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Abstract. Open boundary conditions were developed for atmospheric large eddy simulation (LES) models and implemented

into the Dutch Atmospheric Large Eddy simulation model. The implementation was tested in a "Big Brother"-like setup, in

which the simulation with open boundary conditions was forced by an identical control simulation with periodic boundary

conditions. The results show that the open boundary implementation has minimal influence on the solution. Both the mean

state and the turbulent structures are close to the control simulation and disturbances at the in- and outflow boundaries are5

negligible. To emulate a setup in which the LES is coupled to a coarser model, the influence of coarse boundary input was

tested by smoothing the output of the periodic control simulation both temporally and spatially before feeding it as input to the

simulation with open boundary conditions. When smoothing is applied over larger/longer spatial/temporal scales, disturbances

start to form at the inflow boundary and an area exists where turbulence needs to develop. Adding synthetic turbulence to the

smoothed input reduces the size of this area and the magnitude of the disturbances.10

1 Introduction

Large eddy simulation (LES) is a numerical simulation tool used to study turbulent motions in the atmospheric boundary layer

(ABL). Employing resolutions ranging from 1− 100m, the largest turbulent eddies containing most turbulent kinetic energy

(TKE) are resolved, whereas the effects of smaller unresolved eddies are parameterised. With most of the TKE being resolved,

LES has the advantage over coarser limited area models (LAMs) when it comes to representing the effects of boundary layer15

turbulence. This advantage comes at the cost of domain size and/or simulation time. Idealised ABL studies using LES started

in the late sixties/early seventies (e.g. Lilly, 1966; Deardorff, 1972; Sommeria, 1976). Traditionally, LES was mainly used to

study ABLs with idealized homogeneous forcings, employing periodic lateral boundary conditions (LBCs).

With the increase in computational power, the use of LES has shifted from idealised cases to more complex and realistic

scenarios. Some examples are the simulation of urban areas (e.g. Giometto et al., 2016; Kurppa et al., 2018), windfarms (e.g.20

Mehta et al., 2014) and very large case studies pushing towards domain sizes of O(1000km) (e.g. Schalkwijk et al., 2015;

Heinze et al., 2017). For the latter it is especially important to capture the heterogeneity present in the domain. Periodic LBCs

are by definition not suited for this (Moeng et al., 2007). Furthermore, it is often desired to couple LES to a regional weather

model to transfer large-scale atmospheric structures. For these reasons, it is desirable to have open LBCs in place. Ideally,
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open LBCs allow the prescription of variables at inflow boundaries and propagate variables unperturbed out of the domain at25

outflow boundaries. Having the ability to use open BCs makes an LES model much more versatile in simulating a range of

phenomena, especially over heterogenous terrain. While periodic BCs can sometimes be used to study large-scale phenomena

over such terrain, the large domains required to do so quickly become computationally prohibitive.

There is no consensus on the "best" implementation of open boundary conditions for anelastic turbulent flow. In 1991 two

mini-symposia were unsuccessfully dedicated to this topic and the effort was summarized as a frustrating one (Sani and Gresho,30

1994). A popular choice is an outflow condition based on the radiation condition of Sommerfeld (1949). The radiation BC states

that waves generated in the interior of the domain should propagate outwards with no reflections at the boundaries. It takes the

form of a propagating wave and replaces the Navier-Stokes equations at the boundaries. The difficulty lies in determining the

phase speed of the wave, which is required for applying the radiation boundary condition. Different implementations for the

phase speed have been defined (e.g. Orlanski, 1976; Klemp and Wilhelmson, 1978; Hedley and Yau, 1988). Orlanski (1976)35

uses a variable phase speed that is defined upwind of the boundary and propagated to the boundary. The results of a 2D test

case show that the implementation works well and results in minimal reflections. Klemp and Wilhelmson (1978) use radiation

LBCs in their 3D storm model and evaluate their influence in a 2D version of the model. They define their phase speed as

a constant plus the local boundary-normal velocity component. Using a similar test setup as Orlanski (1976), Klemp and

Wilhelmson (1978) show that their implementation is capable of producing realistic results. They do note that the results are40

sensitive to the choice of the fixed part of the phase speed. Hedley and Yau (1988) compare the implementations of Orlanski

(1976) and Klemp and Wilhelmson (1978) with their new implementation that is a hybrid version of the implementation of

Orlanski (1976). They conclude that their hybrid implementation is superior to both. Craske and Van Reeuwijk (2013) give a

summary of open BCs for incompressible turbulent flows and state that a radiation outflow condition results in the least amount

of distortion for convection dominated flows. Incompressible LES models such as PALM (Maronga et al., 2015, 2020) and45

MESO-NH (Lac et al., 2018) and the fully compressible WRF-LES (Skamarock et al., 2021) have the option to use radiation

boundary conditions for the boundary-normal velocity components based on one of the previously mentioned implementations.

For the other variables (homogeneous) Neuman BCs are often used at outflow boundaries, which specify the boundary-normal

derivative. For inflow conditions Dirichlet(-like) boundary conditions are common, which specify the fields at the boundary.

The implementation of open boundary conditions in these LES models is summarised in Table 1.50

Table 1. Summary of the open boundary implementations in the mentioned LES models.

Model Boundary-normal velocity components Boundary-tangential velocity components and cell-centered variables Phase velocity definition Relaxation zone References

PALM
Dirichlet inflow, radiation outflow

Prescribed

Radiation for velocity, other variables not described

Prescribed

Based on Orlanski (1976), averaged laterally

Not applicable

Yes

No

Maronga et al. (2015)

Maronga et al. (2020); Kadasch et al. (2021)

MESO-NH Radiation on perturbed fields Weighted Dirichlet for inflow, Neumann (extrapolated) for outflow Based on Carpenter (1982) No Lafore et al. (1998); Lac et al. (2018)

WRF-LES
Radiation on perturbed fields

Prescribed

Different definition for the boundary-normal flux term

Prescribed

Based on Klemp and Wilhelmson (1978)

Not applicable

No

Yes
Skamarock et al. (2021)

ICON Prescribed Prescribed Not applicable Yes Heinze et al. (2017)

The implementation of open LBCs make it possible to nest LES within both itself and mesoscale models (e.g. Moeng et al.,

2007; Zhu et al., 2010; Talbot et al., 2012; Mazzaro et al., 2017; Heinze et al., 2017; Kadasch et al., 2021; Mirocha et al.,

2



2014). These studies used prescribed boundary conditions instead of radiation BCs to nest their LES. Prescribed boundary

conditions are a Dirichlet boundary condition, where the LBCs of the child simulation are directly prescribed by the parent

simulation. These type of prescribed LBCs are similar to what is used in the mesoscale modelling community and are intuitive55

to implement. Dirichlet boundary conditions are however known to create reflections and perturbations at outflow boundaries

for turbulent flows (e.g. Wesseling, 2009; Ol’shanskii and Staroverov, 2000). For this reason Moeng et al. (2007); Zhu et al.

(2010); Heinze et al. (2017) use a relaxation zone in combination with a prescribed boundary condition, in which the fields

near the boundary are nudged towards the boundary values to dampen any numerical noise due to the LBCs. Moeng et al.

