
Ocean wave ray tracing v.1: User manual.
Trygve Halsne1,2, Kai Haakon Christensen1,3, Gaute Hope1, and Øyvind Breivik1,2

1Norwegian Meteorological Institute, Oslo, Norway
2University of Bergen, Bergen, Norway
3University of Oslo, Oslo, Norway

Correspondence: Trygve Halsne (trygve.halsne@met.no)

S1 Introduction

Here we provide a tutorial on how to use the Python module for solving the wave ray equations for ocean waves at arbitrary

depths in the presence of ambient currents. Focus is put on how to run the model, which includes preparation of the data as

well as showing examples of using the optional arguments. Please note that a number of use examples, which are referred to in

the “main paper”, are given in the GitHub repository https://github.com/hevgyrt/ocean_wave_tracing. A generic use example5

is given in Alg. 1, and in the subsequent sections we will go through the optional options to the generic example in detail.

S2 Wave ray model initialization

In Alg. S1, all the default values in the __init__ method is used, which includes the depth and temporal_evolution.

However, any input current field can be given by editing the velocity fields U,V.

S2.1 Adding bathymetry10

The generic example in Alg. S1 can be extended by including a bathymetry field like

depth = np.ones((nx,ny)) * 100

wt = Wave_tracing(U=U,V=np.zeros((ny,nx)),

nx=nx, ny=ny, nt=150,T=T,

dx=x[1]-x[0],dy=y[1]-y[0],15

nb_wave_rays=20,

domain_X0=x[0], domain_XN=x[-1],

domain_Y0=y[0], domain_YN=y[-1],

d=depth)

The bathymetry must be a 2D numpy array, and must match the domain size. A dedicated method to check that the input field20

follow the bathymetry conventions is initialized automatically.

1

https://github.com/hevgyrt/ocean_wave_tracing

Algorithm 1 Generic workflow code example

import numpy as np

import maplotlib.pyplot as plt

from ocean_wave_tracing import Wave_tracing

Defining some properties of the medium

nx = 100; ny = 100 # number of grid points in x- and y-direction

x = np.linspace(0,2000,nx) # size x-domain [m]

y = np.linspace(0,3500,ny) # size y-domain [m]

T = 250 # simulation time [s]

U=np.zeros((nx,ny))

U[nx//2:,:]=1

Define a wave tracing object

wt = Wave_tracing(U=U,V=np.zeros((ny,nx)),

nx=nx, ny=ny, nt=150,T=T,

dx=x[1]-x[0],dy=y[1]-y[0],

nb_wave_rays=20,

domain_X0=x[0], domain_XN=x[-1],

domain_Y0=y[0], domain_YN=y[-1],

)

Set initial conditions

wt.set_initial_condition(wave_period=10,

theta0=np.pi/8)

Solve

wt.solve()

2

S2.1 Temporally varying current fields using xarray

In the GitHub repository, a set of idealized current input fields are given in a netCDF file in the folder notebooks. The fields

span multiple time steps, such that a temporal varying current field can be invoked in the ray tracing by setting

temporal_evolution=True like25

import xarray as xa

ncin = xa.open_dataset('idealized_input.nc')

U = ncin.U

V = ncin.V

X = ncin.x.data30

Y = ncin.y.data

nx = len(X)

ny = len(Y)

Define a wave tracing object35

wt = Wave_tracing(U=U,V=V,

nx=nx, ny=ny, nt=150,T=T,

dx=(X[1]-X[0]).values,dy=(Y[1]-Y[0]).values,

nb_wave_rays=20,

domain_X0=X[0].data, domain_XN=X[-1].data,40

domain_Y0=Y[0].data, domain_YN=Y[-1].data,

temporal_evolution=True,

)

The ray model will take into account the current field from the associated model time step depending on the propagation time

of the rays.45

S2.2 Make input data follow the conventions

In the Wave_tracing object, the input fields follow some conventions that are listed in the main paper. Particularly relevant

for the input velocity data is that the the dimensions must be named x and y if the input fields are of type xarray DataArray. For

example, for ocean circulation models, typical dimension names can be called X and Y . This is, however, easy to overcome

by renaming the dimension names at initialization like50

wt = Wave_tracing(U=ncin.U.rename({'X':'x','Y':'y'}),

V=ncin.V.rename({'X':'x','Y':'y'}),

...

3

Additional examples where the dimensions are reanamed are given in the notebooks folder in the repository.

S3 Initial conditions for the solver55

In addition to the mandatory input values in the set_initial_conditions method in Alg. 1, it is possible to further

specify the theta0 as an array with values for each wave ray. For example, a uniform distribution of initial wave propagation

angles in the range [0,π) is given as theta0=np.linspace(0,np.pi,nb_wave_rays). Initial positions for each

wave ray can be given by specifying the “keys and values” (kwargs) arguments ipx and ipy,

wt.set_initial_condition(wave_period=10,60

theta0=np.linspace(0,np.pi,nb_wave_rays),

ipx=np.linspace(10,20,nb_wave_rays),

ipy=np.linspace(1,5,nb_wave_rays)

)

provided that incoming_wave_side is not given since it trumps ipx and ipy.65

S4 Numerical integration

When the equations are to be solved (see solve() in Alg 1), it is possible to choose between the finite-difference schemes

available in the util_solvers.py. In v.1, two schemes are available i.e. a Forward-Euler scheme and a 4th order Runge-

Kutta, where the latter is default.

4

