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Abstract. Silicate weathering, which is of great importance in regulating the global carbon cycle, has

been found to be affected by complicated factors including climate, tectonics, vegetation, and etc.

However, the exact transfer function between these factors and the silicate weathering rate is still

unclear, leading to large model-data discrepancies in the CO2 consumption associated with silicate20
weathering. Here we propose a simple parameterization for the influence of vegetation cover on

erosion rate to improve the model-data comparison based on a state-of-the-art silicate weathering

model. We found out that the current weathering model tends to overestimate the silicate weathering

fluxes in the tropical region, which can hardly be explained by either the uncertainties in climate and

geomorphological conditions or the optimization of model parameters. We show that such an25
overestimation of the tropical weathering rate can be rectified significantly by parameterizing the

shielding effect of vegetation cover on soil erosion using the leaf area index (LAI), the high values of

which are coincident with the distribution of leached soils. We propose that the heavy vegetation in the

tropical region likely slows down the erosion rate, much more so than thought before, through reducing

extreme stream flow in response to precipitation. The silicate weathering model thus revised gives a30
smaller global weathering flux which is arguably more consistent with the observed value and the

recently reconstructed global outgassing, both of which are subject to uncertainties. The model is also

easily applicable to the deep-time Earth to investigate the influence of land plants on the global

biogeochemical cycle.
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1. Introduction

On geological timescales, the Earth’s climate is primarily controlled by the atmospheric CO2

concentration (pCO2); the evolution of the Sun – its brightness increases with time – also plays an

important role on the timescale of a hundred million years (100 Myr), but in a temporally smooth way

(Li et al., 2023). However, how the sources and sinks of CO2 varied in the Earth’s history remain40
elusive (Zhang et al., 2022b; Mills et al., 2021), and large uncertainties exist even in the estimate of

their present-day magnitude (Hilton and West, 2020). Due to the small size of the ocean-atmosphere

carbon reservoir (~40,000 Pg; (Lee et al., 2019; Berner, 2004; Canadell et al., 2023)), a small

imbalance between the carbon sources and sinks can lead to large variations in pCO2 in a relatively

short time (Berner and Kothavala, 2001; Berner, 1991; Walker et al., 1981; Berner, 2004). Therefore,45
accurately determining the exact magnitude of carbon sources and sinks is crucial for comprehensively

understanding the mechanisms behind the Earth's climate variations.

One of the essential ways of determining the carbon sink is through numerical modeling,

especially for that in the deep past. Numerical models not only provide the magnitude of carbon sink,

but also allow us to study its sensitivity to various factors such as continental evolution and climate50
change. Our goal here is to improve the model calculation of the primary sink of CO2, that is, the

silicate weathering, with a focus on its present-day values for which the spatial distribution is relatively

well constructed.

The rate of silicate weathering is affected by the composition and physical erosion of surface rocks,

pCO2, surface temperature, and terrestrial runoff (Gaillardet et al., 1999; Raymo and Ruddiman, 1992;55
Brantley et al., 2008; Maher, 2010; Maher and Chamberlain, 2014; Dessert et al., 2003; Ibarra et al.,

2019; West et al., 2005). Seawater isotopes such as Sr, Os, Li, and Be, etc. are often used to estimate

the global silicate weathering flux in the past (Caves Rugenstein et al., 2019; Dellinger et al., 2015;

Kalderon-Asael et al., 2021; Li et al., 2019). However, it is difficult to constrain the sensitivity of

silicate weathering to certain factors (e.g. temperature) from such measurements, especially in local60
regions, due to both the uncertainties in their interpretation (Li et al., 2019; Dellinger et al., 2015) and

their global nature. Simulating the weathering reactions in the lab can provide useful information for

the factors that control the weathering rate but lab conditions are generally much simpler than those in

the natural field (Gruber et al., 2014; Calabrese et al., 2022; White and Brantley, 2003). Many other

works focused on compiling the dissolved river loading to estimate the silicate weathering fluxes and65
rates at different regions for the present day (Bluth and Kump, 1994; Gibbs et al., 1999; Amiotte Suchet

et al., 2003; Suchet and Probst, 2002). Despite the various uncertainties in these methods, they provide

a basis for the development of numerical models.

Early zero-dimensional models (e.g. the Geologic Carbon Cycle (GEOCARB) family; Walker et

al., 1981; Berner et al., 1983; 1991) and subsequent two-dimensional numerical models such as the70
Gibbs and Kump Weathering Model (GKWM) in 1994 (Bluth and Kump, 1994), the Global Erosion

Model for CO2 fluxes (GEM-CO2) in 1995 (Suchet and Probst, 2002; Amiotte Suchet et al., 2003), and

a model by Hartmann in 2009 (Hartmann et al., 2009; Hartmann and Moosdorf, 2012; Hartmann et al.,

2014), provided important understanding of the long-term carbon cycle. Studies using these models

(Amiotte Suchet et al., 2003; Gibbs et al., 1999; Zhang et al., 2021) have identified the lithology and75
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runoff as the strongest predictors of chemical weathering rates. However, basin or catchment-scale

compilation of weathering data (Gaillardet et al., 1999) indicates that the spatial variability of the

weathering rate had to be explained through a combined effect of runoff, temperature, and erosion rate.

West et al. (2005) further showed that there were two-end-member schemes of the weathering –

transport-limited and kinetically-limited regimes.80
Built on West’s work, Gabet and Mudd (2009) constructed a theoretical model (referred to as

GM09 model hereafter) that encompassed the continuum of these two weathering regimes for the first

time. This model is probably the most sophisticated one to date in terms of global silicate weathering

calculation and has been used in many works subsequently for both the present day and the past (West,

2012; Goddéris et al., 2017; Maffre et al., 2018; Park et al., 2020). However, the model contains a few85
unknown parameters including cation abundance in the bedrock, dissolution rate constant and its

dependence on runoff and reaction time, regolith production rate, of which only rough ranges are given.

Most of the previous works (Maffre et al., 2018; Park et al., 2020) using this model estimated these

parameters through some fitting approach with the help of catchment-scale observations (Gaillardet et

al., 1999).90
The global total silicate weathering flux (Fw) of the present day given by Park et al. (2020)

(referred to as Park20 hereafter) in terms of carbon is ~4.5 1012 mol/yr, which was thought to be

consistent with the global outgassing rate estimated by Gerlach (2011). However, a few lines of

evidence indicate that this flux may be overestimated. 1) the Fw estimated from the present-day

observations is ~ 2.5×1012 mol/yr (1.59×1012–2.75×1012 mol/yr) (Gaillardet et al., 1999; Moon et al.,95

2014); 2) the global outgassing rate was re-estimated to be ~2–3.3×1012 mol/yr by Müller et al. (2022);

3) the silicate weathering fluxes for individual river basins within the tropical region from the Park20

model were overall overestimated compared to the observations (Fig. 1b), which led to an overestimate

of Fw (Fig. 1c). This overestimation over the tropical region by the Park20 model has also been argued

to exist based on the observed 187Os/188Os (Caves Rugenstein et al., 2021).100
Overestimation of the carbon sink by 100% will lead to a dramatic decrease in pCO2 and extreme

icehouse climate in a few million years when the outgassing is fixed (Berner and Caldeira, 1997;

D'antonio et al., 2019) and thus should be dealt with properly. Probably more important reasons maybe

1) the overestimation is not random among different sites but systematic; the weathering fluxes over

tropical river basins are much more likely overestimated than underestimated, whether in the original105
values (Fig. 1b) or in the logarithmic values (Fig. 1e); 2) the climate sensitivity of the silicate

weathering, i.e., the ability of silicate weathering to stabilize climate, may be misestimated due to this

systematic error.

The lower-than-expected silicate weathering rate over the tropical region has been noticed by

Stallard as early as 1981 (Stallard and Edmond, 1981; Stallard, 1985; Stallard and Edmond, 1983).110
Godderis et al. (2008) and Hartmann et al. (2014) also found that considering only the effects of

temperature and runoff would lead to a significant overestimation of weathering in the tropical region.

They proposed the effect of soil shielding as a solution, that is, the occurrence of leached soil in

equatorial regions hinders deeper weathering. They then assumed a global soil shielding effect in

regions with leached soil and improved their model performance. However, the soil shielding effect has115
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already been considered in the GM09 model to some extent where the physical erosion was

parameterized. Therefore, the problem remains in this model and our main goal in this paper is to find a

simple solution to the problem and test whether it affects the sensitivity of global silicate weathering to

climate change.

