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Abstract.

The cycling of carbon in the oceans is affected by feedbacks driven by changes in climate and atmospheric CO2. Under-

standing these feedbacks is therefore an important prerequisite for projecting future climate. Marine biogeochemical models

are a useful tool there, but as any model is a simplification, need to be continually improved. In this study, we coupled the

Finite-volumE Sea ice-Ocean Model (FESOM2.1) to the Regulated Ecosystem Model version 3 (REcoM3). FESOM2.1 is5

an update of the Finite Element Sea ice-Ocean Model (FESOM1.4) and operates on variable mesh resolution. Unlike stan-

dard structured-mesh ocean models, the mesh flexibility allows for a realistic representation of small-scale dynamics in key

regions at affordable computational cost. Compared to the previous coupled model version FESOM1.4-REcoM2, the model

FESOM2.1-REcoM3 utilizes a new dynamical core based on a finite volume discretization instead of finite elements, but

retains central parts of the biogeochemistry model. As a new feature, carbonate chemistry including water vapor correction10

is computed by mocsy-2.0. Moreover, REcoM3 has an extended food web that includes macrozooplankton and fast-sinking

detritus. Dissolved oxygen is added as a new tracer. In this study we assess the ocean and biogeochemical state simulated

with FESOM2.1-REcoM3 in a global setup at relatively low spatial resolution forced with JRA55-do atmospheric reanalysis.

The focus is on the recent period 1958-2021, to assess how well the model can be used for present-day and future climate

change scenarios on decadal to centennial timescales. A bias in global ocean-atmosphere preindustrial CO2 flux present in15

the previous model version FESOM1.4-REcoM2 could be significantly reduced. In addition, the computational efficiency is

2–3 times higher than that of FESOM1.4-REcoM. Overall, it is found that FESOM2.1-REcoM3 is a skillful tool for ocean

biogeochemical modelling applications.

1 Introduction

There is an unequivocal consensus and concern about the effects of increasing greenhouse gases in the atmosphere due to20

human activities. Since the beginning of the preindustrial era, 1750, the concentration of carbon dioxide (CO2) in the air has

substantially risen from 277 ppm to 417.2 ppm in 2022 (Friedlingstein et al., 2022b). The ocean took up anthropogenic carbon

at a rate of 2.9 PgC yr−1 (26% of total CO2 emissions) in 2021 (Friedlingstein et al., 2022b). Simultaneously, the terrestrial

CO2 sink is estimated to be 3.5 PgC yr−1. The total air-to-land CO2 flux is, however, lower by 1.1 PgC yr−1 because of
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emissions from land-use change, mainly deforestation. The ocean carbon sink has grown over the past decades in response25

to the near-exponential rise in CO2 emissions (Friedlingstein et al., 2022b). While the global ocean carbon sink estimate

is assigned an uncertainty of 0.4 PgC yr−1 and medium confidence, regional patterns of the sink differ more strongly. This

points to the balance between physical and biological processes, which are more difficult to model as also illustrated in model

deficiencies of the seasonal cycle of pCO2 and CO2 fluxes (Mongwe et al., 2018). Both climate change and rising atmospheric

CO2 feed back on the fraction of CO2 emissions that will end up in the ocean over the next century (Friedlingstein et al., 2003;30

Canadell et al., 2021). Models are important tools in estimating how large these feedbacks are.

The flux of CO2 between atmosphere and ocean is controlled by two main mechanisms: the solubility pump and the bio-

logical pump. The solubility pump describes the air-sea CO2 exchange that occurs to satisfy a thermodynamic equilibrium,

and the subsequent transport of carbon from the surface to the deep ocean with the overturning circulation. This leads to CO2

uptake at mid- to high latitudes through high solubility in cold waters and large vertical motion in deep water formation re-35

gions. In contrast, warm ocean regions in the tropics and subtropics as well as upwelling regions lose carbon to the atmosphere

(Takahashi et al., 2009; Wanninkhof et al., 2013). The solubility pump is responsible for anthropogenic carbon uptake. The

biological carbon pump comprises the fixation of CO2 into biomass by phytoplankton and the subsequent downward transfer

of dead organic material (Boyd et al., 2019). The biological carbon pump is responsible for 75% of the natural vertical carbon

gradient (Sarmiento and Gruber, 2006), and for the large-interbasin gradient between the deep Pacific and Atlantic. Without40

the biological carbon pump, atmospheric CO2 would be higher by 200 ppm (Maier-Reimer et al., 1996), and perturbations

thereof can have large effects on atmospheric CO2 (Kwon et al., 2009; Lauderdale and Cael, 2021) as also known from paleo

evidence (Galbraith and Skinner, 2020).

Global ocean biogeochemistry models (GOBMs, Fennel et al., 2022) are used to assess the global ocean carbon sink (Hauck

et al., 2020), its regional patterns (Fay and McKinley, 2021), and effects of climate change and variability on the ocean carbon45

sink (Le Quéré et al., 2010; Hauck et al., 2013; DeVries et al., 2019; Bunsen, 2022). By their representation of pH, the marine

oxygen cycle and phytoplankton primary production as the base of the marine food web, they also offer information about

the environmental conditions for marine life and how these will develop under climate change (Bopp et al., 2013; Laufkötter

et al., 2015; Kwiatkowski et al., 2020). One such ocean biogeochemistry model is the Regulated Ecosystem Model (REcoM)

that describes the lower trophic levels of the marine ecosystem using the plankton functional type approach, and that bases50

its description of primary production on a physiological model for phytoplankton growth that takes into account nutrient

availability effects on photoacclimation (Geider et al., 1998) and, for diatoms, on the relative frustule weight (Hohn, 2009).

One specificity of REcoM is the representation of flexible stoichiometry, which leads to a description of elemental fluxes that

can deviate from the fixed Redfield ratios often used in models (Redfield et al., 1963).

Modeling the marine biogeochemistry of the ocean is subject to several sources of uncertainties: First, GOBMs are expensive55

with respect to the computational cost due to the advection of a large number of tracers and therefore, often demand low spatial

resolution. This leads to deficiencies in the representation of significant physical processes such as (sub)mesoscale currents

(McWilliams, 2016) which can have large impacts on transport and mixing processes that strongly affect biological productivity

(Lévy et al., 2018; Keerthi et al., 2022). Second, the descriptions of ecological interactions and of the physiology of primary
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and secondary producers in GOBMs are still mostly based on empirical or semi-empirical mathematical descriptions, such as60

e.g., the dependency of zooplankton grazing rates on prey abundance (Doney et al., 2001; Rohr et al., 2022). These contain a

large number of parameters that are only partly constrained from observations, making it necessary to tune these parameters in

GOBMs to some extent. Choices in these parameters can have strong effects on the biological carbon pump (e.g. Lauderdale

and Cael, 2021). It has been demonstrated that the largest source of uncertainty for projections of net primary production (NPP,

Tagliabue et al., 2021) comes from model uncertainty, not scenario uncertainty (Frölicher et al., 2016).65

Ocean circulation models formulated on unstructured meshes have become an alternative to existing structured global ocean

models (Danilov, 2013). The Finite-Element Sea ice–Ocean Model (from now on FESOM1.4, Wang et al., 2014) is one of

the first global models with multiple resolutions designed to simulate the large-scale ocean circulation. While it has already

been used in numerous applications (Sidorenko et al., 2015; Wekerle et al., 2017), another dynamical core, the Finite-volumE

Sea ice-Ocean Model version 2.1 (FESOM2.1), has been developed (Danilov et al., 2017). The advantages of a finite volume70

formulation are (a) better throughput and scalability as a result of a more efficient data structure (Koldunov et al., 2019), (b) the

availability of clearly defined fluxes, and (c) the possibility to choose from a selection of transport algorithms, which was very

limited before (Danilov et al., 2017). Furthermore, the arbitrary Lagrangian Eulerian (ALE) vertical coordinate is introduced

which provides different types of vertical coordinates (Scholz et al., 2019).

Here we document the ocean biogeochemistry in the Regulated Ecosystem Model version 3 (REcoM3) coupled to the ocean75

and sea ice model FESOM2.1, and assess its performance in reproducing carbon and nutrient biogeochemical fluxes as well as

the distribution of phytoplankton and zooplankton. Our aim is to analyze the new setup regarding the coupled model state under

historical atmospheric CO2 forcing and the associated model bias and drift from the experiment with constant preindustrial

(PI) CO2 level. We thus focus on evaluating model aspects with regard to the effects of climate change and CO2 increase on

carbon fluxes on century-scale time-scales. We exclude in our analysis the deep-sea distribution of carbon and nutrients, which80

would require model runs over at least 500 to two thousand years (Séférian et al., 2020), which will be done in follow-up work.

2 Methods

2.1 Model Description

We present the coupled ocean-sea ice-biogeochemistry model FESOM2.1-REcoM3. The previous model version FESOM1.4-

REcoM2 has been described by Schourup-Kristensen et al. (2014). Unlike its predecessor FESOM1.4 which uses a finite85

element formulation, the ocean model is now based on a finite volume discretization, which makes tracer conservation much

easier to achieve. FESOM2.1 was described by Danilov et al. (2017) and evaluated in Scholz et al. (2019, 2021). The ocean

biogeochemistry is simulated by the Regulated Ecosystem Model version 3 (REcoM3), which builds upon the previous version

REcoM2 (Hauck et al., 2013; Schourup-Kristensen et al., 2014). The advection and diffusion of 28 passive biogeochemical

tracers is handled by FESOM2.1, whereas REcoM3 calculates sources and sinks, driven by biological interactions or biogeo-90

chemical exchange processes.
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2.1.1 Ocean Model FESOM2.1

FESOM2.1 solves the hydrostatic primitive equations under the Boussinesq approximation (Danilov et al., 2017). This equation

set in differential form is discretized on a finite set of points (nodes). As a first step of mesh generation, a 2-dimensional grid is

created by combining these nodes in triangular shapes (elements). At this stage, mesh resolution (i.e., the size of triangles) can95

be adjusted in areas of interest without requiring a nesting approach. A 3-dimensional mesh is produced by projecting triangles

in vertical direction forming prisms. The scalar quantities (tracers, pressure) are located at nodes while the horizontal velocities

are defined at centroids of elements (See Figs. 1 and 2 in Danilov et al., 2017). A pair of control volumes are defined. The

vector control volumes are the prisms based on elements. The scalar control volumes are formed by connecting cell centroids

with edge midpoints (Fig. 1). Integration is carried out on a staggered Arakawa B type of mesh (Scholz et al., 2019).100

Figure 1. Scheme of the cell-vertex discretization in 3-dimensional space. Blue dots correspond to scalar quantities including REcoM2

state variables, located at the mid-layer vertices of triangles. Red dots represent horizontal velocities located at mid-layer cell centers of the

triangles. Yellow dots depict vertical transfer velocities, placed at the layer boundaries aligned with scalar quantities in vertical.

We use FESOM2.1, an updated version of FESOM2.0. The updated model features include several developments, such as

parallel and asynchronous output writing. An important new feature that we applied is the kinematic backscatter parameterisa-

tion. This method takes into account the scales at which energy is scattered back to the resolved flow by introducing a negative

viscosity term (Juricke et al., 2020). This greatly improves the simulation of eddy effects in coarse resolution mesh setups

(Juricke et al., 2020). The model code also includes representation of ice-shelf cavities (Timmermann et al., 2012), which has105

been used in regional studies with FESOM1.4-REcoM2 (Nissen et al., 2022). Ice-shelf cavities are, however, not used in this

study. Isoneutral tracer diffusion (Redi, 1982) and the Gent-McWilliams (GM, Gent and McWilliams, 1990; Griffies, 1998)

eddy stirring parameterization are applied. Both GM and Redi are scaled with horizontal resolution with a maximum value

of 2000 m2 s−1 at 100 km horizontal resolution, and decrease linearly below a resolution of 40 km to reach zero at 30 km

resolution effectively switching the parameterization. As vertical mixing parameterization, the K-profile scheme is used (KPP,110

Large et al., 1994) with a background vertical diffusivity of 1 x 10−4 m2 s−1 for momentum and 1 x 10−5 m2 s−1 for tracers.
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Furthermore, the Monin-Obukhov length dependent vertical mixing parameterization is applied in the surface boundary layer

south of 50◦S (Timmermann and Beckmann, 2004).

Regarding the vertical discretization, FESOM2.1 is formulated with an arbitrary Lagrangian-Eulerian (ALE) scheme, a syn-

thesis of different types of vertical coordinates. In the model configuration used here, we apply a full free-surface formulation115

and thus permit the vertical movement of the surface and of all other layers (referred to as zstar, Scholz et al. (2019)). This dras-

tically improves tracer conservation properties (Campin et al., 2004). Partially filled cells are used at the ocean floor resulting

in a smoother representation of the bathymetry.

The sea ice component (Finite-Element Sea Ice Model, FESIM version 2) solves for sea ice concentration, ice and snow

thickness, as well as ice drift velocity (Danilov et al., 2015). It is discretized on the same unstructured horizontal mesh as the120

ocean model. The elastic-viscous-plastic solver and flux corrected transport scheme are used for sea ice advection (Danilov

et al., 2015). The formulation of sea ice thermodynamics follows the work of Timmermann et al. (2009).

2.1.2 Biogeochemistry Model REcoM3

REcoM3 is a water column biogeochemistry and ecosystem model which incorporates cycles of carbon and nutrients (ni-

trogen, iron, and silicon) with varying intracellular stoichiometry in phytoplankton, zooplankton and detritus (see Appendix125

for detailed description and equations). Starting from the work by Schartau et al. (2007), REcoM was first used to describe

carbon overconsumption in mesocosm experiments. After coupled to the ocean and sea ice model MITgcm (Marshall et al.,

1997), the previous version (REcoM2) with two phytoplankton classes, one zooplankton and one detritus class was applied

to study the cycling of marine carbon on present (Hauck et al., 2013, 2018) and glacial time-scales (Du et al., 2022; Völker

and Köhler, 2013), as well as the marine iron cycle (e.g., Völker and Tagliabue, 2015; Tagliabue et al., 2016; Ye and Völker,130

2017; Pagnone et al., 2019). Moreover, REcoM2 was employed in assessments on the efficiency of ocean alkalinity enhance-

ment (Köhler et al., 2013; Hauck et al., 2016), in data assimilation studies (Pradhan et al., 2019) and as a test bed for model

development, e.g., for development of a parameterization of iron-ligand binding based on pH (Ye et al., 2020) among others.

Simultaneously, REcoM2 was coupled to FESOM1.4 (Schourup-Kristensen et al., 2014). These coupled model set-ups were

used either in a global configuration (e.g., Schourup-Kristensen et al., 2014; Hauck et al., 2020) with a regional focus on the135

Arctic or the Antarctic (Hauck et al., 2015; Schourup-Kristensen et al., 2018; Oziel et al., 2022; Nissen et al., 2022) or in

regional configurations (Taylor et al., 2013; Losch et al., 2014). Recently, the model has matured to include two groups of each

classes of phytoplankton, zooplankton and detritus (REcoM3, Fig. 2).

Marine primary production is computed through representation of two phytoplankton functional types (PFTs), namely di-

atoms and small phytoplankton. The diverse group of small phytoplankton comprises a wide range of taxa, including, for140

instance, non-silicifying and calcifying and non-calcifying haptophytes and green algae. The model allows PFTs to adapt their

internal stoichiometry (C:N:Chl:CaCO3 ratios for small phytoplankton and C:N:Chl:Si for diatoms) to nutrient levels, ambi-

ent light and temperature, based on the photoacclimation model by Geider et al. (1998). Si uptake by diatoms is regulated as

well, based on the internal Si:N quota, following Hohn (2009). This parameterization takes into account the strong decoupling

between Si and N metabolism (e.g., Claquin et al., 2002), and prescribes the observed change in Si:N ratios under Fe and145
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Figure 2. Schematic diagram of the components and interactions in the REcoM3 model. Small phytoplankton (phy) and diatoms (dia)

take up inorganic nutrients (nut). Small zooplankton (small zoo.) and macrozooplankton (macrozoo.) consume phytoplankton and particles.

Macrozooplankton feeds on small zooplankton. Phytoplankton aggregation, zooplankton sloppy feeding, mortality and fecal pellets generate

sinking detritus (slow and fast). Sinking detritus degrades to dissolved organic carbon and nitrogen. Dissolved organic material (DOM) then

remineralizes to dissolved inorganic carbon and nitrogen. The number of tracers and the other processes are shown in the appendix (Fig. A2).

N limitation. The intracellular iron pool is derived from intracellular nitrogen with a fixed Fe:N ratio, based on the fact that

intracellular iron is mostly associated with the photosynthetic electron transport chain and nitrogen metabolism (Geider and

La Roche, 1994; Raven, 1988). REcoM3 also includes the photo-damage parameterization by Álvarez et al. (2018). Calcium

carbonate production is assumed to be linearly dependent on the gross small phytoplankton production. CaCO3 dissolution is

described by a depth-dependent dissolution rate.150

Zooplankton is represented by two groups, small zooplankton and polar macrozooplankton (Karakuş et al., 2021) and each

group has a carbon and a nitrogen tracer. The small zooplankton group in the model is associated with relatively higher grazing

rates compared to macrozooplankton and is widely spread in the global ocean. The polar macrozooplankton is mainly present in

the Southern Ocean and northern high latitudes. The respiration rate is described mechanistically for macrozooplankton taking

into account reduced metabolism in winter and increased metabolism at high grazing rates (Karakuş et al., 2021). For small155

zooplankton, respiration is calculated with a fixed respiration rate constant and biomass in contrast to the previous version
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REcoM2 where respiration was used to drive zooplankton C:N back towards Redfield ratio (Hauck et al., 2013; Schourup-

Kristensen et al., 2014). Grazing is computed by applying a sigmoidal function with variable preferences on both phytoplankton

and detritus (Fasham et al., 1990).

Particulate organic matter (detritus) is split into two groups. The sinking speed of the first detritus group increases linearly160

with depth (from 20 m day−1 from the surface to 192 m day−1 at 6000 m depth; Kriest and Oschlies, 2008). The sinking

speed of the second group (fast-sinking detritus) is constant throughout the water column (200 m day−1, Karakuş et al., 2021).

