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Abstract. Numerical modeling of ice sheet dynamics is a critical tool for projecting future sea-level rise. Among all the

processes responsible for the loss of mass of the ice sheets, enhanced ice discharge triggered by the retreat of marine terminating

glaciers is one of the key drivers. Numerical models of ice sheet flow are therefore required to include ice front migration in

order to reproduce today’s mass loss and be able to predict their future. However, the discontinuous nature of calving poses

a significant numerical challenge for accurately capturing the motion of the ice front. In this study, we explore different5

stabilization techniques combined with varying reinitialization strategies to enhance the numerical stability and accuracy of

solving the level-set function, which tracks the position of the ice front. Through rigorous testing on an idealized domain with

a semicircular and a straight-line ice front, including scenarios with diverse front velocities, we assess the performance of these

techniques. The findings contribute to advancing our ability to model ice sheet dynamics, specifically calving processes, and

provide valuable insights into the most effective strategies for simulating and tracking the motion of the ice front.10
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1 Introduction

Ice sheet numerical modeling is the best tool to make future sea-level rise projections (e.g., Seroussi et al., 2020; Goelzer et al.,

2020; IPCC, 2021). One key process that significantly contributes to mass loss is the retreat of marine terminating glaciers

(Mouginot et al., 2019; Choi et al., 2021; Pattyn and Morlighem, 2020). For example, in Greenland, the increased ice discharge15

is mainly driven by the retreat of glacier fronts (King et al., 2020), which is a direct consequence of calving and undercutting at

the ice front (Wood et al., 2021; Mouginot et al., 2019), possibly intensified by increased runoff and ocean temperatures (Black

and Joughin, 2023). As Greenland has very few ice shelves, ice front retreat predominantly comprises small yet frequent

calving events (Black and Joughin, 2023; Cheng et al., 2021). Future projections emphasize that ice front retreat will continue

to be a primary driver of Greenland’s mass loss by 2100 (Choi et al., 2021). Incorporating moving boundaries into numerical20

ice sheet models is a vital step in advancing our understanding of ice loss mechanisms and improving the accuracy of future

sea-level rise projections (Crawford et al., 2021; Bondzio et al., 2017; Cheng et al., 2022).
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Ice sheets are commonly modeled as incompressible fluids governed by conservation laws (e.g., Greve and Blatter, 2009),

with empirical calving laws to predict calving rates at the ice front (Pollard et al., 2015; Morlighem et al., 2016). These calving

laws are parameterizations developed based on physical principles and observations, which offer computationally efficient and25

relatively straightforward expressions for calving rates (Benn and Astrom, 2018; Choi et al., 2018). In these parameterizations,

the boundary of the model, which is generally the ice front, needs to be adjusted dynamically during the transient simulation.

The way ice front migration is typically handled is through a level-set function, which is a signed distance function defined

over the entire computational domain with the zero level-set contour representing the ice front position (e.g., Bondzio et al.,

2016; Morlighem et al., 2016). The motion of the level-set function is determined by solving an advection equation, where the30

difference between the ice velocity and the calving (and melting) rate at the zero-contour governs the evolution (Morlighem

et al., 2016).

However, solving numerically the level-set function is challenging, especially when using the finite element method (FEM),

as it can lead to instabilities due to the unbounded gradient of the solution (Larson and Bengzon, 2013). To address this issue,

stabilization techniques are employed to enforce the boundedness of the solution. Additionally, the transient solution of the35

level-set function may not always maintain its signed distance property due to the inhomogeneity of the velocity field and the

accumulation of numerical errors over time, particularly through the diffusion introduced by numerical stabilization methods.

Therefore, geometrical reinitialization is generally necessary during transient simulations to restore the signed distance function

property.