(2007) use WRF-LES to conduct two-way nested simulations of LES nested within LES. They conclude that the nesting60

works well for LES within LES but state the challenges that will arise for both one-way and two-way nesting of LES within

a mesoscale model. Mesoscale models will have different vertical profiles due to their turbulent transport parametrisations in

the PBL as opposed to the 3D resolved turbulence of LES. Furthermore, since mesoscale models are non-turbulence resolving,

the lack of turbulence at inflow boundaries will result in a spinup area required for turbulence to develop. The spinup area is

further increased by the implementation of a relaxation zone, as it does not only dampen numerical artifacts but turbulence65

as well. Zhu et al. (2010) tested both a one-way and two-way nested setup with WRF-LES being forced by National Centers

for Environmental Prediction (NCEP) reanalysis data. They found that the relaxation zone in the outermost model is able

to mitigate potential problems with the large resolution jump between the coarsest WRF-LES domain and the NCEP data

set. However, they found that the cloud fields can be strongly modulated by mesoscale organisation, especially in high wind

conditions where the clouds align with the mean wind direction. They found little benefit of two-way nesting over one-way70

nesting. Talbot et al. (2012) coupled WRF-LES within WRF in a realistic one-way nesting setup using 3 LES domains with

increasing resolution in 3 mesoscale domains. They found that the use of a nested LES setup mainly improves the surface

fluxes and near surface fields, but the bulk ABL dynamics such as boundary layer height of the mesoscale models agreed better

with observations. They also found that the initial and boundary forcings were most important for the results and had a much

bigger influence than the choice of subgrid scheme. Mazzaro et al. (2017) studied the effect of unresolved mesoscale flows75

on LES. They forced three similar LES domains with different resolution mesoscale simulations. They test their results both

with and without the addition of the cell perturbation method of Muñoz-Esparza et al. (2014, 2015) and find that the LES

is capable to overcome erroneous features in the mesoscale output. The cell perturbation scheme helps to greatly reduce the

distance required for turbulence to develop, especially for the coarser mesoscale forcings. The best results are obtained with

the highest resolution mesoscale model. Heinze et al. (2017) used a one-way nesting approach to employ realistic LES over80

Germany. Three domains were used to step down from 625m horizontal resolution to 156m with a constant grid refinement

factor of two. They compared their results to the observations of the HD(CP2) campaign and conclude that when it comes

to small-to-mesoscale variablity the use of LES drastically improves the results compared to their reference mesoscale model

COSMO. PALM has also recently implemented an option for offline nesting within COSMO (Kadasch et al., 2021). They

employ prescribed boundary conditions and impose synthetic turbulence in addition to the boundary fields. At the moment85

there is no relaxation zone implemented, but they do note that this might change in the future. In their test cases, they find that

the boundary input has the largest impact on the main flow structures. Flow and updrafts rapidly develop with the help of the
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synthetic turbulence routine. Fully developed turbulence was found after two to three times the distance corresponding to the

eddy turnover time.

In this research we develop a set of open LBCs for anelastic LES and implement it in the Dutch Atmospheric Large Eddy90

Simulation model (DALES). The goal of the paper is threefold. First, we will give a clear and extensive description of the

open LBCs developed in this research. Second, we will show the influence of the LBCs on the mean fields and turbulent

characteristics. Third, we will see how, in an idealized setup, the results depend on the temporal and spatial resolution of the

input data, as one would encounter when embedding the LES in a coarser, non-turbulence resolving, LAM. The LBCs are

developed to minimize reflections and the area needed for turbulence to develop and to allow for potential future one-way95

nesting with coarser LAMs. To minimise reflections, the outflow boundary conditions will be based on the radiation boundary

condition of Sommerfeld (1949) and for the inflow boundary a new set of Robin boundary conditions will be derived. To allow

for one-way nesting with coarser LAMs, the open LBCs will be developed such that they allow time varying input. The LBCs

are tested with a simplistic dry convective case in a "Big Brother" like setup (Denis et al., 2002). This allows us to single out

the influence that the LBCs have on the fields in the interior of the domain. To study the influence of the spatial and temporal100

resolution of the boundary input data, the turbulence in the input data is filtered both in space and time simultaneously. This

allows us to study the influence of the open LBCs in a setup where the LES is coupled to a non-turbulence resolving model and

quantify the influence of the spatial and temporal resolution ratios between the parent and child model. We will investigate how

long it takes for turbulence to fully develop. Furthermore, the influence of synthetic turbulence on generating inflow turbulence

is explored.105

2 Boundary condition implementation

This section will describe the implementation of the open boundary conditions in the Dutch Atmospheric Large Eddy Simula-

tion (DALES) model (Heus et al., 2010). The presented open boundary implementation is applicable to any incompressible at-

mospheric LES and except for the discussion about mass conservation, could also be used for fully compressible LES. DALES

solves the anelastic Navier-Stokes equations on a staggered Arakawa-C grid. The prognostic variables are the three velocity110

components (u,v,w), liquid potential temperature (θl), total water specific humidity (qt), the rain water specific humidity (qr),

the rain droplet number concentration (Nr), the subfilter scale turbulence kinetic energy (e) and up to 100 active or passive

scalars. Appropriate boundary conditions are required for all the prognostic variables at the resolution of the simulation. The

velocity components are located at their respective cell faces and the rest of the variables at the cell centres. The boundary

is defined as the cell faces of the outermost grid cells. Therefore, the boundary-normal velocity components are located at115

the boundary, whereas the other variables are located offset from the boundary. If the boundary input is not at the same time

intervals as the simulation, the input data is linearly interpolated in time to the model time. First, the implementation for the

boundary-normal velocity components will be given and conservation of mass will be discussed. Second, the implementation

for the other variables is described. Third, the algorithm used to add synthetic turbulence at the boundaries will be discussed.
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2.1 Boundary-normal velocity components120

The boundary condition for the boundary-normal velocity components depends on whether the cell is an in- or outflow cell.

An inflow cell for the boundary-normal velocity component is defined as uB · n̂ < 0, where uB is the input velocity vector

specified at the boundary, given by external data, and n̂ the outward pointing boundary normal unit vector. An outflow cell is

defined by uB · n̂≥ 0.

2.1.1 Outflow125

The outflow boundary condition is based on the Sommerfeld radiation boundary condition (Sommerfeld, 1949), which states

that disturbances should only be advected out of the domain with no reflections. The radiation boundary condition takes the

form of a single propagating wave.

∂un
∂t

=

−U
ρ

∂ρun

∂n + ϵ, for lateral boundaries

−U
ρ

∂ρun

∂n + g θ−⟨θ⟩
⟨θ⟩ + ϵ, for top boundary

(1)

In Eq. (1) un is the boundary-normal velocity component,U the advection/phase speed of the disturbances, ∂/∂n the boundary-130

normal derivative, ρ the reference density profile used by DALES, θ the potential temperature, g the gravitational acceleration,

ϵ a correction factor required to conserve mass, which will be explained in more detail in Sect. 2.1.3 and ⟨⟩ denotes a horizontal

slab average. For the vertical component at the top boundary the buoyancy force is added which works as a damping factor for

the top boundary in stably stratified flows. The time derivative is discretised using DALES’ third order Runga-Kutta scheme

(Heus et al., 2010). The spatial derivative is discretised using a first order upwind scheme.135

∂un
∂n

∣∣∣∣
i

≈


ui−ui−1

∆xn
, for uB ≥ 0

ui+1−ui

∆xn
, for uB < 0

(2)

For non-dispersive waves with a phase speed equal to U , the 1-D case of Eq. (1) without the correction factor ϵwill not generate

any reflections. In the case of atmospheric simulations, which is a dispersive system, the transport velocityU needs to be chosen

carefully, such that reflections are minimised. Popular implementations for the phase speed are given by Orlanski (1976) used

by PALM (Maronga et al., 2015, 2020) and by Klemp and Wilhelmson (1978) used in MESO-NH (Lafore et al., 1998; Lac140

et al., 2018) and WRF-LES (Skamarock et al., 2021). Here we will use a slightly adjusted version of the implementation given

by Hedley and Yau (1988). The implementation of Hedley and Yau (1988) is a hybrid version of the implementation given

by Orlanski (1976) and is shown to work better. Similar to Orlanski (1976), the velocity field and tendencies upstream of the

boundary at the previous time step are used to define the local phase speed, which is then propagated to the boundary for the

next time step. Additionally, Hedley and Yau (1988) set a fixed lower limit for the phase speed. We will set the lower limit to145
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the boundary input normal velocity component, uBn .

