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Abstract. To design a monitoring network for estimating CO2 fluxes in an urban area, a high-resolution Observing System

Simulation Experiment (OSSE) is performed using the transport model Graz Mesoscale Model (GRAMMv19.1) coupled to

the Graz Lagrangian Model (GRALv19.1). First, a high-resolution anthropogenic emission inventory, which is considered as

the truth serves as input to the model to simulate CO2 concentration in the urban atmosphere on 10 m horizontal resolution5

in a 12.3 km x 12.3 km domain centered in Heidelberg, Germany. By sampling the CO2 concentration at selected stations and

feeding the measurements into a Bayesian inverse framework, CO2 fluxes on neighbourhood scale are estimated. Different

configurations of possible measurement networks are tested to assess the precision of posterior CO2 fluxes. We determine the

trade-off of between quality and quantity of sensors by comparing the information content for different set-ups. Decisions on

investing in a larger number or more precise sensors can be based on this result. We further analyse optimal sensor locations for10

flux estimation using a Monte Carlo approach. We examine the benefit of additionally measuring carbon monoxide. We find

that including CO as tracer in the inversion allows the disaggregation of different emission sectors. Finally, we quantify the

benefit of introducing a temporal correlation into the prior emissions. The results of this study give implications for an optimal

measurement network design for a city like Heidelberg. The study showcases the general usefulness of the developed inverse

framework using GRAMM/GRAL for planning and evaluating measurement networks in an urban area.15

Copyright statement. TEXT

1 Introduction

A large share of greenhouse gases (about 70% of anthropogenic CO2 emissions) is emitted in urban areas offering a huge poten-

tial to reduce greenhouse gas emissions (World Bank, 2010). To realise the full mitigation potential and to verify any emission

reduction, solid knowledge of local greenhouse gas emissions is required. In addition to inventory-based (“bottom-up”) emis-20

sion estimates, measurements of greenhouse gases can be used in an inverse framework to quantify emissions (“top-down”).
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In a top-down approach, an atmospheric transport model is used to transport a best estimate of surface fluxes forward to obtain

a simulated concentration field. The simulated concentrations are then compared to the measured concentration at the location

and time of measurements. By varying the surface fluxes within their given uncertainties, the difference between measured

and simulated concentrations is minimized to agree within the model-data uncertainties. In a Bayesian inverse framework, the25

result is the so-called posterior emission estimate. In the last years, many city CO2 monitoring networks have formed at the

local level. Monitoring systems in urban areas can be found in the San Francisco Bay Area (Turner et al., 2016; Delaria et al.,

2021), Indianapolis (Turnbull et al., 2019; Oda et al., 2017; Lauvaux et al., 2016; Turnbull et al., 2015; Richardson et al., 2017;

Deng et al., 2017; Davis et al., 2017; Balashov et al., 2020; Miles et al., 2021), Salt Lake City (Mallia et al., 2020; Kunik et al.,

2019), Davos (Lauvaux et al., 2013), and Paris (Lian et al., 2022; Wu et al., 2016; Bréon et al., 2015). In future, it is expected30

that more networks will be installed supporting local mitigation endeavors (Jungmann et al., 2022). In order to optimise the

investment in a measurement network and maximise the knowledge gained from these measurements, several parameters need

to be considered preferably in the design-phase. These parameters include the number and location of nodes, the uncertainty of

the measurements, and the co-measured species. They need to be optimised under consideration of a limited financial budget.

Observing System Simulation Experiments (OSSEs) offer a valuable tool for assessing different monitoring networks.35

OSSEs provide a controlled and consistent framework for assessing the performance of inversion methods used. In an OSSE

emissions as well as atmospheric transport are known. The concentration is obtained by simulating the atmospheric transport

of the emissions into the atmosphere. The concentration at selected sites can then be used in an inversion framework to estimate

emissions. It is possible to e.g. add measurement uncertainty or model transport uncertainty to the concentration, or to change

the prior emissions and evaluate the effect on the emission estimate by comparing to the known true emissions. Therefore, an40

OSSE enables isolating and analyzing various factors that contribute to uncertainties and errors in emission estimates. There-

fore, an OSSE enables the analysis of different measurement network designs, facilitating the identification of optimal network

configurations and providing insights into the inversion set-up characteristics. For instance, Turner et al. (2016) conduct an

experiment using the actual sensor locations of the BEACON measurement network in the San Francisco Bay Area to assess

the trade-off between low-cost sensors in higher quantities and fewer, but more expensive sensors with higher accuracy, by45

comparing the error in flux estimates for various set-ups. Their findings reveal two types of measurement network configura-

tions: noise-limited configurations, where the inversion improves more substantially with higher sensor quality, and site-limited

configurations, where the improvement is greater with an increased number of sensors. While Turner et al. (2016) select the

sensor locations randomly from a fixed set of sensor locations, another study by Mano et al. (2022) develops an algorithm

to determine optimal sensor locations for a measurement network. This algorithm utilises the entropy of expected trace gas50

concentration to identify ideal measurement positions. In a different study, Thompson and Pisso (2023) apply a Monte Carlo

approach to optimise sensor locations. They are able to pinpoint the optimal sensor placement for CH4 flux estimation from a

set of possible sites in Europe. Thus, performing measurements at the selected sites improves the posterior emission estimates.

Furthermore, the CO2 estimate may benefit from measuring co-emitted trace gases. For example, carbon monoxide (CO) is

emitted together with CO2 during fossil fuel combustion. The CO/CO2 ratio varies with emission sectors and regions, which55

makes it potentially useful as a proxy for CO2 emissions from fossil fuel combustion in general, and more specifically as a tracer
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for traffic emissions (Vogel et al., 2010). Nathan et al. (2018) quantitatively analyse the advantages of CO as a trace gas in the

inversion set-up using the INFLUX measurement network in Indianapolis. By incorporating CO measurements in the inversion,

Nathan et al. (2018) successfully distinguish spatially overlapping sources into two sectors. Furthermore, the uncertainty of

prior fluxes significantly affects the inversion process. Kunik et al. (2019) conduct an OSSE using a measurement network in60

Salt Lake City to examine the influence of the prior flux uncertainty. They demonstrate that incorperating realistic correlations

in the prior between fluxes in the temporal and spatial dimensions can substantially improve the inversion results. Wu et al.

