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Abstract. The Coupled Model Intercomparison Project (CMIP) is one of the biggest international efforts aimed at better

understanding past, present, and future of climate changes in a multi-model context. A total of 21 Model Intercomparison

Projects (MIPs) were endorsed in its 6th phase (CMIP6), which included 190 different experiments that were used to simulate

40000 years and produced around 40 PB of data in total. This paper presents the main findings obtained from the CPMIP (the

Computational Performance Model Intercomparison Project) a collection of a common set of metrics, specifically designed5

for assessing climate model performance. These metrics were exclusively collected from the production runs of experiments

used in CMIP6 and primarily from institutions within the IS-ENES3 consortium. The document presents the full set of CPMIP

metrics per institution per experiment, including a detailed analysis and discussion of each of the measurements. During the

analysis, we found a positive correlation between the core hours needed, the Complexity of the models, and the Resolution

used. Likewise, we show that between 5-15% of the execution cost is spent in the coupling between independent components,10

and it only gets worse increasing the number of resources. From the data, it is clear that queue times have a great impact on

the actual speed achieved, and have a huge variability across different institutions, ranging from none to up to 78% execution
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overhead. Furthermore, we evaluated that the estimated carbon footprint of running such big simulations within the IS-ENES3

consortium is 1692 tons of CO2 equivalent.

As a result of the collection, we contribute to the creation of a comprehensive database for future community reference,15

establishing a benchmark for evaluation and facilitating the multi-model, multi-platform comparisons crucial for understanding

climate modelling performance. Given the diverse range of applications, configurations, and hardware utilised, further work

is required for the standardisation and formulation of general rules. The paper concludes with recommendations for future

exercises aimed at addressing the encountered challenges which will facilitate more collections of a similar nature.

Copyright statement. TEXT20

1 Introduction

Earth System Models (ESMs) are an essential tool for understanding the Earth’s climate and the consequences of climate

change, which are crucial to the design of response policies to address the current climate emergency resulting from anthro-

pogenic emissions. Modelling the Earth is inherently complex. ESMs are among the most challenging applications that the

High-Performance Computing (HPC) industry has had to face, requiring the most powerful computers available, consuming25

vast amounts of energy in computer power, and producing massive amounts of data in the process (Wang and Yuan 2020; Wang

et al. 2010; Fuhrer et al. 2014; McGuffie and Henderson-Sellers 2001; Dennis et al. 2012).

Virtually all models are designed to exploit the parallelism of HPC machines so that we can get the results in a reasonable

amount of time while trying to make the best use of the HPC platform. While the technology underneath keeps improving

every year (in Petaflops/s, memory bandwidth, I/O speed, etc.) climate software evolves much more slowly. Balaji (2015)30

and Liu et al. (2013) show how challenging is to adapt multi-scale multi-physics climate models to new hardware or pro-

gramming paradigms. These models, often community-developed software, are very complex, inherently chaotic, and subject

to numerical stability. All of which contribute to a slower evolution of the codes. Bauer et al. (2021) illustrate how climate

science did take advantage of Moore’s law (Bondyopadhyay, 1998) and Dennard scaling (Frank et al., 2001) without much

pressure to fundamentally revise numerical methods and programming paradigms, leading to huge legacy codes mostly driven35

by scientific concerns. Consequently, such codes achieve notably poor sustained floating-point performance in present-day

CPU architectures. Enhancing the performance of these models is crucial to boost the rate at which they can grow (in the res-

olution, complexity, and features represented). In a context where energy cost is rising, running faster and more cost-effective

simulations is key to contributing to the advancement of climate research.

