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Abstract. Accurate hydrological modeling is vital to characterizing how the terrestrial water cycle responds to climate change. 19 

Pure deep learning (DL) models have shown to outperform process-based ones while remaining difficult to interpret. More 20 

recently, differentiable, physics-informed machine learning models with a physical backbone can systematically integrate 21 

physical equations and DL, predicting untrained variables and processes with high performance. However, it was unclear if 22 

such models are competitive for global-scale applications with a simple backbone. Therefore, we use - for the first time at this 23 

scale - differentiable hydrologic models (full name δHBV-globe1.0-hydroDL, shortened to δHBV here) to simulate the 24 

rainfall-runoff processes for 3753 basins around the world. Moreover, we compare the δHBV models to a purely data-driven 25 

long short-term memory (LSTM) model to examine their strengths and limitations. Both LSTM and the δHBV models provide 26 

competent daily hydrologic simulation capabilities in global basins, with median Kling-Gupta efficiency values close to or 27 

higher than 0.7 (and 0.78 with LSTM for a subset of 1675 basins with long-term records), significantly outperforming 28 

traditional models. Moreover, regionalized differentiable models demonstrated stronger spatial generalization ability (median 29 

KGE 0.64) than a traditional parameter regionalization approach (median KGE 0.46) and even LSTM for ungauged region 30 

tests in Europe and South America. Nevertheless, relative to LSTM, the differentiable model was hampered by structural 31 
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deficiencies for cold or polar regions, and highly arid regions, and basins with significant human impacts. This study also sets 32 

the benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations. 33 

 34 

Short Summary. Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the 35 

first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall-runoff 36 

processes for 3753 basins around the world and compare them with purely data-driven and traditional approaches. This sets a 37 

benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations. 38 

 39 
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1. Introduction 42 

Hydrological models are vital tools to model and elucidate the terrestrial water cycle, and have been widely used in flood 43 

forecasting (Maidment, 2017), water resources management (Jayakrishnan et al., 2005), and assessing climate change impacts 44 

(Hagemann et al., 2013). Recently, deep learning (DL) models have demonstrated superior performance compared to 45 

traditional process-based hydrological models in accurately predicting different components of the hydrologic cycle (Shen, 46 

2018), such as soil moisture (Fang et al., 2017, 2019; Fang and Shen, 2020), streamflow (Feng et al., 2020; Konapala et al., 47 

2020; Kratzert et al., 2019b; Liu et al., 2024), snow water equivalent (Cui et al., 2023; Song et al., 2024), groundwater (Wunsch 48 

et al., 2021) and water quality (Hansen et al., 2022; Rahmani et al., 2021; Saha et al., 2023; Zhi et al., 2021; Chaemchuen et 49 

al., 2023). Long short-term memory (LSTM) networks, which are a type of recurrent neural network (Hochreiter and 50 

Schmidhuber, 1997), and Transformers are currently popular DL algorithms for handling time series dynamics in hydrology, 51 

while other architectures like transformers can also be employed. LSTM models have established state-of-the-art accuracy for 52 

streamflow prediction at continental and smaller scales (Feng et al., 2020, 2021; Kratzert et al., 2019a, b; Lees et al., 2021; 53 

Mai et al., 2022). 54 

 55 

Although DL models have shown great prediction accuracy compared to traditional models, they usually do not possess clear 56 

physical constraints inside the model and are often considered to be “black boxes”, despite recent efforts shed by some 57 

interpretive efforts (Lees et al., 2022). Thus, purely data-driven models are limited in that they cannot predict unobservable or 58 

untrained physical variables, and impede the investigation of the physical relations of different hydrologic variables behind 59 

the change in the target variable. They may also become overfitted and acquire incorrect sensitivities to inputs (Reichert et al., 60 

2024). In contrast, traditional process-based hydrologic models following physical laws like mass balances can provide a full 61 

set of diagnostic outputs for hydrologic variables like soil water storage, groundwater recharge, evapotranspiration and snow 62 

water equivalent, even though they are usually only calibrated on discharge observations (Burek et al., 2020; Müller Schmied 63 
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et al., 2014). The multivariate output nature of these models provides an opportunity for calibration on one or more observable 64 

variables to better predict other, perhaps unobservable, variables (in reality, whether this is the case or not depends on if the 65 

issue of parameter non-uniqueness is addressed). However, it seems quite difficult for the traditional physical model to 66 

approach the performance level of the DL models in daily hydrograph metrics (Feng et al., 2020; Kratzert et al., 2019b) or to 67 

improve in generalization with increasing training data (Tsai et al., 2021). In addition, traditional calibration is typically done 68 

site-by-site and can be time- and labor-intensive. Therefore, it logically follows that integrating DL and process-based models 69 

might enable harnessing their respective strengths while circumventing their weaknesses (Shen et al., 2023). 70 

 71 

By combining a physical model with a DL model, differentiable modeling (Shen et al., 2023) provides a systematic solution 72 

to leveraging the strengths of both model types while circumventing their limitations. In differentiable models, we use process-73 

based models as a backbone and insert neural networks to either provide parameters (Tsai et al., 2021) or process substitutes 74 

for physical models (Aboelyazeed et al., 2023; Feng et al., 2022, 2023; Höge et al., 2022; Jiang et al., 2020), or they could use 75 

limited physical constraints (Kraft et al., 2022). They are collectively called “differentiable models” in the sense that they can 76 

rapidly compute gradients of outputs with respect to inputs or parameters using automatic differentiation (or any other means). 77 

The differentiability enables the training of neural network components placed anywhere in the model via backpropagation. 78 

