE (b) for ice concentration, based on daily comparison of the model values in various forecast

ranges averages over the entire model domain. Differences are shown for comparison with the passive microwave ice concentration product

that is assimilated, and for a comparison with subjected ice charts that are produced by ice analysts. Shaded intervals mark model cycles

when no data was assimilated for more than 3 consecutive days.

Figure 9. Root mean square error (RMSE) of SST as function of lead time, for each season. The black line shows the root mean square

difference between overlapping scenes of SST observations, that are shifted by the respective lead time.
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Figure 10. Rank histogram of SST model ensemble, evaluating the rank location of SST observations in the ensemble of model values.

Figure 11. Reliability diagram for SIC probabilities derived from the EPS. Reliabilitis have been computed for eight ice concentration

intervals, stating hos well the ensemble predicts the chance of low SIC occurence (left panel) and high SIC occurence (right panel) The

winter season has been excluded in the shaded curves, leaving a time period where the model generally performs better.
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Figure 12. Analysis increments of SST (a), surface salinity (b) and ice concentration (c) for an assimilation cycle at 2011-12-15, as calculated

by the EnKF. Ensemble spread of the model background state for SST (d), surface salinity (e) and ice concentration (f). Spread increments

for SST (g), surface salinity (h), and ice concentration (i).
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Figure 13. Binned scatter plot of model versus observation values for SST (a,b) and ice concentration (c,d). Panels a,c show a comparison

for the background model state, and b,d for the analysis on 2022-12-15, i.e. the same DA cycle as in Fig. 12, based on the observations used

in Figs. 2 and 5
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