120

The difference between the model calculated and observed silicate weathering fluxes for 81 large rivers (more

details can be found in section 2.2.e) over the world. The upper and lower panels show model-obs and

log10(model)-log10(obs), respectively. The left, middle and right panels show rivers in the mid- to high latitudes (if

more than half its river basin is located at or beyond 30° latitude), low latitudes (within 30° latitude) and over the125
whole globe, respectively. The model results were calculated using the GM09 model but with model parameters in

Park20. The global total weathering flux is 4.51012 mol/yr. The surface slope and all climate forcings are from

Park20, in which the runoff used is the one denoted as "from Yves" in Park20 (more details at section 2.2.a). A

similar systematic upward bias in the tropical region appeared when the parameters as given in Maffre et al. (2022)

were used (Fig. S1).130
Specifically, we will first test whether the historical climate data constructed by different institutes

have any significant impact on the calculated silicate weathering rate using the GM09 model in the

tropical region. Then, the influence of the magnitude of seasonal cycle on physical weathering is tested

next. It is then found that reducing physical erosion rates where leached soil is present works best in

removing the systematic bias in the tropical region. In the end, we find a simple parameterization135
scheme related to vegetation that can attain a similar effect as that of leached soil but is much more

applicable to weathering calculation for other periods of the Earth's history.

The rest of the paper is organized as follows. In section 2, the GM09 model is briefly described,

and the field observations used to validate the model and climate data used to calculate the weathering
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fluxes are also described. In section 3, the results of various sensitivity tests and the parameterization140
for vegetation effect are presented. The shortcomings as well as the consequences of the model revision

are then discussed in section 4, and a summary is provided in section 5.

2. Model and data

2.1 Theoretical model for silicate weathering

a) The weathering profile and weathering flux145

Figure 2 Schematic diagram of the theoretical model of bedrock weathering and the simultaneous

production of soil/regolith based on GM09. In stage 1, the unweathered bedrock is moving vertically at a speed U

due to tectonic movement, with weathering and erosion just to occur at the surface. In stage 2, soil is produced (Pr)

at the surface of the bedrock and eroded (E) at the soil top, with silicate weathering occurring mostly within the150
soil. h represents the soil thickness, and ℎ� and ℎ� are the height of the soil and bedrock surface relative to the

reference plane, respectively (note that ℎ� is nonzero in State 2 but is not marked for the sake of esthetics). The

part enclosed by dashed lines is eroded away. All variables evolve with time at this stage. In stage 3, a steady state

is reached under continuous weathering such that the soil thickness and the weathering flux do not change with

time anymore. The weathered material within the soil is carried away by water runoff into the oceans, with the155
weathering flux denoted as W.

For the convenience of the latter discussion, the model GM09 as presented in detail in Park20 and

Maffre et al. (2022) is recapped here. The model includes an explicit simulation of a regolith layer,

which extends from the soil surface to the unweathered bedrock (Fig. 2). The layer can be millimeters

to tens of meters thick depending on the environment, and is determined by160

�ℎ
��

= �ℎ�

��
+ �ℎ�

��
= �� − � + � − � = �� − � (1 )

Where h is the regolith thickness, Pr is the soil production rate and E is the erosion rate. The weathering
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rate J at depth z is proportional to the concentration of cations (e.g. Ca2+ and Mg2+) denoted as x, and

also depends on the temperature (T), runoff (q), and the exposure time (  ) that the sample has

experienced. The influence of T and q are generally considered using the Arrhenius equation and a165
linear or power-law relation (White and Blum, 1995; Dessert et al., 2003), respectively. When an

exponential dependence of weathering rate on runoff q is employed as in Park20, the weathering rate J

is written as

�(�) = � ∙ (1 − �−��∙�) ∙ �− ��
� ∙ 1

�− 1
�0 ∙ �� ∙ �(�) (2 )

where K is the dissolution constant, kw is the runoff sensitivity of dissolution rate, Ea is the apparent170

activation energy at T0 for dissolution, R is the gas constant, and  is an empirical constant.

It should be noted that the global total silicate weathering flux throughout this work pertains

specifically to the weathering flux of Ca- and Mg- silicates. While Na- and K- silicates also participate

in weathering, these are not traditionally regarded as carbon sinks on geological timescales (Berner et

al., 1983) due to their inability to form carbonate minerals. However, the residence times of Na+ and K+175
in the ocean are ~80 Myr and ~10 Myr (Lécuyer, 2016; Emerson and Hedges, 2008; Olson et al., 2022;

Berner and Berner, 2012; Hu et al., 2020), respectively. This long residence time means that the

weathering of Na- and K- silicates could have an impact on the atmospheric CO2 on million-year

timescale. Moreover, Na+ and K+, when released into the soil through weathering reactions, may

displace Ca2+ and Mg2+ through cation exchange with sediments or oceanic crust (France-Lanord and180
Derry, 1997), leading to carbonate deposition and carbon sinking indirectly. However, currently we are

unable to quantify these aspects due to the intricacies of the Na and K cycles. Thus, we focus solely on

the Ca2+ and Mg2+ silicate weathering flux in the current study.

The concentration of cations itself changes with time according to,

��
��

= � ∙ ��
��

− � ∙ (1 − �−��∙�) ∙ �−��
� ∙(1

�− 1
�0

)
∙ �� ∙ � ( 3 )185

In most cases, we do not need to track the evolution of surface topography and it is as accurate, when

calculating weathering flux, as just set the reference plane to be at the regolith-bedrock interface. In

that case, ℎ� ≡ 0 and ℎ� ≡ ℎ, and the uplifting speed in Eq. (3) can be replaced with Pr. The weathering

profiles are often assumed to have reached a steady state, that is, the soil production rate equals to

erosion rate (Phillips, 2010). This assumption is appropriate if the lifetime of a weathering profile is190
much shorter than a few million years. The lifetime of a weathering profile may be estimated by using

its typical thickness and the surface erosion rate. The global total erosion is ~20 Gt/yr (Milliman and

Farnsworth, 2011), which gives a global mean erosion rate of ~133 ton/km2/yr. If we use a relatively

low value, say 60 ton/km2/yr (equivalent to 210-5 m/yr), a typical weathering profile of 10 m thick will

require half a million years to completely renew. Thus, a weathering profile is near steady state if the195
environment changes slowly over a few million years. Such an assumption is not ideal but is necessary

to make in order to study the long-term (hundreds of millions of years) evolution of silicate weathering

at a reasonable cost.

Under such an assumption, neither the soil production rate Pr nor the cation concentration x
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changes with time (i.e., ��
��

= 0) as long as the tectonic setting and climate have not changed, and the200

exposure time  is simply z/Pr. Eq. (3) then becomes

�� ∙ ��
��

− � ∙ (1 − �−��∙�) ∙ �−��
� ∙ 1

�− 1
�0 ∙ �

��

�
∙ � = 0 ( 4 )

The total weathering flux at the grid point is just the integration of J(z) through the regolith,

� = 0
ℎ �(�)��� = 0

ℎ � ∙ (1 − �−��∙�) ∙ �−��
� ∙ 1

�− 1
�0 ∙ �

��

�
∙ �� �� ( 5 )

There are still two undetermined variables in the formula above, namely h and Pr. The regolith205
thickness h can be calculated by assuming the balance between soil production rate Pr and the surface

erosion rate E. Next, we will describe how Pr and E are parameterized.

b) Soil production rate

Studies showed that the soil production rate could be controlled by temperature, water content, and

so on (Heimsath et al., 1997; Heimsath et al., 2009; Dixon et al., 2009; Whipple et al., 2012; Carretier210
et al., 2014). Overall, soil production rate has been found to decline exponentially with increasing

depth of the regolith (h) due to the decrease in water percolation or biogenic disturbance (Dietrich et al.,

1995; Heimsath et al., 1997; Heimsath et al., 1999; Riebe et al., 2004; Heimsath et al., 2009; Heimsath

and Korup, 2012; Burke et al., 2007; Small et al., 1999). However, it has also been suggested that there

is an optimum regolith thickness, soil production also slows down when the regolith is too thin under215
certain environments (Anderson, 2002; Strudley et al., 2006). The soil production rate has thus been

described by the so-called 'humped' law,

�� = ��� ∙ � ∙ �−��
�

1
�− 1

�0 ∙ (�− ℎ
�0 − �1∙ �− ℎ

�1) (6 )

where the second exponential term in the brackets is to ensure that the soil production rate decreases

when h is too small. Here we neglect this effect by setting k1 to 0, the same as in Park20. In Eq (6), krp220

is the regolith production constant to be determined by fitting the observations, �0 is the attenuation

depth and is set to 2.73 m, also the same as those in Park20.

c) Erosion rate

The current estimation of the erosion rate is mainly from the suspended river loads (Milliman and

Farnsworth, 2011) or in situ cosmogenic nuclides in river sediments (Wittmann et al., 2011; Wittmann225
et al., 2015; Wittmann et al., 2020; Blanckenburg et al., 2012; Dannhaus et al., 2017; Larsen et al.,

2014). Supported by observations, modeling studies of erosion rates at a global scale have flourished

and several parameterization schemes are now available. For example, the model BQART, derived

from a global database of 488 rivers, can estimate the erosion flux for the entire river basin with the

knowledge of water discharge, drainage area, basin relief, average temperature, and anthropogenic230
influence (Syvitski and Milliman, 2007).