In this paper, we aim to investigate and compare various stabilization techniques in combination with different choices40

of reinitialization intervals, implemented in the Ice-sheet and Sea-level System Model v4.23 (ISSM, Larour et al., 2012;

ISSM Team, 2023) and Úa 2019b (Gudmundsson et al., 2019; Gudmundsson, 2020). We present different stabilization and

reinitialization procedures, and apply them all in ISSM to solve the level-set equation on an idealized domain featuring a

semicircular ice front shape (and a straight-line ice front shape case in the appendix). To evaluate the effectiveness of the

stabilization techniques and reinitialization strategies, we perform several tests on three different spatially varying rates of ice45

front migration, encompassing both low and high-speed scenarios. By exploring these approaches, we seek to investigate which

combination leads to the best stability and accuracy of simulating the level-set function and effectively tracks the motion of the

ice front in ice sheet models.

2 Methods

The level-set function φ(x, t) is a scalar field defined on a two-dimensional domain Ω with zero contours implicitly representing50

the ice front position at every given time t. Conventionally, the level-set function is set to be negative in the ice-covered region

and positive in the ice-free region (Morlighem et al., 2016), in order for the gradient of the level-set to be normal outward

pointing to the ice front. The absolute value of the level-set is the closest distance from x to the ice front contour φ= 0. Given

an initial condition φ(x,0) = φ0, the evolution of the level-set function φ(x, t) is governed by the advection equation

∂φ

∂t
+vf · ∇φ= 0, x ∈ Ω, t ∈ [0,T ] (1)55
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where vf is the front velocity of the level-set, which is the difference between the ice velocity, v, and the calving rate of c,

which is generally oriented perpendicular to the ice front:

vf = v− c n, (2)

where n is the outward unit normal vector of the level-set (Bondzio et al., 2016; Morlighem et al., 2016).

In order to solve Eq. (1) with the FEM, we introduce a Hilbert space H1(Ω) and define the variational form as: find φ ∈60

H1(Ω) such that for all the test function ψ ∈H1(Ω) the equation∫
Ω

(
∂φ

∂t
ψ+ (vf · ∇φ)ψ

)
dΩ = 0, (3)

is satisfied. After replacing the space H1(Ω) by a continuous piecewise linear space Φh, the solution of Eq. (3) is then the

numerical solution of Eq. (1). However, it is well known that Eq. (3) gives spurious oscillatory solutions without stabilization

(Larson and Bengzon, 2013; dos Santos et al., 2021).65

2.1 Stabilization

We consider four stabilization schemes in this paper. The first three methods are classical methods only to stabilize Eq. (3),

namely, artificial diffusion (MacAyeal, 1989, AD), streamline upwinding (Eriksson, 1996, SU), and, Streamline Upwinding

Petrov-Galerkin(Brooks and Hughes, 1982, SUPG). The last one is a modification of the SUPG stabilization, where an addi-

tional forward-and-backward (FAB) diffusion term is added to the SUPG scheme.70

Among them, the simplest way to stabilize an advection equation is to add an additional diffusion term in the variational

form Eq. (3) such that∫
Ω

(
∂φ

∂t
ψ+ (vf · ∇φ)ψ+∇φ ·κ∇ψ

)
dΩ = 0, (4)

where, in two dimensions, the coefficient of the artificial diffusion term is a scalar

κ=
1

2

√
h2
xv

2
x +h2

yv
2
y, (5)75

where hx and hy are the characteristic mesh sizes in x and y directions, vx and vy are the x and y components of the front

velocity vf .

The streamline upwinding stabilization follows the same variational form as the artificial diffusion in Eq. (4), but with a

modified coefficient derived from Eq. (5). Specifically, this modification ensures the addition of diffusion solely along the

direction of the velocity vector vf by using80

κ=
h

2‖vf‖
vf ⊗vf , (6)

where h=
√
h2
x +h2

y and ⊗ is the Kronecker product. Due to the large dissipation introduced by these two stabilization

methods, they are extremely stable but only have first-order accuracy (dos Santos et al., 2021).
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A more accurate stabilization method is the Streamline upwind Petrov–Galerkin (SUPG, Brooks and Hughes, 1982), which

modifies the test function to be ψ̂ = ψ+µvf · ∇ψ in the variational form in Eq. (3) such that85 ∫
Ω

(
∂φ

∂t
+vf · ∇φ

)
(ψ+µvf · ∇ψ) dΩ = 0, (7)

where µ= h
2‖vf‖ is a mesh dependent coefficient (dos Santos et al., 2021).