U∗ = U |t−∆t
xn−x̂·n̂∆xn

=

〈
−ρ∂un

∂t

(
∂ρun
∂n

)−1
〉int

,

U =


uBn , if |U∗| ≤

∣∣uBn ∣∣
U∗, if

∣∣uBn ∣∣< |U∗|< ∆xn

∆t

sign(U∗) ∆xn

∆t , if |U∗| ≥ ∆xn

∆t

(3)

In Eq. (3) t−∆t denotes the previous time step and xn − x̂ · n̂∆xn the location one gridsize upstream of the boundary. To

avoid large fluctuations in the phase speed due to local gradients, the phase speed is averaged over the horizontal dimension

perpendicular to the boundary vector over a distance of ∆xint (north and south boundaries) or ∆yint (west and east boundaries),150

denoted by <>int. This is similar to PALM, which averages laterally over the entire boundary (Maronga et al., 2015). For

stability reasons the upper bound of the phase velocity is set to the CFL condition. Equation (3) is discretised using a first order

upwind scheme Eq. (2).

2.1.2 Inflow

For inflow cells the boundary-normal velocity at the boundary un is nudged towards the input value uBn with a relaxation155

time scale equal to the integration time scale used by DALES (∆t). The discretisation of the time derivative is given by the

third-order Runga-Kutta scheme used by DALES (Heus et al., 2010).

∂un
∂t

=
uBn −un

∆t
+ ϵ (4)

2.1.3 Conservation of mass

The use of radiation boundary conditions means that continuity is not guaranteed and a correction factor, ϵ needs to be added.160

Hedley and Yau (1988) enforce that the height integrated mass flux through each boundary does not change in time. This limits

however the functionality for time-varying wind fields, in which inflow boundaries can become outflow boundaries and vice

versa. Here we derive a correction term that forces the mass flux through the boundary to the boundary input on a defined length

scale. This allows the wind field to change in magnitude and direction over time. To conserve mass the following constrains

are imposed.165

1. The input boundary-normal velocity components integrated over the lateral and top boundaries S(B) satisfy the continuity

equation conform to the reference density profile used by DALES.¨

S(B)

ρuB · n̂dS = 0 (5)

2. The lateral and top boundaries are subdivided into patches Sint defined by ∆yint and ∆z for the west and east boundaries,

∆xint and ∆z for the north and south boundaries and ∆xint and ∆yint for the top boundary. We enforce that the mass170
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flux integrated over each patch equals the mass flux given by the input velocities integrated over the same patch.
¨

Sint

ρu · n̂dS =

¨

Sint

ρuB · n̂dS (6)

To obtain the correction factor ϵ, we define ϵ to be constant (in space) within a single integration patch Sint, but can differ

between patches. To obtain an expression for the correction term on a particular integration patch ϵ
(
Sint
)
, we take the time

derivative of Eq. (6). Further, we define ∂ũn

∂t = ∂u
∂t − ϵ as the tendency from either Eq. (1) or (4) minus the correction term.175

Within DALES the tendencies for the boundary-normal velocities are first calculated without the correction term. These ten-

dencies are then used to calculate the correction term ϵ for each integration patch using Eq. (7). The correction factor is then

added to the tendencies before applying them to make sure mass is conserved.

ϵ
(
Sint)= ˜Sint ρ

(
∂uB

n

∂t − ∂ũn

∂t

)
dS˜

Sint ρdS
(7)

The correction factor ϵ can be physically interpreted as the correction required to force the mass flux through the integration180

patch Sint to the mass flux integrated over the patch as given by the input. Since the constrain is set on the integrated quantity,

fluctuations smaller than the set integration patch are conserved. Smaller values for ∆xint and ∆yint impose more strict bound-

ary conditions, with Dirichlet conditions in the limit where ∆xint =∆x and ∆yint =∆y. When used in a nested simulation,

∆xint and ∆yint could be set to the gridsize used by the parent model. In this setup the total mass flux through a parent cell at

the boundary of the child model (DALES) is conserved, while the child model is free to generate turbulence on smaller scales.185

This is illustrated in 2D in Fig. 1 in which the blue cells correspond to the parent model and have a resolution of ∆xparent and

the brown cells to the child model (DALES).

The role of the correction term is to conserve mass integrated over the domain, such that the pressure solver, which needs

to find a solution that conserves mass locally, can find a solution. It is possible to implement the tendency from the correction

factor as a non-homogeneous Neumann boundary condition for the modified pressure (defined in Heus et al., 2010) ∂π
∂n =−ϵ,190

such that all the tendencies as a result of the continuity requirement are together. We chose however, to add the term in the

equations for the boundary-normal velocity components and use homogeneous Neumann boundary conditions for the modified

pressure ∂π
∂n = 0, because this allows us to keep using the Fourier pressure solver present in DALES (Heus et al., 2010), by

using cosine basis functions only.

At the moment the vertical length scale of the integration patch is fixed to the vertical grid resolution. This allows for a195

straightforward implementation when using stretched vertical grids. We have also experimented with setting the vertical length

scale of the integration patch to the domain height. This couples the boundary layer with the column above the inversion layer

and gave unwanted results. In the future the implementation can be extended to allow for a variable vertical integration length

scale as well.
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Figure 1. 2D illustration of a nested setup in which the integration length scales are set to the gridsize of the parent model. In this setup

the mass flux through a parent cell (blue) at the boundary of the child model (brown) is conserved, while the child model is free to generate

turbulence on smaller scales.

2.2 Boundary-tangential velocity components and cell-centered variables200

This section will discuss the boundary conditions for the cell-centered variables and the tangential velocity components. These

variables are not computed at the boundary. Instead, ghost cells are used together with a second order central discretisation

to determine the behaviour of the variable at the boundary. The implementation is different for in- and outflow boundaries.

For the cell-centered variables and tangential velocity components, a boundary is defined as inflow if u · n̂ < 0 and as outflow

otherwise. Note that this is different from the definition for the boundary-normal velocity components, where the nature of the205

boundary is determined by the input velocity uBn . These two can differ for outflow boundaries when the advection velocity

is low and turbulence strong enough to reverse the local flow direction, as the radiation boundary condition does not enforce

outflow on the local scale.
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2.2.1 Outflow

For outflow cells homogeneous Neumann conditions, Eq. (8), are specified at the lateral boundaries.210

∂ψ

∂n
= 0 (8)

In Eq. (8) ψ is any of the cell centered variables (θl, qt, qr, Nr, e) or tangential velocity components. At the top of the domain

Neumann boundary conditions are set, which take the slab averaged vertical derivative into account,

∂ψ

∂z
=
∂ ⟨ψ⟩
∂z

, (9)

in which<> denotes a slab average. The decision to use homogeneous Neumann boundary conditions for all but the boundary-215

normal velocity components has been based on the results of Sani and Gresho (1994) and Craske and Van Reeuwijk (2013).

Sani and Gresho (1994) state that Neumann boundary conditions tend to produce less perturbations in comparison to a bound-

ary condition on the variable itself (Dirichlet). Setting homogeneous Neumann conditions for the boundary-normal velocity

components results in an ill-posed system with fluctuations in the pressure field and is not suited for turbulent flows (Sani and

Gresho, 1994; Craske and Van Reeuwijk, 2013).220

2.2.2 Inflow

For inflow boundaries, Dirichlet boundary conditions are a common choice (e.g. Maronga et al., 2015; Lac et al., 2018).