The performance of ESMs is hardly limited only by one but by multiple bottlenecks that depend on the model itself and on40

the properties of the HPC platform on which they run, for instance: models using higher resolutions may benefit from (or be

limited by) the speed of the network as the data is split into many nodes, memory-bound models will benefit from having more

memory available per core and with faster transmission speed while compute-bound models will perform better in faster CPUs,
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models that produce more output will run faster on infrastructures with higher capacities for I/O operations, models that include

more individual components will be limited by the load-balance achieved between them and by the coupler performance.45

Balaji et al. (2017) proposed a set of 12 performance metrics that define the Computation Performance for Model Intercom-

parison Project (CPMIP) which were specifically designed for climate science by taking into account the structure of ESMs

and how they are executed in real experiments. This set of metrics include the climate experiment and platform properties,

the computational speed and cost (core-hours and energy), measures for the coupling and I/O overhead, and for the memory

consumption. Each one is described in detail in Table 1 and Section 3.50

In this paper, we present in Section 2 the collection of CPMIP metrics from 33 experiments used for climate projections in

the Coupled Model Intercomparison Project phase 6 (CMIP6). The collection effort has been predominantly led by institutions

affiliated with the IS-ENES3 (Joussaume, 2010), a consortium founded by a Horizon 20201 project composed of the most

important weather and climate centres in Europe and devoted to improving the infrastructure to make the Earth System Grid

Federation (ESGF) and CMIP publication easier. This compilation is the first of its kind and constitutes a representative part55

of the total 124 CMIP6 experiments, involving 45 institutions2. Our data encompasses 33 different experiments that were

used to simulate almost 500 000 years during CMIP6 on 14 different HPC machines and involving 14 independent modelling

institutions. All experiments are listed in Table 2, along with the institution in charge, the experiment name, HPC platform,

ocean and atmosphere resolutions, and the main reference to the experiment configuration. In addition, Table 3 shows the

complete collection of CPMIP metrics for each one of the models, and Table 4 lists the HPC machines that have been used60

to run these models. Furthermore, in Section 3, we include the analysis of the metrics to underscore the most significant

insights derived from this data collection. We study in detail the measurements reported by each institution, grouping them

based on experiment configurations, establishing relationships between intertwined metrics, and discussing the strengths and

difficulties encountered during the analysis of each metric. For instance, our analysis reveals that institutions tend to increase

the number of resources used in higher-resolution experiments, thereby mitigating the expected increase in execution time at65

the expense of increasing the core-hours required. Similarly, the addition of extra components simulated increases the core-

hours needed, and the cost of coupling interactions and synchronisations between models as well. Institutions reported that

the Coupling cost entails an execution cost overhead typically ranging between 5-15%, and it tends to be more problematic

higher processor counts. Additionally, the numbers indicate that the volume of data generated by an experiment does not

correspond to increases in Resolution or core-hours needed, contrary to expectations. We observed very different queue times70

for HPC resources across institutions, ranging from instantaneous access to introducing an execution time overhead of up to

78%. Furthermore, we present an initial approximation of the carbon footprint generated from executing these experiments,

totaling 1692 tons of CO2 equivalent.

Our study emphasises the significance of developing standardised metrics for assessing climate model performance. This

contribution will serve to establish a database for future reference and multiple institutions-modellers will be able to use for75

1https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-2020_en, retrieved February

6, 2024.
2http://esgf-ui.cmcc.it/esgf-dashboard-ui/data-archiveCMIP6.html, retrieved February 6, 2024.
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Table 1. List of CPMIP metrics collected

Metric Used to evaluate

Resolution (Resol) number of grid points NXxNYxNZ per component

Complexity (Cmplx) number of prognostic variables per component

Platform machine measurements: core count, clock frequency, and double-precision op. per clock cycle

Simulation Years Per Day (SYPD) number of simulated years per day (24h) of execution time

Core-hours per Simulated Year (CHSY) cost, measured in core-hours per simulated year

Actual SYPD (ASYPD) how queue time and interruptions affect the complete experiment duration

Parallelisation (Paral) total number of cores allocated for the run

Joules Per Simulated Year (JPSY) energy needed per year of simulation

Memory Bloat (Mem B) ratio between actual and ideal memory size

Data Output cost (DO) computing cost for performing I/O

Data Intensity (DI) amount of data produced after 1 year of simulation divided by the CHSY

Coupling Cost (Cpl C) computing cost of the coupling algorithm and load imbalance

comparison, which we believe to be essential for evaluating climate modeling performance. The noise and variability present

in the dataset are the results of the diversity of the applications represented and the hardware under study. This obscures

any attempt to make a general rule formulation. Despite this difficulty, our paper concludes with recommendations for future

exercises aimed at addressing these challenges.