(2018) obtain similar results regarding spatial correlation in the city of Indianapolis. These examples highlight the possibilities

of OSSEs in analyzing urban network monitoring taking into consideration various aspects and site-specific characteristics.

The resolution of urban OSSEs usually is 1 km or coarser and limited by the large computation time of the transport model, as65

well as by the inversion on a high resolution.

In our study, we employ the Reynolds-Averaged Navier Stokes model Graz Mesoscale Model (GRAMM) coupled to the

Graz Lagrangian Model (GRAL) as a forward model (GRAMM/GRAL). Both models assume hourly steady-state conditions.

Using the steady-state wind fields, GRAL simulates an hourly 10 m x 10 m concentration field at five heights per emission

group within a 12.3 km x 12.3 km domain, accounting for the flow around buildings. This high resolution exceeds the typical70

1 km resolution of previous OSSEs, enabling the use of any 10 m x 10 m grid cell as simulated concentration data for inversion,

thus keeping the aggregation errors small. The high resolution is possible due to the comparatively cheap forward model

when using the catalogue approach (see Sect. 2), as well as due to the hourly steady-state assumption of the model such that

the Jacobian, i.e. the linearization of the forward model representing the sensitivity of the observation to the emissions, can

be easily determined (see Sect. 2.2). This property allows for network optimization considering many different parameters75

and locations, including those affected by street channeling and surrounding buildings. Specifically, ththis study focuses on

analysing sensor quantity versus quality, sensor location optimisation, the use of CO as an additional tracer, and the temporal

correlation of the prior for the first time on high-resolution of 10 m x 10 m within a 150 km2 domain centered on the Theodor-

Heuss bridge in Heidelberg. With these first experiments, we also seek to showcase the general ability of the framework in

general.80

2 Methodology

2.1 The atmospheric transport model GRAMM/GRAL

Emissions and concentrations are linked via the atmospheric transport. Modelling the atmospheric transport is challenging

due to turbulence. Especially for heterogenic urban environments, models need to account for different land use types and

their associated properties, flow around buildings, and topography, which influence the atmospheric transport. For this task,85

there are two types of models, which are commonly used and which attempt to solve the Navier Stokes equation: Large

Eddy Simulations (LES) and Reynolds-averaged Navier-Stokes simulations (RANS). While LES models explicitly solve large

turbulent structures and parametrise small turbulent structures, RANS models use temporal averaging to reduce the complexity

of the problem and generate steady-state flow fields. Therefore, RANS models are computationally cheaper compared to LES

3



models (Blocken, 2018). The model GRAMM/GRAL is a RANS model. Description of the model can be found in Berchet90

et al. (2017a, b), as well as in Öttl (2020).

GRAMM is a prognostic mesoscale model (Oettl, 2021) that computes hourly steady-state wind fields from synoptic forcing

given parameters associated to land use cover such as surface roughness or thermal conductivity, and for a given topography

of the domain. The synoptic forcing is determined by wind direction, wind speed, and a stability class to parameterise the

turbulence. In this study, we chose a domain size of 20 km x 20 km centered on the Theodo-Heuss bridge in Heidelberg,95

Germany with a resolution of 100 m x 100 m. GRAL uses the GRAMM wind fields as mesoscale input and refines the wind

fields to a higher resolution taking into account the flow around buildings. The GRAL domain size is 12.3 km x 12.3 km with

a resolution of 10 m x 10 m. The vertical resolution of the wind field is 2 m with a total of 200 cells. The domain borders

for GRAMM and GRAL are shown in Fig. 1. Hourly concentration fields are obtained in GRAL by transporting emissions

in the GRAL domain forward. The emission types can be point, line, and area sources which can be grouped into up to 99100

emission groups. An emission group is a set of emissions, which is stored and optimised together. For each emission group a

concentration field can be obtained.

Figure 1. The outer box shows the GRAMM domain, which has an extent of 20 km x 20 km with a resolution of 100 m x 100 m. The inner

box shows the GRAL domain with a size of 12.3 km x 12.3 km and a resolution of 10 m x 10 m. The blue dots denote the meteorological

measurement stations for the matching algorithm. The administrative district borders lie within the GRAL domain and can be seen in Fig.

C1.
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In this study, the computational costs are further reduced by utilizing a catalogue approach. The catalogue approach exploits

the fact that for longer periods similar weather situations reoccur. Utilizing the repetition of similar weather conditions, a

catalogue of wind fields is computed covering all typical prevailing wind situations for the area. For Heidelberg, we use 1008105

synoptic forcings, which are stored and are hourly matched with wind measurements to provide wind fields for the considered

period. In particular, during the matching measured and pre-calculated simulated wind speeds and directions are compared

hourly to find the pre-calculated wind situation that minimised the difference to measurements for that hour. Details can be

found in Berchet et al. (2017a, b).

As the lifetime of CO2 is much larger than the period of interest, the concentration enhancement of CO2 in the atmosphere is110

proportional to the magnitude of the emissions. Using this linearity, a pre-computed concentration field can be scaled linearly

to account for a change in the emissions. Emissions from an emission group can be scaled accounting for e.g. different temporal

profiles due to a diurnal cycle of emissions. Note that emission groups do not have to be homogeneous, but may have a sub-

structure. However, scaling the emission group then means scaling all emissions in their sub-structure. The total concentration

enhancement field for a given time step is obtained as a sum of the concentration fields for each emission group. The choice of115

the emission groups should reflect the relative variability of the emissions sources such that grouped emissions should have a

high correlation. The division into emission groups is described in Sect. 2.4.