However, for flows in which boundary cells change from in- to outflow boundaries and in which the outflow boundary is free

to diverge from the boundary input, Dirichlet boundary conditions can result in large gradients over the boundary when they

instantaneously set the value at the boundary to the boundary input value. For models that use radiation boundary conditions,225

this can result in unrealistic large tendencies at the boundary. MESO-NH poses a less strict Dirichlet inflow boundary condition

by setting the boundary value to a weighted average between the input value and the nearest LES domain value, with a weight

of 0.8 for the interior values (Lac et al., 2018). In this research we take a different approach and implement a Robin boundary

condition, which will be derived in this section. The Robin boundary condition is a weighted average between a Dirichlet and

Neumann boundary condition.230

To derive the inflow boundary condition, we assume that advection is the only process taking place at the boundary.

∂ψ

∂t
+un

∂ψ

∂n
= 0 (10)

We also impose that the boundary value is nudged towards a given input value ψB over a timescale τ .

∂ψ

∂t
=
ψB −ψ

τ
(11)

Combining these two constrains gives,235

ψB −ψ

τ
+un

∂ψ

∂n
= 0, (12)
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which can be rewritten in the form of a Robin boundary condition.

ψ−unτ
∂ψ

∂n
= ψB (13)

The behaviour of Eq. (13) is determined by the value of unτ . Dirichlet and homogeneous Neumann conditions correspond to

different limits.240

lim
unτ→0

ψ = ψB (Dirichlet)

lim
unτ→±∞

∂ψ

∂n
= 0 (Homogeneous Neumann) (14)

The classical Dirichlet inflow conditions can thus be obtained by setting τ = 0. When τ ̸= 0 the boundary condition transitions

from Dirichlet to homogeneous Neumann conditions as the velocity increases, avoiding large fluxes into the domain. At un =

0 the transition point between in- and outflow conditions, the boundary condition changes from Dirichlet (inflow), unτ =

0, to homogeneous Neumann (outflow). This transition can be smoothed by introducing a variable timescale for the inflow245

conditions. The inflow conditions were derived with the proposition that advection nudges the boundary over a fixed time

scale. At very low velocities advection plays a minor role and this assumption breaks down. To overcome this, the time scale

needs to increase as the velocity approaches 0. The following requirements are set for τ :

lim
un→0

unτ =∞

lim
un→∞

τ = τ0

τ0 = 0⇒ τ = 0 (15)

The first condition is set such that Eq. (13) approaches homogeneous Neumann conditions for un = 0, which removes the250

discontinuity. The second condition specifies that for large advection velocities we would like to have a constant nudging time

scale τ0. The third condition allows to set the Robin inflow condition to Dirichlet inflow conditions when the nudging time

scale is set to τ0 = 0. A dependency of τ ∼ (1/un)
p, where p≥ 2 satisfies the conditions. The relation used is given by:

τ = τ0

[
1+

∣∣∣∣ usun
∣∣∣∣p] , (16)

in which us is a subgrid velocity scale at the boundary. Here we used the square root of the subgrid turbulent kinetic energy255

taken from the SFS-TKE scheme used by DALES (Heus et al., 2010). A different estimate can be used as well. When the

resolved velocity is larger than the subgrid velocity, un ≫ us, the timescale reduces to τ = τ0. When the resolved velocity

drops below the subgrid velocity the time scale will increase, providing a transition from the Robin boundary condition to the

homogeneous Neumann condition at un = 0. The final form of the Robin inflow boundary conditions are given by Eq. (17).

ψ−unτ0

[
1+

∣∣∣∣ usun
∣∣∣∣p] ∂ψ∂n = ψB (17)260

At the top of the domain the slab-averaged vertical gradient is taken into account. The Robin boundary condition at the top of

the domain is given by Eq. (18).

ψ−wτ0

[
1+

∣∣∣us
w

∣∣∣p](∂ψ
∂z

− ∂ ⟨ψ⟩
∂z

)
= ψB (18)
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2.3 Synthetic turbulence routine

To investigate the potential of synthetic turbulence in reducing the turbulence spinup area, the Random Flow Generation (RFG)265

algorithm of Smirnov et al. (2001) is implemented. When used, ψB in Eq. (18) and Eq. (17) and uBn in Eq. (4) are replaced

by ψB +ψR and uBn +uRn respectively, where the superscript R denotes the perturbation given by the RFG algorithm. In the

calculations for the mass conservation correction factor, ϵ Eq. (7), uBn is still used to satisfy condition Eq. (5). The RFG algo-

rithm involves scaling and orthogonal transformation to create non-homogeneous anisotropic (near) divergence free velocity

perturbations for a given covariance matrix u′iu
′
j , turbulent length scale λ and turbulent time scale τR from the summation270

of N harmonic functions. The RFG routine is extended to give correlated potential temperature perturbations as well. From

personal experience it is known that potential temperature perturbations are more effective in initiating turbulence than mo-

mentum perturbations. To create the potential temperature perturbations, a perturbation field is created from the summation of

N harmonics,

α=

√
2

N

N∑
i=1

pi cos

(
ki ·

x

λ
+ωi

t

τR

)
+ qi sin

(
ki ·

x

λ
+ωi

t

τR

)
,

p,q,ω ∈N (0,1) ,

k ∈N (0,0.5) , (19)275

where x is the position vector, t the time and N (µ,σ) samples from a normal distribution with mean µ and standard deviation

σ. Next, the perturbation field is scaled for a given θ′2 and correlated to wR for a given w′θ′.

θR =

(
ρ
wR√
w′2

+α
√
1− ρ2

)√
θ′2,

ρ=
w′θ′√
θ′2w′2

(20)

The RFG algorithm is easy to implement and is computationally inexpensive. A downside of the RFG algorithm is that it

produces a Gaussian-model-like power spectrum. Huang et al. (2010) developed an improved algorithm that allows for any280

power spectra, but it comes with an additional computational cost. There are many other techniques and routines that are

being used to help generate turbulence at inflow boundaries. However, the aim of this paper is not to study the performance

of different inflow turbulence routines, but to rather show the potential of adding perturbations to the boundary input fields in

general.

3 Simulation set up and methodology285

The test case setup used in this research is summarized in Fig. 2 and consists of a "Big Brother"-like setup (Denis et al.,

2002) to test the performance of the open LBC implementation, simulations with spatially and temporally smoothed input to

test the influence of turbulence present in the input data and simulations with added synthetic turbulence in addition to the

11
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Figure 2. Illustration of the simulation setup. The solid blue rectangles show the different simulations and the sections in which their results

are analyzed.

smoothed input to see how these algorithms can help generate turbulence. The simulation case used in the test setup is the

development of a dry convective boundary layer. This case is well understood and DALES is known to produce realistic results290

(Heus et al., 2010). The dry convective boundary layer is forced with a constant surface heat flux of w′θ′s = 0.115Kms−1, a

zero surface momentum flux u∗ = 0ms−1 and a geostrophic forcing in the east-west direction corresponding to ug = 3ms−1.

The simulation is initialised with an east-west velocity of U = 3ms−1, a north-south velocity of V = 0ms−1 and an initial

potential temperature profile that consists of a boundary layer with a temperature of 300K, an inversion layer at 950m and an

inversion jump of ∆θ = 8K over 120m (linear interpolation between 300K and 308K over 120m) with a constant temperature295

gradient of ∂θ
∂z = 0.003Km−1 above. This corresponds to a convective velocity scale of w∗ = 1.5ms−1. The domain size is

Lx×Ly×Lz = 15.36×3.84×1.92km with a horizontal resolution of ∆x=∆y = 60m and a vertical resolution of ∆z = 20m.