2 Data collection80

The collection process was coordinated and supervised to get the metric results, including meetings, reporting, and surveys

conducted at different stages of the CMIP6 simulations (before, during, and after the simulation runs). All the partners listed

in Table 2 were invited to participate in the tracking process. The coordination, meetings, and reporting were useful to evaluate

the state of the collection from the partners, and we provided support to those institutions that required it during the collection

process.85

The data collection was divided into two steps: the initial phase comprehends the collection up to March 2020, coinciding

with the first IS-ENES3 general assembly where the first results were presented; the second includes the data collected up to

the end of 2020 when all the institutions had finished the CMIP6 runs. Finally, IS-ENES3 completed the last update to the

Earth System Documentation 3 (ES-DOC) in the middle of 2021, publishing CPMIP along with the other CMIP6 results.

As the reader can see, not all institutions managed to provide the full set of CPMIP performance metrics. The metrics90

frequently missing are the Coupling Cost, Memory Bloat, and Data Output cost. This is primarily attributed to the challenges

involved in their collection compared to metrics like SYPD or Parallelisation, which are well-known within the community and

3https://es-doc.org/
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Table 2. List of institutions and models that provided the metrics from their CMIP6 executions. Also listed are the HPC platform and

resolution used for the atmosphere (ATM) and ocean (OCN) components. Note that "resol" in Table 1 is defined as the number of gridpoints.

For better readability, we present here this information using more conventional measure of degrees of latitude and longitude.

Institution Experiment HPC machine Atmosphere resol Ocean resol Reference

EC-Earth3 0.7 1.0
BSC

EC-EarthVeg
MareNostrum4

0.7 1.0
Döscher et al. (2022)

CMCC CM2-SR5 Zeus 1.0 1.0 Lovato et al. (2022)

CNRM-CM6-1-atm 1.4

CNRM-CM6-1 1.4 1.0

CNRM-CM6-1-HR-atm 0.5

CNRM-CM6-1-HR 0.5 0.25

Voldoire et al. (2019)

CNRM-ESM2-1-atm 1.4

CNRM-CERFACS

CNRM-ESM2-1

Beaufix2

1.4 1.0
Séférian et al. (2019)

DKRZ MPI-ESM1-HR Mistral 1.0 0.4 Müller et al. (2018)

OM4-p5 0.5

ESM4-piC 1.0 0.5

CM4-piC 1.0 0.25
GFDL

OM4-p25

Gaea

0.25

Dunne et al. (2020)

IITM IITM-ESM Intel AADITYA 1.875 1.0 Krishnan et al. (2021)

IMPE BESM xc50 1.875 1.0 Veiga et al. (2019)

IPSL IPSL-CM6A Irene-SKL/Curie 2.5 1.0 Boucher et al. (2020)

EC-Earth3 0.7 1.0
KNMI

EC-Earth3-AerChem
Rhino

0.7 1.0
Döscher et al. (2022)

MPI-ESM1-LR-ATM 4.0

MPI-ESM1-LR-LANDMPI

MPI-ESM1-LR

Mistral

1.875 1.5

Müller et al. (2018)

UKESM1-AMIP 4.0

UKESM1-0-LL 1.875 1.0
Sellar et al. (2020)