The FAB diffusion is first introduced to ice front migration in Úa (Gudmundsson et al., 2019; Gudmundsson, 2020). We

follow the same formulation and implement it in ISSM. The FAB term added to the variational form in Eq. (7) is derived from

the potential90

P =
1

pq

∫
Ω

(‖∇φ‖q − 1)
p
dΩ (8)

for which the directional derivative is

DδφP =

∫
Ω

(‖∇φ‖q − 1)
p−1 ‖∇φ‖q−2∇φ · ∇δφ dΩ (9)

This results in the addition of a non-linear diffusion term to the level-set equation, with a diffusion coefficient

κ= µ(‖∇φ‖q − 1)
p−1 ‖∇φ‖q−2 , (10)95

which is bounded for ‖∇φ‖→ 0, provided q ≥ 2. For even values of p, the diffusion term defined by Eq. (10) can be both

negative and positive and is an example of a FAB diffusion. Note that the minimum of the potential P in Eq. (8) is found for

‖∇φ‖= 1, i.e. when φ is a distance function.

2.2 Reinitialization

The formulation of the advection equation Eq. (1) describes the evolution of the level-set function, however, it does not guar-100

antee that the level-set function is always a signed distance function due to the inhomogeneity of the front velocity. Indeed, as

vf is generally higher at the ice front than the far field, the gradient of the level-set function close to the zero contours tends to

decrease during the transient simulation.

To maintain the gradient of the level-set function, a common practice is to reset the level-set by calculating the signed

distance every nR time steps. This is often called ‘reinitialization’ (Bondzio et al., 2016; Morlighem et al., 2016), and the105

reinitialization interval nR is the number of time steps between two consecutive reinitializations. At the reinitialization step,

we create a loop over all elements and generate a set of segments, with one segment per element containing a change in sign

of the level-set function. Subsequently, at each vertex of the mesh, we compute the distances to these segments and keep the

minimum distance as the new magnitude of the level-set at that vertex, while preserving the original sign. However, as we

show later in the numerical experiments, numerical errors highly depend on the reinitialization interval. Here, we investigate110

different reinitialization intervals combined with the four stabilization methods described in Section 2.1.
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2.3 Error Quantification

In order to quantify the difference between two ice front positions represented by the level-set functions φ1 and φ2, we introduce

a misfit metric d(φ1,φ2) such that

d(φ1,φ2) =
sgn(φ1)− sgn(φ2)

2
, (11)115

where

sgn(φ) =


−1, φ < 0,

0, φ= 0,

1, φ > 0,

(12)

converts a level-set function to a sign function with −1 on the ice-covered side of the zero contour and 1 on the ice-free side of

the contour. Therefore, if φ1 is ahead of φ2 in terms of the ice front positions (more advance), the misfit area in d(φ1,φ2) will

be negative.120

We integrate the absolute misfit over the whole domain, Ω, and get a metric

J (φ1,φ2) =

∫
Ω

|d(φ1,φ2)| dΩ =
1

2

∫
Ω

|sgn(φ1)− sgn(φ2)| dΩ, (13)

which is actually the absolute misfit area between the two level-set functions.

3 Numerical experiments

We investigate the influence of the four stabilization methods described in Section 2.1 combined with different choices of125

reinitialization interval (Section 2.2). We consider here a semicircle-shaped initial ice front as shown in Figure 1, where the

ice-covered region is in light blue, and the ice-free region is in light red. We apply analytical spatially and temporally varying

velocity fields to mimic typical ice flow.

We run all the simulations on a two-dimensional square domain Ω(x,y) = [0,L]× [0,L], with L= 20 km as the size of

the domain. We create an unstructured triangular mesh on Ω with the element size of 100 m. In Figure 1, the calving front is130

represented by a semicircle (red) centered at (cx, cy) = ( 5L
8 ,

L
2 ) with a radius of r = L

4 , and the sidewalls of the fjord are in blue

and connect the semicircle to the right boundary of the domain. By construction, the width of the fjord is 10 km. The initial

zero level-set is the red ice front together with the blue sidewalls, which has a closed form as {(x,y)|(x− cx)2 + (y− cy)2 =

r2,x≤ cx}
⋃
{(x,y)|x ∈ [cx,L],y = cy + r}

⋃
{(x,y)|x ∈ [cx,L],y = cy − r}.