The simulations last 6 hours and have an integration time step of ∆t= 5s. The subgrid scheme used is the SFS-TKE scheme

described in Heus et al. (2010). For the advection of all variables DALES’ second order central scheme was used (Heus et al.,

2010). This setup is very close to the dry (strong) convective boundary layer shown in Heus et al. (2010), which was already300

studied by Sullivan et al. (1998). The differences are the addition of a mean background wind, a weaker surface heat flux, a

higher horizontal resolution, the use of second-order advection schemes and a fixed integration time step. The initial profiles

and the evolution over time of the potential temperature, east-west wind velocity, potential temperature flux and east-west wind

variance are shown in Fig. 3.

The "Big Brother"-like experiment, as was first proposed by Denis et al. (2002), consists of a simulation with open boundary305

conditions that is directly coupled to an identical reference simulation with periodic boundary conditions. The boundary fields

12



Table 2. Setup parameters for the reference case. From left to right; grid spacing, domain size, integration time step, surface heat flux, surface

momentum flux geostrophic wind forcing.

∆x/y, ∆z (m) Lx, Ly , Lz (m) ∆t (s) w′θ′s(Kms−1) u∗ (ms−1) ug , vg (ms−1)

60, 20 15360, 3840, 1930 5 0.115 0 3, 0

298.0 305.0 312.0
0
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u′2per (m2s 2)

Time (color):
Flux (linestyle):

0 hr (initial profile)
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Figure 3. Evolution of the periodic reference case from initial profiles to end of simulation (6hr). Left to right; slab averaged potential

temperature, slab averaged east-west velocity, slab averaged resolved and total heat flux, slab averaged east-west velocity variance.

of the periodic simulation are communicated every time step to the simulation with open boundaries. This allows us to directly

study the influence of the open boundary implementation, since both the periodic and open boundary simulation are now

identically forced and only differ in the implementation of their boundary conditions. The coupling is done offline, which

means that the periodic simulation is done first and the boundary output is saved for every time step. This output is then used310

to force the simulation with open boundary conditions. In this setup the west boundary is (mainly) an inflow boundary, the east

boundary (mainly) an outflow and the north and south boundaries will be in- and outflow boundaries changing for each grid

cell and with time. The periodic simulation uses periodicity for the lateral boundaries and a no-stress boundary condition at

the top (Heus et al., 2010). The simulation with open boundary conditions uses open boundary conditions for the lateral and

top boundaries. First, we carry out a sensitivity analysis to study the dependence of the solution on the parameters introduced315

in the open boundary implementation. The parameters will be individually perturbed around a reference set. Next, a more in

depth analysis is conducted on the results of the simulation with the reference parameters. The parameters for the sensitivity

analysis are listed in Table 3 with the default parameters highlighted in green.
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Table 3. Settings of the open boundary implementation for the sensitivity runs. The default settings are highlighted in green.

∆xint/yint (m) p (−) τ0 (s) Buoyancy term top boundary

∆x/y, 0.5Lx/y , Lx/y 2, 3, 4 0, 20, 60 on, off

In practice, the open boundary conditions will often be used to couple the LES to a coarser resolution model, such as a

meso-scale weather model. To study the impact of coarse resolution (in space and time) boundary data, the periodic output is320

smoothed with a Gaussian filter before it is used to force the open boundary simulation. The simulation with open boundary

conditions is repeated for different degrees of spatial and temporal smoothing. This setup emulates a one-way nesting setup

and moves from the LES being nested in a turbulence-resolving model to a non-turbulence-resolving model. It also allows us

to study the influence of resolution ratios between parent and child model in a nested setup for both the spatial and tempo-

ral resolutions. Since the smoothed fields come from the same model with the same model physics, resolution and subgrid325

parametrisations, any differences between the results of the simulation with the smoothed input and the reference (periodic)

simulation must be caused by the boundary implementation and the smoothing. Comparison to the case without smoothing

allows us to see the influence of smoothing, which relates to the resolution/turbulent scales present in the emulated parent

model.

Different techniques exist to artificially add turbulence or increase the turbulent scales present in coarse data. To demonstrate330

the potential of one such technique, the synthetic turbulence algorithm of Smirnov et al. (2001) is implemented and expanded

to give perturbations for the potential temperature as well (Sect. 2.3). The smoothed-input open boundary simulations are

repeated with the addition of synthetic turbulence. The perturbations are created using height-depended covariance matrices

for u and θ obtained from the differences between the smoothed and non-smoothed input fields. The turbulent length scale

is set to the boundary layer height, which represents the largest turbulent eddies. The turbulent time scale is calculated as the335

turbulent length scale over the mean advection velocity. The covariance information would not be available in a real case setup,

but it allows us to see how the algorithm would perform in a best case scenario. The purpose of these simulations is not to find

the best synthetic turbulence implementation, nor to fine tune the implementation used, but to give an impression on how these

routines can potentially improve the results.

4 Results and Discussion340

This section will describe the results of the test case described in Sect. 3. First, the performance of the open boundary imple-

mentation is evaluated using the coupled periodic/open boundary simulations. Second, the influence of input turbulence scales

is described using the smoothed-input simulations. Third, the prospects of synthetic turbulence are explored.
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4.1 Big Brother simulation

In this section the results of the "Big Brother" experiment are shown. In this setup the periodic boundary output is given to345

the simulation with open boundary conditions at the same spatial and temporal resolution. This setup allows us to investigate

the definition and implementation of the boundary conditions. Any disturbances present in the simulation with open boundary

conditions must be a direct result of the boundary implementation, as the periodic simulation supplies "perfect" boundary fields.

It is a first necessary test that needs to be passed. The challenging areas are mainly the outflow (east) boundary and the north

and south boundaries. At the outflow boundary, fields should leave the domain unperturbed and the area affected by reflections350

upstream of the outflow boundary should be minimal. The north and south boundaries are both in- and outflow boundaries and

will therefore challenge the capability of the boundary conditions to switch from in- to outflow in time and space. The results

from the simulation with open boundary conditions are compared to the reference case with periodic boundary conditions. We

would like the mean field and the turbulence properties such as the length scales and energy distribution to be unaffected by

the numerics of the boundary condition implementation. The two simulations don’t have to match from a deterministic point355

of view, as the chaotic nature of the system will result in different placement of eddies between both simulations.

To investigate the sensitivity of the solution on the parameters of the open boundary implementation, the simulation is

repeated for different sets of parameters. Each of the parameters is individually perturbed around the default values. The

parameters and their values are shown in Table 3. Figure 4 shows the slab average profiles calculated over the last half hour

of the simulation as a perturbation from the periodic profiles for potential temperature, eastward velocity, vertical potential360

temperature flux and eastward velocity variance. The profiles for the periodic simulation can be seen in Fig. 3. The black line

represents the solution for the default values. Each color represent a simulation where one of the parameters is perturbed and

the dashed or dotted line the perturbation value. Within the boundary layer, below 1000m, the solution does not significantly

depend on the values chosen for the parameters. All simulations are very close to the periodic simulation (within 1%), indicating

that the open boundary implementation does not have a significant impact on the solution.365

At and above the inversion height the simulation with a larger timescale for the Robin inflow conditions, τ0 = 60s, and

the simulation without the buoyancy term in the top radiation boundary condition perform significantly worse then the other

simulations. Without the buoyancy term in the top radiation boundary conditions, reflections from the top boundary result in

distortions in the top layer of the simulation. Sometimes a sponge layer is implemented to dampen these type of reflections,

but we don’t need it here as, when used, the buoyancy term in the top radiation boundary condition solves the problem. The370

longer time scale for the Robin inflow conditions corresponds to a Robin boundary condition that is more weighted towards a