The river incision at the catchment scale is simulated using the classical empirical law—the stream

power incision law (Davy and Crave, 2000; Howard, 1994) which has been widely used (Adams et al.,

2020; Gasparini et al., 2007; Harel et al., 2016; Lague, 2014; Quye-Sawyer et al., 2020; Royden and
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Taylor Perron, 2013),235

� = �� ∙ � ∙ �� ∙ �� (7)

where �� is the erodibility constant which is calibrated by setting the global total physical denudation

flux to be 20 Gt/yr and set to 0.0030713 m1-m/yr1-m in Park20, s is the surface slope. The exponents m

and n are set to values 0.5 and 1, respectively. A new parameter B is introduced herein to match the

observed individual erosional fluxes in some of the tests performed herein, as will be explained in240
detail in section 2.2.e. The BQART model is similar to Eq. (7) except that a temperature dependence is

added (Syvitski and Milliman, 2007). This model was tested here but results will not be shown because

no improvement was achieved compared to the stream law model above.

Note that both the BQART and stream law models are not prepared for grid-scale erosion rate but

catchment scale. More explicit ways of representing the denudation are available (e.g., Carretier et al.,245
2018), which involve many detailed processes and hydrographic features. Such a method is not

practical here since our purpose is to construct a model applicable to paleoclimate conditions for which

limited information can be obtained.

d) The final solution for the weathering flux

The regolith thickness h in Eq. (5) can be calculated by equating the erosion rate E and soil250
production rate Pr under the steady state assumption,

ℎ = ��
−1(�) (8)

Since h, Pr and E are independent of z, the integration in Eq. (5) can be solved to get

� = � ∙ �|�=0 − �|�=0 ∙ �
−�∙ 1−�−��∙� ∙�

−��
� ∙ 1

�− 1
�0

�+1 ∙ ℎ
�

�+1

(9)

where �|�=0 is the concentration of relevant cations in the fresh rock and is dependent on the lithology.255
The second term in the large brackets of Eq. (9) is actually the concentration of elements at the surface

of the regolith layer (i.e., z=h), and will be represented by �� in what follows.

Five parameters (Table S1) in this equation are unknown. Field measurements or laboratory

experiments have provided reference ranges for some parameters (Rudnick and Gao, 2003; Heimsath et

al., 1997; White and Brantley, 2003). Based on these reference ranges, previous studies estimated260
optimal values of these parameters by fitting the calculated weathering fluxes with the observed ones at

various river catchments (Maffre et al., 2018; Maffre et al., 2022; Park et al., 2020). We will use this

theoretical model as a foundation and try to improve the model-data comparison by adding possible

missing processes. The parameters in Eq. (9) are re-estimated when necessary.

2.2 Data265

a) Climate data for the present day

The climate fields required in the model presented above are surface temperature and river runoff.

To investigate the influence of these data on the comparison between the calculated and observed



9

weathering fluxes, climate data from various sources are considered. The first one is the monthly 2m

temperature and runoff for 1950 to 2021 obtained from ERA5 (Muñoz Sabater, 2019). ERA5 is a270

re-analysis dataset obtained using a global climate model constrained by various observations

from weather stations, ships, and satellites etc. The dataset is grided with a spatial resolution of

0.1°0.1°. Since Park20 has done elaborate work on testing parameters, we also used the temperature

and runoff in their test. Their temperature was derived from CRU TS v.4.03 (Harris et al., 2014;

denoted as T_CRU), while two runoff datasets were used, one was from UNH/GRDC Composite275
Runoff Fields V1.0 (Fekete et al., 2002; denoted as R_Park), the other was from Yves as described in

the runoff file provided by the data repository supplied along with Park20 (denoted as R_Yves).

However, because the R_Park data is different from the runoff that we downloaded from UNH/GRDC

Composite Runoff Fields V1.0 (http://www.grdc.sr.unh.edu), this latter dataset was also tested and

denoted as R_UNH herein. Other than these two datasets, an observation-based global gridded runoff280

dataset GRUN from 1902 to 2014 (Ghiggi et al., 2019) with a resolution of 0.5°0.5° was also used.

To account for the influence of global warming and human activities, we conducted tests using

temperature and runoff averaged over three different periods. For temperature, the three time periods

are 1950-1979, 1950-1997, and 1950-2021, denoted as T_ERA1, T_ERA2, and T_ERA3, respectively.

For runoff, the three time periods are the same as those for the temperature for the ERA dataset, but are285
1902-1950, 1902-1996, and 1902-2014 for the GRUN dataset and denoted as R_GRUN1, R_GRUN2,

and R_GRUN3, respectively. The distribution of temperature and runoff in different datasets and

different time periods are shown in Fig. S2 and S3.

b) Climate data for the last glacial maximum (LGM) and future

To estimate the sensitivity of global silicate weathering (i.e. Fw) to climate, data for both cold and290
warm climates are needed. For cold climates, the LGM was chosen and the data from Zhang et al.

(2022a) were used, denoted as T_LGM and R_LGM. For the warm climate, the abrupt quadruple-CO2

experiment carried out using CESM2 (Danabasoglu, 2019) was used and data were downloaded from

the CMIP6 data website (https://pcmdi.llnl.gov/CMIP6/), denoted as T_4CO2 and R_4CO2 respectively.

c) Surface topography295

A key variable for calculating the erosion rate is the surface slope s. Global topography data from

Scotese and Wright (2018) were used to calculate s, according to the formula (Maffre et al., 2018),

� = ( �ℎ
��

)2 + ( �ℎ
��

)2

( 1 0 )

The slope data from Park20 was also tested, whose topography field was from the Shuttle Radar300
Topography Mission (Farr et al., 2007). We denote the surface slope calculated from Scotese and

Wright (2018) and from Park20 as s1 and s2, respectively (Fig. S4).

d) Lithology

The spatial distribution of lithologies was obtained from the Global Lithologic Map (GliM)

https://pcmdi.llnl.gov/CMIP6/
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(Hartmann and Moosdorf, 2012). The original dataset includes 16 types of rock and we grouped them305
into 6 categories, the same as done in Park20 (see their Fig. S1 and our Fig. S5). The concentrations of

Ca and Mg cations in each type of rock can be estimated through the EarthChem library

(www.earthchem.org/portal). In addition, rocks such as sedimentary and metamorphic rocks, whose

characteristics are greatly dependent on protoliths. They may cause large uncertainty in the calculated

silicate weathering flux, so Park20 treated the concentrations of these two types of rocks as fitting310
parameters in the model. This is also how it is done here.

e) Catchment measurements of weathering and erosional fluxes

For model validation, concentrations of cations such as Ca2+ and Mg2+ in the dissolved loading of

river discharge from global catchments were collected from the literature. The weathering fluxes

integrated over the corresponding river basins can be inferred from these catchment data. Cations in315
rivers have various origins such as atmospheric input, carbonate weathering, silicate weathering, and so

on (Moon et al., 2014). Since almost only Ca2+ and Mg2+ from silicate weathering can be considered as

a sink of atmospheric CO2 on geological timescale, the elements from different sources have to be

distinguished. Two standard methods have been widely used to differentiate silicate and non-silicate

chemical sources. The forward method often uses the pre-assigned compositions for each element,320
which essentially relies on the knowledge of bedrock and environmental characteristics of the study

area (Meybeck, 1987; Edmond et al., 1995; Galy and France-Lanord, 1999). In general, this approach

is more easily applicable to small watersheds or watersheds with monolithic lithology than to large and

complex watersheds. The inverse method starts from a priori ranges of elemental concentration ratios

and determines the best a posteriori ratios based on the mass balance equation. This approach is useful325
when complete information on chemical compositions within the watershed is not available, such as in

some large catchments (Gaillardet et al., 1999; Moon et al., 2014).

Since the silicate weathering model is used mostly for the geological past, where detailed

information on surface topography, climate, and lithology is not available, the spatial resolution of the

model cannot be too high, usually around 0.5°0.5° or coarser. To ensure a comparable performance of330

the model for the past to present day, the spatial resolution used herein is 0.5°0.5°. At such coarse

resolution, accurate identification of river routes is not possible and data compiled for relatively large

river basins are more reliable for model validation. Two such datasets are available (Gaillardet et al.,

1999; Moon et al., 2014) and that complied by Gaillardet for the 51 large river basins are the focus of

our analysis (Table S2 for values and Fig. S6a for the definition of basins). Park20 removed the335
Brahmaputra watershed because it overlaps with the Ganges watershed. They also removed the Don

watershed in their parameter exploration. Here we employed the modern river direction files contained

within the Community Earth System Model (CESM) to refine the geographical delineation of rives,

ensuring that the Brahmaputra watershed was distinguished from the Ganges watershed. We also kept

the Don watershed. As will be shown later, including the Brahmaputra and Don watersheds has little340
effect on the results.

Park20 also incorporated data from HYBAM, which consists of 32 small watersheds in the

Amazon region (Moquet et al., 2011; Moquet et al., 2016; Moquet et al., 2018). The average
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weathering flux from the HYBAM Amazon basin data is approximately 0.07 mol/m2/yr, while the

average weathering flux from the Gaillardet et al. (1999) for the Amazon region is 0.02 mol/m2/yr. Due345
to this significant mismatch between the datasets, we used both the Gaillardet et al. (1999) data

(denoted as Gaillardet) and the combination of Gaillardet and HYBAM data (denoted as

Gaillardet+HYBAM) to validate the model.