Inserting neural networks into process-based models can be perceived as posing questions regarding some uncertain 79 

relationships given some known ones (priors) and we want to get answers for these questions by automatically learning from 80 

big data. 81 

 82 

Some of our recent work has applied differentiable modeling to the conceptual hydrologic model named Hydrologiska Byråns 83 

Vattenbalansavdelning (HBV) (Bergström, 1976, 1992; Seibert and Vis, 2012), and built a physics-informed hybrid model for 84 

basins in the contiguous United States (CONUS) (Feng et al., 2022, 2023). The model is “regionalized” in the sense that the 85 

embedded neural network components are trained simultaneously on all basins in the study region in order to provide physical 86 

HBV parameters which are learned from raw information of basin attributes, resulting in improved generalizability and reduced 87 

overfitting to local noise. With the help of differentiable modeling to flexibly evolve the original structure of HBV, the 88 

differentiable hybrid models can approach the performance level of the LSTM model, whilst being constrained to physical 89 

laws and keeping process clarity to predict untrained diagnostic variables with decent accuracy (Feng et al., 2022). Since the 90 

framework is regionalized, this differentiable model can be used to predict in ungauged regions and even extrapolates better 91 

spatially than LSTM in data-sparse regions when tested across the CONUS (Feng et al., 2023).  92 

 93 

Owing to the complexity of calibration, current global hydrologic models are largely either uncalibrated (Hattermann et al., 94 

2017; Zaherpour et al., 2018) or only calibrated on mean annual water budgets or in limited regions (Burek et al., 2020; Müller 95 

Schmied et al., 2014). Only very limited studies attempt to calibrate global models on monthly discharge variations (Werth 96 

and Güntner, 2010). We desire efficient regionalized models that maximally leverage available information and provide 97 
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accurate predictions to diverse basins across different climate groups and geographic characteristics in the world. We also want 98 

the models to perform decently even in data-sparse regions, showing competitive extrapolation ability, given that many large 99 

regions such as in Africa and Asia lack publicly available streamflow data. DL and differentiable models seem plausible 100 

candidates for such simulations. Nevertheless, previous studies on DL and physics-informed differentiable models mainly 101 

focus on continental or smaller scales, with a relatively homogeneous forcing dataset --- it is unclear if their observed strengths, 102 

e.g., high performance and strong generalization ability, can carry over to global scales, where the climate is much more diverse 103 

and datasets differ widely in their biases and uncertainty characteristics. In particular, we want to thoroughly examine how 104 

well these models can leverage information learned in data-rich continents to characterize the hydrologic processes in 105 

ungauged regions across the world. Meanwhile, DL models also show favorable scaling relationships (or data synergy) where 106 

more data leads to more robust models (Fang et al., 2022). Thus, training on a larger dataset may provide additional benefits.  107 

 108 

In this study, we test physics-informed differentiable models (with the full version name δHBV-globe1.0-hydroDL, where “δ” 109 

represents “differentiable”, global1.0 is the version, and “hydroDL” refers to our particular code implementation. δHBV is 110 

used as the abbreviation in this paper) to simulate hydrologic processes for global basins and compare results to purely data 111 

driven methods and traditional modeling approach. We focus on regionalized modeling and emphasize the importance of 112 

spatial generalization in data-sparse scenarios, since observed streamflow data in many parts of the world are scarce. This 113 

means one framework with parameter regionalization from geographic attributes will be used to model all the global basins 114 

rather than calibrating a separate model in each individual basin (Beck et al., 2020b; Feng et al., 2022; Mizukami et al., 2017). 115 

We first investigate what prediction accuracy can be achieved by different models at global scale by learning from a large and 116 

diverse dataset. We then relate the global spatial patterns of model performance to geographic characteristics and hydrologic 117 

processes to identify model structural deficiencies and gain hydrologic insights. Finally, we provide evidence indicating which 118 

type of model may be more appropriate for next-generation global modeling by rigorously examining their generalizability to 119 

ungauged regions across the world.  120 

2. Data and methods 121 

2.1 Global datasets 122 

We use a global database compiled in a previous study (Beck et al., 2020b) which contains a total of 4229 headwater 123 

catchments. The dataset includes basin mean meteorological forcings, catchment characteristics such as the climate, 124 

topography, land cover, soil composition, and geology information to support parameter regionalization, along with streamflow 125 

gauge discharge observations. Meteorological forcings are the driving inputs of hydrological models. This global dataset 126 

includes daily precipitation from Multi-Source Weighted-Ensemble Precipitation (MSWEP), a product that merges gauge, 127 

satellite, and reanalysis precipitation data (Beck et al., 2017c, 2019), and maximum and minimum temperature from Multi-128 

Source Weather (MSWX), a product that bias-corrects and harmonizes meteorological data from atmospheric reanalyses and 129 
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weather forecast models (Beck et al., 2022). Potential evapotranspiration was estimated using the method from Hargreaves 130 

(1994). The discharge observations at the outlet gauges were used as prediction targets to train the hydrologic models. We 131 

excluded some basins with potential erroneous discharge records such as showing unreasonable magnitude way larger than 132 

precipitation or dramatic differences between two time intervals, by manually performing visual screening, and also excluded 133 

those with severe amounts of missing data (less than 5 years’ worth of data points in the study period from 2000 to 2016). 134 

Thus, 3753 basins were finally used to evaluate different models. These basins had been classified into five Köppen-Geiger 135 

climate classes in Beck et al., (2020b), including tropical (489 basins), arid (109 basins), temperate (1423 basins), cold (1593 136 

basins), and polar (139 basins), as shown in Figure 1. To evaluate the simulations of untrained variables like evapotranspiration 137 