Neumann boundary condition. A too long time scale gives too much freedom at the inflow boundary and allows for waves to

build up around the inversion layer. A shorter timescale such as used in the default settings therefore works better. The default

timescale is not set to zero, which corresponds to Dirichlet conditions, because a slightly relaxed condition works better for

simulations with lower mean background wind speeds.375

For the integration length scale ∆xint and ∆yint the simulation where they are set to the grid resolution shows the best

results. This corresponds to Dirichlet boundary conditions for the boundary-normal velocity components. These settings work
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well for this setup, because the boundary input is turbulent, at the same resolution and from the same model. In other words, the

simulation with open boundary conditions can find a solution that fits these boundary conditions. A larger integration length

scale gives the LES more freedom and works better when the boundary input does not contain turbulence or is from a different380

model. The simulations have also been done with a shorter timestep of 2s, the results for all but the Robin boundary condition

time scale remain the same. For the Robin boundary condition the optimum time scale is lower for a shorter time step, which

requires further research. All the results shown from here on are obtained with the default settings.
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Figure 4. Sensitivity analysis for the open boundary implementation parameters. Slab average profiles for simulations that have parameters

perturbed around a default configuration (Table 3). The profiles are calculated over the last half hour of the simulation as a perturbation from

the periodic profiles (Fig. 3). Left to right; potential temperature, eastward velocity, vertical potential temperature flux, eastward velocity

variance.

Figures 5 and 6 show a top (xy) view at 110m and a side (xz) view of the potential temperature respectively. The top view is

shown as a perturbation with respect to the periodic slab average. The cross-sections are a snapshot after 6 hours of simulation385

time. The top panel shows the results for the periodic simulation and the bottom panel for the simulation with open boundary

conditions. The location of the xz cross-section within the xy cross-section (and vice versa) is shown by the dashed line. The

slope of the solid line in the xz cross-section of the simulation with open boundary conditions corresponds to the ratio of the

advective velocity scale (U = 3ms−1) and convective velocity scale (w∗ = 1.5ms−1). Left (upstream) of this line, fields will

be mainly dominated by information advected from the inflow boundary, whereas right of the line (downstream) the fields390

will be mainly influenced by convection originating from the surface boundary. The cross-sections are used to visually inspect

the results to see if there are any discrepancies in the mean fields or turbulent structures. The simulations don’t have to be

similar from a deterministic point of view as the smallest differences at the boundaries would result in a different solution due
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to the chaotic nature of the system. The results of the open boundary simulation are very similar to the periodic simulation.

The spatial scales and magnitude of the turbulent features resemble those of the periodic simulation. Up to 3km from the395

inflow boundary (left) the turbulent features of the open boundary simulation are almost identical in shape and location to the

periodic simulation, which shows that the turbulent boundary input fields at the inflow boundary are communicated well to

the open boundary simulation. Further downwind they start to deviate as a result of the chaotic nature of the system. No clear

disturbances at any of the boundaries are seen and at the outflow boundary (right) the turbulent fields leave the domain without

any significant reflections.
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Figure 5. Horizontal cross-section of the potential temperature perturbation with respect to the periodic slab average at a height of 110m for

the periodic simulation (top) and open boundary simulation (bottom). The dotted line shows the location of the xz cross-section shown in

Fig. 6.

400

A more quantitative comparison of the influence of the open boundary conditions on the magnitude of the turbulent pertur-

bations is obtained by calculating 1
2

[
σ2
y (u)+σ2

y (v)+σ2
y (w)

]
for every time step and averaging it over the last half an hour

of the simulation. σ2
y() denotes the variance in the cross-wind (y) direction. This quantity is very close to the definition of

turbulent kinetic energy (TKE) and will therefore be referred to as TKE from hereon. Figure 7 shows cross-sections of TKE

for the periodic and open boundary condition experiments. The top panel shows the TKE for the periodic simulation and the405

bottom panel for the simulation with open boundary conditions. The grey dotted (dashed) contour lines mark the areas where

the TKE values are smaller (larger) than the 2.5% (97.5%) percentile of the periodic simulation for that height. The slope

of the solid black line corresponds to the ratio of the advective velocity scale (U = 3ms−1 and the convective velocity scale

(w∗ = 1.5ms−1) and can be used as a measure of where the information from the surface boundary condition meets the infor-

mation from the inflow boundary (left). The mean TKE values have similar magnitudes for both simulations. The simulation410

with open boundary conditions produces larger TKE values above the boundary layer and just before the outflow boundary
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Figure 6. Vertical cross-section of the potential temperature for the periodic simulation (top) and open boundary simulation (bottom). The

dotted line shows the location of the xy cross-section shown in Fig. 5 and the slope of the solid line corresponds to the ratio of the advective

velocity scale (U = 3ms−1) and convective velocity scale (w∗ = 1.5ms−1).

(right). The increase in TKE above the boundary layer might be caused by the higher wind speeds present in the open boundary

simulation (Fig. 4). The increased TKE values at the outflow boundary are the result of reflections and disappear 1km upwind

of the outflow boundary. To further quantify the differences between the simulations we vertically integrate the TKE over the

boundary layer (Fig. 8) along the cross-section shown in Fig. 7. We find that the magnitudes of TKE between the two simula-415

tions is very similar, indicating that the boundary conditions have virtually no influence on the Big Brother simulation, once

again with the small exception of a slight accumulation of TKE at the outflow boundary.

A wavelet analysis of the potential temperature field is used to quantify the influence of the open boundary conditions on

the power spectrum of the turbulence. Figure 9 shows a wavelet analysis for the periodic (top) and open boundary (bottom)

simulations. A one dimensional wavelet analysis is performed on an instantaneous xy-slab after 6 hours of simulation time.420

The wavelet analysis is done in the along-wind (x) direction. The results for each along-wind line are averaged over the cross-

wind direction. A Morlet wavelet was used as the mother wavelet. The vertical axis shows the wavelength of the features on a

logarithmic axis. The colors denote the wavelet power on a logarithmic scale. The hatched area indicates the cone of influence

(COI), the COI describes the area that is potentially affected by boundary effects. These boundary effects result from the

stretched wavelet extending beyond the edges of the domain and results within the COI should therefore be ignored. The grey425

dotted (dashed) contour lines mark the areas where the wavelet energy is smaller (larger) than the 2.5% (97.5%) percentile

of the periodic simulation for that wavelength. The wavelet analysis shows similar results for both simulations. As expected,

least energy is contained in the smallest wavelengths and most energy is contained in features with a wavelength similar to
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Figure 7. TKE profile derived from the cross-wind direction for the periodic (top) and open boundary (bottom) simulations. The slope of

the solid line corresponds to the ratio of the advective velocity scale (U = 3ms−1) and convective velocity scale (w∗ = 1.5ms−1). The grey

dotted (dashed) contour lines mark the areas where the TKE is smaller (larger) than the 2.5% (97.5%) percentile of the periodic simulation

for that height.
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Figure 8. TKE integrated over the boundary layer. The dashed lines show the mean and the mean plus-minus two times the standard deviation.

the boundary layer height (≈ 103m). There are no clear differences visible between the periodic and open boundary wavelet

analysis, which indicates that the open boundary implementation does not influence the turbulent power spectrum.430
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Figure 9. Wavelet analysis of the potential temperature at a height of 110m for the periodic (top) and open boundary (bottom) simulations.