The modeled erosion rates can also be validated to some extent by the observed suspended river

loading, the so-called Total Suspended Sediment (TSS). Different from the dissolved cations in the350
water, a significant portion of the suspended loading may have been deposited before they reached the

catchment. Therefore, the suspended loading measured at the catchment may not represent the erosion

rate over the river basin well. Nevertheless, we collected the river loading measurements from four

sources (Table S3; Milliman and Syvitski, 1991; Milliman and Farnsworth, 2011; Milliman et al., 1995),

and obtained the loading for each of the 51 large rivers mentioned above. Multiple measurements may355
be available at one river catchment; we prefer the older value in order to minimize the influence of

human activities (see details from Table S3).

Mean denudation rates are also available from cosmogenic nuclide analysis in sediment, like

in-situ cosmogenic 26Al and 10Be. In general, this represents a longer-term average erosion rate,

typically on the scale of millions of years, unlike TSS which represents the erosion over a short time360
period (~years). As a result, the denudation rates obtained through cosmogenic nuclide analysis may

exclude the anthropogenic influence. Wittmann et al. (2020) have compiled global denudation rates

for >50 large rivers over a range of climatic and tectonic regimes in this way, but only 18 of the rivers

overlap with our data. The final loading thus obtained is shown in Table S3. Fig. 3 shows that the

model-calculated erosion rates (Eq. (7) with B = 1) deviate significantly from both TSS and365
isotope-derived erosion rates. Therefore, in some of the tests with the original Park20 model, the

model-calculated erosion rates were scaled by tunning B such that the erosion of each basin was

identical to the observed one. Note that in these tests, B is a constant within each basin, but the erosion

rate at each grid point varies within the basin. Moreover, if neither TSS nor the cosmogenic nuclide

data is available for a river basin, B is set to 1 for this basin.370

Figure 3 The comparison between model calculated and observed erosional fluxes for individual river

basins. The Park20 model is used with the forcing data R_Yves, and s1 (defined in section 2.2). Different colors

represent the regions where the basins are located, and the sizes represent the area of the basins. In (a), the

observed erosion rates are from TSS data (the last column in Table. S3) and the observed erosion rates in (b) are375
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from cosmogenic nuclide analysis, from which data are available for only 18 rivers (the penultimate column in

Table. S3).

f) Vegetation

The primary vegetation data used herein are the areal fraction of different vegetation types and

their associated leaf area index (LAI) provided by NCAR (Fig. S6c-d), which are derived by380
integrating observed land information (Lawrence and Chase, 2007). To test the performance of

simulated vegetation, we also downloaded the pre-industrial vegetation data simulated by the

LPJ-GUESS dynamic vegetation model and the HadCM3 climate model (Allen et al., 2020). In the

4×CO2 experiment, the vegetation changed with climate and the data was downloaded from the CMIP6

homepage, while the vegetation was assumed to be the same as in the present day except where the385
land was covered by ice sheets in the LGM experiment by Zhang et al. (2022a).

g) Leached soil

The global soil distribution data are obtained from the Harmonized World Soil Database v1.2

(Fischer et al., 2008), which is provided by the Food and Agriculture Organization of the United

Nations. Following Hartmann et al. (2014), we selected 6 specific soil types as leached soil, including390
Ferralsols, Acrisols, Nitisols, Lixisols, Histosols, and Gleysols. Fig. S6b represents the proportion of

leached soil within each grid cell, as determined according to the selected soil types.

2.3 Evaluation of model performance

The model-data discrepancy in silicate weathering flux is often measured by r2 (e.g. (Park et al.,

2020)).395

����2 = 1 − (���10 �� −���10 �� )2�
(���10 �� −���10 �� ��������� )2�

(11)

where Mi and Oi are the model calculated and observed values, respectively, and the summation is over

the index i. Since we are concerned with the global flux Fw and the weathering-climate sensitivity, Mi

and Oi represent the catchment weathering flux for river i rather than the weathering flux per unit area

of the ith river basin. In the equation above, a logarithmic operation is taken to the values first before400
calculating the difference, a subscript ‘log’ is thus added to differentiate it from the r2 calculated using

the original values directly,

�2 = 1 − ( �� − �� )2�
( �� − �� ��� )2�

(12)

Using ����2 has the advantage of giving relatively balanced weights to both the very small and very

large values, which is important because the weathering fluxes over different river basins differ a lot405

(Table S2). Park20 obtained their model parameters in Eq. (9) by maximizing ����2 . However,

although there is a relatively small systematic bias in the logarithmic model-data errors (the data points

distribute more symmetrically against the zero line in Fig. 1f), Fig. 1a-c shows that there is an obvious

systematic bias in the direct model-data errors. For similar magnitude of the observational silicate

weathering fluxes, the bias is much larger over the low-latitude (Fig. 1b) than over the high-latitude410
(Fig. 1a) regions. The bias in the direct errors in Fig. 1b will lead to an overestimation of the global
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weathering flux Fw (the global integral of W in Eq. (9)) and maybe also a misestimate of the

weathering-climate sensitivity. Therefore, we argue that using the sum of ����2 and �2 (denoted as

'R2' hereafter) is better than using either of them as the criteria of model validation.

2.4 Experiments415

In the first set of experiments, the original model of Park20 is tested for the influence of climate

data and erosion rates from different sources or the same source but in different time periods. As

described above, the temperature data come from two sources: ERA5 and CRU, and the data from

ERA5 is organized into three different time periods; the runoff data come from five sources: ERA5,

GRUN, UNH from Park20, UNH updated herein, and Yves, where both the ERA5 and GRUN data are420
also organized into three different time periods; slope data come from two sources: Scotese and Wright,

and Park20; the erosion rates are calculated in three different ways which all used Eq. (7) but the

parameter B has different values: B=1, B tunned according to TSS data, and B tunned according to both

TSS data and the cosmogenic nuclide analysis. In the last case, the cosmogenic nuclide analysis

supersedes TSS data if both of them are available for a basin. There are 4×9×2×3 = 216 experiments425

in total, which are summarized in Table S4.

In the second set of experiments, we try to improve the Park20 model by considering the effect of

additional processes. In each of these experiments, rather than adopting the values from Park20, all the

unknown model parameters (Table S1) are optimized again. Based on the results of the first set of

experiments, only T_CRU is used for temperature, R_Park, R_Yves, and R_GRUN2 are used for runoff.430
Erosion correction is not applied (i.e., B=1) and both slope data s1 and s2 are tested. We will first show

that changing the validation criteria (maximizing R2 rather than ����2 ) is able to alleviate the

systematic bias so that there is no overall overestimation, but the model-data discrepancy becomes even

larger. In order to reduce this discrepancy, we try three different methods. The first method is to

consider the influence of the seasonal cycle of temperature on soil production rate which will change435
the regolith thickness. The second and third methods consider the influence of leached soil and

vegetation on erosion rates, respectively. All three methods act to reduce the silicate weathering fluxes

in the tropical region relative to those in the mid to high latitude. All of these experiments are

summarized in Table 1 below.

To consider the effect of vegetation, two different approaches have been tried, denoted by 'm1' and440
'm2' in Table 1. 'm1' and 'm2' use the LAI of global vegetation from NCAR and simulated by the LPJ

vegetation model, respectively. The global total erosional flux in 'm1' and 'm2' is reduced due to the

shielding effect of vegetation. In order for the global total erosional flux to remain consistent with the

observed value (20 Gt/yr in Park20), the erosion rate at every grid point is scaled uniformly (by

changing �� in Eq. (7)). For sensitivity test, the LAI of global vegetation of LGM ('m3') and 4CO2445

('m4') are used (see Section 2.2.b).
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Table 1. Summary of Main Experiments

*m1-m4: Global LAI is used and the global erosional flux is fixed to 20 Gt/yr in all four cases but vegetation is

from NCAR, LPJ model, LGM experiment, and 4×CO2 experiment, respectively.450
**Maximum R2 here is obtained with observed silicate weathering fluxes from Gaillardet and HYBAM data

together.