(ET), the MOD16A2GF (Running et al., 2021), a gap-filled 8-day composite ET product estimated from the Moderate 138 

Resolution Imaging Spectroradiometer (MODIS) satellite data and meteorological reanalysis data, were used as independent 139 

observations to compare against the simulated ET from differentiable hydrologic models. 140 

 141 
Figure 1. Locations and climate groups of the 3753 global basins used in this study, which were originally compiled by Beck et al., 2020. 142 
Plotted in Python using Matplotlib Basemap Toolkit. 143 

2.2 The long short-term memory (LSTM) streamflow model for comparison 144 

Here the LSTM model is used as a benchmark for purely data-driven DL. The LSTM has “cell states” and “gates” to maintain 145 

and filter information, as shown in Figure 2a. The input, forget, and output gates control the flow of information, respectively 146 

controlling what to let in, what to forget, and what to output from the system. In this study we use the LSTM streamflow model 147 

demonstrated in Feng et al. (2020) which has been successfully applied to simulate streamflow in hundreds of basins across 148 

the CONUS. The framework takes meteorological forcings and basin attributes as inputs and generates daily streamflow 149 

predictions for each basin at each time step (Figure 2a). We used mini-batches to train the LSTM model, where each minibatch 150 
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was composed of two-year sequences from 256 randomly-selected basins. The first-year sequences are only used for 151 

initializing the cell states, so we calculate the batch loss function only on the second-year sequences. The training sequences 152 

were also randomly selected from the whole training period, and one epoch was finished when the model had seen all the 153 

training data. Note that this sequence length is a subset of, and different concept from, the length of training period. Sequence 154 

length specifically refers to the length of the training instance that comprises a minibatch, whereas training period refers to the 155 

whole period when observations are available for training, from which the minibatch sequence length is randomly selected. 156 

The model was forwarded on each minibatch iteratively and its weights were updated using gradient descent after each 157 

forwarding. One epoch was considered to have occurred when the model is iterated over all the training data.  We trained the 158 

LSTM model for 300 epochs to achieve convergence. 159 

 160 
Figure 2. Illustrations of two different types of regionalized hydrologic models. (a) Framework of the purely data-driven LSTM 161 
streamflow model (adapted from Figure 2 in Feng et al., 2020), and (b) framework of the differentiable HBV model (δHBV-globe1.0-162 
hydroDL) with parameter regionalization developed in Feng et al. (2022) (adapted from Figure 1 in Feng et al. (2022). The neural 163 
network gA here is a LSTM unit which is trained by the observed streamflow to produce the static or dynamic physical HBV parameters 164 
(θ, β, γ) from basin characteristics. 165 
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2.3 The hybrid differentiable hydrologic models 166 

We used the hybrid differentiable models (δHBV-globe1.0-hydroDL) developed in Feng et al., (2022) for regionalized 167 

modeling in global basins. The HBV model used here as the physical backbone is a conceptual hydrologic model with 168 

representations of snowpack, soil, and groundwater storages, and can simulate flux variables such as snow melting, 169 

evapotranspiration, and quick and slow outflows (Beck et al., 2020b; Bergström, 1976, 1992; Seibert and Vis, 2012). The 170 

differentiable parameter learning (dPL) framework (Tsai et al., 2021) is used to provide parameter regionalization for HBV, 171 

as shown by the gA neural network in Figure 2b. The gA network, which is a LSTM unit here, takes basin attributes and 172 

meteorological forcings as inputs, and outputs static or dynamic physical HBV parameters. The differentiable HBV model 173 

then takes these parameters as well as the meteorological forcings to simulate the hydrological process and predict daily 174 

streamflow discharge along with other key flux variables. The whole framework including HBV itself was implemented in a 175 

DL platform (PyTorch 1.0.1 was used for the original development and the model has also shown good compatibility with 176 

more recent PyTorch versions, (Paszke et al., 2017)) supporting automatic differentiation and trained with gradient descent to 177 

minimize the difference between the simulated and observed streamflow (the loss function). As in Feng et al., (2022), we 178 

employed the loss function based on root-mean-square error (RMSE) with two weighted parts. The first part calculates RMSE 179 

directly on the simulated and observed discharge, while the second part calculates RMSE on the transformed discharge records 180 

to improve low flow representations. Note that we do not directly train the HBV parameters; rather, we focus on training the 181 

weights of the gA neural network to map the relationship between basin-averaged characteristics and HBV parameters. 182 

Differentiable models are also trained in mini-batches that are formed in the same way as for training the LSTM streamflow 183 

model. Within one epoch, differentiable models are forwarded and optimized over the randomly formed mini-batches until the 184 

iterations have used all the training data points. We train the differentiable models for 50 epochs in total. 185 

 186 

As described in Feng et al. (2022), the differentiable modeling framework enables optional modification of the structures of 187 

the original HBV model to enable better performance and we use two versions of evolved HBV models in this study. We used 188 

16 parallel subbasin-scale response units, each with a separate set of parameters to describe a fraction of the basin with different 189 

hydrologic responses. These components implicitly represent subbasin-scale spatial heterogeneity. The simulated fluxes (e.g., 190 

streamflow) are the average of all the response units. The parameters of the multiple components are different and all are 191 

produced simultaneously by the same gA network. The first version of our model (referred to as “dPL + evolved HBV”) only 192 

has static parameters which are kept constant during the hydrologic simulation. The second version (referred to as “dPL + 193 

evolved HBV with DP) further allows some formerly static parameters of the multi-component model to vary daily with the 194 

meteorological forcings. These dynamic parameters (DP) were also produced by the gA LSTM unit. If we were to apply the 195 

dynamic parameterization to all parameters, the model could become overly flexible, potentially leading to overfitting to the 196 

training data (which would lead to issues with extrapolation beyond the training data). To reduce the risk of overfitting, we 197 

restricted the dynamism to only two empirical parameters: the shape coefficient β in the equation that describes the 198 