Remineralisation of carbon and nitrogen occurs in two steps. Detrital material is first degraded to dissolved organic matter and

then remineralised to the inorganic forms (dissolved inorganic carbon and nitrogen, DIC, DIN). For iron, it is assumed that the

organic form is directly bioavailable, so it enters the dissolved iron pool in one step.165

REcoM3 comprises a single-layer sediment pool for nitrogen, silicon, dissolved inorganic carbon and calcium carbonate.

The sinking detritus and associated minerals are accumulated in this layer when they reach the ocean floor. This material is

subsequently returned back to the water column to the pools of dissolved inorganic nitrogen, carbon and silicon, as well as

alkalinity with a fixed remineralisation rate. The release of iron to the bottom layer of the ocean is assumed to be proportional

to the release of inorganic nitrogen (Elrod et al., 2004).170

2.1.3 Updates to previous REcoM version coupled to FESOM1.4

There are numerous improvements relative to the previously documented version FESOM1.4-REcoM2 (Schourup-Kristensen

et al., 2014), and the main changes are listed below:

REcoM

1. The routines for calculating carbonate chemistry and air-sea CO2-exchange used in FESOM1.4-REcoM2 which fol-175

lowed the guidelines provided by the Ocean Carbon Model Intercomparison Project (Orr, 1999) were replaced by the

mocsy-2.0 scheme of Orr and Epitalon (2015). While both use the same thermodynamic equilibrium to calculate surface

pCO2 and CO2 flux, mocsy-2.0 uses the faster and more accurate algorithm SolveSAPHE (Munhoven, 2013). Among

other differences, it follows best practice guides and uses recommended equilibrium constants. The gas exchange formu-

lation is updated to Wanninkhof (2014), which is largely equivalent to Ho et al. (2006). The computed fluxes are scaled180

with the ice-free area.

2. Dissolved oxygen was added as a new tracer in REcoM3. The air-sea O2 flux is calculated using the mocsy-2.0 routines

(Orr and Epitalon, 2015). Photosynthesis, respiration and remineralisation change oxygen with a fixed O2:C ratio, and

remineralisation does not depend on O2 levels in the current model version.

3. A second zooplankton group and a fast-sinking detritus class were added. The second zooplankton group represents a185

slow-growing polar macrozooplankton with a feeding preference on diatoms which produces fast-sinking and carbon-

rich fecal pellets (Karakuş et al., 2021).
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4. Intracellular iron concentration is connected to intracellular nitrogen via a constant ratio Fe:N leading to some variation

in the Fe:C ratio, as briefly presented in Tagliabue et al. (2016) and Pagnone et al. (2019).

5. Sedimentary release of iron was added to the model (Tagliabue et al., 2016), in addition to the previously considered Fe190

input with dust deposition.

FESOM

Biogeochemical fluxes returned back to the ocean from the benthos are treated with a specific bottom boundary condition.

Variable bottom topography leads to a smaller scalar control volume located at the lowermost level. This is because scalar

control volumes are obtained by connecting the areas from the elements they are attached a constant level (see Fig. 1 in195

Danilov et al., 2017). Therefore, the number of elements around a single surface node may vary with depths when it meets

non-flat topography. We thus computed the control volume and associated fluxes for each node by considering all surrounding

elements at different depth levels.

Forcing

Our simulation was forced by the atmospheric reanalysis JRA55-do data set (Tsujino et al., 2018) instead of the CORE-II data200

set (Large and Yeager, 2009) that was used in previous assessments (Schourup-Kristensen et al., 2014). JRA55-do is a blend of

reanalysis data and satellite observations and has the advantage to provide regularly updated near real time data up to present

day with higher temporal (3-hourly) resolution.

2.2 Experimental setup and data

In this study, we used a mesh with a nominal resolution of 1 degree as a background. The horizontal resolution is enhanced205

on the equatorial belt and in the region north of 50◦N to match 1/3 degree and 25 km, respectively. The mesh has 48 unevenly

spaced vertical layers where the layer thickness ranges from 5 m in the surface to 250 m in the deep ocean (Scholz et al., 2019).

Initial fields for temperature and salinity were taken from the Polar Science Center Hydrographic Climatology (PHC3,

updated from Steele et al., 2001). Total alkalinity (Alk) and preindustrial dissolved inorganic carbon (DIC) were initialized

from version 2 of the Global Ocean Data Analysis Project (GLODAPv2) data set (Lauvset et al., 2016). Dissolved inorganic210

nitrogen (DIN) and dissolved silicic acid (DSi) were started with values from the Levitus World Ocean Atlas climatology of

2013 (Garcia et al., 2014). We used the Levitus World Ocean Atlas climatology of 2018 for dissolved oxygen (Garcia et al.,

2019a) (See Table 2).

Due to scarcity of observations, the iron field (DFe) was initialized with output from the Pelagic Interaction Scheme for

Carbon and Ecosystem Studies (PISCES) model (Aumont et al., 2003) which was corrected using observed profiles for the215

Southern Ocean (de Baar et al., 1999; Boye et al., 2001). Sensitivity tests indicated that high values stemming from a hydrother-

mal vent in the Eastern Equatorial Pacific lead to unreasonably large values in the interior Pacific Ocean due to advective fluxes.

Therefore, the region spanning the latitudes of 12.5◦S - 9.5◦N, longitudes 72◦W - 106◦W was masked to a maximum value of

0.3 µmol m−3 (below 2000 m). All other tracers were initialized with small values.
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Iron was supplied to the ocean by dust deposition and from sediments. The sedimentary flux was assumed to scale with220

organic nitrogen flux into the sediment, as found in Elrod et al. (2004). REcoM3 used monthly averages of dust deposition

(Albani et al., 2014). We assumed that 3.5% of the dust field consists of iron of which 1.5% dissolves into a bio-available form

when deposited in the surface ocean. We did not include aeolian nitrogen deposition in our simulations.

Table 1. List of simulations performed in this study.

Experiment Period Atmospheric CO2 Atmospheric Forcing

pre-spinup 1611 – 1799 constant (278 ppm) RYF61

Aspinup 1800 – 1957 increasing RYF61

Bspinup 1800 – 1957 constant (278 ppm) RYF61

A 1958 – 2021 increasing JRA55-do

B 1958 – 2021 constant (278 ppm) RYF61

The atmospheric reanalysis data sets of JRA55-do v.1.5.0 (Tsujino et al., 2018) were used to force the model for the period

1958-2021 (hereafter, JRA55-do). A single repeating annual cycle of all forcing fields (year 1961) was used to perform the225

spinup simulations and a control experiment. This is referred to as Repeat Year Forcing (hereafter called RYF61). We have de-

liberately chosen the year 1961 as it had rather neutral El Niño conditions and further contained a low amount of anthropogenic

perturbation as compared to the years 1990 and 1991 recommended by Stewart et al. (2020).

A series of experiments was carried out in a global setup to investigate the performance of the coupled FESOM2.1-REcoM3

model. The experiments follow the definitions used in the Global Carbon Budget (Friedlingstein et al., 2022a) and in the230

RECCAP (Regional Carbon Cycle Assessment and Processes, https://reccap2-ocean.github.io/) projects and are summarized

in Table 1. Our first experiment was forced with varying climate from the JRA55-do data set, and varying atmospheric CO2

levels (hereafter referred as A). Atmospheric CO2 mixing ratio (xCO2) values are taken from the Global Carbon Budget

(Joos and Spahni, 2008; Ballantyne et al., 2012; Friedlingstein et al., 2022a). A second simulation was forced by RYF61

atmospheric reanalysis fields and a preindustrial atmospheric CO2 mixing ratio of 278 ppm. This configuration, here termed235

as B, is considered as the control run. Using these two simulations, the global ocean anthropogenic CO2 sink was estimated

by taking the model biases and drift from the control run into account. We used a coupled system spinup (i.e., a direct strategy,

Séférian et al., 2016). Before starting simulations A and B, we performed spinup experiments in two stages. In the first stage,

a 189-year long (equivalent to three cycles of JRA55-do forcing) preindustrial spinup simulation (named as pre-spinup) was

conducted using RYF61 atmospheric forcing and a preindustrial atmospheric CO2 mixing ratio of 278 ppm until the air-sea240

CO2 reaches a quasi-equilibrium state. The Aspinup and Bspinup simulations are a continuation of the pre-spinup simulation

with either increasing (Aspinup) or constant (Bspinup) atmospheric CO2 and run from 1800–1957. From the spinup simulations,

A and B were branched off in 1958 and run until the end of 2020. FESOM1.4-REcoM2 and FESOM2.1-RECOM3 reach a

throughput of 6 simulated years per day (SYPD) and 16 SYPD using the same mesh configuration and the same experimental

setup (See Table 1) on 288 cores with time steps of 15 min and 45 min, respectively. All modelled mean fields shown in this245

work are averaged over the period 2012–2021 unless stated otherwise.
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Table 2. List of the observational data sets used to initialize the model and assess its performance.

Data set Variable name Unit Reference

Dissolved inorganic carbon DIC mmol m−3 Global Ocean Data Analysis Project version 2 (Lauvset et al., 2016)

Total Alkalinity Alk mmol m−3 Global Ocean Data Analysis Project version 2 (Lauvset et al., 2016)

Dissolved inorganic nitrogen DIN mmol m−3 World Ocean Atlas (Garcia et al., 2019a)

Dissolved inorganic silicon DSi mmol m−3 World Ocean Atlas (Garcia et al., 2019a)

Oxygen O2 mmol m−3 World Ocean Atlas (Garcia et al., 2019b)

Chlorophyll a concentration Chl mg m−3 OC-CCI (Sathyendranath et al., 2019) and

Southern Ocean (Johnson et al., 2013)

Net primary production NPP mmol m−3 CPBM (Westberry et al., 2008) and

VGPM (Behrenfeld and Falkowski, 1997)

3 Results and discussion

In this section we assess the performance of FESOM2.1-REcoM3 in simulating the observed mean state of nutrients, chloro-

phyll a, net primary production, and export production in the near-surface ocean as well as air-sea CO2 flux primarily under

elevating CO2. Before assessing the biogeochemical variables, we analyze key features of the ocean model.250

3.1 Modelled hydrography, mixed layer and Atlantic meridional overturning

An extended analysis of analogous FESOM runs is presented in Scholz et al. (2019, 2021). Here we analyze only a few relevant

diagnostics to prove the validity of the presented research. We start the analysis by inspecting the spatial distribution of the

model bias in surface hydrography, presented in Fig. 3 as the difference between modeled mean 2012-2021 and the PHC3

Climatology (Steele et al., 2001). In the northern North Atlantic the bias is expressed by the cold ( ~4°C colder) and fresh (~1255

psu fresher) anomalies around Newfoundland which is the typical bias for standalone and climate models at coarse resolutions

(see e.g., Scaife et al., 2011). Further south, the bias depicts a dipole anomaly associated with the Gulf Stream going too far

north, which is a commonly addressed shortcoming for non-eddy-permitting models (see e.g., Zhang and Vallis, 2007; Storkey

et al., 2018). Similar issues are found in comparable current systems, such as the Kuroshio and Malvina systems. It is, however,

surprising that in general FESOM is far too saline at the surface being on average 0.3 psu saltier than the climatology.260

The differences in surface hydrography between runs A and B is shown in the lower panels of Fig. 3. These are on average

smaller than the bias to climatology but depict large scale patterns. In most of the ocean the SST and SSS differences act in

an opposite manner at buoyancy. Hence increase or decrease in SST is accompanied with an increase or decrease in SSS. The

only exception is the Indian Ocean, where East and West in run A become less and more buoyant, respectively.

In Fig. 4, we augment the diagnostic by inspecting the Atlantic meridional overturning circulation (AMOC) which provides265

the most general characteristic of water mass transformation and production. The mean AMOC in both runs is expressed with

the basinwide mid depth cell showing a maximum of ~ 15 Sv at ca 40◦N. The bottom cell, induced by the circulation of the
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Figure 3. Maps showing differences in surface temperature [°C] (left column) and practical salinity (right column) between FESOM2.1 and

the PHC climatology (top row) and between simulations A and B (bottom row) averaged over the time period 2012-2021.

Figure 4. Vertical representation of the Atlantic Meridional Overturning Circulation (AMOC) in simulations A, B and their difference [Sv].
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Figure 5. Time-series of annual mean Atlantic Meridional Overturning Circulation (AMOC) maxima in simulations A and B.

Figure 6. Mean of 2012-2021 annual maximum Mixed Layer Depth (MLD) in simulation A and difference between simulations A and B.

Antarctic Bottom water, is also well reproduced with a minimum of ~ -5 Sv. Even though the runs depict large differences

in temperature and salinity from the observed climatology, the simulated AMOC shows the canonical picture as known from

other works. This indicates that although biases in the representation of water mass properties and ventilation mechanisms are270

present, they still result in a reasonable density distribution which maintains realistic transports.

The difference between runs A and B shows that the mid depth and bottom cells are stronger in simulation B. Consequently,

the difference A-B is expressed by a basinwide positive anomaly with a maximum of ~ 3 Sv. We also show the time-series

of both AMOC maxima for the years 1958-2021 (Fig. 5). In run A, the time-series depicts a multidecadal variability with a

minimum of ~9.5 Sv and a maximum of ~13.5 Sv. Concurrently the reference run B depicts a nearly constant value between275

9.5 Sv and 10 Sv, a result of repeated year forcing.
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Finally in Fig. 6 we present the annual maximum mixed layer depth (MLD) pattern. It matches those known from literature

with the deepest MLD (>1000 m) found in the Labrador Sea (LS). The (annual maximum) MLD difference between the two

simulations is within the depth range of ~200 m. In run B the MLD is deeper in the central LS but shallower in the surrounding

area of it. Interestingly, the MLD difference there pursues the differences we found for SST and SSS patterns shown in Fig.1.280

From inspecting the model runs and their differences we conclude that FESOM2.1 simulated a reasonable ocean state which

can be used for further analysis.

3.2 Nutrients, ocean productivity and ecosystem

Figure 7. Maps of simulated FESOM2.1-REcoM3 surface [0-100m] concentration of dissolved inorganic nitrogen [mmol m−3] (A), dis-

solved inorganic silicon [mmol m−3] (D) with observations from the World Ocean Atlas 2018 climatology (B and E, Garcia et al., 2019b)

and corresponding differences (C, F) averaged over the time period 2012-2021.

3.2.1 Modeled versus in situ nutrients

We first compared the spatial distribution of surface (averaged over the top 100m depth layer) ocean dissolved inorganic285

nitrogen (DIN) and dissolved silicate (DSi) from REcoM3 with the World Ocean Atlas 2018 (Garcia et al., 2019b) climatologies

(Fig. 7). While simulated surface DIN concentrations were lower than observations in the subpolar regions, a large positive

DIN bias of up to 20 mmol m−3 was found in the subtropical South Pacific Ocean. The simulated DSi was overestimated in
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the Southern Ocean and underestimated in the northern Pacific. Exceptions are the Pacific and Atlantic sectors of the coastal

Southern Ocean where the modeled DSi concentrations are lower than the observations. These patterns were already present290

in FESOM1.4-REcoM2 (Schourup-Kristensen et al., 2014), however, two recent improvements should be noted. First, the

large and positive DIN bias in the northern subtropical Pacific (Schourup-Kristensen et al., 2014) disappeared. This is caused

by replacing the dust deposition input forcing field from Mahowald et al. (2003) with Albani et al. (2014), which results in

more realistic (i.e., less strong) iron limitation. Second, the silicate bias in the Southern Ocean is reduced in magnitude and

extent compared to Schourup-Kristensen et al. (2014). This is related to tuning experiments (not shown), which resulted in295

a larger share of diatoms in the Southern Ocean (Figure 12) compared to Schourup-Kristensen et al. (2014), thus drawing

down more silicic acid. Along with the increased share of diatoms, the Southern Ocean opal export has also increased from

74.5 Tmol Si yr−1 in Schourup-Kristensen et al. (2014) to 115 Tmol Si yr−1 in the present study and is thus more centrally

positioned in the range of 69-185 Tmol Si yr−1 (Dunne et al., 2007) and close to the best estimate of Tréguer et al. (2021)

(Table 3). The silicic acid bias is rather insensitive to formulation and parameter choice of opal dissolution, but very sensitive300

to the share of diatoms in the Southern Ocean. The correlation coefficient and root mean squared error (RMSE) between

simulated and observed annual mean DIN were 0.88 and 0.86 mmol m−3 respectively, and 0.47 and 0.54 mmol m−3 for

DSi. The correlation with observed DIN is higher than in Schourup-Kristensen et al. (2014, 0.75), which we relate to the

disappearance of the DIN bias in the northern subtropical Pacific. The correlation with observed DSi is lower than in FESOM-

1.4-REcoM2, despite the reduction in magnitude and extent in the Southern Ocean DSi bias. Moderately high silicic acid305

values in the northern high latitudes are not reproduced.

Figure 8. Maps of simulated FESOM2.1-REcoM3 surface [0-50m] concentration of dissolved iron [µmol m−3] (A), and of the AI-based

global reconstruction by Huang et al. (2022) (B). Note the different colorscale for the two plots.

Despite the enormous increase in the number of observations of dissolved iron with the GEOTRACES project, observations

have not reached a global coverage that makes it possible to construct a global climatology. Therefore the modeled dissolved
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iron is compared here to the global surface pattern of dissolved iron by Huang et al. (2022), which uses an artificial intelligence

method (random forest) to construct a near global iron field, based on the observations in the second intermediate GEOTRACES310

data product (Schlitzer et al., 2018), plus some older in-situ iron observations compiled in Tagliabue et al. (2012), and on co-

located hydrographic observations. The pattern of modeled dissolved iron (Figure 8, averaged over the top 50 m) shows the

expected pattern of high concentrations in regions with high dust deposition, mainly in the tropical Atlantic Ocean and the

eastern part of the Arabian Sea, but also to some extent in the southern subtropical Atlantic and Indian Oceans. Concentrations

are extremely low in the subpolar Southern Ocean, and almost the whole Equatorial and South Pacific. Iron concentrations are315

also low in the subpolar North Pacific, and — less so, but still noticeable — in the subpolar North Atlantic. Oceanic regions

adjacent to extended shelves, especially in the Arctic, show somewhat elevated iron concentrations. If we compare this to the

AI-generated global pattern of dissolved iron from Huang et al. (2022) we find qualitatively similar patters, like the elevated

iron concentration in the equatorial and subtropical Atlantic and the Arabian Sea, or the low concentrations in the subpolar

Southern Ocean, the equatorial Pacific, and the subpolar North Pacific, but the amplitude of the patterns is quite a bit smaller.320

An important difference is that the distribution by Huang et al. (2022) shows slightly elevated iron concentrations in the center

of the subtropical South Pacific, where the model in contrast has extremely low values. This discrepancy causes a too strong

iron limitation in this region in the model, probably explaining the overly high DIN concentrations in the model South Pacific.