Experiment Runoff Temperature Slope
Seasonal Temp

variation effect

Leached soil

effect
Vegetation effect* Max R2**

Fw of Max R2

(1×1012mol/yr)

R_Park_s2 R_Park T_CRU s2 × × × -0.148 2.229

R_Park_s2_td R_Park T_CRU s2 √ × × -0.129 3.008

R_Park_s2_soil R_Park T_CRU s2 × √ × 0.442 2.678

R_Park_s2_LAI_global R_Park T_CRU s2 × × m1 0.284 2.872

R_Yves_s2 R_Yves T_CRU s2 × × × 0.483 2.326

R_Yves_s2_td R_Yves T_CRU s2 √ × × 0.511 2.776

R_Yves_s2_soil R_Yves T_CRU s2 × √ × 0.926 2.293

R_Yves_s2_LAI_global R_Yves T_CRU s2 × × m1 0.842 2.807

R_Yves_s1 R_Yves T_CRU s1 × × × 0.489 3.205

R_Yves_s1_soil R_Yves T_CRU s1 × √ × 0.865 2.870

R_Yves_s1_LAI_global R_Yves T_CRU s1 × × m1 0.804 3.218

R_GRUN2_s2 R_GRUN2 T_CRU s2 × × × 0.146 2.157

R_GRUN2_s2_soil R_GRUN2 T_CRU s2 × √ × 0.706 2.423

R_GRUN2_s2_LAI_global R_GRUN2 T_CRU s2 × × m1 0.571 2.423

R_Yves_s2_LAI_old_global R_Yves T_CRU s2 × × m2 0.640 2.718

RT_LGM_s2_LAI_global R_LGM T_LGM s2 × × m3

RT_4CO2_s2_LAI_global R_4CO2 T_4CO2 s2 × × m4
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3. Results

We will first show whether the overestimated weathering fluxes over tropical river basins of

Park20 model were due to the uncertainty in climate data or error in the calculated erosion rates. Then,455

we will re-estimate model parameters by balancing ����2 and �2, that is, by maximizing R2 defined in

section 2.3. After that, we propose and test a few different parameterizations to see whether they are

effective in further decreasing the model-data discrepancy measured by R2 (Table 1). Without specific

indication, all results described below are for the present day.

460

Figure 4 The �2 (solid symbols) and ����2 (hollow symbols) calculated using different temperature,

runoff, and slope data. In (a), all the observed catchment weathering fluxes in Park20 are used, while in (b) only

the 51 basins of Gaillardet et al. (1999) are used to calculate �2 and ����2. The runoff datasets are denoted on the

x-axis with their names can be found in Fig. S3. Circles and pentagrams denote results calculated using slope data

s1 and s2, respectively. Blue and red denote results calculated using the temperature data T_CRU and T_ERA3,465
respectively. The results using the temperature data T_ERA1 and T_ERA2 are very similar to that using T_ERA3

and thus not shown. (c, d) are similar to (a, b) except that here the temperature is fixed to T_CRU while colors

mean different ways of revising the erosion rate: no change (blue), the erosion rate of each basin is scaled

according to TSS data (orange) or cosmogenic nuclide analysis (green).

3.1 Influence of climate forcing and erosion rate in the original Park20 model470
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For this series of tests, everything is the same as the Park20 model except that the temperature,

runoff and surface slope from different sources or different time periods are used. Results show that

climate and slope data do have some impact on ����2 or �2 , especially the latter (Fig. 4a, b). The

runoff data has the largest impact, followed by slope, and the temperature data has the least impact,

probably because the uncertainties in temperature are small (Fig. S2). For runoff, the data from475

different centers give quite different �2 values, while the data from the same center but different

periods have a small effect. Although �2 can vary from -0.5 to -4.47 in different cases, all of them are

below zero (Fig. 4a, b), meaning large model-data discrepancy. For all cases, overestimation in the

weathering fluxes over tropical river basins persists (not shown but largely the same as shown in Fig.

1b), and the total global weathering flux is similarly overestimated.480

If the observed erosion rates are used, �2 is significantly improved, especially when the runoff

datasets R_UNH and R_Park are used. The improvement is more significant when the erosion rates

inferred from the cosmogenic nuclide analysis (Wittmann et al., 2020) are used. The tropical bias is

also reduced but still quite obvious (Figs. 5 and S7). Note that the results are improved even without

tunning the empirical parameters in the Park20 model. This test hints us that the erosion rate may be a485
critical factor in alleviating the model bias. However, the erosion rates in either the past or the future

are unknown and need to be parameterized if the model is to be applied to these time periods.

Improving this parameterization is the major focus of our work herein and will be described in detail in

what follows.

490

Figure 5 The difference (model-observation) in silicate weathering fluxes for 81 large rivers (more details

can be found in section 2.2.e). The model results are from the experiment T_CRU_R_Yves_s1_Be (Table S4) and

the observation data is Gaillardet+HYBAM. The left, middle and right panels show rivers in the mid- to high

latitudes (if more than half its river basin is located at or beyond 30° latitude), low latitudes (within 30° latitude)

and over the whole globe, respectively. ����2 and �2 are 0.54 and 0.31, respectively. The global total weathering495

flux is 3.951012 mol/yr.

3.2 Maximizing R2 – a new control model

Other than the inaccuracy in the erosion rate (Fig. 3), the systematic bias in Park20 model (Fig. 1)

may also be due to that the model parameters were searched by maximizing ����2 . Here we check

whether the bias can be alleviated by minimizing R2. Specifically, five parameters are searched with500
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their searching ranges given in Table 2. Because the computational load of the model is relatively small,

the searching is done by a forward calculation for all the possible combinations. The total number of

combinations is 240240, and a full search takes 72 hours on a desk computer and 1 hour when 72 cores

are used on a cluster. Only results for s2 is shown here which aligns more closely with observations

than those for s1 (not shown); results for s1 can be found in Table 1. Moreover, because of the505
relatively high sensitivity of model results to runoff (Fig. 4), the model parameters are searched for

three runoff datasets: R_Yves, R_Park, and R_GRUN2. Only results for the former two are presented

below, which are sufficient for demonstrating the effect of maximizing R2.

When calculating ����2 and �2 , two different sets of observed catchment weathering fluxes have

been used, Gailladet and Gailladet+HYBAM (see section 2.2.e). The ����2 , �2 , and R2 of all510

parameter combinations are shown in Fig. 6, where each dot represents the result of a specific

combination of model parameters and only the ones with values greater than 0 are shown. For Gailladet,

the maximum ����2 and �2 are -0.044 and 0.323, respectively, when R_Park is used (Fig. 6a; green

and blue dots that represent ����2 and R2, respectively, are not showing up because all their values are

smaller than 0). For Gailladet+HYBAM, the maximum ����2 and �2 become 0.138 and 0.349,515

respectively (Fig. 6b). It can be seen that Fw tends to be overestimated if ����2 is to be maximized (Fw

= 5.54×1012mol/yr at the peak of green dot group in Fig. 6b) while underestimated if �2 is to be

maximized (Fw = 1.8×1012mol/yr at the peak of the red dot group in Fig. 6b). Although the maximum

����2 (green dots) and �2 (red dots) are both greater than 0 in Fig. 6b, no parameter combination can

give relatively high ����2 and �2 simultaneously so that blue dots can appear. Using R_Yves520

improves ����2 significantly and thus R2; the maximum R2 value for Gailladet+HYBAM is 0.483 (Fig.

6d). It is notable that Fw is within the observational uncertainty range when R2 is maximized. The

parameter combination associated with the maximum R2 is hence considered the new control model

and R_Yves is used in all the tests to be presented in what follows.

When R2 is maximized, either ����2 or �2 or both are too small (Fig. 6). This means that errors525

for individual basins have increased overall, although the signs of errors are more balanced (Fig. 7)

than before so that the bias in Fw is small. However, inspection of the data points in Fig. 7 shows that

the errors in the high-latitude region now have a negative bias compared to before (compare Fig. 7a and

Fig. 1a) while the positive bias in the tropical region is somewhat reduced but remains (Fig. 7b). This

redistribution of biases is clearly unsatisfying, and it may suggest that there is a missing process that530
distinguishes the tropical and extratropical regions.

Table 2.Model parameters and their values to be searched.

K

(unitless)

kw
(unitless)

�

(unitless)

krp
(unitless)

Concentration (mol/m3)**

Metamorphic Sediment

5×10-6* 1×10-3 -0.5 1.2×10-3 1500 500

1×10-5 2×10-3 -0.4 2×10-3 2000 1000

2×10-5 5×10-3 -0.2 3×10-3 2500 1500

5×10-5 1×10-2 -0.1 4×10-3 3000 2000

1×10-4 2×10-2 0 5×10-3 3500 2500
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2×10-4 5×10-2 0.1 6×10-3 4000 3000

5×10-4 1×10-1 0.3 7×10-3

1×10-3 2×10-1 8×10-3

2×10-3 5×10-1 9×10-3

5×10-3 1 1×10-2

1×10-2 1.5×10-2

5×10-2

*The data marked in red are the additional values considered herein on top of those searched by Park20. The bold

black values represent the optimal parameters selected by Park20.

**Although the range of cation concentration of metamorphic rocks overlaps with the sedimentary rocks, it is535
constrained that the former must be larger than the latter during the search.

The ����2 (green) and �2 (red) and their sums (blue) for all possible combinations of the parameters in Table

2. Only the cases with values greater than zero are shown. The results in (a,b) and (c,d) are for experiments540
R_park_s2 and R_Yves_s2 defined at Table 1, respectively, which differ only in the runoff data used. The Gailladet

and Gailladet+HYBAM are used as observational data in the left and right panels, respectively. The black vertical

line and grey zone show the observed global total weathering flux (i.e. Fw) and its uncertainty range.
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Figure 7 The difference (model-observation) in silicate weathering fluxes for 81 large rivers (more details545
can be found in section 2.2.e). The model results are from the experiment R_Yves_s2 (Table S4) and the

observation data is Gaillardet+HYBAM. The parameters are those that give the maximum R2 in Fig. 6d. The upper

and lower panels show model-obs and log10(model)-log10(obs), respectively. The left, middle and right panels show

rivers in the mid- to high latitudes (if more than half its river basin is located at or beyond 30° latitude), low

latitudes (within 30° latitude) and over the whole globe, respectively. ����2 and �2 are 0.33 and 0.16, respectively.550

The global total weathering flux Fw is 2.331012 mol/yr.