8 
 

relationships between soil storage and potential runoff, and a newly added shape parameter (γ)  which is involved in the 199 

calculation of evapotranspiration. For more details regarding these differentiable HBV models, please refer to our previous 200 

studies (Feng et al., 2022, 2023). 201 

2.4 Experiments and evaluation metrics 202 

We ran one temporal and two spatial generalization experiments to evaluate the performance of different regionalized models. 203 

For the temporal generalization experiment, the models were trained for the period of 2000 to 2016 on all global basins, and 204 

tested for the period of 1980 to 1997. Basins without discharge records or with less than 5 years’ worth of data points in the 205 

testing period were excluded from the evaluation. Without spatially holding out any basin during training, this experiment 206 

aimed at evaluating the model’s generalizability in the time dimension by testing prediction ability on the same basins but in 207 

a different time period from the training data. The other two spatial generalization experiments served as the true litmus tests 208 

for evaluating the effectiveness of regionalization schemes, i.e., how well the model can be applied to basins that have never 209 

been seen during training. The first spatial generalization experiment was a traditional “prediction in ungauged basins” (PUB) 210 

problem, where we randomly divided the whole global basin set into 10 folds (groups) and performed cross-validation across 211 

these folds to obtain spatial out-of-sample predictions for all basins (training on 9 of the folds with the 10th fold held out and 212 

testing on the 10th, then rotating such that each fold is used for testing once). The second spatial generalization experiment, 213 

which we refer to as cross-continent “prediction in ungauged regions” (PUR), was more challenging. In this experiment, we 214 

assumed that all the basins in certain continents are ungauged and excluded from the training dataset, trained a regionalized 215 

model in other data-rich continents, and then tested the trained model to make predictions in the ungauged continents. With 216 

random hold-out, an ungauged test basin in the first spatial generalization experiment always has training gauges surrounding 217 

it. Therefore, the first PUB experiment can be interpreted as spatial interpolation. The second spatial experiment (cross-218 

continent PUR) holds out all the basins in one continent as testing targets, and thus is the much harder test of spatial 219 

extrapolation.  220 

 221 

To evaluate the overall performance of the hydrologic models, we used the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009; 222 

Kling et al., 2012) as compared in Beck et al., (2020b) and Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970). KGE 223 

has three components that account for correlation, mean bias, and variability bias, while NSE mainly represents the variance 224 

explained by the simulations. Both metrics indicate better performance when their values are closer to the maximum value of 225 

1. We also examined the percent bias of the top 2% peak flow range (FHV) and bottom 30% low flow range (FLV) of 226 

streamflow predictions to evaluate the model’s ability to simulate extreme events (Yilmaz et al., 2008). All the reported 227 

performance metrics in this study are from model evaluation on the testing dataset, which is not seen by the model during the 228 

training process. 229 
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3. Results and discussions 230 

3.1 General patterns over global basins 231 

From the standpoint of daily hydrograph metrics (KGE and NSE), LSTM and the two differentiable models all achieved highly 232 

competitive performance for the global basins in the temporal test (trained and tested on the same basins, but in different time 233 

periods) (Figure 3). For the global dataset, all three models obtained median KGE values close to or higher than 0.7, but the 234 

LSTM model performed the best of the three models here, achieving a median NSE (KGE) value of 0.70 (0.74) for all the 235 

evaluated basins. For a subset of 1675 basins with long-term records (at least 15 years’ worth of streamflow data available in 236 

the training period and 5 years’ worth of data available in the testing period, though not necessarily continuous), LSTM even 237 

reached a median KGE of 0.78 (see Figure A1). Both versions of the differentiable models approached the performance level 238 

of the LSTM, in agreement with our previous assessment for the CONUS (Feng et al., 2022). The model with dynamic 239 

parameters achieved a median NSE (KGE) of 0.67 (0.69), followed by the model with static parameters, which obtained a 240 

median NSE (KGE) of 0.65 (0.68).  241 

 242 

The LSTM exhibited advantages for the low flow predictions compared with the differentiable models, as shown by the FLV 243 

metric (Figure 3). However, for the peak flow predictions, the LSTM and differentiable models were quite similar, and they 244 

all underestimated the observed peaks (FHV in Figure 3). The underestimation for peak flows is consistent with what was 245 

found in previous studies. For example, all the physical and deep learning models have significant negative peak flow bias 246 

when benchmarked in the CONUS dataset (Feng et al., 2020; Kratzert et al., 2019b). We hypothesize that the systematic 247 

underestimation of peaks may be partially related to bias in precipitation forcings. MSWEP is based on the ERA5 reanalysis, 248 

which is known to underestimate precipitation peaks (Beck et al., 2019). Furthermore, the use of basin-averaged, daily-249 

averaged precipitation may further suppress the peaks (Chen et al., 2017). In addition, the errors with peak flow could also be 250 

partly due to some numerical and structural issues with the differentiable models, e.g., numerical errors introduced by the 251 

explicit and sequential solution scheme of HBV with excessive use of threshold functions that lead to different results when 252 

the sequence changes, and structure limitations, e.g., deeper groundwater storage cannot feed back to the upper layers. Given 253 

the commonality of this issue, we call for community efforts and collaboration to address this issue. 254 