The too strong amplitude of the patterns in modeled dissolved iron, which is also found in other models, likely has a number of

causes. The most important one is probably the assumption of a constant solubility in dust-deposited iron. Dust deposition close325

to the main source regions is on average coarser and has experienced less chemical processing during its transport, which both

would lead to a lower solubility, while the opposite is true for regions far from the source regions, such as in the South Pacific.

A second contribution might be the missing source from pyrogenic aerosols, which are far more soluble. Also, the effect of

dust particles as iron scavengers, which has not been included in this simulation, has been shown to reduce the overly high

dissolved iron concentrations often found in models under the main dust deposition regions (Ye and Völker, 2017; Pagnone330

et al., 2019). Despite the overall too strong amplitude of the patterns in dissolved iron, especially in the regions of high dust

deposition, the model is able to reproduce the main regions where iron availability limits phytoplankton productivity (Moore

et al., 2013), namely the subpolar Southern Ocean, the equatorial and North Pacific, and to some extent also the seasonal iron

limitation in the subpolar North Atlantic (Nielsdóttir et al., 2009), but overestimates iron limitation in the subtropical South

Pacific.335

3.2.2 Modeled versus satellite-based Chlorophyl a

The modeled spatial distribution of (log10 transformed) chlorophyll a concentration averaged from 2012 to 2021 was compared

with the Ocean Colour Climate Change Initiative (OC-CCI) merged data set (Sathyendranath et al., 2019). Over large parts

of the global ocean, the mean surface chlorophyll a concentrations are in agreement with observations (Fig. 9 panels C and

D). Yet, there are regional differences. The model underestimates chlorophyll concentration in most of the coastal regions,340

such as in the coastal Arctic regions with biases reaching about 3 mg chlorophyll a m−3. In temperate latitudes, the modeled

chlorophyll a concentrations are somewhat higher than observed while the subtropical gyres show concentrations slightly
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lower than observations. The comparison of modeled and observational-based satellite estimates of chlorophyll a yielded a

correlation of 0.66. Note, however, that remote sensing global semi-analytical algorithms, such as the one use in OC-CCI

(the Garver–Siegel–Maritorena model version 1; GSM01, Maritorena et al., 2002) are mostly adapted for global studies, but345

still require regional tuning in coastal regions, where the presence of non-biotic optically active material makes chlorophyll a

retrieval challenging (Blondeau-Patissier et al., 2014).

Figure 9. Maps of simulated FESOM2.1-REcoM3 (simA) surface chlorophyll a concentration [mg Chl m−3] of small phytoplankton (A),

diatoms (B) and the sum of both phytoplankton groups (C). The satellite-based merged dataset OC-CCI is shown in (D, Sathyendranath

et al., 2019) with corresponding differences between FESOM2.1-REcoM3 and OC-CCI (E). Note the different time periods of the simulation

(2012-2021) and OC-CCI (1998-2019).
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3.2.3 Modeled versus satellite-based NPP

Figure 10. Maps of simulated FESOM2.1-REcoM3 (simA) vertically integrated net primary production [mgC m−2 d−1] of small phyto-

plankton (A), diatoms (B), and the sum of both phytoplankton groups (C). The satellite-based Vertically Generalized Production Model

(VGPM) is shown in (D; Behrenfeld and Falkowski, 1997) with corresponding differences between FESOM2.1-REcoM3 and VGPM (E).

All fields are averaged over the time period 2012 to 2021.

We also compared the modeled vertically integrated Net Primary Production (NPP, Fig. 10) with the Vertically Generalized

Production Model (VGPM, Behrenfeld and Falkowski, 1997). VGPM is a chlorophyll-based algorithm that can be considered350

as a standard NPP estimation from ocean color for the last 20 years (Lee and Marra, 2022). VGPM therefore carries uncertain-

ties related to the global Chlorophyll algorithm (OC4) adapted to CASE-I waters (low influence of dissolved organic matter
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and non-algal particles) that is not adapted to coastal regions (CASE-II waters, high influence of dissolved organic matter and

non-algal particles). For example, turbid waters contaminated by yellow substances or sediments over the Arctic shelves is a

known issue that artificially increases both Chlorophyll a and NPP (Matsuoka et al., 2012; Mitchell, 1992; Mustapha et al.,355

2012). Some recent advances used local parametrizations with in situ data which resulted in much lower productivity levels

in those coastal areas (Lewis et al., 2020; Lewis and Arrigo, 2020). Therefore, we additionally compared modelled NPP with

the updated Carbon-based Productivity Model (CbPM, Westberry et al., 2008, see Appendix Fig. A1). CbPM uses spectrally

resolved light attenuation and is based on a semi-analytical algorithm (Garver-Siegel-Maritorena, GSM, Maritorena et al.,

2002) which tries to distinguish optical signatures from phytoplankton, particles and dissolved organic matter. Nevertheless,360

both algorithms are subject to large uncertainties (Lee and Marra, 2022). When compared with VGPM, the model simulation

generally underestimated the remotely sensed NPP estimations (Table 3), especially in the subtropical Pacific. Yet, with a value

of 35.9 PgC yr−1 the modeled global total NPP is slightly above the range of earlier modeling studies (23.7 - 30.7 PgC yr−1,

Schneider et al., 2008), and within the range of recent Earth System Models (24.5 - 57.3 PgC yr−1, Séférian et al., 2020). It is

lower than other satellite-based estimates of 47.3 PgC yr−1 (Behrenfeld and Falkowski, 1997), 52 PgC yr−1 (Westberry et al.,365

2008) and 48.7 - 52.5 PgC yr−1 reported by Kulk et al. (2020).

The low values of primary production could be caused by several top-down and/or bottom-up effects. The nutrient dynamics

that partly control NPP, are the result of a delicate balance between physical (mixing, stratification and upwelling systems) and

biogeochemical processes. To investigate bottom-up controls on regional NPP dynamics, we derived the most limiting factor

(either light or nutrients) of growth of diatom and small phytoplankton. This factor ranges between 0 (most limiting) and 1370

(no limitation) and is based on the nutrient uptake Michaelis–Menten kinetics of REcoM. The Michaelis–Menten coefficient

(MM) is computed as MM = [Nut]/([Nut] + KNut), with [Nut] being the nutrient concentration, and KNut a nutrient and

phytoplankton dependent half-saturation constant. The light limitation is defined as the carbon-specific photosynthesis rate

divided by the maximum photosynthetic rate. We derived maps showing the most limiting factor (factor closest to zero, either

nutrients DIN, DSi, or DFe, or light) in the annal mean (Fig. 11).375

Spatial distribution of the dominant growth-limiting factor for diatoms and small phytoplankton over the time period 2012-

2021 is shown in Fig. 11. Over large areas of the Southern Pacific and almost the entire Southern Ocean diatoms were limited

by iron availability. Elsewhere, except for the Arctic Ocean where light was the most limiting factor, diatom growth was

controlled by the abundance of dissolved silicic acid. Nutrient uptake of small phytoplankton was limited by iron in the South

Pacific, DIN within the band of 45◦S-45◦N in the Atlantic and Indian Oceans and insufficient light at high latitudes (south of380

45◦S and north of 45◦N).

The large-scale patterns of limitation were in general agreement with observations (Moore et al., 2013) and other modelling

studies (Long et al., 2021a), although the degree of silicic acid limitation for diatoms (outside the iron-limited Southern Ocean)

varied across models (Laufkötter et al., 2015). The more severe than expected limitation in iron in most of the Pacific might

contribute to the lower productivity levels than observed in the same regions (Fig. 10).385

In addition to bottom-up explanations, one can also raise a too high grazing pressure from zooplankton due to the choice

of grazing formulations and parameter values as a reason for low primary production (Anderson et al., 2010; Prowe et al.,
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Figure 11. Maps showing the spatial distribution of the most limiting factor in the model’s surface water for Diatoms (A) and small phyto-

plankton (B). Fe: iron, DIN: dissolved inorganic nitrogen, DSi: dissolved silicic acid.

2012; Karakuş et al., 2021). In fact, Karakuş et al. (2022) demonstrated that a separation of the small zooplankton group in

REcoM into micro- and mesozooplankton leads not only to a 25% increase in NPP but also to a reduction of overly strong

iron limitation in the South Pacific, due to nutrient recycling by zooplankton. Further, REcoM does not explicitly represent390

picophytoplankton (e.g., non N2-fixing cyanobacteria such as Synechococcus and Prochlorococcus) and nitrogen fixers, and

this might contribute to an underestimation of NPP.

Too low primary production and chlorophyll a levels were particularly evident in coastal regions, which could be linked

to deficiencies in either the chlorophyll data set (see above) or in the model. For the latter, reasons could be coarse model

resolution and associated weak upwelling and missing phytoplankton classes in the model, but also insufficient nutrient input395

from terrigenous sources. The results for net primary productivity and chlorophyll obtained here are comparable to those

presented by Schourup-Kristensen et al. (2014).

The latitudinal distribution of chlorophyll a and NPP were compared with estimations from remote sensing products (Fig.

12). In low latitudes, FESOM2.1-REcoM3 shows a reasonably simulated latitudinal variation of chlorophyll a and NPP com-

pared to VGPM. In the southern high latitudes, FESOM2.1-REcoM3 follows the Southern Ocean adjusted chlorophyll data set400
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Figure 12. Latitudinal distribution of vertically integrated and zonally averaged (A) chlorophyll a [mg Chl m−3] and (B) net primary

production [mg C m−2 d−1] simulated by FESOM2.1-REcoM3 (blue line). The satellite-based merged chlorophyll a datasets of OC-CCI

(Sathyendranath et al., 2019, orange line) and the improved chlorophyll a algorithm of the Southern Ocean (Johnson et al., 2013, green line)

are shown in (A). The satellite-based dataset of the Vertically Generalized Production Model (VGPM) (Behrenfeld and Falkowski, 1997,

purple line) and the Carbon-based Productivity Model (CbPM) (Westberry et al., 2008, red line) are shown in (B).

well, except for the coastal regions close to Antarctica (approximately south of 70◦S). Similarly, NPP corresponds reasonably

well to the VGPM estimate in the open Southern Ocean, but may underestimate NPP in Antarctic coastal waters. In the north-

ern high latitudes, however, the simulated chlorophyll a values are lower than the satellite estimations. Inspecting the spatial

distribution (Fig. 9) reveals that this is also largely a coastal underestimation. In the open ocean in northern high-latitudes,

chlorophyll is reasonably well reproduced and even partly higher than the satellite-based estimate. In terms of NPP, differences405

between simulated and satellite estimations are larger in productive areas north of 50◦N, which are strongest at the coast, but

also apparent in the open ocean of the North Atlantic. For regional applications, further analysis and possibly tuning may be

needed.

3.2.4 Modeled versus MAREDAT zooplankton biomass

In REcoM3, the small zooplankton group is widely spread in the global ocean and the highest biomass occurs in high-410

productivity regions (Fig. 13A). The macrozooplankton is present in the high latitudes (Fig. 13B) since it is parametrized

as a polar macrozooplankton group (Karakuş et al., 2021). We compared the latitudinal distribution of integrated modeled

zooplankton biomass with gridded global zooplankton biomass data from MAREDAT (Buitenhuis et al., 2010; Moriarty et al.,
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2013; Moriarty and O’Brien, 2013). The simulated biomass of small and total zooplankton reproduces MAREDAT-derived

biomass reasonably well in low to mid latitudes, but underestimates biomass in the polar regions (Fig. 13C). The underesti-415

mation of zooplankton biomass in the northern high latitudes may be related to an underestimation of primary production in

the same region. In agreement with the MAREDAT data set (Moriarty et al., 2013), macrozooplankton is not present in low

latitudes.

3.2.5 Synthesis

The modeled biogeochemical fluxes were compared to the previous version FESOM1.4-REcoM2 and observational studies420

(Table 3). Modelled global NPP is higher in FESOM2.1-REcoM3 than in FESOM1.4-REcoM2, but still lower than in satellite-

based estimates. The estimate is comparable to other modelling studies (Schneider et al., 2008; Séférian et al., 2020). Export

production (EP) is slightly lower in FESOM2.1-REcoM3 than in the previous version, and falls within the observational range

previously documented in the literature for both the global and the Southern Ocean. For the global ocean, FESOM2.1-REcoM3

NPP and EP estimations remained at the lower end of the range despite a slight increase in NPP. A more detailed description425

of zooplankton can increase NPP by 25% (Karakuş et al., 2022). In the Southern Ocean, estimations of NPP and EP remained

very close to observations. Maybe the most noticeable change between the two model versions is the substantial increase in

opal export which almost doubled in the Southern Ocean, passing from the lower to the middle of observational range in an

earlier review (Dunne et al., 2007), and is in excellent agreement with an updated estimate (Tréguer et al., 2021). This is due

to an increase in diatoms relative contribution to the total NPP in high latitudes (Fig. 12).430

3.3 Carbon cycle

3.3.1 Dissolved inorganic carbon and alkalinity

Insight into the carbonate system can be obtained by inspecting surface maps of modeled dissolved inorganic carbon (DIC) and

alkalinity and the corresponding observational GLODAPv2 climatologies (Fig. 14). Global patterns of simulated concentrations

resemble the observed fields reasonably well (R = 0.81, RMSE = 59.3 mmol m−3, calculated from annual means) with highest435

DIC values in the subtropical gyres of the Atlantic and south Pacific, as well as the subpolar North Atlantic and the Southern

Ocean. Similar to GLODAP, highest alkalinity values are found in the subtropical gyres of the Atlantic and south Pacific. Yet,

simulated surface DIC and alkalinity concentrations were slightly overestimated throughout the surface ocean. Two exceptions

are the Arctic Ocean and the North Atlantic where the concentrations were underestimated. The departure from observations

differ in their patterns relative to FESOM-1.4-REcoM (too low DIC and ALK in the tropics and subtropics, too high in high440

latitudes, not shown), which indicates that different realisations in circulation or mixing may drive these bias patterns. This is

in line with an overestimation of surface salinity in most of the global ocean with the exception of the North Atlantic and the

Arctic Ocean (see Fig. 3). Also, surface alkalinity biases are generally attributed to a dominant physical (preformed) signal with

a smaller contribution from the calcium carbonate cycle and a negligible contribution from organic matter remineralization

(Koeve et al., 2014). However, tuning the model to result in a higher CaCO3 production could possibly also counteract the445
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Figure 13. Maps of annual mean surface (A) small zooplankton and (A) macrozooplankton concentrations in FESOM2.1-REcoM3. Latitu-

dinal distribution of vertically integrated [mg C m−2] of (C) modeled small zooplankton (solid blue line) and sum of microzooplankton and

mesoozooplankton from MAREDAT (orange dots and solid brown line, Buitenhuis et al., 2010; Moriarty and O’Brien, 2013) and (D) mod-

eled macrozooplankton (solid blue line) and macrozooplankton from MAREDAT (orange dots, Moriarty et al., 2013). Modeled zooplankton

biomass is averaged over the time period 2012 to 2021.
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Table 3. Global and Southern Ocean net primary production (NPP) and export production (EP) in FESOM2.1-REcoM3 and estimates from

the literature. The Southern Ocean is considered as the region south of 50◦S. The numbers for VGPM and CbPM are recalculated after

interpolation to the model mesh over the years 2012-2019

Unit FESOM1.4-REcoM2 FESOM2.1-REcoM3 Range from literature

(Sim. A) (Sim. A)

NPP global PgC yr−1 32.5 35.8 50.5 (VGPM, this study)

68.9 (CbPM, this study)

47.3 (Behrenfeld and Falkowski, 1997)

52 (Westberry et al., 2008)

23.7 – 30.7 (Schneider et al., 2008)

48.7 - 52.5 (Kulk et al., 2020)

24.5 - 57.3 (CMIP6) (Séférian et al., 2020)

EP global PgC yr−1 6.1 5.9 9.6 (Schlitzer, 2004)

5.8-13 (Dunne et al., 2007)

5 (Henson et al., 2011)

5.9 (Siegel et al., 2014)

Opal export global Tmol Si yr−1 74.5 115 69-185 (review in Dunne et al., 2007)

112 (Tréguer et al., 2021)

CaCO3 export global PgC yr−1 1.2 0.59 0.1 - 4.7 (Seifert et al., 2022)

NPP Southern Ocean PgC yr−1 3.1 3.2 3.48 (VGPM, this study)

3.92 (CbPM, this study)

1.1-4.9 (Carr et al., 2006)

5.7 (Behrenfeld and Falkowski, 1997)

EP Southern Ocean PgC yr−1 1.1 1.1 1.0 (Schlitzer, 2002; Nevison et al., 2012)

Opal export Southern Ocean Tmol Si yr−1 21.5 38 21-54 (Dunne et al., 2007)

CaCO3 export Southern Ocean PgC yr−1 0.044 0.018 (Dunne et al., 2007)
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Figure 14. Maps of simulated FESOM2.1-REcoM3 surface [0-100m] concentration of dissolved inorganic carbon [mmol m−3] (A) and

alkalinity [mmol m−3] (D); corresponding data from GLODAPv2 (B, E; Lauvset et al., 2016) and model-data differences (C, F). The

comparison is for the period of 2012-2021.

positive alkalinity bias. Similarly, a higher NPP in the South Pacific could regionally ameliorate the high DIC bias. A positive

bias in alkalinity at constant atmospheric CO2 in the spin-up (not shown) and simulation A (Fig. 14) leads to a positive bias in

DIC as surface water with a higher alkalinity can hold more CO2 in equilibrium than a low-alkalinity surface ocean. The range

of biases is similar as in other ocean biogeochemical models (e.g., Tjiputra et al., 2020; Long et al., 2021a).