We apply three distinct velocity fields to control the migration of the ice front. For simplicity, we assume that there is no135

ice flux across the side walls of the fjord so that the velocity field only contains a horizontal component as vf = (vx,0)T . The

x-component of the velocity fields are given in Table 1. They represent zeroth (uniform), first (triangle), and second (parabola)

order polynomials shape of the velocities.
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(0, 0) (L, 0)

(0, L)

(L, 3L4 )

(L, L4 )

3L
8

L
4

Figure 1. The domain of the semicircle-shaped ice front. The light blue area indicates the ice-covered region and the light red area is ice-free.

The values close to the dashed grey lines are their lengths.

Shape Formula

Uniform vx(x,y, t) = v(t)

Triangle vx(x,y, t) = v(t)
(
1−

∣∣∣ y
cy

− 1
∣∣∣)

Parabola vx(x,y, t) = v(t)

(
1−

(
y
cy

− 1
)2

)

Table 1. The three shapes of front velocity at the ice front.

Temporal variations are introduced by flipping the sign of v(t) (as in Table 1) every half year to mimic the typical annual

cycle of the advance and retreat of an ice front such that140

v(t) =

 v0, t ∈ [nT,(n+ 1
2 )T ),

−v0, t ∈ [(n+ 1
2 )T,(n+ 1)T ),

(14)

where T = 1 year, n= 0,1,2,3, ...,N and v0 is a velocity constant. We examine two scenarios with high (v0 = 5000 m/a) and

low (v0 = 1000 m/a) velocity constants, respectively. All the simulations are run for N = 50 periods (or years), with a constant
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time step at ∆t= 0.005 year to satisfy the CFL condition for both of the high and low-velocity scenarios. We reinitialize the

zero level-set contour with the interval nR = 1,10,100,200, which corresponds to a reinitialization every 2 days, two-thirds of145

a month, half a year, and one year. We also set a control run with no reinitialization (nR =∞) throughout the whole simulation

period.

By applying the velocity for T2 in one direction, then flipping the sign of vx for another T2 , the ice front is expected to return

to its initial position φ0 after every period T . Furthermore, the analytical solution at any given time t+nT should be identical

to the solution at time t. Therefore, we use the numerical solution at t ∈ [0,T ) as the exact solution, and calculate the numerical150

error at t+nT according to Eq. (13), with φ1 = φ(x, t+nT ) and φ2 = φ(x, t).

4 Results

The misfit between the numerical and the exact solution under a uniform velocity field at the low-velocity setting (v0 =

1000 m/a) after 1.5, 2 and 50 periods (or years) are shown in Figure 2 with nR = 1, and in Figure 3 with nR = 100 for the

four stabilization methods considered in this paper. The misfit at every time point is calculated according to Eq. (11), where155

the area with negative values (blue in the figures) indicates the ice front from the numerical solution is downstream (i.e. further

advanced) of the exact solution. The errors of all the cases in Figure 2 and 3 are almost evenly distributed along the ice front,

and the total misfit grows as time increases. Indeed, all the errors are first-order in time, as we show the time series of the errors

in the Appendix B for different stabilizations, reinitializations, and velocity constants. Figures 2 and 3 also indicate that using

nR = 100 gives more accurate results compared to reinitializing every time step (nR = 1).160

To facilitate a better comparison of the different stabilization, reinitialization, and velocity constant choices, we show the

total absolute misfit in Figure 4, which is calculated according to Eq. (13) at the final time step t= 50 years for the uniform

velocity field. The numerical errors tend to decrease as the reinitialization interval nR increases. Specifically, in Figure 4