3.3 Influence of temperature-modulated Soil Production Rate

Large seasonal changes of temperature can induce fractures in rocks and even form deep cracks in

the surface soil layer (Liu et al., 2020), which may enhance the soil production rate at the base of the

soil layer. Thus, the much weaker seasonal cycle in the tropical regions than in the higher latitudes (Fig.555
6a) may be a factor to consider when calculating the erosion rate. To consider its influence, we assume

that the soil production �� is dependent on the amplitude of seasonal cycle of surface temperature

(defined as the difference between the maximum and minimum monthly temperature) and the constant

krp in Eq. (6) is now,

��� = �(��−24)/�−�−(��−24)/�

�(��−24)/�+�−(��−24)/� + � ∗ � (13)560

where �� is the amplitude of seasonal cycle

�� = ���� − ���� (�) (14)

The constant 24 (K) in Eq. (13) is roughly the amplitude of seasonal cycle at around 30° latitude

(Fig. 8b). Across this critical amplitude, the soil production rate increases or decreases rapidly (Fig. 8a).
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Note that we have subjectively chosen to use a logistic function in Eq. (13), so as to make the soil565
production rate in the tropical region much lower than that in the extra-tropical region (Fig. 8b). This

should be sufficient for the present purpose which is to demonstrate whether the �� could have any

significant impact on silicate weathering. The values of a, b, and c determine the minimum values of krp
and its variation with latitude; and a total of 12 combinations of a, b, and c are tested (Table S5, Fig.

8a).570
The forward calculation is repeated to search the parameter combinations (Table 2) that maximize

R2 for all combinations of a, b, and c. Results show that the best ����2 and �2 are obtained when a, b,

and c are equal to 0.0244, 1.05 and 8 (red dotted line in Fig. 8a), respectively, when only considering

the observation data from Gaillardet, and 0.015, 2.3, and 1 (blue solid line in Fig. 8a), respectively,

when including HYBAM data (Fig. 8c-d). Both ����2 and �2 are improved in terms of the bias in Fw;575

compared to the new control model in section 3.2; Fw corresponding to the peaks of both ����2 and �2

are slightly closer to the observational value (compare Fig. 8c-d to Fig. 6c-d). However, the values of

����2 and �2 corresponding to the highest R2 are 0.201 and 0.204 when the HYBAM data are not

included, remaining small. When the HYBAM data are included for model evaluation, R2 value is

higher but no better than that of the new control model (compare Fig. 8d to Fig. 6d). Nevertheless, this580
model is superior to the new control model in that the biases in both the tropical and extra-tropical

regions are reduced this time (not shown).

Figure 8 Possible effect of seasonal cycle of surface temperature on the modeled silicate weathering flux.

The soil production constant ��� is assumed to depend on the amplitude of seasonal cycle �� (b) according to585
the functions in (a). Red, blue, and green colors in (a) correspond to the three columns of Table S5, respectively.

The parameter c in Eq. (14) has values of 8, 4, and 2 for the dotted, dash-dotted, and dashed lines, respectively. (c)
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shows the ����2 (green) and �2 (red) and R2 (blue) of all possible combinations of the parameters with the effect

of �� considered. Instead of showing all dots, only the envelopes (one for each color) are shown for the sake of

clearness; the envelopes are obtained by curve fitting (cubic spline interpolation) and the data points used to do the590
fitting are still shown in the figure. (d) is the same as (c) except that the HYBAM data are included in the

observations. The results shown in (c) and (d) are from the experiment R_Yves_s2_td (Table 1). The black vertical

line and grey zone show the observed Fw and its uncertainty range.

3.4 Implication of leached soil

Equation (9) tells us that local weathering flux is essentially the product of the erosion rate and the595
difference in the concentration of Ca and Mg cations between the bottom and top of the regolith. In the

tropical regions, the cation concentration at the surface calculated by the Park20 model is near 0 where

mountains are absent, and is consistent with the distribution of leached soil (Figs. S6b and S8) defined

in section 2.2.g. The overestimation of tropical weathering fluxes (Fig. 1b) thus may indicate that the

erosion rate in these regions is slower than that calculated by the model (Eq. (7)). The cosmogenic600
nuclide analysis data does indicate lower erosion rates for the vast majority of rivers in the equatorial

region than those from both TSS and the model calculation (Fig. 3b and Table S3). Fig. 4 also shows

that the results of the original Park20 model would be improved significantly if the observed erosion

rates are used. Therefore, we think it is reasonable to slow down the erosion rate calculated by Eq. (7)

when the areal fraction of leached soil in a grid box at mid-low latitudes (<30°) is greater than 20%; the605
existence of such soil is an indication of slow erosion. The results are only slightly different if a

different criteria is used because the areal fraction of leached soil is either very high or very low within

the tropical region (Fig. S6b). Through a number of tests, it is found that the erosion rate by Eq. (7)

should better be slowed down by an order of magnitude in these regions. The improvement of erosion

rate can be seen from Fig. 9b.610
The model results are improved significantly with the simple change to the erosion rates above.

The highest value of R2 reaches 0.73 and 0.93 when Gaillardet and Gaillardet+HYBAM are used as

observations, respectively (Fig. 10). Moreover, both ����2 and �2 have high values (~0.4) when R2 is

at its maximum, higher than those obtained in section 3.1 (Fig. 4c-d) where the model parameters were

not optimized. Furthermore, the tropical bias is visibly reduced (compare Fig. 10 and Fig. 1b). These615
suggest that substantially slowing down the tropical erosion rates calculated by the Park20 model (Eq.

(7)) is an advisable choice. However, the appearance of leached soils is obviously a manifestation not a

reason for the lower erosion rates. In addition, the distribution of leached soil is not available for the

past or the future, just like the observed erosion rates tested in section 3.1. Therefore, some other

processes that are more fundamental and convenient than leached soil need to be found.620
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Figure 9 Comparison between modeled and observed erosion rates. The observed erosion rates are from

cosmogenic nuclides analysis of Wittmann et al. (2020). Some data points (different in each panel but definitely

less than 4) do not show up because axis limits are set to relatively smaller values for the sake of clarity (compare

to Fig. 3b), but ����2 and �2 as well as linear correlation are calculated using all 18 data points. Colors represent625
regions where the basins are located (also see Fig. 3b), and the sizes represent the area of the basins. (a)-(e) differ

in the way erosion is modeled. All the model calculations use R_Yves for runoff and s2 for surface slope, and use

Eq. (7) with different adjustment. (a) no adjustment; (b) erosion rate is reduced by an order of magnitude where

leached soils exist; (c) erosion rate is reduced for large LAI (from NCAR) according to Eq. (15); (d) same as (c)

except that LAI is from LPJ model; (e) calculated by setting m in Eq. (7) to 0. In (c)-(e), all values are rescaled630
uniformly so that the global total erosion is 20 Gt/yr.
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Figure 10 The effect of reduced erosion where leached soil is present on the modeled silicate weathering

flux. (a) and (b) show the ����2 (green) and �2 (red) and R2 (blue) of all possible combinations of the parameters.635
Similar to Fig. 8, only the envelopes and the points used to fit the envelopes are shown. The results are from the

experiment R_Yves_s2_soil (Table 1). The black vertical line and grey zone show the observed Fw and its

uncertainty range.(c) shows the difference (model-observation) in silicate weathering fluxes for 81 large rivers,

similar to Fig. 7a-c except here the results corresponding to the highest R2 in (b) are shown. ����2 and �2 are

0.56 and 0.37, respectively. The global total weathering flux is 2.291012 mol/yr.640

3.5 Influence of Vegetation

It is observed that the distribution of leached soil (Fig. S6b) coincides with the flourishment of

tropical vegetation (Fig. S6c, d), and may very well be the result of the latter. Although observations

from arid regions indicate that the presence of vegetation significantly enhances mechanical erosion

due to rise in precipitation rates, mechanical erosion diminishes as vegetation cover increases in wet645
regions, owing to the dominant protective effects of vegetation (Mishra et al., 2019; Maffre et al., 2022).

The presence of vegetation not only reduces the impact of raindrops on soil particles but also slows

down the overland flow of water, decreasing the potential for soil detachment. Moreover, plant roots

and organics contribute to soil cohesion and provide mechanical reinforcement (Mcmahon and Davies,

2018; Zeichner et al., 2021), thus reducing the overall likelihood of slope failures and landslides. Based650
on such thinking and the approximate coincidence between the distribution of leached soil and the

region where LAI>2, we design a way to modulate surface erosion with vegetation, ,

� = � ∗ (�−min 2, ��� ) (15)

The basinal erosion rates calculated by the model in this way match those inferred from
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cosmogenic nuclide analysis better than when vegetation is not considered (Figs. 9c, d), substantiating655
the adjustment of erosion rate by vegetation. The erosion rates shown in Figs. 9c, d have been scaled up

uniformly by changing ke in order for the global total erosion flux to retain a value of 20 Gt/yr,

although tests show that it has only a slight effect on the calculated silicate weathering fluxes. After

considering the effect of vegetation, the maximum R2 can reach 0.84 (Fig. 11c, d) with the

corresponding Fw being 2.8 ×1012mol/yr (the experiment R_Yves_s2_global_Etotal with 'm1' method).660

Both ����2 and �2 are also reasonably high (>0.3, Fig. S9a). Based on these results, here we propose

that the suppression of erosion rates by vegetation was likely underestimated in previous studies on

silicate weathering.