 255 

Both the LSTM model and the differentiable models performed well over diverse landscapes, including North America 256 

(especially along the Rocky and Appalachian mountain ranges and the Southeastern Coastal Plains), Western Europe, Asia 257 

(mostly Japan), the southern part of Brazil, and the northeast coast of Australia (Figure 4a and b). There are other regions 258 

where none of the three models performed well, such as the longitudinally-central part of North America (Great Plains and 259 

Interior Lowlands), the southern edge of Chile (with many glaciers), the Tasmania state of Australia, and the few basins in 260 

Africa. These regions, for example, the Northern Great Plains and the state of Texas in the CONUS, have always been difficult 261 

for all kinds of models, likely due to incorrect basin boundary, highly localized precipitation, the dry conditions with small 262 
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runoff amounts and flash flooding mechanisms (Berghuijs et al., 2014; Driscoll et al., 2002; Feng et al., 2020; Martinez and 263 

Gupta, 2010; Newman et al., 2017), to be explored below. Despite some challenges, however, these values represent currently 264 

the best metrics reported at the global scale compared to earlier studies, e.g., (Alfieri et al., 2020; Beck et al., 2017a, 2020b; 265 

Hou et al., 2023), attesting to these models’ great potential as global modeling tools.  266 

 267 

 268 
Figure 3. Performance comparison between the LSTM and differentiable models on global basins. dPL refers to the differentiable 269 
parameter learning framework, while “evolved HBV” refers to some modifications to improve the standard HBV model, and “with DP” 270 
indicates that some parameters were allowed to be dynamic rather than static. Here, the horizontal line inside the colored box represents 271 
the median, while the top and bottom of the colored box indicate the first and third quartiles. The bars extending from the colored boxes 272 
indicate 1.5 times the interquartile range from the first and third quantiles. NSE is Nash-Sutcliffe Efficiency, KGE is Kling-Gupta 273 
Efficiency, FLV indicates the model’s percent bias on the bottom 30% low flow range of streamflow, and FHV indicates percent bias on 274 
the top 2% peak flow range of streamflow. 275 

 276 
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 277 
Figure 4. The spatial patterns of different model performance and their differences shown by KGE metric. (a) the LSTM model; (b) the 278 
differentiable model with dynamic parameters (dPL + evolved HBV with DP); and (c) the KGE difference between two models (KGE of 279 
LSTM – KGE of  dPL + evolved HBV with DP). Plotted in Python using Matplotlib Basemap Toolkit. 280 
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3.2 Model behaviors and limitations across climate groups and regions 281 

All three models’ performances vary significantly across different climate groups of the global basins (Figure 5), revealing 282 

their strengths and limitations. The LSTM model behaved the best in the polar, cold, and temperate groups, while the 283 

performance deteriorated in the tropical and arid basins. Similar to LSTM, differentiable models showed strong performance 284 

in temperate and cold groups and worse performance in tropical ones, with the worst performance in arid basins. These clusters 285 

of challenging basins can also be identified on the map (Figure 4a and b). The differentiable model with dynamic parameters 286 

performed better than the model with static parameters in all climate groups except the most challenging arid group. Dynamic 287 

parameterization with more structural flexibility generally provides stronger modeling ability, while also showing a higher risk 288 

of overfitting and degraded generalizability in basins which are very difficult to simulate. As we examine how LSTM and 289 

differentiable models behave differently, we find that such differences can be attributed to processes missing from the simple 290 

backbone process-based model (HBV here) as explained below. Here we use LSTM as an indicator of upper bound, that is, it 291 

shows the ideal performance of a model, given the available information from forcing and input data. Thus the distance from 292 

LSTM indicates either systematic and predictable forcing errors (which can be remediated by LSTM) or structural issues with 293 

the differentiable model. 294 

 295 

For example, the polar group stands out as a climate type favoring LSTM, while the cold group shows a similar but less 296 

pronounced contrast, both of which may be related to HBV’s physical deficiencies and forcing issues with snow undercatch. 297 

For the polar (cold) groups, LSTM surprisingly had a median KGE of 0.81 (0.78) while the differentiable model only reached 298 

0.62 (0.71). The polar regions include, for example, Southern Chile (in region B in Figure 4c). As glaciers can store water for 299 

extended periods of time and are driven mostly by temperature rather than rainfall, it is possible for LSTM to capture the 300 

temperature-driven dynamics (Lees et al., 2022) while the original HBV itself does not have a glacial module. HBV does not 301 

have the ability to simulate frozen soil, sublimation or snow cover fractions. Furthermore, as snow gauges in high altitude are 302 

known to suffer systematic bias due to undercatch problems (Beck et al., 2020a), LSTM can learn to address such systematic 303 

bias while physical differentiable models cannot due to mass balance. For the cold regions, e.g., high-latitude regions of the 304 

North American Great Plains (Region A in Figure 4c --- this also includes the Prairie Pothole Region, or PPR), HBV may 305 

suffer from not having descriptions for frozen ground conditions (soil ice) which can influence infiltration, and rainfall 306 

underestimation due to undercatch, ice blockage, and other potential reasons (Beck et al., 2020a). In addition, another reason 307 

why LSTM and differentiable HBV may have trouble with PPR (but HBV performed especially poorly) is the countless 308 

wetlands that store water until full and become connected after snowmelt and large rainfall. HBV does not have modules that 309 

can describe such large-scale fill-connect-spill processes (Shaw et al., 2013; Vanderhoof et al., 2017). 310 