The vertical axis shows the wavelengths of the features, the horizontal axis the distance from the inflow boundary and the coloring the energy

present. The hatched area is the cone of influence and indicates the area that is potentially affected by boundary effects and results within

should be ignored. The grey dotted (dashed) contour lines mark the areas where the wavelet energy is smaller (larger) than the 2.5% (97.5%)

percentile of the periodic simulation for that wavelength.

From Figs. 5-9 it is concluded that the influence of the open boundary implementation on the simulation is minimal. The

slab averaged fields, turbulent energy and spectral signature of the simulation are minimally perturbed by the implementation.

Furthermore, the results of the sensitivity analysis show that solution is not sensitive to the values of the parameters, as long as

they are within a reasonable range and the buoyancy term in the top radiation boundary condition is used.

4.2 Smoothed input simulations435

This section will show and discuss the results of the smoothed-input simulations for different degrees of horizontal and tem-

poral smoothing. This setup emulates the situation where the outer model provides boundary fields at a coarser spatial and/or

temporal resolution than the LES. The panels in Figs. 10 and 11 show the same cross-sections as the bottom panels of Figs. 5

and 6 respectively for different degrees of smoothing. The horizontal axis of the panels shows the amount of smoothing in the

temporal dimension and the vertical axis the amount of smoothing in the horizontal direction. The top left cross-section is the440

result without smoothing and is the same as the bottom panels from Figs. 5 and 6. For low degrees of smoothing, σt ≤ 30∆t and

σx ≤ 4∆x, the open boundary simulations resemble the periodic simulation and the solution is not significantly disturbed. For

higher degrees of smoothing wavelike structures emerge at the inflow boundary (left) that persist up to 5km into the domain.

These structures become more prominent with increased smoohting. Horizontal smoothing (vertical axis) induces features that

are aligned in the cross-wind direction. Temporal smoothing result in similar disturbances with the addition of some along-445
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wind disturbances. The spatial-temporal smoothing does not affect the outflow boundary, where turbulent structures leave the

domain unperturbed with no visual reflections.
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Figure 10. Horizontal cross-section of the potential temperature perturbations with respect to the periodic simulation at a height of 110m

(similar to Fig. 5) for different degrees of smoothing. The horizontal axis of the panel shows the amount of smoothing in the temporal

dimension and the vertical axis the amount of smoothing in the horizontal direction.

Figure 12 shows the TKE cross-sections for the smoothed-input simulations. Smoothing the input reduces the turbulent

scales present in the input data. This results in an area of reduced TKE downwind of the inflow boundary (left). The slope of

the black line in Fig. 12 indicates the ratio between the advective and convective velocity scales (U/w∗). It is expected that450

upwind (left) of this line the solution will be predominately dominated by information advected from the inflow boundary,

whereas downwind (right) of this line convection would take over. The area of reduced TKE values downwind of the inflow

boundary increases with increased smoothing and for large degrees of smoothing, the reduced TKE values extent much further

than the line given by theU/w∗ ratio. For temporal smoothing of σt ≥ 30∆t a burst of TKE is present downwind of the reduced

TKE area before settling to a TKE cross-section similar to that of the periodic simulation. This burst in TKE was also found by455

Muñoz-Esparza and Kosović (2018) and Kadasch et al. (2021). Our hypothesis is that the burst in TKE is a result of the clash

between non turbulent fields that are mainly governed by information supplied at the lateral inflow boundary and turbulent fields

originating from surface convection. We believe that the sudden transition from non turbulent flow to turbulent flow causes an

overshoot in TKE. This phenomena is also seen during the spinup time of (periodic) turbulent simulations. During the first hour

the turbulence in the boundary layer needs to build up. Only after this is developed it is capable of transporting the accumulated460
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Figure 11. Vertical cross-section of the potential temperature (similar to Fig. 6) for different degrees of smoothing. The horizontal axis of the

panel shows the amount of smoothing in the temporal dimension and the vertical axis the amount of smoothing in the horizontal direction.

surface moisture and heat flux through the boundary layer causing a peak in TKE but also in cloud fraction if clouds are formed

on the top of the boundary layer (e.g. Siebesma and Cuijpers, 1995). In the worst cases (highest degrees of smoothing) it can

take up to 6−7km before the TKE settles to values similar to those of the periodic simulation. The TKE field near the outflow

boundary is not affected by the smoothing. The wavelike structures seen in Fig. 10 are not visible in the TKE cross-sections,

as they are aligned in the cross-wind direction, the same direction over which the TKE is calculated. Once again, the results465

are quantified further by vertically integrating the TKE over the boundary layer along the cross-section for all simulations (Fig.

13). Each simulation is shown as a thin line, with the control (no smoothing) and representative simulations for strong temporal

and/or spatial smoothing highlighted in colour. Compared to the Big Brother experiment (Fig. 8), deviations from the control

(periodic) simulations are much larger, in particular at the inflow boundary but also elsewhere in the domain. Comparing Figs.

8 and Fig. 13 once again highlights that the limitations in the open boundary simulations are mostly introduced by the spatial470

and temporal smoothing of the boundary values and not by the implementation of the boundary conditions themselves.

The wavelet analysis for the smoothed-input simulations is shown in Fig. 14. For low horizontal and temporal smoothing,

σx ≤ 4∆x and σt ≤ 30∆t, the influence on the results is small and the wavelet cross-section remains close to the periodic cross-

section. For higher degrees of smoothing an increase in energy for wavelengths around 300m is seen at the inflow boundary.

The energy increase at these wavelengths represent the waves seen in Fig. 14. The energy increase is larger for increased475

smoothing. For high degrees of smoothing a decrease in energy is seen for wavelengths around 1km at the inflow boundary.
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Figure 12. TKE cross-section derived from the cross-wind direction (similar to Fig. 7) for different degrees of smoothing. The horizontal

axis of the panel shows the amount of smoothing in the temporal dimension and the vertical axis the amount of smoothing in the horizontal

direction.

This represents the lack of developed turbulence near the inflow boundary as a result of the missing turbulence in the input

data. The energy distribution moves towards the periodic profile downstream from the inflow boundary, with the maximum

energy moving towards turbulence of the scale of the boundary layer height. For the highest degrees of smoothing this takes

around 7km. The smoothing does not influence the wavelet spectrum at the outflow boundary.480

The results analysed in Figs. 10-14 show that the input smoothing deteriorates the solution. For high degrees of smoothing,

turbulent structures are missing at the inflow boundary and cross-wind oriented wavelike disturbances form. In the worst cases

it can take up to 7km before the turbulent intensity and spectral signal evolves towards values close to the results of the periodic

simulation. These results are important to take into account when coupling LES models to regional weather models. The latter

usually have a spatial resolution on the order of kilometers and common output intervals are on the order of hours. This means485

that the ratios with the LES gridsize and timestep are at the bottom right of the shown panels. To avoid large ratios between the

resolution of the input data and the LES model, repeated nesting can be used. With repeated nesting the LES can step down

from the regional weather model resolution towards the desired resolution in steps with a determined refinement ratio. The

results in this section suggest that a ratio of 4 between the spatial resolutions and a ratio of 30 between the temporal output and

LES timestep should not be exceeded. In practice this is often hard to achieve, especially the temporal constraint as weather490

model data is often saved on a hourly interval. Another approach is to artificially add finer turbulent scales to the input data.
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Figure 13. TKE integrated over the boundary layer. Each line represents one of the simulations from Fig. 12, with the corners from the panels

being highlighted in colour. The blue dashed lines represent the mean TKE from the periodic simulation and the mean plus-minus two times

the standard deviation.

This can be done by turbulence recycling, dedicated turbulence simulations or synthetic turbulence (e.g. Tabor and Ahmadi,

2010).