2.2 The inverse framework

In this study, the inverse problem is estimating emissions x (state vector of length m) from the forward modelled concentration

measurements y (measurement vector of length n). The relation between the measurements and the state vectors, i.e. emission120

groups per time step is given by the transport model GRAL.

y =Kx+ ϵy (1)

with ϵy as an vector of length n with Gaussian noise characterising the statistical uncertainty of the measurements. As

CO2 is inert on the timescales on which atmospheric transport in the city takes place, the concentration is proportional to the

magnitude of the emissions, which means that the model is linear. The Jacobian matrix K (m xn) fully describes the linear125

forward model and scales the concentration fields for each emission group. Each matrix K for a given meteorological situation

is constructed by simulating a concentration field for each emission group xi with iϵ (1,m). The matrix entries Ki,j are the

sensitivities of concentration of a specific measurement yj with j ϵ (1,n) to changes in the emissions of the emission groups:

Ki,j =
∂yj
∂xi

(2)

Depending on the emission scenario, a different linear combination of the emission groups forms the total concentration field130

of a given hour. As the problem is typically underconstrained and thus, no unique solution exists, regularization is required

to obtain a stable and realistic solution. Therefore, we use a Bayesian inversion approach and constrain the solution x by

introducing prior emissions xa (vector of length m) and prior error covariance Sa (m xm matrix) following Rodgers (2000):

x̂= xa +
(
KTS−1

y K+S−1
a

)−1
KTS−1

y (y−Kxa) (3)
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The uncertainties in y and K are assumed to be Gaussian, unbiased, and independent of each other. Sy (m xm matrix) denotes135

the measurement covariance matrix, which we adjust within the OSSE (see Sect. 3.1). It contains instrument, model and repre-

sentation errors. We assume that the matrix Sy is diagonal, i.e. has no covariances, implying that the model and measurement

errors are not correlated in time and space.

The posterior covariance Sx̂ (n xn matrix) is then given as:

Sx̂ = (KTS−1
y K+S−1

a )−1. (4)140

For derivation see Rodgers (2000).

For multiple time steps, we chain the different atmospheric transport situations by concatenating the matrix K for each time

step t of tϵ(t1, ..., tn) and construct a forward model KT for all time steps, which can be separated into tn independent sets of

linear equations if no correlation between states is assumed. The matrices K for each time step are on the diagonal of the new

matrix KT as the model GRAMM/GRAL assumes steady-state conditions. This means that the concentration field in an hour145

depends only on the emissions of the respective hour and not on the hours before. If the atmospheric transport changes from

one hour to the next, so will the matrix K.


y0

y1

...

ytn

=


K0 0 . . . 0

0 K1 . . . 0
...

...
. . .

...

0 0 . . . Ktn

 ·


x0

x1

...

xtn

=KT ·


x0

x1

...

xtn

 . (5)

This equations simplifies and the number of state vectors decreases, if a constant diurnal cycle of the emissions is assumed:

y0

y1

...

y23

y24

y25

...

ytn



=



K0 0 . . . 0

0 K1 . . . 0
...

...
. . .

...

0 0 . . . K23

K24 0 . . . 0

0 K25 . . . 0
...

...
. . .

...

0 0 . . . Ktn



·


x0

x1

...

x23

=KT ·


x0

x1

...

x23

 (6)150

Solving for the posterior emissions x̂ requires the prior probability distribution, which is given as a multivariate Gaussian

distribution defined by the vector of the mean values for each state xa and the covariance matrix Sa. In the case of uncorrelated

states, the prior covariance matrix is Sa = diag(σ2
a) with the variances of the state σ2

a on the diagonal. For correlated states,

a common choice of correlation is an exponentially decaying correlation defined by a single parameter per dimension (Kunik

et al., 2019). The single parameter defines the strength of the correlation along a distance of a dimension. In principle, the155
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correlation in the prior reduces the total uncertainty of the prior and links the different hours of the inversion making the

inverse problem numerically more complex at the same time. We analyse the influence of temporal correlation in the prior of

fluxes in Sect. 3.4. The correlation is defined by a correlation strength τt for the time difference between states at the same

position. With that the covariance is

Cov(xi,t0 ,xi,t1) = σi,t0σi,t1 exp

(
|t1 − t0|

τt

)
(7)160

with the standard deviation of state xi at time t0 and time t1 as σi,t0 and σi,t1 respectively.

In Sect. 3.3, we analyse the benefit of measuring CO additionally for estimating CO2 emissions. We assume that they are

both passive tracers and thus share the same forward model matrix K. The CO2 emissions can then be expressed in terms of

the CO emissions as

yCO2

yCO

=

K 0

0 K

 ·

xCO2

xCO

=

K 0

0 K

 ·

 In

ACO

 ·xCO2 =

 K

KACO

 ·xCO2 (8)165

with ACO as a diagonal matrix with the flux-weighted mean emission factors αCO per sector with

αCO,i =

∑
sxi,sαCO,s∑

sαCO,s
(9)

with xi,s as the CO2 emissions of sector s in flux state vector entry i and αCO,s as the emission factor for sector s.
∑

s is the

sum over all sectors. We assume the emission factors to be exact for the optimization in the Bayesian inversion system.

2.3 Evaluation metrics170

To describe the properties of the inversion and evaluate the set-ups of the OSSEs, we introduce evaluation metrics, namely the

information content, the relative improvement and the root mean square error (RMSE). The metrics evaluate the quality of the

inversion (result) and are sensitive to slightly different aspects of the evaluation. Some require the true emissions, while others

are able to evaluate the quality of the inversion without knowing the truth. Further, the metrics differ in the computational costs.

For the analysis, we choose the metric that allows us to best analyse the system and highlight the impact.175

First, the information content of the measurement can be derived from the concept of Shannon information, which is similar

to the physical entropy (Rodgers, 2000). The Shannon information for the difference of prior and posterior probability for the

Bayesian inversion in a linear case and given Gaussian probability distribution is:

H =−1

2
log(|Sx̂S

−1
a |) =−1

2
log |In −A| (10)

A denotes the averaging kernel and In is the identity matrix with dimension n. For details on the concept and derivation see180

Rodgers (2000). One can see that the information content increases with the averaging kernel becoming close to identity. The
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information content describes the quality of the set-up independently of the actual difference between prior and the truth. It

can therefore be used as a measure for the quality of the inversion, in which the truth is not known. As it is a scalar quantity, it

is useful for optimising observing systems, as well as characterising and comparing them.

However, in an OSSE, the truth is known, such that the difference between truth and posterior emissions can also be used for185

evaluation of the set-up. The RMSE over the entire domain is defined as the difference between the sum of the two vectors x̂tot

and x∗
tot.