 311 

A more prominent challenge is the arid regions (middle CONUS, north Chile and east Brazil in Figure 1 and Figure 4). This 312 

challenge can be attributed to the long duration of low flows which requires long-term memory, and flash floods which result 313 
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from intense short-duration storms not well represented at the daily scale. Even the LSTM model cannot retain year-long 314 

memory and cannot perform well for the baseflow (Feng et al., 2020). Because HBV has a linear reservoir for its slow-flow 315 

(lowest) bucket, it cannot generate zero base flows. Neither can it well simulate the impact of intense hourly-scale rainfall. 316 

These process improvements need to be considered in the future. Another reason for the challenge in arid regions is the lack 317 

of reservoir management modules. Arid regions tend to have water management infrastructure that significantly influences 318 

streamflow (Veldkamp et al., 2018). Since the HBV model doesn’t have any module representing human impacts on the natural 319 

water cycle, the poor performance in middle Brazil in region C may have come from the missing representation of human 320 

interferences. There are large population and intensive agricultural activities in this region which could induce significant 321 

impacts on the hydrologic process. Parameter compensations apparently cannot make up for all the missing mechanisms. 322 

 323 

The sensitivity of model performance to missing processes in the differentiable models is both good and bad news. It’s good 324 

news because this means we can identify suitable or insufficient process representations by learning from data. On the other 325 

hand, this means more challenges as we need to increase the process complexity of this model before it can perform well for 326 

these basins, unlike the purely data-driven LSTM which is not explicitly concerned with physical processes. 327 

 328 

 329 
Figure 5. The performance comparison (KGE, Kling-Gupta Efficiency) of different models for five climate groups. dPL refers to the 330 
overall differentiable parameter learning framework, while “evolved HBV” refers to some modifications to improve the standard HBV 331 
model, and “with DP” indicates that some parameters were allowed to be dynamic rather than static. Here, the horizontal line inside the 332 
colored box represents the median, while the top and bottom of the colored box indicate the first and third quartiles. The bars extending 333 
from the colored boxes indicate 1.5 times the interquartile range from the first and third quantiles. 334 

3.3 Spatial generalization for prediction in ungauged regions 335 

While LSTM maintains mild advantages over differentiable models in data-dense settings, it was outperformed by 336 

differentiable models in a highly data-scarce scenario. As mentioned above, the data-dense setting was tested in the randomized 337 
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holdout test called prediction in ungauged basins (PUB), while the data-scarce scenario was tested in the regional holdout test, 338 

or prediction in ungauged regions (PUR). In the global PUB test, LSTM has a small edge (median KGE=0.67) over 339 

differentiable models (median KGE=0.64). Both were noticeably higher than the traditional regionalization method using 340 

linear transfer functions reported by Beck et al. (2020b) (Beck20, median KGE=0.46), which already represents the previous 341 

state-of-the-art performance of global parameter regionalization. Differentiable modeling does not rely on strong assumptions 342 

of the functional form for the parameter transfer function. It leverages the powerful ability of neural networks to represent 343 

complicated functions, and automatically learns robust and generalizable relationships between geographic attributes and 344 

physical model parameters from large data. Therefore, we can expect significant performance advantages from differentiable 345 

modeling compared to traditional methods relying on linear transfer functions. In the PUR scenario where European basins 346 

were held out for testing, differentiable models (median KGE=0.58) performed significantly better (p-value less than 0.01 347 

using the one-sided Wilcoxon signed-rank test) than LSTM (median KGE=0.52). In the South American PUR experiment, 348 

lower performance was seen for all models which can be expected considering the prediction difficulties in this region even 349 

for the in-sample scenario (Region B and C in Figure 4). The median KGE of LSTM is 0.28 while the differentiable model 350 

with static parameters achieves a higher median KGE of 0.31 for the PUR scenario. It seemed that the differentiable model 351 

with dynamic parameterization was somewhat overfitted in this case, resulting in a median KGE that was lower than the static-352 

parameter differentiable model. We do not have PUR results from traditional models available to compare against, since this 353 

is a very challenging issue for traditional regionalization methods to make predictions across continents.  354 

 355 

With these results, we show that differentiable models have demonstrated a high simulation capability that cannot be obtained 356 

with traditional parameter regionalization approaches, and also provide a robust extrapolation capability in large data-sparse 357 

regions that is stronger than purely data-driven models like LSTM. This conclusion was not only verified in the USA, but now 358 

has also been confirmed in global catchments with generalization tests including prediction in neighboring ungauged basins 359 

and cross-continent predictions, each of which have different conditions with respect to data availability and density.  360 

 361 
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 362 
Figure 6. The performance comparison (KGE, Kling-Gupta Efficiency) of different models for spatial generalization tests. (a) Random 363 
hold-out test for prediction in ungauged basins (PUB), (b) and (c) holding out all the basins in Europe or South America, respectively, 364 
for cross-continent predictions in ungauged regions (PUR). Beck20 refers to a traditional regionalization method using linear transfer 365 
functions (Beck et al., 2020b), LSTM is the purely data-driven long short-term memory network, dPL refers to the differentiable 366 
parameter learning framework, while “evolved HBV” refers to some modifications to improve the standard HBV model, and “with DP” 367 
indicates that some parameters were allowed to be dynamic rather than static. Here, the horizontal line inside the colored box represents 368 
the median, while the top and bottom of the colored box indicate the first and third quartiles. The bars extending from the colored boxes 369 
indicate 1.5 times the interquartile range from the first and third quantiles. 370 