For the past or future, we will have to rely heavily on the model-simulated vegetation. However,

the ability of current land models to simulate the vegetation and its response to climate change is still665
limited. Whether the effect of vegetation on silicate weathering can be properly considered is

contingent upon how well the vegetation can be simulated. In one of the tests, the LAI simulated by the

LPJ model (Fig. S10c, d; the experiment R_Yves_s2_global_Etotal with 'm2' method) was used. The

results deteriorate substantially when the modeled global LAI was used; the maximum R2 merely

attains a value of 0.64. This means that the defects in vegetation data cannot be made up by tunning670
other parameters in the weathering model. Therefore, getting better vegetation data by either

reconstruction or model simulation is important for properly simulating silicate weathering of the past

or future.

Figure 11 (a) and (b) show the envelopes of ����2 (green) and �2 (red) and their sums (blue) of all675
possible combinations of the parameters. The effect of vegetation is considered by using the global LAI and the

global total erosion rate is scaled to 20Gt/yr. Only the cases with values greater than zero are shown. The black

vertical line and grey zone show the observed Fw and its uncertainty range. The results are from the experiment

R_Yves_s2_LAI_global defined in Table 1.

3.6 Final parameters680

A weathering model that adopts a parameterization for the effect of vegetation on erosion reduces

the systematic error in the tropical region and is also easily applicable to other time periods. The Fw

obtained by such a revised model is also closer to the most recently estimated global degassing flux

(Müller et al., 2022) . In this section, the optimal parameter set (that gives the highest R2) is provided
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for different combinations of runoff and surface slope (Table 3). The top five parameter sets with the685
highest R2 values (ranked based on the average R2 calculated for two sets of catchment weathering

flux measurements, R2* and R2** in Table 3) for each case are provided in Table 3. As can be seen, the

parameter set highlighted in bold in the Table 3 is amongst the best-performing parameter sets no

matter which runoff or slope data are used. The weathering fluxes calculated using this set of

parameters are much improved compared to those calculated using the original Park20 model, in terms690
of both individual river basins (Fig. S11) and the global total (Figs. 11c, d). Subsequent calculations in

this study are all based on this set of parameters unless otherwise stated.

Table 3. Parameters chosen in the case of global LAI

Experiment K �� � ��� metamorphic sediment R2* R2**

R_Yves_s1

2×10-5 1 -0.1 0.05 2000 1500 0.57 0.8

5×10-5 1 -0.2 0.05 2000 1500 0.56 0.78

1×10-5 1 0 0.015 2000 1500 0.55 0.78

1×10-4 0.5 -0.2 0.05 2000 1500 0.53 0.79

1×10-5 0.2 0.1 0.05 2000 1500 0.54 0.78

GRUN2_s2

5×10-5 1 -0.2 0.05 2000 1500 0.11 0.57

2×10-5 1 -0.1 0.05 2000 1500 0.11 0.54

1×10-5 1 0 0.05 1500 1000 0.13 0.51

5×10-6 1 0 0.05 2000 1500 0.13 0.5

2×10-5 1 -0.1 0.05 1500 1000 0.12 0.51

R_Park_s2

1×10-3 1 -0.5 0.05 2000 1500 0.09 0.28

5×10-4 1 -0.4 0.05 1500 1000 0.09 0.22

5×10-5 1 -0.2 0.05 2000 1500 0.11 0.19

1×10-3 1 -0.5 0.05 2500 1500 0.03 0.25

1×10-3 1 -0.5 0.015 2000 1500 0.06 0.21

R_Yves_s2

5×10-6 1 0 0.05 2000 1500 0.57 0.81

5×10-5 1 -0.2 0.05 2000 1500 0.52 0.84

2×10-5 1 -0.1 0.015 2000 1500 0.53 0.81

2×10-5 1 -0.1 0.05 2000 1500 0.5 0.82

1×10-5 0.5 0 0.05 2000 1500 0.52 0.81

R_Yves_mn***

5×10-5 1 -0.2 0.05 1500 1000 0.38 0.69

2×10-5 1 -0.1 0.05 1500 1000 0.39 0.68

1×10-4 0.5 -0.2 0.05 1500 1000 0.35 0.7

1×10-5 0.5 0 0.05 1500 1000 0.39 0.65

5×10-5 0.1 0 0.05 1500 1000 0.36 0.66
*represents the fitting metrics with the observation of Gaillardet.

**represents the observation data including the HYBAM network.695
***Case that changes the erosion rate model by setting its sensitivity to the runoff to 0.

4. Discussion

4.1 Multiple effects of vegetation on silicate weathering
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From the results presented in previous sections, we think that the silicate weathering fluxes

calculated by previous models such as Park20 were systematically overestimated over the tropical700
region, and the overestimation was due at least in part to the overestimated erosion rate in this region.

We thus propose that the overestimation in erosion was likely due to the underestimated effect of

tropical vegetation on reducing erosion. Tests above show that this effect can be taken into account

through a simple parameterization using LAI, which can be obtained more easily by either

reconstruction or model simulations (Binney et al., 2017; Krapp et al., 2021; Prentice et al., 2000;705
Prentice and Webb Iii, 1998; Shao et al., 2018; Wang et al., 2008; Woillez et al., 2011; Yao et al., 2009;

Andermann et al., 2022) for different time periods.

However, vegetation was generally thought to enhance silicate weathering by emitting organic acid

(Caves Rugenstein et al., 2019; Berner, 2004; Berner, 1992), and the appearance of vegetation has been

linked to the occurrence of a few ice ages in Earth's history (Lyla et al., 2011; Lenton et al., 2012). Here710
we are not arguing against such a mechanism and idea. Instead, we think the ability of vegetation in

enhancing silicate weathering is universal and has been implicitly considered in model parameters such

as the dissolution constant K in Eq. (2). In contrast, the effect of vegetation on soil protection could

have been underestimated in silicate weathering models and could be geographically dependent. It is

worth mentioning that Maffre et al. (2022) tested the effect of vegetation on slowing down soil erosion715
during the Devonian Era when vascular plants just landed. Their work was more of a sensitivity study

in that the observations (e.g. pCO2) could not provide vigorous constraint as do the basinal weathering

fluxes used here.

4.2 Influence of runoff

Some studies propose that the influence of runoff might have been overestimated in existing720
erosion rate frameworks. For instance, in a renowned model for erosion, BQART, sensitivity to runoff

has been adjusted downward from 0.5 to 0.31 (Syvitski and Milliman, 2007). Consequently, we did a

simple test by assuming no correlation between erosion rate and runoff, that is, setting m in Eq. (7) to 0.

As can be seen from Fig. 9e, the model-data discrepancy is also reduced quite significantly by this

method. For weathering calculation, the maximum R2 value obtained under this assumption is725
approximately 0.718 (Fig. S10), achieving a smaller improvement compared to the vegetation

parameterization above but a notable one compared to other methodologies. The optimal parameter sets

obtained for this test are provided in Table 3. A not unreasonable conjecture is that removing the

dependence of erosion on runoff implicitly takes into account part of the influence of vegetation, since

vegetation and runoff generally exhibit a positive correlation under contemporary conditions (see Figs.730
S3 and S6c). Because the factors affecting vegetation include not just precipitation (highly related to

runoff), but also temperature, sunlight and pCO2 etc., parameterizing erosion using vegetation is likely

a superior way than using runoff.

4.3 Leached soil

It is worth emphasizing that the shielding effect on silicate weathering, although coincident with735
the distribution of leached soil, should be attributed to heavy vegetation as the former is likely a result

of the retarding effect of the latter on erosion. This point can be partially inferred from the distribution
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of leached soils (Fig. 6b), LAI (Fig. 6c), surface slopes (Fig. S4a-b), and erosion rates (Fig. S4c-d).

Leached soils should form in regions with relatively low erosion rate but not low silicate weathering

rate. For example, regions with the lowest erosion rates are the desert regions where runoff is too small,740
but no leached soils form in these regions probably due to the very low weathering rate. In some

low-latitude regions where leached soils exist, the relatively low erosion rates (Fig. S4c-d) are

consistent with the relatively small surface slope (i.e., flat terrain; Fig. S4a-b). However, in many other

places (Fig. S6b), the erosion rates are relatively high (Fig. S4c-d) due to high runoff. These regions

correspond more closely with the regions with high leaf area index (LAI; Fig. 6c). Therefore, leached745
soils should be a result of a combination of vegetation development and relatively flat terrain, but the

flat terrain is clearly not a necessary condition.