RMSE(x̂tot,x
∗
tot) =

√√√√ 1

tn

tn∑
t=0

(
x̂tot,t −x∗

tot,t

)2
(11)

The RMSE of the total fluxes gives quantitative information on how close the total posterior flux x̂tot is to the true total

x∗
tot in the domain. In contrast to the information content, it does not capture the complete probability distribution, but rather190

the effect of the stochastically generated noise. However, it is computationally cheaper to calculate. Additionally, the relative

improvement can be calculated, if the true emissions are known:

η = 1− ∥x̂−x∗∥2
∥xa −x∗∥2

(12)

with the prior flux xa, the posterior flux x̂, and the true emissions x∗. The relative improvement scales the difference between

the posterior and the truth of each state by the difference between the prior and the truth of the states. The relative improvement195

is 0% if the RMSE of the posterior has not improved compared to the prior and 100% if the posterior and the truth are identical.

2.4 Emission data and uncertainties

In this study, we simulate anthropogenic CO2 enhancements. In the following, we explain the data sets used to construct the

true emissions as well as the prior for the inversion. The fluxes of the inventories have a high resolution (see Sect 2.4.1 and

2.4.2), but we group the fluxes into emission groups, which we use as basis vector for the inversion. The emission groups200

are administrative districts. Therefore, only the total emissions per administrative district is optimised for, even though a

district still exhibits a higher resolved sub-structure. While there are actually 26 administrative districts, small districts and

districts at the domain border have been aggregated (see Fig. C1) such that there are 19 districts, which can be optimized. The

reason for choosing administrative districts is that the emission information should meet the needs of stakeholder (Jungmann

et al., 2022) and should be well constrained by a reasonable number of sensors. For Heidelberg, administrative districts are a205

politically meaningful unit exhibiting an area large enough to be constrained with a realistic number of sensor nodes. We chose

to aggregate smaller districts and border districts as they are very difficult to constrain as they contribute only weakly to an

overall enhancement. To assign area emissions on district level, area sources are interpolated to the GRAL grid of 10 m x 10 m

and each pixel on the GRAL grid is assigned to the district with the maximum overlap.
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2.4.1 True emissions210

For the true emissions, we use data with a high spatial and temporal resolution to reflect the expected heterogeneity and

variability of the emissions in the urban area. Traffic emissions were taken from a OpenStreetMap-based emission estimate

(Ulrich et al., 2023) as line sources with street-resolving (3 m) resolution. Combustion emissions are based on data for the yearly

consumption of natural gas, fuel, oil, liquid gas, coal, wood and pellets in the municipality of Heidelberg, as provided by the

public utility company of Heidelberg ("Wärme Atlas 2017 Aggregation", version 001). The emissions are primarily caused215

by residential heating and do not include traffic emissions. The combustion data is aggregated on a grid with a resolution of

100 m x 100 m to protect the privacy of the customers. For the same reason, if there are less than five customers in a single

grid cell, the data is masked and not available in the inventory. We treat masked emissions as if they do not contribute, i.e.

set these grid cells to zero. Finally, the remaining emissions from Gridded Nomenclature for Reporting (GNFR) sector G to L

are additionally accounted for as true emissions. We use the area emissions provided by TNO (Nederlandse Organisatie voor220

Toegepast Natuurwetenschappelijk Onderzoek) as true residual emissions. However, these area emissions contribute to only

1.4% to total emissions (see Table 1). All true emissions are then cut into administrative districts for division into base vectors

(see Fig. C1), but still have a sub-structure, as described above and as illustrated in Fig. 2.

There are only two TNO point sources in the GRAL domain which are treated each as individual group. The two TNO point

sources in the domain are emitted as point sources at stack heights of 85 m and 120 m. A fixed diurnal and weekly cycle of225

emissions is assumed following the profiles listed for each GNFR sector by Van Der Gon et al. (2011).

2.4.2 Prior Emissions

We use emission data from the TNO inventory (Super et al., 2020) as starting point for constructing the prior. The data set

consists of an inventory of area sources with a resolution of 1/60° longitude x 1/120° latitude (≈ 1 km x 1 km over Central

Europe) and point sources. TNO emissions are shown for the Heidelberg GRAL domain in Fig. B1. While the data set consists230

of ten different emission maps which were constructed with a Monte Carlo approach, only the first realization of the set is

used. Emissions are divided into emission categories according to the GNFR category for both CO2 and CO. From this, the

mean emission factor CO/CO2 for each GNFR category for the entire GRAL domain is obtained. The emissions and ratios for

the Heidelberg domain are listed in Table 1 and are used in Sect. 2.4.

TNO area emissions are divided into administrative districts as described above. We further smooth out the area TNO235

emissions such that the mean emissions per area are equal for each district, however they are not constant over the domain as

emissions per area still exhibit a sub-structure within the district (see Fig. 2). The prior emissions are set constant in time and

do not have a diurnal cycle. The reason for introducing smoothing across districts, as well as the constant temporal profile for

the prior is to reflect a realistic difference between prior and truth that would also be expected in a real inversion. In addition

to the area sources, the TNO point sources are also accounted for in the prior.240

The prior uncertainties for TNO point and area sources are set to 100% of the prior flux. Prior uncertainties for traffic and

combustion sources are set to 100% of the true emissions as the prior emissions for traffic and combustion sources are zero.
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Table 1. CO2 and CO emissions per year in Heidelberg and ratio of CO/CO2 [ppb ppm−1] for different Gridded Nomenclature for Reporting

(GNFR) emission sectors as taken from TNO (Super et al., 2020). The ratio was calculated by converting from kg to parts per million (ppm)

or parts per billion (ppb) by taking into account the molecular mass of CO and CO2 and assuming standard conditions. The GNFR sectors

are the basis for reporting spatially distributed emissions of air pollutants by European countries.