HadGEM3-GC3.1-LL 1.875 1.0

HadGEM3-GC3.1-HM 0.8 0.25

NERC

HadGEM3-GC3.1-HH

Archer xc30

0.8 0.08

Williams et al. (2018),

NorESM2-LM 2.5 1.0
NorESM2

NorESM2-MM
Fram

1.0 1.0
Seland et al. (2020)

SMHI EC-EarthVeg Tetralith/Beskow 0.7 1.0 Döscher et al. (2022)

UKESM1-0-LL 1.875 1.0

HadGEM3-GC3.1-LL 1.875 1.0

Sellar et al. (2020)

UKMO

HadGEM3-GC3.1-MM

xce xc40

0.8 0.25
Williams et al. (2018)

relatively easier to obtain. Other impediments to collect the CPMIP metrics include time and resources constraints, particularly

considering that the focus of the simulations are leans more towards science aspects than to the computational realm during

CMIP6 runs. Additionally, some institutions reported that changes in the underlying computational infrastructure have made95

the collection process more difficult.
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Table 3. List of institutions with the model and CPMIP metrics. We also include the Useful Simulated Years (Useful SY), which accounts

for the number of years simulated by each experiment that generated data with scientific value

Institution Experiment Resol Cmplx SYPD ASYPD CHSY Paral JPSY Cpl C Mem B DO DI Useful SY

EC-Earth3 1.99E+07 34 15.20 9.87 1213 768 4.41E+07 0.080 59.5 1.12 0.041 14020
BSC