3.3.2 Surface ocean pCO2 and air-sea CO2 flux450

We compare the pattern of the temporal mean (2012-2021) surface ocean partial pressure of CO2 (pCO2, Figure 15) and air-

sea CO2 flux (Figure 16) to the pCO2-based data-product of Chau et al. (2022) with a seamless coverage from open ocean to

the coasts (Fig. 16). The spatial patterns of pCO2-products largely agree with each other although the magnitude differs (Fay

et al., 2021; Fay and McKinley, 2021). Therefore we chose one of them (Chau et al., 2022) and focus on the comparison of

the spatial pattern with our model. We further evaluate the temporal evolution of pCO2 in FESOM2.1-REcoM3 with a direct455

comparison to surface ocean pCO2 observations from the Surface Ocean CO2 Atlas (SOCAT, Bakker et al., 2016), where

we subsampled the model output for spatio-temporal locations where observations exist, following Hauck et al. (2020) and

Friedlingstein et al. (2022b) in Figure 17.

The large-scale spatial patterns of pCO2 are well reproduced (Figure 15) with high values in the tropics that are typically

higher than atmospheric values (red colors), and lower values in the subpolar Southern and Pacific Ocean and the high-latitude460
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Figure 15. Maps of surface ocean pCO2 [µatm]. The top row compares the (A) simulated FESOM2.1-REcoM3 surface partial pressure of

CO2 to the (B) pCO2-based data-product (Chau et al., 2022), both averaged over 2012-2021. The bottom pannel (C) shows model-data

differences.

North Atlantic. However, compared to the pCO2-product of Chau et al. (2022), model pCO2 values are overestimated in

the subtropical gyres (Figure 15C). Further, the North Atlantic pCO2 is on average lower than the pCO2-product, and the

two data sets also differ on over- versus undersaturation of pCO2 relative to the atmosphere in the polar Southern Ocean

(higher values in FESOM2.1-REcoM3). The latter may well be explained by a known summer bias in Southern Ocean pCO2

observations (e.g., Metzl et al., 2006; Gregor et al., 2019). FESOM2.1-REcoM3 also simulates very high pCO2 values on the465

Russian shelves in the Arctic, where hardly any observations exist. Similarly high pCO2 values were reported for this region

by Anderson et al. (2009), but missing repeat observations prevent a conclusion on whether this is a robust signal and what its

extent in time and space is.

FESOM-2.1-REcoM3 reproduced the temporal evolution of surface ocean pCO2 reasonably well compared to SOCAT

when accounting for where and when pCO2 sampling took place (Figure 17). The annual correlation coefficient and root470
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Figure 16. Maps of air-sea CO2 fluxes. The top row compares the (A) simulated FESOM2.1-REcoM3 CO2 flux to the (B) pCO2-based

data-product (Chau et al., 2022), both averaged over 2012-2021. The bottom pannel (C) shows model-data differences.

mean squared error (RMSE) between simulated and observed global mean pCO2 are 0.93 and 4.6 µatm, respectively. The

subsampled model follows the SOCAT time-series closely, including its variability, which may to some extent be caused by

sampling distribution. The global mismatch with SOCAT pCO2 as measured by the RMSE is comparable or slightly below the

value for FESOM-1.4-REcoM2 (see supplementary Figure S9, 1985-2018, in Hauck et al., 2020) and comparable, but at the

high end of the range of other models in GCB2022 (1990-2021, Friedlingstein et al., 2022b). On a monthly scale, the RMSE475

is higher (38 µatm), as the models capture the large-scale patterns better than smaller-scale variability according to a previous

assessment (Hauck et al., 2020). An analysis of large-scale regional patterns (North, Tropics, South, Figure 17) reveals that the

model overestimates pCO2 in the tropics and underestimates pCO2 in the northern extra-tropics and to a lesser extent in the

southern extra-tropics in recent decades, as also indicated in the maps (Figure 15).
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Figure 17. Comparing annual mean pCO2 [µatm] from FESOM2.1-REcoM (subsampled for spatiotemporal locations of observations in

SOCAT, red) with observations from SOCATv2022 (light blue, updated from Bakker et al., 2016). Results are shown spatially averaged

for (A) the global ocean, (B) the northern hemisphere (>30◦N), (C) the Tropics (30◦S-30◦N), and (D) the southern hemisphere (<30◦S).

The time-series are shown for all observations in SOCAT (since 1970), but correlation coefficient r (unitless) and Root Mean Squared Error

RMSE (µatm) are indicated in the panels for the time period 1990–2021.
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The air-sea CO2 flux spatial pattern was reasonably reproduced by FESOM2.1-REcoM3 with CO2 uptake in the subpolar480

regions of both hemispheres, and outgassing in the tropics and north Pacific (Figure 16). Generally, the CO2 flux patterns

mirror the pCO2 patterns (Figure 15), but with the additional imprint of spatial variability of wind speed. Hence, the CO2

uptake in the subpolar Southern Ocean may appear large compared to pCO2, which is not as strongly undersaturated in the

South as in the North Atlantic. Regions of mean outgassing in the Southern Ocean are of smaller extent in the model than in the

pCO2-product. While it is well established that outgassing of CO2 in the polar Southern Ocean occurs in winter (e.g., Bakker485

et al., 1997), its magnitude and timing varies between estimates and is under debate (Gruber et al., 2009; Lenton et al., 2013;

Gray et al., 2018; Bushinsky et al., 2019; Sutton et al., 2021; Long et al., 2021b). The misfit between the annual mean modelled

CO2 flux and the pCO2-based data-product generally mimic pCO2 misfits and thus shows small positive misfits (less uptake

or more outgassing) in the subtropical gyres and small negative biases (stronger uptake or less outgassing) in the equatorial

Pacific, and the Southern Ocean (Fig. 16, bottom panel). The strongest misfits were found in the northern high latitudes and490

the upwelling zone of the eastern tropical Pacific. The large mismatch in pCO2 on the Siberian shelves does not show up in

CO2 flux as sea ice prevents CO2 outgassing throughout most of the year.

Figure 18. Time-series of simulated annual mean global ocean-atmosphere CO2 flux in PgC yr−1 in the experiments conducted in this

study. FESOM-2.1-REcoM3 spinup was conducted for 347 years (including 189 years of pre-spinup, not shown in the plot) under repeat

year forcing taken from the year 1961 (RYF61). Here we show the spin-up since 1800 that is continued as the control simulation B after

1958 for FESOM-1.4-REcoM2 (yellow) and FESOM-2.1-REcoM3 (magenta) with a constant CO2 concentration of 278 ppm (dashed lines)

and the spin-up under increasing CO2 that is continued as simulation A after 1958 (solid lines). The control simulation B started in the

year 1958 and was conducted for 64 years with RYF61 (dashed lines). Simulation A also started in 1958 and was forced with inter-annual

varying forcing JRA55-do-1.4.0 (solid lines). Please note that spinup period for FESOM1.4-REcoM2 and FESOM2.1-REcoM3 differ from

each other, the latter being longer than the former.

We continue our investigation with the analysis of the global ocean-atmosphere CO2 flux time-series (Fig. 18). In 1800, the

first year of spinup after the first 189 years of pre-spinup of simulation B (not shown), the global ocean-atmosphere CO2 flux
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was already in a stable state and converged towards a value close to zero. Under the assumption that the ocean and atmosphere495

were in equilibrium at constant preindustrial CO2 and without riverine carbon transported into the ocean (Aumont et al., 2001;

Resplandy et al., 2018; Regnier et al., 2022), an equilibrium flux of zero is expected for simulation B. Any deviation from

this can be considered a bias (Hauck et al., 2020). The global bias of the annual air-sea CO2 flux in the FESOM-2.1-REcoM3

control simulation amounts to -0.12 PgC yr−1, and could be further reduced towards zero with a longer spin-up. The control

simulation conducted with the older model version FESOM1.4 had a larger bias with a positive flux of around 0.4 PgC yr−1500

at the end of the simulation. In addition to the bias, the drift is reduced from 0.00264 PgC yr−2 in FESOM1.4-REcoM2 to

-0.00011 PgC yr−2 in FESOM2.1-REcoM3 with longer spin-up. Despite different spinup procedures (FESOM1.4 has a shorter

spin-up period), simulation A with both FESOM2.1 and FESOM1.4 reveals similar CO2 fluxes under interannually varying

forcing after 1980, which indicates a dominance of the forcing over the initial conditions. This also questions the common

assumption that the same bias occurs in the control and historical simulations.505

Figure 19. Globally integrated annual air-sea CO2 flux from Global Ocean Biogeochemistry Models (GOBMs) and pCO2-based data-

products used in the Global Carbon Budget 2022, after applying bias correction to the models and river flux adjustment of 0.65 PgC yr−1

(Regnier et al., 2022) to the pCO2-products. The thick black line indicates the model ensemble mean and the thick blue line shows the mean

of the pCO2-product ensemble. Thin dashed lines are from individual models and pCO2-products. FESOM2.1-REcoM3 (magenta) shows

the ocean carbon flux for the period of 1959-2021 whereas FESOM1.4-REcoM2 (yellow) covers the period of 1959-2019. Positive numbers

indicate a flux into the ocean.

We next assess the model performance of the interannually varying simulation (A) by comparison with the Global Carbon

Budget’s ensemble of pCO2-based data-products and other ocean biogeochemistry models (Fig. 19). Note that all model time

29

https://doi.org/10.5194/gmd-2023-2
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



series shown in Fig. 19 are referenced relative to their control simulations. Although being consistent with the interannual vari-

ability, air-sea CO2 fluxes of FESOM1.4 are at the lower end of the range compared to other Global Ocean Biogeochemistry

Models and pCO2-based estimates. In contrast, starting from the mid-1960s, FESOM2.1 shows a higher CO2 flux in compar-510

ison to FESOM1.4. Considering the fact that both model versions do not depart much from each other in simulation A, the

increase in net CO2 flux is mostly attributed to the level of CO2 fluxes in their control simulations with a constant atmospheric

CO2 concentration and without climate-change forcing (simulation B; Fig. 18).

After accounting for the bias in simulation B, the simulated ocean carbon sink is 1.74± 0.11 PgC yr−1 and 2.17± 0.13 PgC yr−1

for FESOM1.4-REcoM2 and FESOM2.1-REcoM3 versions between 1990 and 1999, respectively. Hence, FESOM2.1-REcoM3515

is closer to the best estimate for the 1990s (2.2±0.4 PgC yr−1, IPCC, Denman et al., 2007; Ciais et al., 2014) than FESOM1.4-

REcoM2. The cumulative uptake over the period of 1959-2019 amounts to 93.4 PgC (FESOM1.4-REcoM2) and 116.6 PgC

(FESOM2.1-REcoM3) which is a 25% increase in CO2 flux. Yet, the FESOM2.1-REcoM3 CO2 fluxes are lower than the

mean of the pCO2-based data-products since about 2008 and thus affirm the growing discrepancy between global ocean bio-

geochemistry models and pCO2-products (Friedlingstein et al., 2022a).520

3.3.3 DIC Inventory Changes

Table 4. FESOM2.1-REcoM3 DIC inventory for simulation A (PgC) in 1994, and change in DIC inventory between 1800-1994 and 1994-

2007. The FESOM-2.1-REcoM3 numbers are from simulation A and hence encompass anthropogenic and natural carbon cycle processes.

Gruber et al. (2019) estimate the anthropogenic carbon inventory change. We have given the Gruber et al. (2019) anthropogenic plus back-

of-the-envelope natural carbon inventory changes in parenthesis (only available for global).

Year Global North Tropics South

FESOM-2.1-REcoM3 1994 38167.4 5259.8 21108.1 11799.5

FESOM-2.1-REcoM3 1800 to 1994 91.6 14.5 35.5 41.6

FESOM-2.1-REcoM3 1994 to 2007 27.7 5.2 11.6 11.0

Sabine et al. (2004), (Gruber et al., 2019) 1800 to 1994 118±19 (111±21) 25.1 46.6 48.0

Gruber et al. (2019) 1994 to 2007 34±4 (29±5) 5.9 17.5 10.4

The interior ocean DIC inventory in FESOM-2.1 amounts to about 38,200 PgC, which is in the reported range of 37,200 to

39,000 PgC (Sundquist, 1985; Keppler et al., 2020). The DIC inventory grew over time in accordance with observation-based

estimates (Table 4, Sabine et al., 2004; Gruber et al., 2019). The increase from 1994-2007 is with 27.7 PgC slightly lower than

the best estimate by Gruber et al. (2019), which, however, only quantifies the anthropogenic CO2 increase (34±4 PgC). The525

model estimate falls within the uncertainty range of Gruber et al. (2019) when considering in addition the poorly constrained

response of the natural carbon inventory to climate change (29±5 PgC). Similarly, the simulated DIC inventory change 1800-

1994 (91.6 PgC) is at the lower end but within the reported uncertainty of the observation-based total DIC inventory change

(111±21 PgC). FESOM-2.1-REcoM3 is thus one of the few ocean biogeochemistry models that falls within the range of

30

https://doi.org/10.5194/gmd-2023-2
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



interior ocean anthropogenic carbon accumulation that is also supported by O2/N2 ratios (Tohjima et al., 2019) and atmospheric530

inversions (see also discussion in Friedlingstein et al., 2022b). Notably, FESOM2.1-REcoM3 can reproduce the latitudinal

distribution of anthropogenic carbon accumulation 1994-2007 with the maximum in the tropics (30◦S-30◦N), followed by the

Southern Ocean south of 30◦S, and the North (north of 30◦N), although it also also underestimates the accumulation in the

tropics, as most other models do (Friedlingstein et al., 2022a). If the observation-based separation into North, Tropics and

South is correct, this may indicate a too weak transport of anthropogenic carbon from the Southern Ocean into the tropics, or535

a generally too weak CO2 uptake in the tropics.

3.4 Oxygen

Figure 20. Maps of surface (0-10m, top row) and intermediate (300-500m, bottom row) concentration of simulated FESOM2.1-REcoM3

dissolved O2 [mmol m−3] (A, D), World Ocean Atlas 2018 climatology of dissolved O2 (B, E; (Garcia et al., 2019b)) and corresponding

differences (C, F) over the time period 2012-2021.

The simulated global O2 concentration distribution at the surface ocean and intermediate depths was consistent with ob-

served patterns in WOA2018 (Fig. 20). The model successfully reproduced the typical spatial patterns (Schmidtko et al.,

2017): (1) Oxygen Minimum Zones in the western boundary upwelling systems where old deoxygenated waters are brought540

to the surface, (2) high concentrations in the high latitude regions where cold temperature increases oxygen solubility (Arc-

tic and Southern Oceans), and (3) moderate oxygen concentrations in the more stratified tropical gyres. Nevertheless, there
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were regional discrepancies. At the surface, the model slightly underestimated O2 concentrations in the high latitude sur-

face ocean. At intermediate depth, the model generally overestimated oxygen levels, especially in the Pacific Ocean and the

sub-polar Southern Ocean with biases exceeding 100 mmol m−3. Compared to other models which compared oxygen concen-545

trations within the 100-600 m layer (Cocco et al., 2013), REcoM3 performed remarkably well with simulated values of about

160±105 mmol m−3, which is very close to the observations from the WOA (158±103 mmol m3).

4 Conclusions and Outlook

We have presented a new coupled ocean biogeochemistry model FESOM2.1-REcoM3. Building upon finite volumes for the

ocean component improves the numerical efficiency and leads to higher numerical throughput of the coupled model (Danilov550

et al., 2017). Furthermore, the biogeochemistry component was extended to incorporate state of the art carbonate chemistry

routines, a second zooplankton and detritus group and simulates the cycling of oxygen in the ocean. In its present configuration,

the overall realism of FESOM2.1-REcoM3 in simulating the observed mean biogeochemical state is comparable to that of most

GOBMs, while being among the more realistic models for estimating global ocean anthropogenic carbon uptake. There are

still a number of model shortcomings, such as a lower simulated NPP and regional misfit between the annual mean CO2 flux555

of the model simulation and the pCO2-based data-product that will be addressed in the future.

This model set-up provides the basis for further model development, e.g., the inclusion of coccolithophores as an additional

phytoplankton functional type and CO2 sensitivities of phytoplankton growth (Seifert et al., 2022), as well as the separation of

the generic small zooplankton group into micro- and mesozooplankton that reduces model biases in nutrient fields, increases

net primary production and better captures the top-down control on phytoplankton bloom phenology (Karakuş et al., 2022).560

We further plan to incorporate more detailed iron biogeochemistry as developed in REcoM coupled to MITgcm (e.g., Ye et al.,

2020), and the explicit representation of the effects of viscosity and ballasting on particle sinking speed, as well as oxygen-

dependent remineralization, following Cram et al. (2018) to address knowledge gaps in carbon export and transfer to depth

(Henson et al., 2022). Other on-going work addresses the role of rivers for carbon and nutrient transport into the ocean and

the remineralization time-scale of this river-derived organic material (Aumont et al., 2001; Lacroix et al., 2020; Regnier et al.,565

2022), and thus tackles a major uncertainty in the ocean carbon cycle and comparison of ocean carbon sink estimates based on

pCO2-products and ocean biogeochemistry models (e.g., Hauck et al., 2020).

Code availability. The FESOM2.1-REcoM3 source code is available at https://github.com/FESOM/fesom2/tree/fesom2.1_recom (last ac-

cess: 31 December 2022); the version of FESOM2.1-REcoM3 used for this paper can be found at https://doi.org/10.5281/zenodo.7502419.

A manual is available at: https://recom.readthedocs.io/en/latest/.570
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Figure A1. Maps of simulated FESOM2.1-REcoM3 (simA) vertically integrated net primary production [mgC m−2 d−1] of small phyto-

plankton (A), diatoms (B), and the sum of both phytoplankton groups (C). The satellite-based Carbon-based Productivity Model (CbPM) is

shown in (D; Westberry et al., 2008) with corresponding differences between FESOM2.1-REcoM3 and VGPM (E). All fields are averaged

over the time period 2012 to 2021.
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Figure A2. Conceptual diagram of the ocean biogeochemical model REcoM3. The 28 tracers can be grouped (indicated by boxes) into

dissolved nutrients, carbonate system parameters and oxygen (upper left), phytoplankton functional types (center), zooplankton functional

types (upper right), two detritus classes (lower right), and dissolved organic material (lower left). Source and sink terms are depicted by

arrows. For reasons of diagrammatic clarity, connections of dissolved oxygen (Oxy) to other state variables are omitted here. Similarly, the

release of alkalinity, dissolved inorganic nutrients and organic matter from the sediment are not shown.
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Appendix A: Equations

This appendix provides an overview of the underlying model equations and lists all biogeochemical variables of FESOM2.1-

REcoM3. Changes in state variables in REcoM3 are controlled by biological and chemical processes, in addition to the changes

induced by ocean circulation, mixing, diffusion and advection computed by FESOM2.1. While some variables exchange across

the ocean surface and/or the sea floor, others, like dead organic matter (detritus) sink through the water column. The concen-585

tration change for a state variable S is formulated as follows:

∂S

∂t
= −U · ∇S+∇ · (κ · ∇S) +SMS(S), (A1)

where S is the volumetric concentration of a state variable, U is the three-dimensional advection velocity and κ is the diffusiv-

ity. The term SMS(S) represents the biogeochemical sources minus sinks. The slow-sinking detritus class is assumed to sink

with a velocity, which increases linearly with depth as a first-order description of the shift to larger and faster-sinking particles590

with increasing depth (Kriest and Oschlies, 2008). A constant sinking rate is applied to the fast-sinking detritus class. REcoM3

has 28 oceanic and four explicit benthic state variables (Tables A1 and A2).