GFNR Sector name CO2 emissions [kg a−1] CO emissions [kg a−1] CO/CO2 [ppb ppm−1]

A Public Power 1.4e+08 2.8e+05 3

B Industry 5.4e+08 9.6e+05 3

C Other Stationary Combustion 3.5e+08 2.0e+06 9

D Fugitives 0 0 nan

E Solvents 5.5e+06 3.0e+04 9

F1 Road Transport gasoline 6.6e+07 1.1e+06 25

F2 Road transport diesel 1.2e+08 8.7e+04 1

F3 Road transport LPG 2.2e+06 6.8e+03 5

G Shipping 7.4e+05 1.2e+03 3

H Aviation 0 0 nan

I OffRoad 6.6e+06 2.3e+05 56

J Waste 0 1.8e+02 inf

L Agriculture other 1.0e-07 0 0

In total, there are 59 emission groups consisting of two point sources, and 19 districts with emissions from the TNO area

sources, the traffic simulations, and the combustion data. This choice of emission groups defines the dimension n of the

inversion framework. Figure 2 illustrates the three emission groups (area, combustion and traffic) belonging to the district245

Weststadt. The temporal mean emission strength of all emission groups is illustrated in Fig. 3 for prior, prior uncertainty and

truth, respectively.

Note the differences between the magnitude of the emission groups in prior and truth. As prior and true emissions are

accounted for in different emission groups, corresponding to different vector entries in state x, the inversion needs to redistribute

to the other source types to correctly estimate sectoral and spatial patterns. This configuration pushes the limits of the current250

inversion set-up as it tests the capabilities of the inversion system to identify spatially overlapping emission groups. For the

entire domain, prior and true emissions differ in average by 13.5% ((truth-prior)/truth).

2.5 The inversion experiments

This study examines the performance and design parameters of a network of sensors that measure the CO2 concentration in

air in an urban environment by combining a high-resolution atmospheric transport model on building-resolving scale with255

an atmospheric inverse model. The investigation focuses on various aspects to gain initial insights into the capabilities of a

monitoring network in Heidelberg. To systematically analyse different parameters of a measurement network, we conduct
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Figure 2. For the city district Weststadt ("We") three elements of the state vector are shown (three rows). The columns show the true, prior

and posterior emissions for TNO area emissions (upper row), combustion emissions (middle row) and traffic emissions (lower row). This

plot illustrates three of the state entries seen in Fig. 3. Note, that the prior (middle column) for combustion and traffic is zero, but exibits the

fixed substructure of the truth. The combustion emission in the district exhibits white 100 m x100 m squares, which are masked due to data

protection policy. The posterior emissions differ depending on the data assimilated and are illustrated here for 10 CO2 measurements in the

entire Heidelberg domain with 1 ppm uncertainty. Posterior results will be discussed in Sect. 3.

four separate experiments, each targeting different aspects of network design or inversion set-up. We analyse the number of

sensors vs. the quality of sensors (Sect.3.1), the optimal horizontal sensor placement (Sect. 3.2), the benefit of utilising CO

as additional tracer (Sect. 3.3) and the effect of introducing a temporal correlation in the prior error covariance (Sect. 3.4). In260

all experiments, the virtual sensors, which "sample" the atmospheric trace gas concentrations are placed at 2 m above ground

level and positioned such that they form a rectangular grid that covers the domain. Then, either all sensors are used or they

11



Figure 3. Emissions of each state vector for prior (left), uncertainty of the prior (middle) and truth averaged over time (right). The different

emission groups contain emissions from the TNO point (blue) and area sources (green), the traffic simulations (orange), and the combustion

sources (red).

are sub-sampled from the grid as described for each respective experiment in Sect. 3. The grid is chosen as a first approach

to find the optimal sensor placement. The inversions are performed for wind situations during the period of 22.07.2021 to

21.08.2021. For the experiments in Sect. 3.1 - 3.2, 24 random hours are sampled from the first 300 hours of the period. For265

the experiments in Sect. 3.3 - 3.4, the first consecutive 120 hours (5 days) of the period are used for the inversion to test if

the posterior estimate captures the correct temporal pattern. For the inversion, we assume constant emissions in Sect. 3.1 -

3.2 and a fixed diurnal cycle as described in Sect. 2.4 for Sect. 3.3 - 3.4. In the conducted OSSE, the influence of biogenic

CO2 fluxes and background concentrations is not considered. Instead, the simulated concentration fields specifically represent

the increase in CO2 concentration resulting from anthropogenic fluxes within the domain. This simplification corresponds to270

periods when biogenic influences in the city center are very small, most likely in winter, and exact background estimations

of CO2 transported from out of the domain into the domain are available. Both assumptions are not valid during most parts

of the year. However, the goal of this OSSE is to evaluate the inversion framework and analyse the sensitivity of network

configurations to CO2 emission estimates as starting point for optimal network design in Heidelberg. As such, we do not claim

completeness. We elaborate on the limitation caused by these similifications in Sect. 4.275
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3 Results

3.1 Sensor quality and quantity

The optimal design of a measurement network is constrained by the total costs of the network limiting quantity and/or quality

of the used sensors and transport model. In this experiment, the quality of the inversion is investigated for different numbers

of sensors with different mismatch errors Sy . The mismatch error includes instrument errors, model errors as well as repre-280

sentation errors. While all of the errors are inevitable, the instrument errors deserve special focus as it is a design variable for

building a monitoring network. High cost sensors have better precision than mid-cost or low cost sensors, but are much more

expensive such that we expect a trade-off between quality and quantity for a given budget. We follow the set-up by Turner

et al. (2016) and conduct multiple Monte Carlo experiments each with N= 2000 runs. In a Monte Carlo experiment a model

variable, in our case sensor location, is sampled randomly to estimate the probability of having a certain outcome, in our case of285

having a certain information content of the inversion. We place 5, 10, 15, 20, 25 and 30 sensors randomly on a 5 x 6 grid within

the domain (30 possible locations) with a total noise of 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0 ppm. We conduct the analysis

for 24 randomly selected wind situations. For illustration purposes, Fig. 2 plots the true (left column), prior (middle column)

and posterior emissions (right column) for the district "Weststadt" on a map for the three emission groups, namely for area

emissions (upper panel), combustion emission (middle panel) and traffic emissions (lower panel). One can see that an emission290

group is not flat, but exhibits a substructure. Posterior emissions are shown for a specific setting (10 CO2 measurements with

1 ppm uncertainty). The mean posterior result for each state (all districts, all sectors, same setting) can be seen left in Fig. 4.