Godderis et al. (2008) also considered the effect of thick regolith cover on weathering by reducing

the fluid that can reach the fresh bedrock, while we consider the effect herein by reducing the erosion

rate. The two approaches agree with each other in that they both think that the weathering is transport750
limited (i.e., fresh rocks are not exposed for weathering), but our approach is more direct and easier to

be applied to the paleo periods. This is because 1) the existence of the thick regolith cover is likely the

result of weakened erosion (as described above), and 2) the knowledge of regolith cover and thickness

is unavailable for the past. Therefore, it seems better just optimize the parameterization for the erosion

rate directly, such as by considering the effect of land plants.755

4.4 Sensitivity of global silicate weathering to climate change

The climate data from the 4 CO2 and LGM experiments (section 2.2.b) are used to test the

sensitivity of global silicate weathering to climate change. The land surface temperature increases from

278.4 K in the LGM to 286.6 K in PI and further to 301.1 K in the 4CO2 experiment. Note that these

changes are highly dependent on the climate model used but do not matter for the purpose here which760
is to demonstrate how the sensitivity of silicate weathering to climate changes between the Park20

model and the revised model in section 3.6.

According to the Park20 model, the global silicate weathering flux Fw increases by 1.44 (46%)

from LGM to PI, and by 6.77(149%) from PI to 4CO2 situation (Table 4). For the revised model, Fw

increases by 0.69(32%) from LGM (experiment ‘RT_LGM_s2_LAI_global’ with "m3" in Table 1) to PI,765

and by 4.38(153%) from PI to 4CO2 situation (experiment ‘RT_4CO2_s2_LAI_global’ with "m4" in

Table 1). Thus, in terms of absolute values, the revised model is less sensitive to climate, but in terms

of relative values, the revised model is very similar to the original model. Because the relative change

of silicate weathering flux largely determines the relative change of pCO2 (see Eq. (2) of Goddéris et al.

(2023)), which determines the climate change, the weathering-climate sensitivity of the revised model770
is similar to that of the original model. However, due to the fact that Fw as well as its variations (in

terms of absolute values) in the revised model is much smaller than before, other processes such as the

burial of organic carbon may have been more important in the Earth's carbon cycle than thought before.

Note that although the LGM and 4  CO2 climates are used above to demonstrate the

weathering-climate sensitivity, the timescales implied by these two experiments are only 10,000 years775
and 100 years, respectively. These timescales are too short to be appropriate for the weathering models
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here, which assume that the weathering has reached a steady state; when climate changes, vegetation

may respond quickly (~100 years) but the regolith layer and thus the weathering takes a very long time

to reach a new steady state.

Table 4. Sensitivity of global silicate weathering to climate780

Climate Case

Variable
LGM PI Abrupt4×CO2 PI-LGM 4×CO2-PI

Land surface temperature (K) 278.4 286.6 301.1 8.2 14.5

Global Ca2++Mg2+

(1012mol/yr)

Park20 model 3.10 4.54 11.31 1.44(46%) 6.77(149%)

Revised model 2.17 2.86 7.24 0.69(32%) 4.38(153%)

4.5 Caveats and future directions

The previously used measure for model-data discrepancy is ����2 , maximization of which

essentially optimizes the ratio between the model and data. This measure has its advantages but as we

have shown above, such a measure cannot prevent the occurrence of a systematic error in the absolute785

difference between the model and data (Fig. 1b). Optimizing �2 , on the other hand, tend to

underestimate Fw. We thus propose to optimize the sum of ����2 and �2 (i.e., R2) so that Fw is nearest

to the observation. It turns out that simply maximizing R2, although largely removes the systematic

bias, would give very low values for both ����2 and �2 (Fig. 7), meaning that changing the measure

for model-data discrepancy alone cannot improve the model. To resolve the problem, certain physical790
processes have to be rectified, for example, by invoking the influence of vegetation on erosion. A

relatively satisfactory fit was finally obtained. However, R2 is still a subjective choice which may not

be ideal. For example, R2 measures the overall degree of dispersion of the model-calculated fluxes

around the observed fluxes, but it does not measure the correlation in spatial patterns. This may be one

way to improve the measure for model-data discrepancy in the future.795
The erosion rates derived from cosmogenic nuclides, as compared to those obtained from TSS,

significantly alleviate the issue of overestimation of tropical weathering fluxes calculated by the model

(see Figs. 4c, d). This improvement is likely due to the fact that the erosion rates derived from the

cosmogenic nuclide analysis represent the erosion for long time scales, whereas TSS may have been

substantially contaminated by human activities such as land use and deforestation (Hewawasam et al.,800
2003). Additionally, TSS could have been eroded primarily from near the river mouth, overestimating

the erosion, or substantial deposition has occurred on the way, underestimating the erosion (Wittmann

et al., 2020). The major problem with the cosmogenic nuclide data is that it covers only a limited

number of river basins. Both datasets also have the problem that neither of them can provide the spatial

distribution of erosion distribution within river basins. Given the large area of many of the river basins805
(Fig. 3, the size of the circle represents the area of river basins), uneven distribution of erosion within



29

the river basin could have great influence on the modeled weathering flux. More detailed observations

of erosion rates and related mechanisms are clearly needed in the future.

Although it seems that a simple parameterization of reducing erosion rate by vegetation (Eq. (15))

works well in improving model-data comparison, it must be noted that this may not be the sole or best810
resolution. The influence of vegetation on erosion may also depend on the local environment which we

have refrained from delving further, primarily due to the plethora of uncertainties and insufficient

constraints. Future observational evidence will be required to offer support for better parameterization.

Another process that may be considered is the horizontal transport and deposition of materials. The

current model is a one-dimensional model in which the regolith/soil comes from the bottom only.815
While in reality, the soils can be eroded away easily and transported to another location, changing the

local profile of cation concentration.

5. Summary

A silicate weathering model that explicitly considers the regolith profile based on the formulation

of GM09 and Park20 is studied in detail. This model has more than five underdetermined parameters820
which need to be constrained by the observed weathering fluxes for multiple river basins or watersheds

over the globe. In doing so, the model-data discrepancy was normally measured by ����2 (Eq. (11);

larger values mean smaller discrepancy), and the parameter space was then searched to maximize ����2.

This method stresses more on minimizing the relative error (or discrepancy) than the absolute error. We

demonstrate that the parameters determined this way tend to systematically overestimate the825
weathering fluxes over the tropical region which leads to a significant overestimation of the global total

flux Fw (Fig. 1). In addition, we show that such a problem is not due to uncertainties in the climate and

surface slope data. We thus propose to use R2 = ����2 + �2 as a new measure of model-data

discrepancy, maximization of which reduces both the relative and absolute errors in a more balanced

way. By searching for the optimal parameters using this new measure, globally unbiased weathering830
fluxes are indeed obtained (Figs. 6 and 7c). However, the bias is removed by increasing the bias over

the extratropical region (Fig. 7a) rather than reducing the bias over the tropical region (Fig. 7b).

Moreover, the model-data discrepancy is large; either ����2 or �2 is small. Therefore, some other

processes must be considered to reduce the bias over the tropical region and reduce the model-data

discrepancy.835
The influence of the seasonal cycle of temperature on soil production is tested first based on the

consideration that a stronger seasonal cycle can fracture and shatter rocks more easily. Little

improvement can be achieved by such consideration (Fig. 8 c, d). Next, the erosion rate is reduced in

tropical regions where there are leached soils. It is found that the model-data discrepancy of silicate

weathering fluxes is greatly reduced in this test (Fig. 10). Due to the fact that leached soil is the result840
not the cause of weakened erosion and the fact that the distribution of leached soil is almost coincident

with that of forest, we propose that heavy vegetation is able to slow down erosion significantly. A

simple parameterization is then put forward to consider the effect of vegetation on erosion by using the

global LAI (Eq. (15)). LAI is used because it is relatively easy to be obtained for other periods of the

Earth's history from Earth system model simulations. The Park20 model is revised to add this845
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parameterization and the model parameters are re-optimized using the criteria R2 (Table 3). This

revised model fits the observed weathering fluxes better than the original Park20 model (Fig. 11), and

the modeled Fw is more consistent with both the observation and the most recently constructed global

outgassing. Note that we are not against the idea that the evolution of land plants on Earth enhanced

silicate weathering, it is just that heavy vegetation could hinder silicate weathering by slowing down850
erosion over rainy regions; high precipitation and runoff in these regions would otherwise induce high

erosion rates.

The revised model simulates a much smaller Fw than the original Park20 model. Correspondingly,

the changes of Fw also become smaller under the same climate changes (Table 4) although the relative

changes of Fw remain similar to the original model. If the revised model is reliable, it implies that the855
variations of other sinks of carbon such as organic carbon could have played a more important role than

previously thought in the models. It will be interesting to see how the reconstruction of the Phanerozoic

carbon cycle using models (e.g. Berner and Kothavala (2001)) will be impacted when the shielding

effect of vegetation on silicate weathering as proposed herein is considered.
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