(a), the four largest errors occur when the level-set function is reinitialized at every time step (nR = 1), resulting in errors

of 16.87 km2 in AD, 16.67 km2 in SU, 11.32 km2 in SUPG, and 10.28 km2 in SUPG+FAB. The spatial distributions of165

the errors are shown in Figure 2 (c), (f), (i), and (l). Given that the width of the fjord is 10 km, these errors correspond to

an average offset of the ice front of 1 to 2 km along the flow direction. After nR > 10, the numerical errors remain almost

constant, comparable to the ones of nR =∞, for all the stabilization methods employed. We find a similar pattern in the high-

velocity (v0 = 5000 m/a) cases in Figure 4 (b), where most of the numerical errors are approximately five times larger than

those in the low-velocity (v0 = 1000 m/a) cases in Figure 4 (a). However, the high-velocity cases are less sentivity to nR than170

the low-velocity cases. For instance, reinitializing every time step does not introduce exceptionally large errors as we found

in the low-velocity cases. Indeed, the largest numerical error (88.62 km2) among all the experiments is achieved by the AD

stabilization without reinitialization.

Although all four stabilization methods tend to overestimate the advance of the ice front, the choice of stabilization method

has a significant impact on the misfit area, and SUPG+FAB exhibits the lowest numerical errors. In the low-velocity scenario,175

e.g. Figure 4 (a), with nR = 100, the final misfit for SUPG+FAB is 0.46 km2, whereas the errors for AD, SU, and SUPG are
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Figure 2. Misfit d(φ1,φ2) of the numerical solution at time t (as φ1) and its exact solution (as φ2) at the reinitialization interval nR = 1, and

v0 = 1000 m/a, with (a-c) AD, (d-f) SU, (g-i) SUPG, and (j-l) SUPG+FAB stabilizations.
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Figure 3. Misfit d(φ1,φ2) of the numerical solution at time t (as φ1) and its exact solution (as φ2) at the reinitialization interval nR = 100,

and v0 = 1000 m/a, with (a-c) AD, (d-f) SU, (g-i) SUPG, and (j-l) SUPG+FAB stabilizations.
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Figure 4. Total absolute misfit area at T = 50 for semicircle front with uniform velocity (a) v0 = 1000 m/a and (b) v0 = 5000 m/a. The

y-axis in (b) is scaled by a factor of five for visualization purposes

11.51 km2, 4.92 km2, and 0.44 km2, respectively. The spatial distributions of these errors are shown in Figure 3 (c), (f), (i),

and (l), where the misfit achieved by SUPG is equivalent to an offset of the ice front by approximately 46 m, which is even less

than half of the mesh size. Similarly, in the high-velocity scenario, the errors are scaled by the front velocity in all the choices

of stabilizations with nR > 1. For instance, in Figure 4 (b), with nR = 100, the errors are 49.99 km2 in AD, 27.07 km2 in SU,180

2.94 km2 in SUPG, and 2.92 km2 in SUPG+FAB.

We present the numerical errors at the final time step for the parabolic and triangular shape of velocity in Figure 5 for both

low and high-velocity constants. Apparently, the shape of the velocity profile has a limited impact on the numerical errors.

Nevertheless, the triangular velocity cases yield the smallest errors, while the parabolic velocity cases yield larger errors, but

still smaller than the uniform velocity field scenario depicted in Figure 4.185

5 Discussion

5.1 Reinitialization interval

From a finite-element method point of view, the reinitialization procedure is an L2 projection of the zero level-set contour

onto the mesh (Larson and Bengzon, 2013). It can be shown that the numerical errors of the projection are proportional to

the mesh sizes (shown in Figure C1), and they accumulate as the number of reinitializations increases (i.e., as nR decreases).190

Furthermore, these errors are not only introduced during the projection but also transported and amplified by the governing

equation Eq. (1) throughout the transient simulation. In the case of frequent reinitializations, such as nR = 1, the dominant

source of numerical error is the L2 projection, particularly evident when the front velocity is low (v0 = 1000 m/a), as depicted

in Figures 4 and 5. However, in the high-velocity scenario, the projection error becomes less significant compared to the

numerical errors resulting from discretization and stabilization techniques, which then become the primary sources of error.195
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Figure 5. The total absolute misfit area at T = 50 with (a, b) parabola and (c, d) triangle shape velocity profiles. The left column has the

velocity constant v0 = 1000 m/a, and the right column is at v0 = 5000 m/a.