3.4 Predicting untrained variables 371 

The evapotranspiration (ET) simulations from differentiable models are consistent with independent MODIS satellite estimates 372 

of ET in both temporal dynamics and spatial patterns. We did not use any ET observations as training targets to supervise the 373 

differentiable models. At the global scale, the mean annual ET comparison shows overall consistency with MODIS, with most 374 

basins lying close to the 1:1 line and a correlation of 0.75 for all the basins (Figure 7a). Spatially, the model was able to 375 

represent energy limitations in the cold regions, e.g., high-latitude North America and Europe, and water limitations, e.g., 376 

southwestern US and arid basins of Australia (Figure 7a and b). The model also represented high ET in basins adjacent to the 377 

Amazon forest, those along the US southeastern and Australian coast. Temporally, the median correlation of ET time series 378 

between simulations and MODIS products achieves 0.82 and 0.89 for two differentiable models in 3753 basins, respectively 379 

(Figure 7c).  380 

 381 

The ET simulations show high correlation with MODIS in most North American and European basins (Figure 7d), in line with 382 

the good performance of streamflow modeling in these regions. However, the correlation is relatively lower in South America 383 

but the coefficient of variation of ET residuals (CoV, the ratio of standard deviation of ET residuals to the annual mean) is also 384 
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small (Figure 7e), in part because the ET here is large and less driven by the seasonal energy cycle (Niu et al., 2017). MODIS 385 

ET itself is not the ground truth and always has large uncertainties in Amazonia regions due to the cloud coverage and 386 

difficulties for observation (Hilker et al., 2015; Xu et al., 2019). Furthermore, the simulations could be negatively influenced 387 

by the data quality issues with streamflow records in these regions. Upon examining the records, some stations in South 388 

America show unrealistic hydrographs that may indicate data processing errors. To address such issues in the future, more in-389 

depth data screening and correction or constraining the model using datasets other than streamflow, e.g., eddy covariance flux 390 

data, should be considered. The CoV is less than 0.3 for most of the world, showing that ET errors are mostly small relative to 391 

its annual averages (Figure 7e). Noticeable exceptions are US southwest, where ET varies strongly from year to year and is 392 

highly dependent on the precipitation, and Chile, where glaciers and deserts are both present, posing challenges to the model. 393 

As the present study is basin-focused, we will leave the evaluation of global gridded ET to future work.  394 

 395 
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 396 
Figure 7. The comparison between simulated ET from the differentiable hydrologic models and independent MODIS ET product. (a) 397 
mean annual ET comparison, (b) simulated mean annual ET for global basins, (c) boxplots for the temporal dynamic evaluation by 398 
correlation and RMSE, (d) correlation and (e) coefficient of variation for ET comparison in global basins. Maps plotted in Python using 399 
Matplotlib Basemap Toolkit. 400 

3.5 Further discussion 401 

Compared to the LSTM model which only outputs discharge simulations, differentiable models offer a suite of interpretable 402 

variables including ET, soil water, recharge, baseflow, etc., thus providing a comprehensive description for the hydrologic 403 

cycle and far better interpretability. To create a new differentiable model or turn an existing model into a differentiable one, 404 

we need to implement the model on a differentiable platform like PyTorch, Tensorflow, or JAX, while better enabling model 405 

parallelism in order to maximally leverage the computing power of modern graphical processing units (GPUs). If a model 406 
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contains mostly explicit calculations, automatic differentiation (AD) offered by the above platforms can effortlessly provide 407 

gradient calculations, requiring only a syntax-level translation which can nowadays be done easily. Sometimes, a limited 408 

amount of adjustments are needed to turn non-differentiable operations into equivalent differentiable ones. However, when a 409 

model contains iterative solutions to nonlinear systems, large matrix solvers or constrained optimizations, we can employ the 410 

adjoint method (Song et al., 2023). The adjoint method explicitly defines the gradient-calculation method and alters the order 411 

of calculations so iteration is avoided during gradient calculations, which can dramatically reduce memory demand and 412 

improve efficiency. Another important consideration is the effective use of parallelism and the modern computing 413 

infrastructure for AI (i.e., GPUs). In our context, the regionalized parameterization (in this case, training one neural network 414 

on a large amount of basins), which is crucial to ensuring the generalizability of the model, requires going through large data 415 

in high-throughput parallelism. Embracing parallelism may necessitate some coding adjustments. At this point, several 416 

versions of differentiable hydrologic models have been proposed with varying complexities and different handling of 417 

parameterization, post-processing (which we didn’t use in this study, as it can interfere with interpretability of the internal 418 

variables, mass balances, and the sensitivity to inputs encoded by the process-based components), and dynamical parameters. 419 

Across geoscientific domains, differentiable ecosystem (Aboelyazeed et al., 2023; Zhao et al., 2019), flow and routing (Bindas 420 

et al., 2024), water quality (Rahmani et al., 2023), and ice sheet (Bolibar et al., 2023) models have already been demonstrated.  421 

 422 

The challenges facing the differentiable models in this study include not only missing processes like reservoir management, 423 

ground ice, and glaciers, but also large errors in meteorological forcings and streamflow target data. Substantial bias could 424 

exist in precipitation, e.g., due to snow-gauge undercatch (Hou et al., 2023), or in discharge, e.g., streamflow are measured 425 

using different approaches which exhibit large variability; for another example, gridded climate forcing data often consistently 426 

underestimate the magnitudes of heavy storms (Beck et al., 2017b). While LSTM can easily adapt to systematic bias, such 427 

forcing errors put the differentiable models under stress because they cannot reconcile streamflow observations with such 428 

forcings given the constraint of mass balances. If our objective is to learn core physics and parameterizations that are reliable 429 

despite forcing discrepancies, we can set up forcing data correction layers that can, to some extent, shield the core processes 430 