Figure 4. Left: Mean posterior emissions of each state vector. Middle: Mean posterior uncertainty. Right: True emissions of each state

vector. The different states refer to emissions from the TNO point (blue) and area sources (green), the traffic simulations (orange), and the

combustion sources (red). Note that the prior emissions and uncertainties are given in Fig. 3.
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For quantitative analysis of the optimal configuration, Fig. 5 shows the relative improvement of the estimation of the city-

wide emission flux for the different sensor noises and number of sensors. The relative improvement increases with quantity

and with decrease of model-data mismatch error, e.g. by increasing the quality of sensors. Similar to Turner et al. (2016), we295

can identify noise-limited configurations (e.g. 25 sensors at 2 ppm uncertainty in Fig. 5) for which the flux estimation improves

more by increasing the quality of the sensors and models and site-limited (e.g. 5 sensors at 2 ppm uncertainty in Fig. 5) where

the flux estimation improves more by increasing the number of sensors. While the quality of flux estimation increases with

number of sensors and sensor quality, the budget for a sensor network is limited. The best choice of network depends on the

monetary constraints for the sensor network and the costs of each sensor.300

The plot allows comparing the relative improvement of flux estimation for different networks in Heidelberg. One can then

utilize Fig. 5 to identify the configurations that are still affordable (subset of squares in Fig. 5) and find the configuration that

maximises the relative improvement of the flux estimation. This implies, that for any given budget, one can base a decision on

investing in more or in better sensors (and models) on these results. Note that we here only account for a random uncertainty

in sensor noise assuming uncorrelated measurement uncertainties among sensors. We do not analyse systematic errors within305

the measurement network, which could be present because of e.g. temperature dependent drifts of the sensors (Delaria et al.,

2021) or by a background transport errors. While analyzing systematic offsets was not the scope of this study, the established

inverse framework can be easily used to study such effects in future.

Figure 5. Relative improvement of estimate for different configurations of the number of sensors and the measurement error of the sensors.

The relative improvement increases with increasing number of sensors and sensor noise.
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3.2 Sensor placement

In Sect. 3.1 we have randomly sub-sampled a number of sensors from a 5 × 6 grid. Now, we analyse the optimal spatial310

distribution of the sensors. We therefore compare the sensor placement in a regular grid to randomly selecting locations in the

domain. For the random selection, we run Monte Carlo simulations (each N=2000) for different sensor numbers again using

24 randomly selected wind situations and offering 100 (10 × 10 grid) different possible sensor positions at 2 m above ground.

We analyse the information content, for 9, 16, and 25 sensors for the random placement and for a regular grid placement

assuming a measurement precision of 1 ppm (see Fig. 6). One can clearly see that the information content increases with the315

number of sensors, as expected as more sensors better inform on the emissions. On average, the grid placement outperforms

the random placement as can be seen from the mean values in Fig. 6. This means that without further information on the

underlying emission statistics, it is beneficial to place the sensors in a regular grid rather than placing them randomly. This

is expected as a regular grid covers the entire domain and therefore is less likely to be insensitive to emissions from specific

areas. The difference between random and grid placement, as well as the distribution of the random placement, is especially320

large for a small number of sensors. For a low number of sensors, the random placement of sensors is more likely to be

spatially heterogeneous and therefore may be especially well or bad placed contributing to lower and higher information

content as in the random placement. The distribution of information content for the randomly placed sensors decreases for

higher number of sensors due to a better statistic. Interestingly, the placements with the highest information content are again

random placements. We analysed the right tail (10 best performing sensor arrangements) of the random distribution of nine325

sensors with high information content. Figure 7 shows the locations of the configurations with the highest information content.

The locations with large incident number produce a large information content in many meteorological situations and should

therefore be considered as optimal location for a measurement network. As the tail of the distribution corresponds to individual

realizations of the Monte Carlo experiments, it remains unclear whether the “high information content tail” is driven by a

specific set of wind situations or if these measurement locations outperform the grid placement in all wind situations. For330

our Heidelberg setting, one can see that the measurement locations providing most information content are located in the city

center and in vicinity to higher emissions. In the East of the domain, which is dominated by forest areas with low anthropogenic

CO2 emission in the true emissions, only few sensors are placed. In future, we plan to extend this study by considering also

measurement stations at higher altitudes above ground as higher stations are less influenced by local sources and are therefore

likely to provide information on the emission patterns over a larger area. This might be complementary to the ground-based335

sensors.

3.3 CO as additional tracer

CO is co-emitted when burning fossil fuels. Depending on the source type, the CO/CO2 ratio of the emissions differs (see Table

1). As CO and CO2 are nearly passive during an hour, both tracers are transported linearly with the same atmospheric transport.

Therefore, measuring the atmospheric CO concentration can provide additional information about the specific emission groups340

and potentially also about the total CO2 emissions in general as both stem from anthropogenic sources. We now analyse
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Figure 6. Information content distribution for the inversion set-up for varying wind conditions. The information content increases with

number of sensors. The mean information content of randomly placed sensors (blue) is larger in the grid placement, but as the standard

deviation of the random placement is larger, the highest information content is achieved for some configurations with randomly placed

sensors.

to which degree the estimation of CO2 emissions benefits from measuring CO enhancement as additional tracer along with

CO2. Note, that we neglect biogenic CO emissions, which are normally expected to be much smaller than anthropogenic

CO emissions in cities. While the mean CO/CO2 ratio of all anthropogenic sources in Heidelberg is 5 ppb ppm−1, it is about

9 ppb ppm−1 for traffic emissions (see GNFR sectors f1-F3 in Table 1) making CO measurements especially sensitive to traffic345

emissions.

In this experiment, we assume that all measurement stations measure both CO2 and CO with uncorrelated measurement

errors of 1.0 ppm for CO2 and 2.0 ppb for CO. The inversions are performed for a period of 5 days and the diurnal cycle is

assumed to be identical for each day. We conduct this experiment using 10 sensors. The prior is constant during the period and

we do not introduce any correlation into the prior.350

Figure 8a shows the total anthropogenic CO2 emissions during the course of the day. While the prior is constant in time,

the truth actually shows a temporal profile with distinct morning peak. One can see that both inversion results (posterior with

CO2 only and with CO2 and CO) differ from the flat prior and are able to capture the profile of the true total emissions. In the

16



Figure 7. Sensor positions of the 9 sensors with the 10 largest information content. The size of the dots indicates the incidence of the sensor

position of the 100 available positions in the experiment.

given setting, there is no significant improvement of the posterior emissions of total CO2 when including CO in the inversion.