A1 Sources minus sinks

A1.1 Nutrients

A1.1.1 Dissolved inorganic nitrate (DIN)595

The simulated DIN conceptually represents the concentrations of nitrate, nitrite and ammonia, while in practice only nitrate is

considered. The concentration of DIN in the water column rises when DON is remineralized and diminishes as a consequence

of assimilation by small phytoplankton and diatoms:

SMS(DIN) = ρDON · fT ·DON︸ ︷︷ ︸
DON remineralization

− VN
small ·PhyCsmall︸ ︷︷ ︸

N-assimilation, small phytoplankton

− VN
dia ·PhyCdia︸ ︷︷ ︸

N-assimilation, diatoms

. (A2)

The state variables DON, PhyCsmall and PhyCdia are listed in Table A1. The value of the remineralization rate constant600

(ρDON) is given in Table A8. The temperature dependency of remineralization (fT ) is calculated in Eq. A43. See Section A3.4

for details on the carbon-specific nitrogen-assimilation rates VN
small and VN

dia (Table A5).

A1.1.2 Dissolved silicic acid (DSi)

silicon assimilation (Si-assimilation) and increases when biogenic silica from one of the two detritus classes dissolves.

SMS(DSi) = ρT
Si ·DetSi︸ ︷︷ ︸

Remineralization, slow-sinking detritus

+ ρT
Si ·DetZ2Si︸ ︷︷ ︸

Remineralization, fast-sinking detritus

− VSi ·PhyCdia︸ ︷︷ ︸
Si-assimilation, diatoms

(A3)605

The state variables PhyCdia, DetSi and DetZ2Si are listed in Table A1. The temperature dependent remineralization rate of

silicon (ρT
Si) and the carbon-specific Si-assimilation rate (VSi) are calculated in Eqs. A45 and A51, respectively (Table A5).
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A1.1.3 Dissolved iron (DFe)

Excretion of phyto- and zooplankton and remineralization of detritus release iron with a fixed iron:nitrate ratio (qFe : N). Unlike

for nitrogen, which is released as dissolved organic nitrogen and needs to be remineralized further to become available as nu-610

trient again, the released iron is directly put into the dissolved pool iron, basically assuming that all dissolved iron is ultimately

bio-available. Iron assimilation (again assumed to be proportional to nitrogen assimilation, from now on N-assimilation) by

both phytoplankton classes lower the level of dissolved iron. In addition, free inorganic iron Fe’ is scavenged onto sinking

particles, with a rate that is proportional to particle concentration. We take detrital carbon as a proxy for the mass of sinking

particles.615

SMS(DFe) = qFe : N · (ϵN
phy · fN : Cmax

lim, small ·PhyNsmall︸ ︷︷ ︸
Excretion, small phytoplankton

+ ϵN
phy · fN : Cmax

lim, dia ·PhyNdia︸ ︷︷ ︸
Excretion, diatoms

+ ρDetN · fT ·DetN︸ ︷︷ ︸
Remineralization, slow-sinking detritus

+ ρDetN · fT ·DetZ2N︸ ︷︷ ︸
Remineralization, fast-sinking detritus

+ ϵN
zoo ·ZooN︸ ︷︷ ︸

Excretion, small zooplankton

+ ϵN
zoo2 ·Zoo2N︸ ︷︷ ︸

Excretion, macrozooplankton

− VN
small ·PhyCsmall︸ ︷︷ ︸

N-assimilation, small phytoplankton

− VN
dia ·PhyCdia︸ ︷︷ ︸

N-assimilation, diatom

)

− κFe ·DetC ·Fe′︸ ︷︷ ︸
Scavenging, slow-sinking detritus

− κFe ·DetZ2C ·Fe′︸ ︷︷ ︸
Scavenging, fast-sinking detritus

(A4)

The state variables PhyCsmall, PhyCdia, PhyNsmall, PhyNdia, DetC, DetN, DetZ2C, DetZ2N, ZooN, Zoo2N are listed in

Table A1. Intracellular Fe : N ratio (qFe : N) and scavenging rate of iron (κFe) are given in Table A4. Excretion rates (ϵN
phy,

ϵN
zoo and ϵN

zoo2) and the degradation rate for detritus N (ρDetN) are listed in Table A8. The temperature dependency (fT ) is

calculated in Eq. A43. The limitation by intracellular nitrogen (fN : Cmax
lim small , fN : Cmax

lim dia ) is described in Eq. A55. Scavenging is620

calculated following Parekh et al. (2004). The total concentration of dissolved iron (FeT) is separated into free iron (Fe′) and

iron complexed with organic ligands (FeL), which is not scavenged. Complexation reactions are fast (Tagliabue and Völker,

2011), so we assume instantaneous equilibrium between free iron and free ligand (L′) which is computed using a constant

KFeL = [Fe′]·[L′]
[FeL]

, by solving

FeT = Fe′+ FeL LT = FeL + L′ (A5)625

For simplicity we assume here a constant total ligand concentration LT, unlike in Völker and Tagliabue (2015). Variable ligand

concentration, like in Misumi et al. (2011) or Völker and Tagliabue (2015), or variable ligand binding strength, like in Ye et al.

(2020) will be explored in the future. The values for KFeL and LT are listed in Table A4.
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A1.2 Carbon cycle

A1.2.1 Dissolved inorganic carbon (DIC)630

DIC concentration increases with respiration of phyto- and zooplankton, remineralization of semi-labile dissolved organic

carbon, dissolution of calcitic detritus and dissolution of CaCO3 in zooplankton guts. Loss terms are carbon fixation by

primary producers and the formation of calcium carbonate. In addition, sea–air flux of CO2 leads to an exchange of carbon

with the atmosphere, depending on the partial pressure difference of CO2 between ocean and atmosphere. This exchange is

treated separately as a boundary condition. The partial pressure of surface ocean CO2 is computed using the mocsy-2.0 routines635

(Orr and Epitalon, 2015).

SMS(DIC) = (rsmall−Psmall) ·PhyCsmall︸ ︷︷ ︸
Net respiration, small phytoplankton

+ (rdia−Pdia) ·PhyCdia︸ ︷︷ ︸
Net respiration, diatom

+ ρDOC · fT ·DOC︸ ︷︷ ︸
Remineralization of DOC

+ rzoo ·ZooC︸ ︷︷ ︸
Respiration, small zoo

+ rzoo2 ·Zoo2C︸ ︷︷ ︸
Respiration, macrozoo

+ Disscalc ·DetCalc︸ ︷︷ ︸
Calcite dissolution, slow-sinking detritus

+ Gzoo
small · qCaCO3 :N

small ·Disscalc_guts︸ ︷︷ ︸
CaCO3 dissolution in guts, small zoo

− ψ ·Psmall ·PhyCsmall︸ ︷︷ ︸
Calcification

+ Disscalc2 ·DetZ2Calc︸ ︷︷ ︸
Calcite dissolution, fast-sinking detritus

+ Gzoo2
small · qCaCO3 :N

small ·Disscalc_guts︸ ︷︷ ︸
CaCO3 dissolution in guts, macrozoo

(A6)

The state variables PhyCsmall, PhyCdia, DOC, ZooC, Zoo2C, DetCalc, DetZ2Calc are listed in Table A1. Respiration rate

constants of small phytoplankton (rsmall), diatoms (rdia) and zooplankton groups (rzoo and rzoo2) are computed in Sections A3.2

and A4.1, respectively. Photosynthesis terms (Psmall and Pdia) are calculated in Eq. A46. The remineralization rate constant640

(ρDOC) is listed in Table A8 and the temperature dependency (fT ) is given in Eq. A43. Calcite dissolution by detritus (Disscalc,

Disscalc2) is calculated in Eq. A38. The constant for dissolution of calcium carbonate in zooplankton guts (Disscalc_guts) is listed

in Table A5. Gzoo
small and Gzoo2

small are grazing terms and explained in Section A4.2. The value of the calcite production ratio (ψ) is

given in Table A3.

A1.2.2 Total alkalinity (Alk)645

The balance of alkalinity is affected by primary production, remineralization of dissolved organic matter, dissolution of calcitic

detritus and dissolution of CaCO3 in zooplankton guts. Alkalinity increases when nitrogen is assimilated and when CaCO3 is

dissolved (Wolf-Gladrow et al., 2007). Simultaneously, it is reduced by calcification as well as remineralization of dissolved

organic nitrogen. The effect of phosphate assimilation and remineralization onto alkalinity is taken into account assuming a

constant N:P Redfield ratio (16:1).650
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SMS(Alk) = (1 +1/16) · VN
small ·PhyCsmall︸ ︷︷ ︸

N-assimilation, small phytoplankton

+ (1 +1/16) · VN
dia ·PhyCdia︸ ︷︷ ︸

N-assimilation, diatom

(A7)

− (1 +1/16) · ρDON · fT ·DON︸ ︷︷ ︸
Remineralization of DON

− 2 ·ψ ·Psmall ·PhyCsmall︸ ︷︷ ︸
Calcification

+ 2 · Disscalc ·DetCalc︸ ︷︷ ︸
Calcite dissolution, slow-sinking detritus

+ 2 ·Gzoo
small · qCaCO3 :N

small ·Disscalc_guts︸ ︷︷ ︸
CaCO3 dissolution in guts, small zoo

(A8)

+ 2 · Disscalc2 ·DetZ2Calc︸ ︷︷ ︸
Calcite dissolution, fast-sinking detritus

+ 2 ·Gzoo2
small · qCaCO3 :N

small ·Disscalc_guts︸ ︷︷ ︸
CaCO3 dissolution in guts, macrozoo

The state variables PhyCsmall, PhyCdia, DON, DetCalc, DetZ2Calc are listed in Table A1. The N-assimilation (VN
small and655

VN
dia) is calculated in Section A3.4. The remineralization rate constant (ρDON) is given in Table A8. The temperature depen-

dency (fT ) is calculated in Eq. A43. The value of the calcite production ratio (ψ) is given in Table A3. The photosynthesis term

(Psmall) is calculated in Eq. A46. The calcite dissolution by detritus (Disscalc, Disscalc2) is calculated in Eq. A38. Dissolution of

calcium carbonate in guts (Disscalc_guts) is listed in Table A5. Gzoo
small and Gzoo2

small are grazing terms and explained in Section A4.2.

A1.3 Phytoplankton660

A1.3.1 Nitrogen

The phytoplankton nitrogen pools increase through N-assimilation. The assimilation process is assumed to be proportional to

carbon biomass, with a carbon-specific uptake rate that depends on the C:N ratio of phytoplankton and the external DIN con-

centration (Geider et al., 1998). Excretion of biogenic nitrogen to semi-labile DON drains the pool. At high intracellular C : N

ratio, excretion is downregulated. Aggregation and grazing by the two zooplankton groups transfer nitrogen to the zooplankton665

and detritus pools.

SMS(PhyNsmall) = VN
small ·PhyCsmall︸ ︷︷ ︸

N-assimilation

(A9)

− ϵN
phy · fN : Cmax

lim, small ·PhyNsmall︸ ︷︷ ︸
DON excretion

− Agg ·PhyNsmall︸ ︷︷ ︸
Aggregation loss

− Gzoo
small︸ ︷︷ ︸

Grazing loss by small zoo

− Gzoo2
small︸ ︷︷ ︸

Grazing loss by macrozoo

(A10)

SMS(PhyNdia) = VN
dia ·PhyCdia︸ ︷︷ ︸
N-assimilation

(A11)

− ϵN
phy · fN : Cmax

lim, dia ·PhyNdia︸ ︷︷ ︸
DON excretion

− Agg ·PhyNdia︸ ︷︷ ︸
Aggregation loss

− Gzoo
dia︸︷︷︸

Grazing loss by small zoo

− Gzoo2
dia︸ ︷︷ ︸

Grazing loss by macrozoo

(A12)670

The state variables PhyCsmall, PhyNsmall, PhyCdia, and PhyNdia are listed in Table A1. The N-assimilation (VN
small and VN

dia) is

explained in Section A3.4. The constant excretion rate constant (ϵN
phy) is given in Table A8. When the C : N ratio of the cells

becomes too high, excretion of DON is downregulated by the limiter function (fN : Cmax
lim,small , f

N : Cmax
lim,dia ) that is described in Eq. A55.
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Phytoplankton aggregation (Agg) defines the transfer of nitrogen into the detritus pools which depends quadratically on detris

and phytoplankton concentrations (Eq. A52). Grazing loss terms (Gzoo
small, G

zoo2
small, G

zoo
dia and Gzoo2

dia ) are explained in Section A4.2.675

A1.3.2 Carbon

The carbon biomass of small phytoplankton and diatoms increases as a result of carbon assimilation during photosynthesis.

Loss terms include excretion of DOC, which is limited by the availability of proteins as in the nitrogen pool, respiration,

aggregation, and grazing.

SMS(PhyCsmall) = (Psmall− rsmall) ·PhyCsmall︸ ︷︷ ︸
Net photosynthesis

(A13)680

− Agg ·PhyCsmall︸ ︷︷ ︸
Aggregation loss

− ϵC
phy · fN : Cmax

lim, small ·PhyCsmall︸ ︷︷ ︸
Excretion of DOC

− qC : N
small ·Gzoo

small︸ ︷︷ ︸
Grazing loss by small zoo

− qC : N
small ·Gzoo2

small︸ ︷︷ ︸
Grazing loss by macrozoo

SMS(PhyCdia) = (Pdia− rdia) ·PhyCdia︸ ︷︷ ︸
Net photosynthesis

(A14)

− Agg ·PhyCdia︸ ︷︷ ︸
Aggregation loss

− ϵC
phy · fN : Cmax

lim, dia ·PhyCdia︸ ︷︷ ︸
Excretion of DOC

− qC : N
dia ·Gzoo

dia︸ ︷︷ ︸
Grazing loss by small zoo

− qC : N
dia ·Gzoo2

dia︸ ︷︷ ︸
Grazing loss by macrozoo

The state variables PhyCsmall and PhyCdia are listed in Table A1. The photosynthesis terms (Psmall and Pdia) are calculated

in Eq. A46. Rates of respiration by small phytoplankton (rsmall), diatoms (rdia) are explained in Section A3.2. The constant685

for DOC excretion rate of phytoplankton (ϵC
phy, Table A8) is downregulated by the limiter factor (fN : Cmax

lim,small , f
N : Cmax
lim,dia ) when

the N : C ratio becomes too high (Eq. A55). Phytoplankton aggregation (Agg) is calculated in Eq. A52. Grazing terms (Gzoo
small,

Gzoo2
small, G

zoo
dia and Gzoo2

dia ) are explained in Section A4.2. qC : N = PhyC/PhyN, is used to convert the grazing units from mmol N

to mmol C.

A1.3.3 CaCO3690

The formation of biogenic calcium carbonate in our model is limited to coccolithophores only, which are assumed to form a

constant fraction of the non-diatom phytoplankton. Formation of CaCO3 by heterotrophs, such as foraminifera or pteropods

is neglected. Biogenic CaCO3 produced by coccolithophores is transformed into detritus CaCO3 with all forms of organic

carbon loss, i.e. organic matter excretion, respiration, aggregation and grazing. Calcifiers are assumed to comprise a certain

fraction of the total small phytoplankton concentration, specified by the parameter ψ (Table A3), tying the calcite production695

of calcifiers to the growth of small phytoplankton.

SMS(PhyCalc) = ψ ·Psmall ·PhyCsmall︸ ︷︷ ︸
Calcification

− rsmall ·PhyCalc︸ ︷︷ ︸
Respiration

−Gzoo
small · qCaCO3 :N

small︸ ︷︷ ︸
Grazing loss, small zoo

− Gzoo2
small · qCaCO3 :N

small︸ ︷︷ ︸
Grazing loss, macrozoo

− ϵC
phy · fN : Cmax

lim, small ·PhyCalc
︸ ︷︷ ︸

Excretion loss

− Agg ·PhyCalc︸ ︷︷ ︸
Aggregation loss

(A15)
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The state variables PhyCsmall and PhyCalc are listed in Table A1. The value of the calcite production ratio (ψ) is given in

Table A3. The constant excretion rate (ϵC
phy, Table A8) is downregulated by the limiter factor fN : Cmax

lim, small (Eq. A55) when the

N : C ratio becomes too high. Photosynthesis (Psmall), respiration (rsmall) and the aggregation of phytoplankton (Agg) rates700

are calculated in Eqs. A46, A48 and A52, respectively. Grazing terms (Gzoo
small and Gzoo2

small) are explained in Section A4.2.

qCaCO3 :N
small = PhyCalc/PhyNsmall is used to convert the grazing units from mmol N to mmol CaCO3.

A1.3.4 Diatom silicon

The silica frustule of diatoms is built through Si-assimilation, which we assume to be carbon-specific, and regulated by cellular

quotas (see below). Any decrease in N-biomass through excretion, grazing or aggregation leads to a corresponding transfer of705

silica to the detritus silica pool.

SMS(PhySi) = VSi ·PhyCdia︸ ︷︷ ︸
Diatom Si-assimilation

− ϵN
phy · fN : Cmax

lim, dia ·PhySidia︸ ︷︷ ︸
Excretion to detritus

− Agg ·PhySidia︸ ︷︷ ︸
Aggregation loss

− Gzoo
dia · qSi : N

︸ ︷︷ ︸
Grazing loss, small zoo

− Gzoo2
dia · qSi : N

︸ ︷︷ ︸
Grazing loss, macrozoo

(A16)

The state variables PhyCdia and PhySidia are described in Table A1. Si-assimilation (VSi) and aggregation rates (Agg) are

calculated in Eqs. A51 and A52, respectively. The constant excretion rate (ϵN
phy, Table A8) is downregulated by the limiter710

factor fN : Cmax
lim, dia (Eq. A55) when the N : C ratio becomes too high. Grazing terms (Gzoo

dia andGzoo2
dia ) are explained in Section A4.2.