from being influenced by such errors. This will be an important aspect of future work to ensure reliable prediction of future 431 

water resources. 432 

 433 

The backbone of a differentiable process-based model thus serves as a double-edged sword: when such backbones are 434 

essentially correct, they serve as a stabilizing element of the model that mitigates overfitting and improves generalization; 435 

when they lack critical processes or when observations have large, unexplained bias, they can drag down model performance 436 

and cause compensation between processes. However, the limitations are tractable: future work can gradually incorporate 437 

critical processes and include more observations to constrain the learning process, making sure each addition is valuable and 438 

accretive. The research community collectively has already substantial experience in evolving earth system models to include 439 

many processes. We expect some processes to be invited back in the differentiable modeling framework. Nevertheless, with 440 
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differentiable modeling, we now have a new tool that was not previously available: highly flexible deep neural networks that 441 

can be placed anywhere in the model, which provide a systematic way of managing model complexity. With their help, such 442 

model evolution may take much less time than previously required. However, we still expect the development cycle to take 443 

longer than for purely data-driven models like LSTM, requiring us to view differentiable models as evolving rather than static 444 

entities, which need a bit of patience while maturing.  445 

 446 

This study builds a benchmark and a basis for model selection and diagnosis for the next-generation global hydrologic 447 

modeling, which previously did not learn from such large observations. With rigorous tests at the global scale, this study proves 448 

that differentiable models are strong candidates as global water models. With powerful spatial generalization ability, they can 449 

be applied to characterizing the hydrologic processes in ungauged regions by leveraging learned information in data-rich 450 

continents. Differentiable models in this study have already learned the generalizable and robust relationships between 451 

geographic attributes and physical model parameters from thousands of global catchments. Therefore, these models can be 452 

easily applied towards providing seamless global hydrologic modeling with parameters directly generated from worldwide 453 

geographic attributes. Future work can use such models to produce global hydrologic fluxes while enhancing some process 454 

representations in extremely arid, glaciated, or heavily human-influenced basins.  455 

4. Conclusions 456 

In this work, we used both purely data-driven models and, for the first time, physics-informed, differentiable models to simulate 457 

rainfall-runoff processes in 3753 global basins. Both types of models achieved overall highly competitive performance for 458 

global basins with diverse climate conditions, yielding median KGE values close to or higher than 0.7 which is state-of-the-459 

art at this large scale. The LSTM still achieved the best performance for the temporal generalization test, but the differentiable 460 

HBV models with evolved structure (δHBV-globe1.0-hydroDL) approach the LSTM’s performance level. Furthermore, the 461 

spatial generalization experiments highlighted the stronger regionalization and extrapolation ability of differentiable models 462 

than LSTM, demonstrating its promise to be applied to data-scarce regions in the world. Routing is not included in this work 463 

and will be investigated in the future, possibly also with differentiable approaches (Bindas et al., 2022). 464 

 465 

Different models appear to have generally consistent spatial performance patterns, though obvious distinctions stand out in 466 

several local regions. All models achieve good performance in the temperate and cold climate groups, while they all behave 467 

unsatisfactorily in the arid group. For the polar group, the differentiable model performed significantly worse than the LSTM. 468 

Without any physical constraints, LSTM shows strong power in simulating storage (snow and glacier) dominated processes, 469 

while differentiable models are limited by the structure of their physical backbone model, which in this case does not simulate 470 

multiyear ice buildup and melt. Another limitation could be soil sealing processes in extremely arid regions. These regional 471 

performance comparisons thus reveal some deficiencies of the physical backbone in δHBV that cannot be mitigated even by 472 
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advanced neural network-based parameterization.  These insights provide directions for future improvements. Different from 473 

purely data-driven models only trained by the target variable, differentiable models constrained by the physical backbone can 474 

give accurate simulations for a full set of hydrologic variables in the water cycle including evapotranspiration, snow water 475 

equivalent, water storage, infiltration and baseflow. As some process limitations are addressed in the future, we believe 476 

differentiable models will be strong candidates for the next generation global water models to characterize and predict the 477 

hydrologic processes in ungauged regions across the world. 478 

Appendix 479 

 480 
Figure A1. Performance comparison on the 1675 subset basins with long-term streamflow records (at least 15 years’ worth 481 
of streamflow data available in the training period and 5 years’ worth of data available in the testing period, not necessarily 482 
continuous). Other items are the same as in Figure 3. 483 
 484 

Author contributions 485 

DF and CS conceived this study. DF set up the hydrologic models and ran all the experiments. DF and CS performed the major 486 

analysis, with HB, JdB, RKS, YS, YW and MP contributing substantially to the discussions on the methodology and results. 487 

HB provided the global dataset and the benchmark results from a traditional regionalization scheme. JL prepared the ET 488 

product for comparison. DF wrote the initial draft and CS revised the manuscript. HB, JdB, RKS, YS, YW, and KL 489 

substantially edited the manuscript. 490 



21 
 

Financial support 491 

DF was supported by the National Science Foundation Award EAR-2221880. This work was also partially supported and 492 

inspired by the Young Scientists Summer Program (YSSP) of International Institute for Applied Systems Analysis (IIASA). 493 

JL was supported by Google.org’s AI Impacts Challenge Grant 1904-57775. CS and KL were supported by Cooperative 494 

Institute for Research to Operations in Hydrology (CIROH), award number A22-0307-S003. Computation was partially 495 

supported by the National Science Foundation Major Research Instrumentation Award PHY-2018280.  496 

Code and Data Availability 497 

The source codes for the differentiable hydrologic models can be accessed at https://doi.org/10.5281/zenodo.7091334, and this 498 
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