Note that this finding only holds in our setting when neglecting biogenic emissions. However, for future studies, we encourage355

re-analysing the benefit of CO for total anthropogenic CO2 when including biogenic emissions. Figure 8b shows the traffic

emissions. Again, both posterior inversions differ from the flat prior emissions. However, the posterior estimate using the CO as

additional constraint in the inversion is much closer to the true emissions. The same is true for combustion emissions (see Fig.

8c). This means that in our setting, for the given emission ratios and measurement uncertainties, the additional measurement

of CO is useful in the inversion to separate different emission groups.360

3.4 Temporal correlation of the prior

In the previous sections, we have retrieved the CO2 emissions for every hour without assuming any correlation between

the states. Without temporal correlation, each hour of the inversion is independent of the previous and the following hour.

We now examine the effect of considering temporally correlated states to reflect the existence of temporal emission trends

exceeding 1 hour time scales. A correlation in the prior reduces the total uncertainty of the prior. However, the choice of the365

correct correlation length is vital. A larger correlation length leads to a smoothed time series as measurements inform multiple

emission states and thus exhibit a larger corrective power over neighbouring hours. On the other hand, smaller correlation

lengths can better account for spikes during the measurements. The choice of optimal correlation length therefore depends on

the underlying emission patterns.
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Figure 8. a) Diurnal cycle of the total CO2 emissions in Heidelberg. The figure shows the posterior for an inversion utilising CO2 only (blue)

and an inversion utilising CO2 and CO (orange). The shaded area is the standard deviation derived from the posterior covariance. The dotted

lines show the prior emissions (gray) and the truth (green. b) Same as a, but for traffic instead of total CO2 emissions. c) Same as a, but for

combustion emissions.

In a first analysis, we have varied the correlation length τh and analysed how the RMSE of the CO2 emissions for different370

emission groups change with correlation length (see Fig. 9). This analysis is only possible in an OSSE when the truth is known

and a RMSE can actually be determined.

As the optimal correlation length depends on the temporal emission dynamics, it is dependent on the source type. Focusing

on the total CO2 emissions, we find a clear minimum for about 2 hours. It is driven by a shorter optimal correlation length for

point sources and longer optimal correlation lengths for traffic, heating or other area emissions. The curve for the point sources,375

which are emitted at heights of 85 m and 120 m, is qualitatively different from the curve of the ground-based sources. While
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Figure 9. RMSE of the different emission sources for different correlation lengths τh. The dashed gray line indicates the minimum of the

RMSE for the total emissions, which is at a correlation length of 2 hours.

introducing any correlation time has a positive effect on the RMSE for ground-based sources, the effect can be detrimental for

point sources. For point sources, correlation times between 4 and 15 hours are too strong for our setting. We here chose the

2 hours as correlation strength to estimate posterior emissions and highlight the importance of choosing the optimal correlation

time especially for determining point sources. In Fig. 10a we analyse the benefit of using a posterior correlation of 2 hours to380

estimate total CO2 emissions. The estimation of total CO2 emissions improves when introducing the prior correlation. While

the benefit is only small for total CO2 emissions, the traffic and combustion emissions improve substantially when introducing

a prior correlation (see Fig. 10b and c). This finding for our OSSE in Heidelberg is in accordance with the results from Kunik

et al. (2019) in Salt Lake City. It shows that it is beneficial to introduce a temporal correlation of the prior states if underlying

emission dynamics are temporally correlated as neighbouring states can inform and correct for each other.385

4 Discussion

In this set of experiments, we analyse the trade-offs inherent in balancing sensor quantity and sensor quality, we determine

the optimal sensor locations, and evaluate the advantages of measuring CO, along with the impact of introducing temporal

correlation into the inversion framework. These investigations are conducted within a simplified urban setting in Heidelberg.

The information content and, consequently, the precision of emission estimates depend on both the quantity and quality390

of deployed sensors. The potential accuracy of flux estimation increases with an increased financial budget, enabling the

installation of additional or superior sensors. Through our experiments, we are able to determine the optimal sensor configura-

tion—considering both quantity and quality—tailored to any given financial constraint.
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Figure 10. a.) Diurnal cycle of the total CO2 emissions. The figure shows the posterior for an inversion with uncorrelated prior emissions

(blue) and with time correlated prior emissions with a correlation length of two hours (orange). The shaded area is the standard deviation

derived from the posterior covariance. The dotted lines show the prior emissions (gray) and the truth (green). b.) Same as a, but for traffic

instead of total CO2 emissions. c.) Same as a, but for combustion CO2 emissions instead of total CO2 emissions.

The experiments further suggest locations of preferred sensor installation based on Monte Carlo simulations. The GRAM-

M/GRAL model proves especially advantageous for assessing optimal sensor positions due to the storage of full concentration395

fields for each wind situation. Other models often compute footprints for predefined sites, which makes the analysis of a large

number of possible sensor locations less efficient. We analyse the performance of a network with equally spaced sensors versus

randomly placed sensors inside the domain. On average, equally spaced sensors outperform randomly placed sensors. This

means that in absence of information on the emission distribution an equally spaced sensor placement is a good starting point.
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However, there are network configurations that yield better performance in terms of emission estimates, particularly when400

located near emission sources and in the center of the domain.