As nR increases, the numerical error decreases until no reinitialization is performed (nR =∞). However, in the absence of

reinitialization, additional errors emerge due to the distortion of the gradient of the level-set function. The worst-case scenario

observed in this study is the high uniform velocity case with AD at nR =∞ in Figure 4 (b), where the zero-contour of the final

level-set solution is nearly halfway into the fjord, resulting in a total misfit of 84.02 km2. This instance emphasizes the necessity

to reinitialize the level-set when solving level-set functions in transient simulations. It is worth noting that the numerical errors200

are not significantly affected by the interval of reinitialization as long as nR is sufficiently larger than 1. Consequently, for the

remainder of this paper, the focus will be on discussing the cases with nR = 10,100, and 200, while disregarding those with

nR = 1 and nR =∞
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5.2 Stabilization method

The numerical errors in AD and SU are 5 to 20 times greater than those using SUPG and FAB as long as nR exceeds 1. The205

main source of the numerical errors in AD and SU is the diffusion term ∇φ ·κ∇ψ added in the advection equation Eq. (4),

which smears out the oscillations in the numerical solution and disperses the solution. The coefficient κ controls the magnitude

and direction of the additional diffusion.

In the AD case, the coefficient κ is a scalar, which applies the diffusion to all directions with the same magnitude. In contrast,

κ contains an outer product of the front velocity in SU, which only adds diffusion along the flow direction of vf . Therefore,210

the errors in SU are less dispersive than those in AD. Notably, the coefficients κ in AD and SU are also controlled by the mesh

size, such that the additional diffusion term vanishes as the mesh size becomes zero. In numerical ice sheet modeling, the mesh

size is generally limited by data accuracy and computational capacity. Therefore, the weak solution of the stabilized equation

Eq. (4) does not necessarily satisfy the variational formulation Eq. (3), and the corresponding errors are proportional to the

mesh size (Larson and Bengzon, 2013).215

On the other hand, the SUPG stabilizes the advection equation by adding an additional term in the test function as in Eq.

(7), whose solution satisfies the weak form Eq. (3) almost everywhere, except for the position where the test functions equal

to 0. In this sense, the numerical error is expected to be much smaller than the other two stabilization methods. We therefore

recommend using SUPG for the stabilization technique, together with a reinitialization interval greater than 10.

5.3 Front velocity220

We anticipate the numerical errors to be scaled by the velocity magnitude when solving the advection equation using the finite

element method (Biswas et al., 1994), but not influenced by the shape or orders of polynomials. As we construct the velocities

in Table 1, for instance, with v0 = 1000 m/a, the mean frontal velocity during the advance phase t ∈ [nT,(n+ 1
2 )T ] is 1000 m/a

for the uniform shape, 916.7 m/a for the parabola and 750.0 m/a for the triangular shape. The corresponding numerical errors,

at nR = 100 with SUPG stabilization, are 0.44 km2, 0.36 km2, and 0.29 km2, respectively. Furthermore, as we show in Figures225

4 and 5, this relationship is found in almost all the reinitialization intervals nR > 1, all stabilization techniques, and both the

low and high-velocity scenarios considered in this study.

5.4 Different front shapes

In Appendix A, we show the results of another shape of the ice front, which is a straight line with side walls orthogonal

to the front. The final errors of the straight front cases with different stabilization methods, reinitialization intervals, and230

velocity shapes are more or less the same as those with the semicircle front. However, the spatial distribution of the numerical

error differs significantly between the two shapes. To further investigate the source of the numerical errors, we show the

animations of the evolution of misfits in the supplementary material. In the straight front cases, the misfit is initiated at the two

corners, where the ice front meets the side wall of the fjord, and then propagates to the center. In contrast, the semicircle case

generates numerical errors that do not initiate from single sources, but grow along the entire ice front. The main reason for235
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these differences is that the finite element method approximates the level-set function by projecting it onto a piecewise linear

functional space. As a result, the sharp corners and the curved level-set contours are the places where most of the numerical

errors occur. On average, these approximation errors are proportional to the mesh size, whereas the shape of the ice front

actually has a negligible influence on the numerical errors.