The intracellular ratio between diatom silicon and nitrate is defined as qSi : N = PhySidia/PhyNdia.

A1.3.5 Chlorophyll a

Chlorophyll a synthesis is structured as a function of irradiance and of N-assimilation, following Geider et al. (1998). Chloro-

phyll a is degraded at a light-dependent rate (See Álvarez et al. (2018)), and lost via aggregation and grazing. The grazing715

losses in terms of nitrogen biomass are converted to chlorophyll loss using the intracellular Chl :N ratio.

SMS(PhyChlsmall) = Schl
small ·PhyCsmall︸ ︷︷ ︸

Chlorophyll a synthesis

(A17)

− Gzoo
small · qChl : N

small︸ ︷︷ ︸
Grazing loss, small zoo

− Gzoo2
small · qChl : N

small︸ ︷︷ ︸
Grazing loss, macrozoo

− degchl
small ·PhyChlsmall︸ ︷︷ ︸

Degradation loss

−Agg ·PhyChlsmall︸ ︷︷ ︸
Aggregation loss

(A18)

SMS(PhyChldia) = Schl
dia ·PhyCdia︸ ︷︷ ︸

Chlorophyll a synthesis

(A19)

− Gzoo
dia · qChl : N

dia︸ ︷︷ ︸
Grazing loss, small zoo

− Gzoo2
dia · qChl : N

dia︸ ︷︷ ︸
Grazing loss, macrozoo

− degchl
dia ·PhyChldia︸ ︷︷ ︸

Degradation loss

− Agg ·PhyChldia︸ ︷︷ ︸
Aggregation loss

(A20)720

The state variables PhyCsmall, PhyCdia, PhyChlsmall and PhyChldia are listed in Table A1. The chlorophyll a synthesis (Schl
small,

Schl
dia) and the aggregation (Agg) terms are calculated in Eqs. A49 and A52, respectively. The degradation parameters (degchl

small,
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degchl
dia) are given in Table A8. Grazing terms (Gzoo

small, G
zoo2
small, G

zoo
dia , and Gzoo2

dia ) are explained in Section A4.2. The conversion

factor from mmol N to mg Chl a is defined as qChl : N = PhyChl/PhyN.

A1.4 Zooplankton725

A1.4.1 Nitrogen

Both zooplankton classes increase their nitrogen biomass via grazing on phytoplankton and detritus while mortality and excre-

tion of DON reduce it. Macrozooplankton further feeds on small zooplankton and releases nitrogen via fecal pellet production.

SMS(ZooN) = γzoo ·Gzoo
tot︸ ︷︷ ︸

Grazing

− Gzoo︸︷︷︸
Grazing loss, macrozoo

− mzoo ·ZooN2

︸ ︷︷ ︸
Mortality

− ϵN
zoo ·ZooN︸ ︷︷ ︸

Excretion of DON

(A21)

SMS(Zoo2N) = γzoo2 ·Gzoo2
tot︸ ︷︷ ︸

Grazing

− mzoo2 ·Zoo2N2

︸ ︷︷ ︸
Mortality

− ϵN
zoo2 ·Zoo2N︸ ︷︷ ︸

Excretion of DON

− fn ·Gzoo2
tot︸ ︷︷ ︸

Fecal pellet

(A22)730

The state variables ZooN and Zoo2N are listed in Table A1. Only a fraction of the grazed phytoplankton (γzoo, γzoo2, Table A3)

enters the zooplankton biomass. The rest is transferred to detritus due to sloppy feeding. The grazing terms (Gzoo
tot , Gzoo2

tot ) are

calculated in Section A4.2. The mortality parameter (mzoo, mzoo2) and fecal pellet production rate constant (fn) are listed in

Table A3. The DON excretion terms (ϵN
zoo, ϵN

zoo2) are given in Table A8.

A1.4.2 Carbon735

The zooplankton carbon biomass increases with carbon uptake via grazing and decreases through carbon losses through mor-

tality, respiration and carbon excretion to the semi-labile DOC pool. Macrozooplankton further gains carbon by grazing on

small zooplankton and loses it via fecal pellet production.

SMS(ZooC) = γzoo · (Gzoo
small · qC : N

small + Gzoo
dia · qC : N

dia )︸ ︷︷ ︸
Grazing on phytoplankton

+ γzoo · (Gzoo
det · qC : N

det + Gzoo
detZ2 · qC : N

detZ2)︸ ︷︷ ︸
Grazing on detritus

− Gzoo · qC : N
zoo︸ ︷︷ ︸

Grazing loss by macrozoo

(A23)

− mzoo ·ZooN2 · qC : N
zoo︸ ︷︷ ︸

Zooplankton mortality

− rzoo ·ZooC︸ ︷︷ ︸
Respiration loss

− ϵC
zoo ·ZooC︸ ︷︷ ︸

Excretion of DOC

(A24)740

SMS(Zoo2C) = γzoo2 · (Gzoo2
small · qC : N

small + Gzoo2
dia · qC : N

dia )︸ ︷︷ ︸
Grazing on phytoplankton

+ γzoo2 · (Gzoo2
det · qC : N

det + Gzoo2
detZ2 · qC : N

detZ2)︸ ︷︷ ︸
Grazing on detritus

+ γzoo2 · (Gzoo · qC : N
zoo )︸ ︷︷ ︸

Grazing on small zoo

(A25)

−mzoo2 ·Zoo2N2 · qC : N
zoo2︸ ︷︷ ︸

Zooplankton mortality

− rzoo2 ·Zoo2C︸ ︷︷ ︸
Respiration loss

− ϵC
zoo2 ·Zoo2C︸ ︷︷ ︸

Excretion of DOC

− fc ·Gcflux︸ ︷︷ ︸
Fecal pellet

(A26)

The state variables ZooN, ZooC, Zoo2N and Zoo2C are listed in Table A1. A fraction of the grazed phytoplankton (γzoo

and γzoo2, Table A3) is kept in the zooplankton biomass while the remainder is returned back to detritus pool as a conse-

quence of sloppy feeding. Grazing terms (Gzoo
small, G

zoo
dia , Gzoo

det , Gzoo
detZ2, Gzoo2

small, G
zoo2
dia , Gzoo2

det , Gzoo2
detZ2 and Gzoo) are calculated in745

Section A4.2. The respiration terms of zooplankton (rzoo and rzoo2) are calculated in Eqs. A60 and A61. Mortality parameters

(mzoo, mzoo2) are listed in Table A3. The DOC excretion terms (ϵC
zoo, ϵ

C
zoo2) are in Table A8. The grazing flux in terms of
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nitrogen biomass is converted to carbon biomass using the respective intracellular C:N ratios (qC : N
small, q

C : N
dia , qC : N

det , qC : N
detZ2, qC : N

zoo

and qC : N
zoo2 ) where, qC : N

small = PhyCsmall/PhyNsmall , q
C : N
dia = PhyCdia/PhyNdia, qC : N

det = DetC/DetN, qC : N
detZ2 = DetZ2C/DetZ2N,

qC : N
zoo = ZooC/ZooN and qC : N

zoo2 = Zoo2C/Zoo2N. Total grazed carbon biomass (Gcflux) and the fecal pellet production rate750

constant (fc, Table A3) together determine the fraction of carbon being lost to the large detritus carbon pool via fecal pellets.

A1.5 Detritus

A1.5.1 Nitrogen

Detrital nitrogen pool increases as a result of sloppy feeding and mortality. Sloppy feeding is outlined as a function of grazing

fluxes and grazing efficiency of macrozooplankton. In other words, the grazed phytoplankton partly goes to the macrozoo-755

plankton biomass depending on the grazing efficiency. The phytoplankton aggregation contributes only to slow-sinking detri-

tus. Fecal pellet production is defined only for macrozooplankton group. Detritus is degraded to DON based on temperature

and a remineralisation rate.

SMS(DetN) = (Gzoo
small +Gzoo

dia ) · (1− γzoo)︸ ︷︷ ︸
Sloppy feeding

+ mzoo ·ZooN2

︸ ︷︷ ︸
Zooplankton mortality

− γzoo · (Gzoo
det + Gzoo

detZ2)︸ ︷︷ ︸
Grazing loss, small zoo

+ Agg · (PhyNsmall + PhyNdia)︸ ︷︷ ︸
Phytoplankton aggregation

− ρDetN · fT ·DetN︸ ︷︷ ︸
Degradation to DON

(A27)760

SMS(DetZ2N) = (Gzoo2
small +Gzoo2

dia +Gzoo) · (1− γzoo2)︸ ︷︷ ︸
Sloppy feeding

− γzoo2 · (Gzoo2
det +Gzoo2

detZ2·)︸ ︷︷ ︸
Grazing loss, macrozoo

(A28)

+ mzoo2 ·Zoo2N2

︸ ︷︷ ︸
Mortality

+ fn ·Gtot︸ ︷︷ ︸
Fecal pellet

− ρDetN · fT ·DetZ2N︸ ︷︷ ︸
Degradation to DON

(A29)

The state variables PhyNsmall, PhyNdia, ZooN, DetN, Zoo2N and DetZ2N are listed in Table A1. The grazing efficiency (γzoo

and γzoo2), mortality (mzoo, mzoo2) and fecal pellet production rate constant (fn) are listed in Table A3. Grazing terms (Gzoo
small,

Gzoo
dia , Gzoo

det , Gzoo
detZ2, Gzoo2

small, G
zoo2
dia , Gzoo2

det , Gzoo2
detZ2 and Gzoo) are calculated in Section A4.2. The remineralisation rate constant of765

DON (ρDetN) is listed in Table A8. The temperature dependency fT is calculated in Eq. A43. The aggregation (Agg) term is

calculated in Eq. A52.

A1.5.2 Carbon

Detrital carbon sources are associated with sloppy feeding, aggregation of phytoplankton, mortality of small zooplankton and

fecal pellet production by macrozooplankton. Degradation of DetC and DetZ2C to DOC is the only loss term.770
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SMS(DetC) = (Gzoo
small · qC : N

small +Gzoo
dia · qC : N

dia ) · (1− γzoo)︸ ︷︷ ︸
Sloppy feeding

+ mzoo ·ZooN2 · qC : N
zoo︸ ︷︷ ︸

small zoo mortality

− γzoo · (Gzoo
det · qC : N

det + Gzoo
detZ2 · qC : N

detZ2)︸ ︷︷ ︸
Grazing loss by macro zoo

(A30)

+ Agg · (PhyCsmall + PhyCdia)︸ ︷︷ ︸
Phytoplankton aggregation

− ρDetC · fT ·DetC︸ ︷︷ ︸
Degradation to DOC

SMS(DetZ2C) = (Gzoo2
small · qC : N

small + Gzoo2
dia · qC : N

dia + Gzoo · qC : N
zoo ) · (1− γzoo2)︸ ︷︷ ︸

Sloppy feeding

− γzoo2 · (Gzoo2
det · qC : N

det + Gzoo2
detZ2 · qC : N

detZ2)︸ ︷︷ ︸
Grazing loss by macro zoo

(A31)

+ mzoo2 ·Zoo2N2 · qC : N
zoo2︸ ︷︷ ︸

Mortality

+ fc ·Gcflux︸ ︷︷ ︸
Fecal pellet

− ρDetC · fT ·DetZ2C︸ ︷︷ ︸
Degradation to DOC

(A32)

The state variables PhyCsmall, PhyCdia, ZooN, DetC, Zoo2N and DetZ2C are listed in Table A1. The grazing efficiency (γzoo775

and γzoo2) and mortality (mzoo mzoo2) parameters are listed in Table A3. Grazing terms (Gzoo
small, G

zoo
dia , Gzoo

det , Gzoo
detZ2, Gzoo2

small,

Gzoo2
dia , Gzoo2

det , Gzoo2
detZ2 and Gzoo) are calculated in Section A4.2. The remineralisation rate of DOC (ρDetC) is listed in Table A8.

Temperature dependency fT is calculated in Eq. A43. The aggregation (Agg) term is calculated in Eq. A52. Total grazed

carbon biomass (Gcflux) and the fecal pellet production rate constant (fc, Table A3) together determine the fraction of carbon

being lost to the large detritus carbon pool via fecal pellets. The quotas qC : N
small = PhyCsmall/PhyNsmall, q

C : N
dia = PhyCdia/PhyNdia,780

qC : N
zoo = ZooC/ZooN, qC : N

zoo2 = Zoo2C/Zoo2N, qC : N
det = DetC/DetN and qC : N

detZ2 = DetZ2C/DetZ2N are used to convert the units

from mmol N to mmol C.

A1.5.3 Silica

Biogenic detrital silica increases with excretion fluxes from diatoms to detritus, aggregation and grazing and decreases with

silica dissolution from DetSi and DetZ2Si.785

SMS(DetSi) = (ϵN
phy · fN : Cmax

lim, dia︸ ︷︷ ︸
Diatom excretion

+ Agg)︸ ︷︷ ︸
Aggregation

·DiaSi + Gzoo
dia · qSi : N

︸ ︷︷ ︸
Sloppy feeding

− ρT
Si ·DetSi︸ ︷︷ ︸

Remineralization to DSi

(A33)

SMS(DetZ2Si) =Gzoo2
dia · qSi : N

︸ ︷︷ ︸
Sloppy feeding

− ρT
Si ·DetZ2Si︸ ︷︷ ︸

Remineralization to DSi

(A34)

The state variables DiaSi, DetSi and DetZ2Si are listed in Table A1. The constant excretion rate (ϵN
phy, Table A8) is down-

regulated by the limiter factor fN : Cmax
lim, dia (Eq. A55) when the N : C ratio becomes too high. The remineralization rates (ρT

Si),

the aggregation (Agg) and the grazing on diatoms (Gzoo
dia , Gzoo2

dia ) are calculated in Eqs. A45, A52 and A65, respectively. The790

intracellular ratio between diatom silicon and carbon is defined as qSi : N = PhySidia/PhyNdia.

A1.5.4 CaCO3

The coccolithophore fraction of small phytoplankton loses biogenic CaCO3 to the detrital CaCO3 pool along with excretion,

aggregation, respiration and grazing. Dissolution of CaCO3 leads to an increase in DIC and alkalinity.
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SMS(DetCalc) = ϵphy
C · fN : Cmax

lim, small ·PhyCalc︸ ︷︷ ︸
Small phytoplankton, excretion

+ ( Agg︸︷︷︸
Aggregation

+ rsmall︸︷︷︸
Respiration

) ·PhyCalc + Gzoo
small · qCaCO3 :N

small︸ ︷︷ ︸
Grazing loss

(A35)795

− Gzoo
small · qCaCO3 :N

small ·Disscalc-guts︸ ︷︷ ︸
CaCO3 dissolution in guts

− Disscalc ·DetCalc︸ ︷︷ ︸
CaCO3 dissolution, slow-sinking detritus

SMS(DetZ2Calc) =Gzoo2
small · qCaCO3 :N

small︸ ︷︷ ︸
Grazing loss

(A36)

− Gzoo2
small · qCaCO3 :N

small ·Disscalc-guts︸ ︷︷ ︸
CaCO3 dissolution in guts

− Disscalc2 ·DetZ2Calc︸ ︷︷ ︸
CaCO3 dissolution, fast-sinking detritus

(A37)

The state variables PhyCalc, DetCalc and DetZ2Calc are listed in Table A1. The constant excretion rate (ϵC
phy, Table A8)

is downregulated by the limiter factor fN : Cmax
lim, small (Eq. A55) when the N : C ratio becomes too high. The respiration (rsmall),800

the aggregation (Agg) and the grazing on small pyhtoplankton (Gzoo
small and Gzoo2

small) are calculated in Eqs. A48, A52 and A64,

respectively. The ratio qCaCO3 :N
small = PhyCalc/PhyNsmall.

Calcite dissolution: As the detritus calcite sinks through the water column it is subject to dissolution. We follow Yamanaka

and Tajika (1996) assuming an exponential decrease of the CaCO3 flux with depth. As we also assume an increasing sinking

speed of small detritus with depth, following Kriest and Oschlies (2008), the dissolution rate is scaled with the sinking velocity.805

Disscalc = Disscalc_rate ·wdet Disscalc2 = Disscalc_rate (A38)

Disscalc and Disscalc2 are the dissolution rate constants for slow- and fast-sinking detritus classes (Table A5). The reference

dissolution rate (Disscalc_rate, Table A8) is based on a length scale of 3500 m and velocity of 20 m d−1. The sinking speed at

depth z (wdet, Table A5) is calculated as follows:

wdet = 0.0288 · z+w0 (A39)810

Here, z denotes the depth and w0 is the sinking speed at the ocean surface (Table A3). The dissolution rate for fast-sinking

detritus class (Disscalc2) is assumed to be constant throughout the water column and is set to the value of Disscalc_rate (Table A8).

A1.6 Dissolved oxygen (Oxy)

Oxy concentration increases with carbon fixation by primary producers. It decreases with respiration of phyto- and zooplank-

tons, remineralization of dissolved organic carbon. In addition, sea–air flux of O2 leads to an exchange of oxygen with the815

atmosphere, depending on the partial pressure difference of O2 between ocean and atmosphere. This exchange is treated sep-

arately as a boundary condition. The partial pressure of surface ocean O2 is computed using the mocsy-2.0 routines (Orr and

45

https://doi.org/10.5194/gmd-2023-2
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



Epitalon, 2015).

SMS(Oxy) = (Psmall− rsmall) ·PhyCsmall︸ ︷︷ ︸
Net production, small phytoplankton

+ (Pdia− rdia) ·PhyCdia︸ ︷︷ ︸
Net production, diatom

− ρDOC · fT ·DOC︸ ︷︷ ︸
Remineralization of DOC

− rzoo ·ZooC︸ ︷︷ ︸
Respiration, small zoo

− rzoo2 ·Zoo2C︸ ︷︷ ︸
Respiration, macrozoo

(A40)

The state variables PhyCsmall, PhyCdia, DOC, ZooC and Zoo2C are listed in Table A1. Respiration rate constants of small820

phytoplankton (rsmall), diatoms (rdia) and zooplankton groups (rzoo and rzoo2) are computed in Sections A3.2 and A4.1, respec-

tively. Photosynthesis terms (Psmall and Pdia) are calculated in Eq. A46. The remineralization rate constant ρDOC is listed in

Table A8 and the temperature dependency (fT ) is given in Eq. A43.