4.3 Synthetic turbulence simulations

The previous section has highlighted significant issues at the inflow boundary when the boundary values are smoothed in space495

and/or time, resulting in a more laminar flow near that boundary. A potential approach to reduce these issues (Smirnov et al.,

2001) is to add synthetic turbulence to the boundary values. The purpose of this section is to investigate how the results in our

simulations are affected by doing so. The algorithm of Smirnov et al. (2001) is implemented and extended to give potential

temperature perturbations as well (Sect. 4.3). Figures 15 and 16 show the cross-sections for potential temperature. Compared

to Figs. 10 and 11 three things stand out. First, the addition of perturbations seems to remove the persistent wavelike structures500

at the inflow boundary (left). There are still disturbances present such as the perturbation at the inversion, but the persistent

wavelike structure is gone. Second, the disturbances seem to disappear more quickly downstream. Third, the disturbances don’t

increase in magnitude with increased smoothing.

Figure 17 shows the TKE cross-sections for the simulations with synthetic turbulence. The addition of synthetic turbulence

increases the TKE values directly downstream of the inflow boundary. The values are still below the developed-turbulence505

values of the periodic simulation. The synthetic turbulence does help to generate developed turbulence faster, which results in

a smaller downstream area where the TKE is too low. The overshoot after the reduced TKE is also smaller in magnitude and
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Figure 14. Wavelet analysis of the potential temperature at a height of 110m (similar to Fig. 9) for different degrees of smoothing. The

horizontal axis of the panel shows the amount of smoothing in the temporal dimension and the vertical axis the amount of smoothing in the

horizontal direction.

area compared to Fig. 12. Furthermore, the overshoot no longer increases with increased smoothing in contrast to the results

without added synthetic turbulence. The overshoot is similar in shape, magnitude and location for all smoothed simulations and

is located near the line that represents the ratio of the convective and advective velocity scales, where the information from the510

inflow boundary meets with the information from the surface. This means that it can be predicted where the overshoot is and

which part of the simulation should be ignored. All simulations settle to a profile close to the periodic simulation within 5km

of the inflow boundary. The simulations with high degrees of smoothing do have an area with too much TKE. The addition of

synthetic turbulence does not seem to have an influence on the outflow boundary. A quantitative comparison once again using

the vertical integral of TKE over the boundary layer (Fig. 18) confirms the positive influence of adding synthetic turbulence,515

showing a much reduced discrepancy from the control simulation at the inflow boundary in comparison to the simulations

without it (Fig. 13).

Figure 19 shows the wavelet analysis for the smoothed-input open boundary simulations. The increase in energy for wave-

lengths around 300m is still visible at the inflow boundary, but the magnitude has been reduced by the turbulent perturbations.

The decrease in energy for wavelengths around 1km is no longer there. Furthermore, the wavelet profile converges much faster520

to the periodic profile and the results don’t seem to worsen with increased smoothing. The addition of synthetic turbulence

does not affect the outflow boundary.
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Figure 15. Horizontal cross-section of the potential temperature perturbations with respect to the periodic simulation at a height of 110m for

different degrees of smoothing (similar to Fig. 10) with the addition of synthetic turbulence.

The results analysed in Figs. 15-19 show that the addition of synthetic turbulence on top of coarse input data can improve

the simulation results. All of the inflow disturbances found in Sect. 4.2, as a result of coarse input data, were reduced in size

and/or magnitude by the addition of synthetic turbulence. Furthermore, the location of the disturbances became predictable525

and their magnitude and size no longer increased with increased smoothing. The better performance when using synthetic

turbulence may appear trivial. However, as we cannot add turbulence that is directly compatible with the LES solution, the

synthetic turbulence could be dampened or generate artefacts near the inflow boundary. The fact that it does not, shows the

value of using it in our implementation.

5 Conclusions530

This paper introduced an open boundary implementation for atmospheric large eddy simulation models that was implemented

in the Dutch Atmospheric Large Eddy Simulation model (DALES). The goal of this research was to give a detailed description

of the implementation, investigate it’s performance and show the influence of open boundary conditions and boundary input

on the solution.

Radiation boundary conditions were implemented as an outflow condition for the boundary-normal velocity components at535

the lateral and top boundaries. At the top boundary buoyancy was also taken into account, which negated the need to add a
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Figure 16. Vertical cross-section of the potential temperature for different degrees of smoothing (similar to Fig. 11) with the addition of

synthetic turbulence.

sponge layer in the upper parts of the domain. Neumann conditions were used for the other variables at outflow boundaries. For

inflow boundaries a Robin boundary condition was derived for the cell-centered variables and tangential velocity components to

allow for a smooth transition between in- and outflow boundaries and a nudging condition was implemented for the boundary-

normal velocity components.540

Using a "Big Brother"-like setup, where a simulation with open boundary conditions was forced by an identical control

simulation with periodic boundary conditions on the same spatial and temporal resolution, it was shown that the influence of

the boundary implementation on the solution was minimal. Slab averaged profiles showed that the mean profiles are conserved.

Furthermore, cross-sections of the potential temperature field showed that the turbulent input data was communicated well

through the inflow boundary and that the turbulent fields left the domain without reflections or perturbations at the outflow545

boundary. Cross-wind turbulent kinetic energy cross-sections showed that the energy in the turbulent perturbations were the

same in the simulation with open boundary conditions and the control simulation with periodic boundary conditions. The

energy spectrum of the perturbations was also unchanged, which was shown with a wavelet analysis.

To investigate the influence of the spatial and temporal resolution of the input data, the output of the periodic simulation

was smoothed before feeding it to the simulation with open boundary conditions. Different degrees of spatial and temporal550

smoothing showed that a mismatch between input turbulent scales and model scales results in the generation of wavelike

disturbances downstream of the inflow boundary. The disturbances grow in size and magnitude when the ratio between input
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Figure 17. TKE cross-section derived from the cross-wind direction for different degrees of smoothing (similar to Fig. 12) with the addition

of synthetic turbulence.

and model scales grows. The lack of turbulence in the input data also results in an area of reduced turbulent kinetic energy

downstream of the inflow boundary, where there is no developed turbulence. This area growed as the smoothing increased. For

large degrees of smoothing it was found that the turbulent energy overshoots before settling to values similar to the periodic555

control simulation. For these reasons, it is advised to be careful when coupling a large eddy simulation model with open

boundary conditions to a coarser model. Repeated nesting can be used and is currently being explored to step down in multiple

steps from coarse data to the desired resolution. The results of this research indicate that the refinement factor when nesting

should not exceed 4 in the spatial dimension and 30 in the time dimension.

The potential of adding synthetic turbulence to the LBCs was explored and the results show that it can help to reduce the560

found disturbances in size and magnitude and to speed up the process of obtaining developed turbulence by artificially reducing

the gap between the input turbulent scales and model scales. The strong wavelike character of the disturbances were removed

and the length of the inflow area required for turbulence to develop was reduced. The disturbances and development area

also became less dependent on the degree of smoothing and the development area is given by the ratio of the advective and

convective velocity scales. However, if possible, we would still advise to keep the spatial and temporal ratios between the input565

data and the LES below the earlier mentioned values.

In summary, the implementation of open BCs described in this study provides a suitable framework for further investigating

the use of the DALES model in “nested” mode. This provides a major advance in its utility as a science tool, as it increases
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the standard deviation.

its applicability to problems for which periodic BCs have strong limitations, such as over heterogeneous terrain. Spatial and

temporal averaging of the boundary values, as is typical for embedding an LES into coarser resolution meso-scale models,570

deteriorates the results. The smoothing effects are much larger than those from the implementation of the open BCs themselves.

Some of the deterioration can be overcome by adding synthetic turbulence at the inflow boundaries.
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addition of synthetic turbulence.
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T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge,
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