6 Conclusions240

We studied multiple stabilization methods implemented in ISSM and Úa for solving a level-set equation on an idealized

geometry with a reinitialization interval that varies from once every time step up to no reinitialization. We found that SUPG

and SUPG+FAB are considerably more accurate than the other two methods (AD and SU), for all choices of reinitialization

interval, regardless of the front velocity and ice front shape. Using other stabilization methods results in more than ten times

larger errors in ice front positions. An optimal choice for the reinitialization interval is nR > 10, corresponding to a time245

period exceeding 2.5 weeks in our experiments. Excessively frequent reinitialization can introduce additional numerical errors

surpassing those from other sources. By identifying the most effective stabilization techniques and reinitialization intervals,

we can improve the reliability and robustness of simulations, enabling more accurate predictions of ice sheet behavior and its

influence on future sea-level rise.

Code availability. ISSM Version 4.23 is open source and available at https://doi.org/10.5281/zenodo.7850841 (ISSM Team, 2023). Úa250

(v2019b) is open source and available at https://doi.org/10.5281/zenodo.3706624 (Gudmundsson, 2020). The code and data analyses used in

this manuscript are available at https://doi.org/10.5281/zenodo.10454657.

Video supplement. The supplement video of the evolution of the misfit are available at https://doi.org/10.5281/zenodo.10454554.
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Figure A1. The domain of the straight ice front with the coordinates of the vertices.

Appendix A: A straight ice front case

We introduce an alternative ice front shape, represented as a straight line, as depicted in Figure A1. Similar to Figure 1, the255

ice-covered region is denoted in light blue, while the ice-free region is in light red. The red line signifies the ice front, and the

blue lines represent the side walls of the fjord, with a width of 10 km and a length of 20 km. The same set of experiments

outlined in Section 3 is conducted, and the total misfit at the final time step is presented in Figure A2.
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Figure A2. The total absolute misfit area at T = 50 with (a, b) uniform, (c, d) parabola, and (e, f) triangle shape velocity profiles for a straight

ice front. The left column is in the low-velocity scenario with v0 = 1000 m/a, and the right column is at v0 = 5000 m/a.
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Figure B1. The evolution of the total absolute misfit area during the transient simulations with (a, b) uniform, (c, d) parabola, and (e, f)

triangle shape velocity profiles for a semi-circle shape ice front. The left column is in the low-velocity scenario with v0 = 1000 m/a, and the

right column is at v0 = 5000 m/a.

Appendix B: Errors during the transient simulation

The numerical errors exhibit a linear scaling in time, as illustrated in Figures B1 and B2 across nearly all cases. As expected,260

the slopes are dictated by the velocity v0. Consequently, for the sake of simplicity in comparison, we exclusively consider the

numerical errors at the final time step T = 50 in the main text of this manuscript.
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Figure B2. The evolution of the total absolute misfit area during the transient simulations with (a, b) uniform, (c, d) parabola, and (e, f)

triangle shape velocity profiles for a straight ice front. The left column is in the low-velocity scenario with v0 = 1000 m/a, and the right

column is at v0 = 5000 m/a.
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Figure C1. The total absolute misfit area at T = 50 with uniform velocity profile at v0 = 1000 m/a for (a, b) semi-circle shape ice front, and

(c, d) straight ice front. The left column is at 200 m mesh resolution, and the right column is at 400 m mesh resolution.

Appendix C: Mesh resolution

We also conducted this study using different mesh resolutions, namely 200 m and 400 m, and the corresponding numerical

errors are depicted in Figure C1. To facilitate comparison, we scaled the y-axis by a factor of 2 and 4 for the two mesh265

resolutions, respectively. As anticipated, the comparison with results in Figures 4 and A2 reveals a linear scaling of numerical

errors with the mesh size. Notably, in Figure C1 (d), nR = 1 for all four stabilization methods reaches the maximum possible

error, equivalent to the area of the fjord in the straight ice front case, i.e., 75 km2.
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