A1.7 Dissolved organic material

Dissolved organic matter in our model is a representation of the semi-labile fraction only, the refractory and labile fractions are825

not included.

A1.7.1 Dissolved organic nitrogen (DON)

DON is produced via nitrogen excretion by phytoplankton, zooplankton and by degradation of detrital nitrogen. DON is turned

into DIN by remineralization which is the only sink term.

SMS(DON) = ϵN
phy · fN : Cmax

lim, small ·PhyNsmall︸ ︷︷ ︸
Excretion, small phytoplankton

+ ϵN
dia · fN : Cmax

lim, dia ·PhyNdia︸ ︷︷ ︸
Excretion, diatom

(A41)830

+ ϵN
zoo ·ZooN︸ ︷︷ ︸

Excretion, small zoo

+ ϵN
zoo2 ·Zoo2N︸ ︷︷ ︸

Excretion, macrozoo

+ ρDetN · fT ·DetN︸ ︷︷ ︸
Detritus degradation, slow-sinking

+ ρDet2ZN · fT ·DetZ2N︸ ︷︷ ︸
Detritus degradation, fast sinking

− ρDON · fT ·DON︸ ︷︷ ︸
Remineralization

The state variables PhyNsmall, PhyNdia, ZooN, DetN, Zoo2N, DetZ2N and DON are listed in Table A1. The constant excretion

rate of nitrogen from phytoplankton and zooplankton classes (ϵN
phy, ϵN

dia, ϵN
zoo and ϵN

zoo2), the degradation rate of detritus (ρDetN,

ρDetZ2N) and the remineralization rate of DON (ρDON) are listed in Table A8. The constant excretion rate of phytoplankton

is downregulated by the limiter function (fN : Cmax
lim, small, f

N : Cmax
lim, dia , Eq. A55) when the N : C ratio becomes too high. The temperature835

dependency fT is calculated in Eq. A43.

A1.7.2 Dissolved organic carbon (DOC)

DOC is produced via carbon excretion by phytoplankton and zooplankton and by degradation of detrital carbon. DOC is

turned into DIC by remineralization which is the only sink term.

SMS(DOC) = ϵC
phy · fN : Cmax

lim, small ·PhyCsmall︸ ︷︷ ︸
Excretion, small phytoplankton

+ ϵC
dia · fN : Cmax

lim, dia ·PhyCdia︸ ︷︷ ︸
Excretion, diatom

(A42)840

+ ϵC
zoo ·ZooC︸ ︷︷ ︸

Excretion, small zoo

+ ϵC
zoo2 ·Zoo2C︸ ︷︷ ︸

Excretion, macrozoo

+ ρDetC · fT ·DetC︸ ︷︷ ︸
Detritus degradation, slow sinking

+ ρDet2C · fT ·Det2C︸ ︷︷ ︸
Detritus degradation, fast sinking

− ρDOC · fT ·DOC︸ ︷︷ ︸
Remineralization
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The state variables PhyCsmall, PhyCdia, ZooC, DetC, Zoo2C, Det2C and DOC are listed in Table A1. The constant excretion

rate of nitrogen from phytoplankton and zooplankton classes (ϵC
phy, ϵC

dia, ϵC
zoo and ϵC

zoo2), the degradation rate of detritus (ρDetC,

ρDet2C) and the remineralization rate of DOC (ρDOC) are listed in Table A8. The constant excretion rate of phytoplankton

is downregulated by the limiter factor (fN : Cmax
lim, small, f

N : Cmax
lim, dia , Eq. A55) when the N : C ratio becomes too high. Temperature845

dependency fT is calculated in Eq. A43.

A2 Temperature dependence of rates

Arrhenius function: Most metabolic processes are faster at higher temperatures. This temperature dependence is defined

relative to a reference temperature.

fT = exp
(
−4500 ·

(
1
T
− 1
Tref

))
(A43)850

T and Tref are the local and reference temperature in K, respectively (Table A6).

Macrozooplankton grazing: Macrozooplankton grazing is temperature dependent. A dimensionless exponential tempera-

ture function (Butzin and Pörtner, 2016) is used for the parameterization of the temperature dependency (fTzoo2, Table A5).

Specifically, the following parameterization provides an optimum curve with a maximum at 0.5◦C as described in Karakuş

et al. (2021).855

fTzoo2 =
exp

(
Qa

Tr
− Qa

T

)

1 + exp
(

Qh

Th
− Qh

T

) (A44)

Tr is the intrinsic optimum temperature for development and Th is the temperature above which inhibitive processes dominate.

Qa and Qh are the temperatures for the uninhibited and inhibited reaction kinetics, respectively (Table A9). T is the local

temperature in K.

Silicon dissolution: The temperature dependent dissolution rate of silicon (ρT
Si, Table A5) is calculated following Maerz et al.860

(2020), but with a minimum dissolution rate.

ρT
Si = max

(
0.023 · 2.6T−10

10 ,ρSi

)
(A45)

T is the local temperature in ◦C. The minimum dissolution rate (ρSi) is listed in Table A8.

A3 Phytoplankton processes

Phytoplankton growth equations are based on Geider et al. (1998) with small modifications for diatom silicon uptake, following865

Hohn (2009).
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A3.1 Photosynthesis

The rate of the carbon specific (C-specific from now on) photosynthesis for phytoplankton (Psmall, Pdia) is parameterized as

follows:

Psmall = P small
max ·

(
1.0− exp

(−αsmall · qChl : C ·PAR
P small

max

))
, Pdia = P dia

max ·
(

1.0− exp
(−αdia · qChl : C ·PAR

P dia
max

))
(A46)870

The light harvesting efficiency (αsmall, αdia) per chlorophyll is listed in Table A7. PAR is the photosynthetically available radia-

tion (Table A5). The intracellular Chl to C ratio (qChl : C) is defined as PhyChl/PhyC and varies as a result of photoacclimation.

The apparent maximum photosynthetic rate (P small
max , P dia

max) is defined below.

P small
max = µmax

Csmall ·min
(
fFe

lim, small,f
N : Cmin
lim, small

)
· fT , P dia

max = µmax
C,dia ·min

(
fFe

lim, dia,f
N : Cmin
lim, dia ,fSi : Cmin

lim, dia

)
· fT (A47)

The value of µmax
Csmall,µ

max
C,dia is listed in Table A7. The limitation terms (fN : Cmin

lim,small, f
N : Cmin
lim,dia , fSi : Cmin

lim,dia , fFe
lim,small and fFe

lim,dia) are875

presented in Section A3.6 and the temperature dependency (fT ) is calculated in Eq. A43.

A3.2 Respiration

The phytoplankton respiration rate (rsmall and rdia, Table A5) is calculated as a base respiration plus a second term proportional

to N-assimilation, as a measure of biosynthesis:

rsmall = ressmall · fN : Cmax
lim,small︸ ︷︷ ︸

Maintenance

+ζ ·VN
small︸ ︷︷ ︸

N-assim

, rdia = resdia · fN : Cmax
lim,dia︸ ︷︷ ︸

Maintenance

+ζ ·VN
dia︸ ︷︷ ︸

N-assim

(A48)880

The values for the maintenance respiration rate (ressmall, resdia) and the cost of biosynthesis (ζ) are listed in Table A7. Si-

assimilation is assumed to be inexpensive, so it is not included as additional cost in the respiration (Hohn, 2009). The limiter

function (fN : Cmax
lim,small and fN : Cmax

lim,dia ) is described in Eq. A55 and the N-assimilation rate (VN
small, VN

dia) is calculated in Eq. A50.

A3.3 Chlorophyll a synthesis

The chlorophyll synthesis rate (Schl
small, Schl

dia, Table A5) is proportional to N-assimilation, with the proportionality factor varying885

as a function of the C-specific photosynthesis rate, relative to the maximum possible photosynthetic rate at the current Chl:C

ratio of the cell, which depends on photosynthetically available radiation and light harvesting efficiency.

Schl
small = VN

small · qChl : N
max,small ·min

(
1,

Psmall

αsmall · qChl : C ·PAR

)
, Schl

dia = VN
dia · qChl : N

max,dia ·min
(

1,
Pdia

αdia · qChl : C ·PAR

)
(A49)

The N-assimilation (VN
small, V

N
dia) is computed in Eq. A50. The conversion factor of the maximum Chl : N ratio (qChl : N

max,small, q
Chl : N
max,dia)

and the light harvesting efficiency (αsmall, αdia) are listed in Table A7. The C-specific photosynthesis (Psmall, Pdia) is given in890

Eq. A46. PAR is the photosynthetically available radiation (Table A5) and the intracellular Chl to C ratio (qChl : C) is defined as

PhyChl/PhyC.
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A3.4 N- and Si-assimilation

Nitrogen: The C-specific N-assimilation rate is a function of the maximum rate of C-specific photosynthesis and DIN concen-

tration. N-assimilation depends on the DIN concentration in seawater via Michaelis–Menten kinetics. The N : C uptake ratio895

and a function of the intracellular quota between N and C further, which downregulates uptake under high N:C ratio further

modify the N-assimilation.

VN
small = Vsmall

cm ·P small
max ·σsmall

N : C · fN : Cmax
lim,small ·

DIN
KN

small + DIN
, VN

dia = Vdia
cm ·P dia

max ·σdia
N : C · fN : Cmax

lim,dia · DIN
KN

dia + DIN
(A50)

Vsmall
cm ,Vdia

cm, σsmall
N : C , σdia

N : C, KN
small and KN

dia are listed in Table A7. The maximum rate of photosynthesis (P small
max and P dia

max) is given

in Eqs. A47. fN : Cmax
lim,small and fN : Cmax

lim,dia are described in Eq. A55. DIN corresponds to insitu concentration.900

Silicon: The building of a silica frustule of diatoms requires silicate uptake. The C-specific Si-assimilation rate is a function

of a factor for C-specific N-uptake, a rate constant of C-specific photosynthesis, maximum uptake ratio N : C for small phy-

toplankton and DSi concentration. The maximum Si : C ratio, temperature, and the scaling factor for the maximum nitrogen

uptake further regulate the N-assimilation.

VSi = Vdia
cm ·µmax

C,dia · fT ·σSi : C · fSi : Cmax
lim · fN : Cmax

lim,dia · DSi
KSi + DSi

(A51)905

The scaling factor for the N-uptake (Vdia
cm), the maximum Rate constant of C-specific photosynthesis (µmax

C,dia), the uptake ratio

of the maximum Si : C (σSi : C) and half-saturation constant for silicate uptake (KSi) are listed in Table A7. The temperature

dependency (fT ) is computed in Eq. A43. The limitation by the intracellular ratios N : C and Si : C (fN : Cmax
lim, dia ,fSi : Cmax

lim ) are

described in Eqs. A55 and A56, respectively. DSi corresponds to in situ concentration.

A3.5 Aggregation loss910

The aggregation rate (Agg, Table A5) is proportional to the concentration of small phytoplankton, diatoms and detritus. The

effect of increased stickiness of diatoms under nutrient limitation (Waite et al., 1992; Aumont et al., 2015) is taken into account

by multiplying the diatom biomass with (1-qdia
lim). When the nutrient limitation is high (i.e, low qdia

lim), the aggregation rate

increases in the model.

Agg = ϕphy ·
(
PhyNsmall + (1− qdia

lim) ·PhyNdia

)
+ϕdet · (DetN +DetZ2N) (A52)915

qdia
lim = min

(
fFe

lim, dia,f
N : Cmin
lim, dia ,fSi : Cmin

lim, dia

)
(A53)

The state variables PhyNsmall, PhyNdia, DetN and DetZ2N are described in Table A1. The values of the maximum aggregation

loss parameters (ϕphy and ϕdet) are listed in Table A3. The limitation terms (fN : Cmin
lim,dia , fSi : Cmin

lim,dia and fFe
lim,dia) are presented below

(Section A3.6).920
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A3.6 Nutrient limitation

The metabolic processes such as C-specific photosynthesis, respiration rate and excretion losses are treated as functions of the

intracellular nitrogen status (i.e., N : C ratios q) following Geider et al. (1998). Intracellular ratios between nutrients and carbon

limit uptake of nitrogen and silicon which is modeled via a non-linear function as in Schourup-Kristensen et al. (2014).

flim(θ,q1, q2) = 1− exp(−θ(|∆q| −∆q)2) (A54)925

Here, ∆q = q1−q2 is the difference between the current intracellular nutrient:C quota and a prescribed maximum or minimum

quota. The dimensionless constant θ controls the limitation.

A3.6.1 fN : Cmax
lim

The limiter fN : Cmax
lim downregulates the metabolic processes such as nitrogen and Si-assimilation, excretion and maintenance

respiration of phytoplankton when the intracellular nitrogen quota (qN : C) becomes too high. fN : Cmax
lim is one when the current930

qN : C < 0.151 (i.e., Redfield ratio, 16N:106C) and zero for qN : C > 0.2 (i.e., 21.2N:106C). It determines the end of the uptake

of nitrogen and silicon in assimilation processes as well as the cease of carbon and nitrogen release during the respiration and

excretion of DON/DOC and CaCO3 processes of phytoplankton (See Section A1.5.4).

fN : Cmax
lim,small = flim(θNmax, q

N : C
small, q

N : Cmax
small ) , fN : Cmax

lim,dia = flim(θNmax, q
N : C
dia , qN : Cmax

dia ) (A55)

The limitation function for quota regulation is calculated with Eq. A54. qN : C
small and qN : C

dia are the current intracellular nitrogen935

quota for small phytoplankton and diatoms, respectively. Dimensionless constants θNmax, qN : Cmax
small and qN : Cmax

dia are listed in

Table A6.

A3.6.2 fSi : Cmax
lim

The limiter fSi : Cmax
lim downregulates the Si-assimilation of diatoms when the intracellular silicon quota (Si : C) becomes too

high. fSi : Cmax
lim is one when the current qN : C < 0.76 and zero for qN : C > 0.8. It determines the end of the uptake of silicon in940

assimilation processes. The limiter function is described in Eq. A54 and is calculated as follows:

fSi : Cmax
lim = flim(θSi

max, q
Si : C, qSi : Cmax) (A56)

Dimensionless constants θSi
max and qSi : Cmax are listed in Table A6.

A3.6.3 fSi : Cmin
lim

Carbon fixation and aggregation loss in diatoms are further downregulated by a factor (fSi : Cmin
lim,dia , see Eq. A54) when the intra-945

cellular silicon quota (qSi : C) approaches a minimum value (qSi : Cmin), mimicking the arrest of cellular division at low cellular

Si (Claquin et al., 2002). fSi : Cmin
lim,dia is zero when the current qSi : C < 0.04 and one for qSi : C > 0.08.

fSi : Cmin
lim,dia = flim(θSi

min, q
Si : Cmin, qSi : C) (A57)

Dimensionless constants θSi
min and qSi : Cmin are listed in Table A6.
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A3.6.4 fFe
lim950

Growth-limitation by iron is modeled with Michaelis–Menten kinetics, implicitly assuming that all dissolved iron is ultimately

bioavailable.

fFe
lim,small =

DFe
KFe

small + DFe
, , fFe

lim,dia =
DFe

KFe
dia + DFe

(A58)

Stat variable DFe is listed in Table A1. The half saturation constants (KFe
small and KFe

dia) are given in Table A6.

A3.6.5 fN : Cmin
lim955

In addition to iron limitation, photosynthesis is limited by nitrogen in small phytoplankton and diatoms using the Eq. A54.

Nitrogen limitation (fN : Cmin
lim,small, f

N : Cmin
lim,dia ) is described as a function of the intracellular nitrogen quota (qN : C

small, q
N : C
dia ) with growth

ending at a minimum quota (qN : Cmin
small , qN : Cmin

dia ).

fN : Cmin
lim,small = flim(θNmin, q

N : Cmin
small , qN : C

small) , fN : Cmin
lim,dia = flim(θNmin, q

N : Cmin
dia , qN : C

dia ) (A59)

Dimensionless constants θNmin, qN : Cmin
small and qN : Cmin

dia are listed in Table A6.960

A4 Zooplankton processes

A4.1 Zooplankton respiration

Small zooplankton: When the intracellular C : N ratio in zooplankton exceeds the Redfield ratio, a temperature dependent

respiration (rzoo, Table A5) is assumed to drive it back with a time scale τ .

rzoo =
qC : N

zoo − qC : N
standard

τ
· fT (A60)965

The time scale for respiration (τ ) is listed in Table A7. The temperature dependence (fT ) is calculated in Eq. (A43). The ratios

are defined as qC : N
zoo = ZooC/ZooN and qC : N

Standard = 106C/16N.

Macrozooplankton: The daily respiration rate constant of macrozooplankton (rzoo2, Table A5) is modeled following Karakuş

et al. (2021).

rzoo2 =Rs · (1 +Rf +Ra) (A61)970

The standard respiration rate (Rs) is listed in Table A3. The feeding activity factor (Rf , Table A5) is defined as the ratio of

grazing flux to carbon biomass of macrozooplankton which increases linearly from 0 to 1 for ratio between 0% and 10% and is

1 otherwise. The respiration activity factor (Ra, Table A5) defines reduced macrozooplankton respiration rate in austral/boreal

winter with the value of −0.5.
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A4.2 Grazing975

In REcoM3, there are two zooplankton classes, small zooplankton (< 2cm) and macrozooplankton (2-20 cm). The small

zooplankton group grazes on small phytoplankton and diatoms as well as on fast- and slow-sinking detrital particles. While

macrozooplankton grazes on similarly both phytoplankton classes and detritus groups, it further grazes on small zooplankton.

Total grazing of both zooplankton groups is based on the Holling type III ingestion function as follows:

Gzoo
tot = ξzoo ·

(
∑

i pi ·Ni)
2

σzoo + (
∑

i pi ·Ni)
2 · fT ·ZooN (A62)980

Gzoo
tot (Gzoo2

tot ) is the total grazing flux which is calculated for small (macro) zooplankton. ZooN (Zoo2N) is listed in Table A1.