Moreover, we assess the advantages of incorporating CO as an additional tracer. Although CO measurements do not signif-

icantly enhance the overall estimation of total CO2 emissions in this setting, they do contribute to an improved estimation of

sector-specific emissions. The limited impact of including CO for the estimation of total CO2 emissions can be attributed to the

absence of biogenic emissions in the presented setting. Consequently, the total CO2 emissions are already well-represented by405

sampling the total simulated CO2 enhancements. In reality, the total CO2 enhancement, in contrast to total CO enhancement,

is significantly influenced by biogenic sources – especially in spring and summer. Reassessing the benefit of CO as tracer for

anthropogenic CO2 is therefore encouraged after including biogenic emissions into the framework. Beyond that, it is possible

to adjust CO/CO2 ratios of different sectors to mimick anticipated changes in CO/CO2 ratios, and evaluate the benefit of the

tracers under these circumstances again.410

Finally, we analyse the influence of the prior probability distribution on the inversion by introducing a temporal correlation in

the prior emission estimate. The introduction of temporal correlation increases the overall uncertainty reduction. The optimal

correlation length is source dependent, but is 2 hours for the total emissions in our setting. Using this correlation length

improves the emission estimate and minimises the discrepancy between the posterior emission estimate and the true emissions,

which again is in line with previous studies.415

The results provide a first indication on how to construct a network and beyond that they show the principle applicability of

GRAMM/GRAL in an inversion framework. However, all results still exhibit uncertainties due to various aspects: First, as any

model, GRAMM/GRAL exhibits transport errors. The performance of GRAMM/GRAL has been assessed in multiple studies

and has to be taken into account in the inversion (as model-data mismatch). Utilizing a wrong error for the model transport may

distort the outcome of the inversion. The same argumentation holds for instrumentation errors. So far, we have only considered420

random noise for the model-data mismatch. However, the framework allows evaluating systematic biases, e.g. due to sensor

drifts or emissions transported from out of the model domain to the sensor locations.

Second, introducing biogenic emissions and analyzing the effect of background concentrations is essential for drawing final

conclusions on the design of the measurement network in urban areas. Biogenic emissions enhance the total CO2 signal and

thus mask the contributions from anthropogenic sources. The effect of transported CO2 into the model domain will be larger425

the smaller the domain. In Heidelberg, we expect the effect of transported emissions to be considerable as emissions from the

city of Mannheim influence the concentrations in Heidelberg for typical westwind situations. The magnitude of concentration

enhancement and its effect on the emission estimation still needs to be explored in future. However, there are possibilities

to account for the transported emissions – either by setting up dedicated measurement stations at the domain borders or by

including an uncertainty for the background enhancement into the inversion framework, which will be explored in a next430

generation OSSE for Heidelberg.

Third, the choice of state vector will influence the result. In future, one might consider changing from emissions grouped

into districts with fixed sub-district variation to e.g. a high-resolution regular grid. This would decrease the aggregation error

21



and account for finer spatial dynamics. However, as this increases the dimension of the state vector, more measurements will

be necessary to determine the fluxes on higher resolution equally well.435

While an OSSE will never be able to mimick the real world fully, approaching realistic setting in the model world is

important to obtain the correct indications for sensor network planning. Using the presented framework, we can now add

further complexity and conduct numerous additional experiments, such as exploring moving sensors, incorporating additional

tracers, analyzing different sensor heights and extending to longer time periods.

5 Conclusions440

We have developed a framework for conducting OSSEs using the high-resolution transport model GRAMM/GRAL. This

framework allows to perform various experiments to assess the capabilities and sensitivity of a measurement network to specific

parameters.

The developed framework represents a first step towards conducting atmospheric inversions using a transport model with

a resolution much below the kilometer scale. The experiments allow comparing different network parameters and therefore445

optimising the network design based on high-resolution transport. We have demonstrated the feasibility of estimating CO2

emissions for Heidelberg at a district level and give first indications for sensor network design. The main advantage of using

GRAMM/GRAL in the inversion lies in the cost-effective forward model employed in the catalogue approach, as well as the

assumption of hourly steady state in the model. This steady state assumption enables easy determination of the Jacobian re-

quired for inversion. This advantageous characteristic facilitates network optimization across various parameters and locations,450

even encompassing areas influenced by street channeling and buildings. This framework provides the basis to efficiently esti-

mate high-resolution CO2 fluxes in an urban setting. In a next step, we can now further enhance the realism of the OSSE by

incorporating additional complexities.
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Code and data availability. The inversion code can be found at https://doi.org/10.5281/zenodo.8354902 and https://github.com/ATMO-IUP-

UHEI/BayesInverse/tree/v.1.1. Code to read and proccess GRAMM/GRAL output: https://github.com/ATMO-IUP-UHEI/GGpyManager and455

https://zenodo.org/record/8375169. Code to conduct the experiments: https://github.com/ATMO-IUP-UHEI/Experiments Forward modelled

concentration data has been simulated using GRAMM/GRAL v19.1 (https://github.com/GralDispersionModel) and is archived on heiData:

https://doi.org/10.11588/data/NHIVDO

Appendix A: Abbreviations

Table A1. List of abbreviations used in the manuscript.

Abbreviation Full name

CO Carbon monoxide

CO2 Carbon dioxide

GNFR Gridded Nomenclature For Reporting

GRAL Graz Langrangian Model

GRAMM Graz Mesoscale Model

OSSE Observing System Simulation Experiment

ppb parts per billion

ppm parts per million

TNO Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek

RANS Reynolds Averaged Navier Stokes

RMSE Root Mean Square Error

Appendix B: Emissions460

B1 Prior emissions

Appendix C: Districts chosen as state vectors for the inversion
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Figure B1. a.): TNO area emissions, b.): TNO point emissions for the GRAL domain in Heidelberg. Data is taken from Super et al. (2020).

Figure C1. a) The districts used as states for the inversion. The full names as well as the administrative districts inside each district are listed

in table C1.
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Table C1. Overview over the district names and the administrative districts they represent. Smaller districts or district fragments are grouped

together.

Code Districts Name

Alt Altstadt

Bn Bahnstadt

Be Bergheim

Do Dossenheim

Ha Handschuhsheim

Neu Neuenheim

Pf Pfaffengrund

Sb Schlierbach

Sr Schriesheim

Süd Südstadt

We Weststadt

Wb Wieblingen

G0 Oftersheim, Kirchheim, Sandhausen Group 0

G1 Eppelheim, Plankstadt Group 1

G2 Edingen-Neckarhausen, Ladenburg Group 2

G3 Schönau, Ziegelhausen, Wilhelmsfeld, Weinheim Group 3

G4 Emmertsgrund, Boxberg Group 4

G5 Gaiberg, Bammental, Neckargemünd Group 5

G6 Leimen, Rohrbach Group 6
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