The maximum grazing rate (ξzoo, ξzoo2) and the half saturation constants (σzoo, σzoo2) are listed in Table A10. The temperature

dependency terms (fT , fTzoo2) are given in Eqs. A43 and A44. In the model, relative grazing preferences are implemented

following Fasham et al. (1990). Variable relative grazing preferences (pi) are calculated using the nominal preferences for

small phytoplankton, diatoms, slow-/fast-sinking detritus and small zooplankton (Table A10) as follows:985

pi =
p′i ·Ni∑
i p
′
i ·Ni

(A63)

. Here, summation i is done over each food source to calculate the relative proportion of the food. Total grazing is used to

calculate the grazing of zooplankton groups on individual food source, i.e., small phytoplankton (i=1, PhyNsmall), diatoms

(i=2, PhyNdia), both detritus classes (i=3, DetN and i=4, DetZ2N) and (i=5, ZooN) in the case of macrozooplankton as the ratio

of each food source to total food source (Gsmall, Gdia, Gdet, GdetZ2 and Gzoo).990

Gzoo
small =Gzoo

tot ·
psmall ·PhyNsmall∑

i pi ·Ni
, Gzoo2

small =Gzoo2
tot · psmall ·PhyNsmall∑

i pi ·Ni
(A64)

Gzoo
dia =Gzoo

tot ·
pdia ·PhyNdia∑

i pi ·Ni
, Gzoo2

dia =Gzoo2
tot · pdia ·PhyNdia∑

i pi ·Ni
(A65)

Gzoo
det =Gzoo

tot ·
pdet ·DetN∑

i pi ·Ni
, Gzoo2

det =Gzoo2
tot · pdet ·DetN∑

i pi ·Ni
(A66)995

Gzoo
detZ2 =Gzoo

tot ·
pdetZ2 ·DetZ2N∑

i pi ·Ni
, Gzoo2

detZ2 =Gzoo2
tot · pdetZ2 ·DetZ2N∑

i pi ·Ni
(A67)

Gzoo =Gzoo2
tot · pZooN ·ZooN∑

i pi ·Ni
(A68)

where Gzoo is associated with macroozooplankton grazing on small zooplankton. PhyNsmall, PhyNdia, ZooN, DetN and

DetZ2N are listed in Table A1.1000
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A5 Bottom boundary fluxes

The model contains a benthic layer at the sea floor. Within this benthic layer, the total amounts of organic carbon, organic

nitrogen, biogenic silica and CaCO3 are modeled.

Loss to benthos: When the slow- and fast-sinking detritus reach the ocean bottom, they continue to sink into the benthic layer

with the speed wdet (Eq. A39) and wdetZ2 = 200 m d−1, respectively. This results in a detrital flux (BenFDetN, BenFDetZ2N,1005

BenFDetC, BenFDetZ2C, BenFDetSi, BenFDetZ2Si, BenFDetCalc and BenFDetZ2Calc, Table A11) from the water column to the

benthos.

BenFDetN =−wdet ·DetN (A69)

BenFDetC =−wdet ·DetC (A70)

BenFDetSi =−wdet ·DetSi (A71)1010

BenFDetCalc =−wdet ·DetCalc (A72)

BenFDetZ2N =−wdetZ2 ·DetZ2N (A73)

BenFDetZ2C =−wdetZ2 ·DetZ2C (A74)

BenFDetZ2Si =−wdetZ2 ·DetZ2Si (A75)

BenFDetZ2Calc =−wdetZ2 ·DetZ2Calc (A76)1015

These fluxes increase the total amount of the different benthic state variables. The state variables DetN, DetC, DetSi, DetCalc,

DetZ2N, DetZ2C, DetZ2Si and DetZ2Calc are described in Table A1.

Input from benthos: The lowermost ocean layer located next to the benthic layer receives remineralized inorganic matter

back from the benthos. These fluxes, at the same time reduce the amount of the benthic variables. In addition, a sediment flux

of Fe from the sediment is calculated from the nitrogen flux, but assuming a Fe:N ratio that is higher than in biomass. This1020

parameterization models that the release of iron from the sediment is driven by redox processes, which are ultimately tied to

their remineralization of organic matter.

BenFDIN = ρN
ben ·BenthosN (A77)

BenFDSi = ρSi
ben ·BenthosSi (A78)

BenFDIC = ρC
ben ·BenthosC + Disscalc ·BenthosCalc + Disscalc2 ·BenthosCalc2 (A79)1025

BenFAlk = (1 +1/16) · ρN
ben ·BenthosN + 2 ·Disscalc ·BenthosCalc (A80)

BenFDIN, BenFDSi, BenFDIC and BenFAlk (Table A11) denote the fluxes of DIN, DSi, DIC and Alk returned into the bottom

layer of the ocean. Constant remineralization rates (ρN
ben, ρSi

ben and ρC
ben) are listed in Table A8. The calcite dissolution rates

Disscalc and Disscalc2 are calculated in Eq. (A38). BenthosN, BenthosSi, BenthosC and BenthosCalc denote the vertically

integrated benthos concentration of dissolved nitrogen, silicate, carbon and calcium carbonate, respectively (Table A2). The1030
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alkalinity of the lowermost ocean layer located next to the benthic layer is changed by the remineralization of DIN, dissoved

inorganic phosphate converted from DIN with Redfield ratio) and dissolution of calcite from the benthos.

Table A1. List of oceanic state variables in REcoM3.

Variable Description Unit

DIN Dissolved Inorganic Nitrogen [mmolN m−3]

DSi Dissolved Inorganic Silicon [mmolN m−3]

DFe Dissolved Inorganic Iron [µmolFem−3]

DIC Dissolved Inorganic Carbon [mmolC m−3]

Alk Alkalinity [mmolC m−3]

PhyNsmall Intracellular nitrogen concentration in small phytoplankton [mmolN m−3]

PhyCsmall Intracellular carbon concentration in small phytoplankton [mmolC m−3]

PhyCalc Intracellular calcite concentration in small phytoplankton [mmolCaCO3 m−3]

PhyChlsmall Intracellular chl a concentration in small phytoplankton [mg Chlm−3]

PhyNdia Intracellular nitrogen concentration in diatoms [mmolN m−3]

PhyCdia Intracellular carbon concentration in diatoms [mmolC m−3]

PhySidia Intracellular silicon concentration in diatoms [mmol Si m−3]

PhyChldia Intracellular chl a concentration in diatoms [mg Chlm−3]

ZooN small zooplankton nitrogen concentration [mmolN m−3]

Zoo2N Macrozooplankton nitrogen concentration [mmolN m−3]

ZooC small zooplankton carbon concentration [mmolC m−3]

Zoo2C Macrozooplankton carbon concentration [mmolC m−3]

DetN Slow-sinking detritus nitrogen concentration [mmolN m−3]

DetZ2N Fast-sinking detritus nitrogen concentration [mmolN m−3]

DetC Slow-sinking detritus carbon concentration [mmolC m−3]

DetZ2C Fast-sinking detritus carbon concentration [mmolC m−3]

DetCalc Slow-sinking detritus calcite concentration [mmolCaCO3 m−3]

DetZ2Calc Fast-sinking detritus calcite concentration [mmolCaCO3 m−3]

DetSi Slow-sinking detritus silicon concentration [mmol Si m−3]

DetZ2Si Fast-sinking detritus silicon concentration [mmol Si m−3]

DON Extracellular dissolved organic nitrogen [mmolN m−3]

DOC Extracellular dissolved organic carbon [mmolC m−3]

Oxy Dissolved oxygen concentration [mmolO m−3]
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Table A2. List of benthic state variables in REcoM3.

Variable Description Unit

BenthosN Vertically integrated N concentration [mmolNm−2]

BenthosC Vertically integrated C concentration [mmolCm−2]

BenthosSi Vertically integrated Si concentration [mmol Sim−2]

BenthosCalc Vertically integrated calcite concentration [mmolCaCO3 m−2]

Table A3. Parameters for sources-minus-sinks equations.

Parameter Value Description Unit

ψ 0.02 Calcite production ratio [dimensionless]

γzoo 0.4 Fraction of grazing flux to small zooplankton pool [dimensionless]

γzoo2 0.8 Fraction of grazing flux to macrozooplankton pool [dimensionless]

mzoo 0.05 Small zooplankton mortality rate [m3 mmolN−1 d−1]

mzoo2 0.003 Macrozooplankton mortality rate [m3 mmolN−1 d−1]

ϕphy 0.015 Max aggregation loss parameter for phytoplankton N [m3 mmolN−1 d−1]

ϕdet 0.165 Max aggregation loss parameter for detritus N [m3 mmolN−1 d−1]

w0 20.0 Detritus sinking speed at surface [md−1]

fn 0.104 N fecal pellet production rate constant [m3 mmolN−1 d−1]

fc 0.236 C fecal pellet production rate constant [m3 mmolC−1 d−1]

Table A4. Parameters for iron calculations.

Parameter Value Description Unit

qFe : N 0.033 Intracellular Fe : N ratio [µmolFemmolN−1]

KFeL 100.0 Iron stability constant [m−3 µmol]

LT 1.0 Total ligand concentration [µmolm−3]

κFe 0.07 Scavenging rate of iron [m3 mmolC−1 d−1]

qFe : N 0.033 Intracellular Fe : N ratio [µmolFemmolN−1]
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Table A5. Model variables.

Variable Description Unit

Agg Aggregation rate constant [d−1]

Disscalc The dissolution rate constant for slow-sinking detritus [d−1]

Disscalc2 The dissolution rate constant for fast-sinking detritus [d−1]

Disscalc_guts Dissolution of calcium carbonate in guts constant [d−1]

wdet Sinking velocity of detritus [md−1]

fT Temperature dependence of rates [dimensionless]

fTzoo2 Temperature dependence of macrozooplankton grazing rates [dimensionless]

Gtot Total zooplankton grazing rate [mmolNm−3 d−1]

Gsmall Small phytoplankton specific zooplankton grazing rate [mmolNm−3 d−1]

Gdia Diatom specific zooplankton grazing rate [mmolNm−3 d−1]

PAR Photosynthetically Available Radiation [W m−2]

Psmall,Pdia C-specific actual rate constant of photosynthesis [d−1]

Pmax C-specific light saturated rate constant of photosynthesis [d−1]

rsmall Small phytoplankton respiration rate constant [d−1]

rdia Diatoms respiration rate constant [d−1]

rzoo small zooplankton respiration rate constant [d−1]

rzoo2 Macrozooplankton respiration rate constant [d−1]

Rf Macrozooplankton feeding activity factor [d−1]

Ra Macrozooplankton respiration activity factor [d−1]

Schl
small,S

chl
dia Rate of chlorophyll a synthesis [mg ChlmmolC−1 d−1]

T Local temperature [K]

VN
small,V

N
dia N-assimilation [mmolN mmol C−1 d−1]

ρT
Si Temperature dependent remineralization rate constant of Si [d−1]

VSi Si-assimilation [mmol Si mmol C−1 d−1]
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Table A6. Parameters for limitation functions.

Parameter Value Description Unit

KFe
small 0.04 Half saturation constant for small phytoplankton Fe uptake [µmolFem−3]

KFe
dia 0.12 Half saturation constant for diatom Fe uptake [µmolFem−3]

qN : Cmin
small 0.04 Minimum intracellular N : C ratio for small phytoplankton [mmolNmmol C−1]

qN : Cmin
dia 0.04 Minimum intracellular N : C ratio for diatoms [mmolNmmol C−1]

qN : Cmax
small 0.2 Maximum intracellular N : C ratio for small phytoplankton [mmolNmmol C−1]

qN : Cmax
dia 0.2 Maximum intracellular N : C ratio for diatoms [mmolNmmol C−1]

qSi : Cmin 0.04 Minimum intracellular Si : C ratio for diatoms [mmol Simmol C−1]

qSi : Cmax 0.8 Maximum intracellular Si : C ratio for diatoms [mmol Simmol C−1]

θNmin 50 Minimum limiter regulater for N [mmolCmmol N−1]

θNmax 1000 Maximum limiter regulater for N [mmolCmmol N−1]

θSi
min 1000 Minimum limiter regulater for Si [mmolCmmol N−1]

θSi
max 1000 Maximum limiter regulater for Si [mmolCmmol N−1]

Tref 288.15 Reference temperature for Arrhenius function [K]

Table A7. Parameters for phytoplankton processes.

Parameter Value Description Unit

αsmall 0.14 Light harvesting efficiency for small phytoplankton [mmol C m2 (mg Chl W d)−1]

αdia 0.19 Light harvesting efficiency for diatoms [mmol C m2 (mg Chl W d)−1]

µmax
C,small 3.0 Rate constant of C-specific photosynthesis [d−1]

µmax
C,dia 3.5 Rate constant of C-specific photosynthesis [d−1]

ressmall 0.01 Maintenance respiration rate constant [d−1]

resdia 0.01 Maintenance respiration rate constant [d−1]

ζ 2.33 Cost of biosynthesis of N [mmol C mmol N−1]

qChl : N
max,small 3.15 Maximum Chl:N ratio for phytoplankton [mg Chlmmol N−1]

qChl : N
max,dia 4.2 Maximum Chl:N ratio for phytoplankton [mg Chlmmol N−1]

KN
small 0.55 Half saturation constant for small phytoplankton N uptake [mmol N m−3]

KN
dia 1.00 Half saturation constant for diatom N uptake [mmol N m−3]

Vsmall
cm 0.7 scaling factor for C-specific N-uptake for small phytoplankton [dimensionless]

Vdia
cm 0.7 scaling factor for C-specific N-uptake for diatoms [dimensionless]

σsmall
N : C 0.2 Maximum uptake ratio N : C for small phytoplankton [mmol N mmol C−1]

σdia
N : C 0.2 Maximum uptake ratio N : C for diatoms [mmol N mmol C−1]

KSi 4.00 Half saturation constant for diatom Si uptake [mmol Si m−3]

σSi : C 0.2 Maximum uptake ratio Si : C [mmol Si mmol C−1]
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Table A8. Degradation parameters for sources-minus-sinks equations.

Parameter Value Description Unit

ϵN
phy 0.05 Small phytoplankton excretion constant of organic N [d−1]

ϵN
dia 0.05 Diatoms excretion constant of organic N [d−1]

ϵC
phy 0.1 Small phytoplankton excretion constant of organic C [d−1]

ϵC
dia 0.1 Diatoms excretion constant of organic C [d−1]

ϵN
zoo 0.15 small zooplankton excretion constant of organic N [d−1]

ϵN
zoo2 0.02 Macrozooplankton excretion constant of organic N [d−1]

ϵC
zoo 0.15 small zooplankton excretion constant of organic C [d−1]

ϵC
zoo2 0.02 Macrozooplankton excretion constant of organic C [d−1]

ρN
ben 0.005 Remineralization rate constant for benthos N [d−1]

ρSi
ben 0.005 Remineralization rate constant for benthos Si [d−1]

ρC
ben 0.005 Remineralization rate constant for benthos C [d−1]

ρDON 0.11 Remineralization constant of DON [d−1]

ρDOC 0.1 Remineralization constant of DOC [d−1]

ρDetN 0.165 Degradation constant of DetN [d−1]

ρDetZ2N 0.165 Degradation constant of DetZ2N [d−1]

ρDetC 0.15 Degradation constant of DetC [d−1]

ρDetZ2C 0.15 Degradation constant of DetZ2C [d−1]

degchl
small 0.2 Small phytoplankton chlorophyll a degradation rate constant [d−1]

degchl
dia 0.2 Diatom chlorophyll a degradation rate constant [d−1]

Disscalc_rate 0.005714 Dissolution of calcium carbonate constant [d−1]

Table A9. Parameters for macrozooplankton grazing.

Parameter Value Description Unit

Qa 28145 Temperatures for the uninhibited reaction kinetics [◦K]

Qh 105234 Temperatures for the inhibited reaction kinetics [◦K]

Tr 272.5 Intrinsic optimum temperature [◦K]

Th 274.5 Temperature above which inhibitive processes dominate [◦K]
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Table A10. Parameters for zooplankton processes.

Parameter Value Description Unit

ξzoo 2.4 Maximum grazing rate constant, small zooplankton [d−1]

ξzoo2 0.1 Maximum grazing rate constant, macrozooplankton [d−1]

σzoo 0.35 Half saturation constant, small zooplankton [(mmolNm−3)2]

σzoo2 0.0144 Half saturation constant, macrozooplankton [(mmolNm−3)2]

τ 0.01 Time scale constant for zooplankton respiration [d−1]

Rs 0.0107 Standard respiration rate constant [d−1]

small zooplankton

p′small 1.0 Initial grazing preference for small phytoplankton [dimensionless]

p′dia 0.5 Initial grazing preference for diatoms [dimensionless]

p′det 0.5 Initial grazing preference for slow-sinking detritus [dimensionless]

p′detZ2 0.5 Initial grazing preference for fast-sinking detritus [dimensionless]

Macrozooplankton

p′small 0.5 Initial grazing preference for small phytoplankton [dimensionless]

p′dia 1.0 Initial grazing preference for diatoms [dimensionless]

p′zoo 0.8 Initial grazing preference for zooplankton [dimensionless]

p′det 0.5 Initial grazing preference for slow-sinking detritus [dimensionless]

p′detZ2 0.5 Initial grazing preference for fast-sinking detritus [dimensionless]

Table A11. Benthos variables.

Variable Description Unit

BenFAlk Flux of alkalinity from benthos to bottom water [mmolm−2 d−1]

BenFDIC Flux of C from benthos to bottom water [mmolC m−2 d−1]

BenFDIN Flux of N from benthos to bottom water [mmolN m−2 d−1]

BenFDSi Flux of Si from benthos to bottom water [mmol Si m−2 d−1]

BenFDetCalc Flux of slow-sinking detritus calcite from the water to the benthos [mmolCaCO3 m−2 d−1]

BenFDetC Flux of slow-sinking detritus C from the water to the benthos [mmolC m−2 d−1]

BenFDetN Flux of slow-sinking detritus N from the water to the benthos [mmolNm−2 d−1]

BenFDetSi Flux of slow-sinking detritus Si from the water to the benthos [mmol Sim−2 d−1]

BenFDetZ2Calc Flux of fast-sinking detritus calcite from the water to the benthos [mmolCaCO3 m−2 d−1]

BenFDetZ2C Flux of fast-sinking detritus C from the water to the benthos [mmolCm−2 d−1]

BenFDetZ2N Flux of fast-sinking detritus N from the water to the benthos [mmolNm−2 d−1]

BenFDetZ2Si Flux of fast-sinking detritus Si from the water to the benthos [mmol Sim−2 d−1]
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