EC-EarthVeg 1.99E+07 12.36 7.42 1491 768 4.87E+07 0.100 68.48 1.13 0.059 252

CMCC CM2-SR5 6.94E+06 397 6.68 6.50 2069 576 1.67E+09 0.074 17.8 1.04 0.050 965

CNRM-CM6-1-atm 2.98E+06 128 7.30 6.10 1292 393 3.50E+07 5723

CNRM-CM6-1 1.02E+07 181 8.10 7.30 1352 400 3.38E+07 22241

CNRM-CM6-1-HR-atm 2.36E+07 128 2.20 1.80 1541 520 4.80E+07 1190

CNRM-CM6-1-HR 1.37E+08 181 1.50 1.48 4289 840 1.07E+08 1642

ESM2-1-atm 2.98E+06 335 7.10 6.40 8520 781 2.28E+08 1759

CNRM-CERFACS

ESM2-1 1.10E+07 393 4.70 4.40 21552 1347 5.28E+08 11761

DKRZ MPI-ESM1-HR 2.00E+07 13.33 11.00 4710 2616 3.21E+08 1864

OM4-p5 3.32E+07 13 15.90 12.22 1962 1300 7.50E+07 0.140 33.61 0.039 300

ESM4-piC 3.76E+07 140 8.65 7.46 13576 4893 5.19E+08 0.270 40.57 0.003 1124

CM4-piC 1.28E+08 31 9.98 8.16 15388 6399 3.72E+08 0.130 47.64 0.018 657
GFDL

OM4-p25 1.26E+08 11 11.50 7.05 9748 4671 5.88E+08 0.260 16.09 0.006 300

IITM IESM 1.83E+06 168 8.00 7.00 996 332 3.81E+07 36.7 845

IMPE BESM 6.88E+06 132 3.60 3.40 1853 278 0.020 360

IPSL IPSL-CM6A 1.06E+07 750 12.00 11.50 1900 950 1.16E+08 0.050 10.00 1.20 0.070 53000

EC-Earth3 1.99E+07 34 16.20 16.20 1286 868 1009
KNMI

EC-Earth3-AerChem 2.06E+07 3.03 3.03 3549 448 730

MPI-ESM1-LR-ATM 8.66E+05 45.90 25.20 163 312 1.11E+07 991

MPI-ESM1-LR-LAND 8.33E+05 282.80 265.40 3 36 1.39E+05 2460MPI

MPI-ESM1-LR 3.12E+06 55.60 22.70 379 878 2.56E+07 18860

UKESM1-AMIP 2.35E+06 202 1.64 1.41 7376 504 1.04E+08 52.50 1.31 0.003 45

UKESM1-0-LL 1.14E+07 252 2.02 1.10 8554 720 3.18E+08 0.078 28.00 1.19 0.005 195

HadGEM3-GC3.1-LL 1.14E+07 150 4.25 1.06 12198 2160 4.33E+08 0.047 56.80 1.41 0.016 70

HadGEM3-GC3.1-HM 1.99E+08 54 0.58 0.46 192662 4656 7.70E+09 0.210 154.00 0.001 65

NERC

HadGEM3-GC3.1-HH 1.26E+09 54 0.49 0.34 588931 12024 2.30E+10 183.00 1.41 0.0004 65

NorESM2-LM 1.01E+07 13.84 3.03 1665 960 5.60E+07 0.035 0.065 5463
NorESM

NorESM2-MM 1.14E+07 8.96 6.14 4886 1824 1.65E+08 0.32 0.060 1021

SMHI EC-EarthVeg 1.99E+07 12.44 6.65 1667 864 0.028 6337

HadGEM3-GC3.1-LL 1.14E+07 228 4.00 3.55 13392 2232 4.97E+08 0.061 46.00 1.03 0.074 5610

UKESM1-0-LL 1.14E+07 372 4.30 3.60 16074 2880 5.97E+08 0.098 4.60 1.03 0.019 15435UKMO

HadGEM3-GC3.1-MM 1.44E+08 236 1.65 1.32 62836 4320 2.33E+09 0.105 120.00 1.02 0.050 2386

Table 4. List of HPC machines used for the experiments under study, detailing hardware specifications, benchmark results (Linpack and High-

Performance Conjugate Gradient, HPCG), theoretical performance (Rpeak), power consumption and Power Usage Effectiveness (PUE) for

each system

Institution Machine total cores cores per node Mem node (GB) Mem per core (GB) network CPU family CPU freq (GHz) Rpeak (PFlop/s) Linpack (PFlop/s) Power (kW) HPCG (TFlop/s) PUE

BSC MN4 155520 48 96 2.00 Intel Omni-Path Platinum Skylake 2.10 10.300 6.22 1632 122.24 1.35

CMCC Zeus 12528 36 96 2.67 InfiniBand Gold Skylake 3.00 1.202 1.84

CNRM-CERFACS Beaufix2 73440 40 64 1.60 InfiniBand E5 Broadwell 2.20 2.590 2.16 830 35.34

DKRZ/MPI Mistral 100200 30 68 2.25 InfiniBand E5 Haswell 2.29 3.960 3.01 1116 44.11 1.19

IITM AADITYA 38144 16 64 4.00 InfiniBand E5 Haswell 2.60 0.790 0.72 790

INPE xc50 4080 40 192 4.80 Aries Interconnect Gold Skylake 2.40 0.313

IPSL Curie 80640 16 64 4.00 InfiniBand E5 Sandy Bridge 2.70 1.670 1.36 2132 50.99 1.43

IPSL Irene 79488 48 192 4.00 InfiniBand Platinum Skylake 2.70 6.640 4.07 917 52.68

KNMI Rhino 4752 28 128 4.57 InfiniBand Nehalem 3.06 0.058

NERC Archer xc30 118080 24 64 2.67 Aries Interconnect E5 Ivy 2.70 2.550 1.64 80.79 1.10

NorESM Fram 32256 32 64 2.00 InfiniBand E5 Broadwell 2.10 1.100 0.95

SMHI Beskow 65920 32 64 2.00 Aries Interconnect E5 Haswell 2.30 2.440 1.80 842

SMHI Tetralith 61056 32 96 3.00 Intel Omni-Path Gold Skylake 2.10 4.340 2.97 65.24

UKMO xc40 241920 36 192 5.33 Aries Interconnect E5 Broadwell 2.10 8.130 7.04 1.35
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2.1 Additional data collected

The CPMIP metrics serve not only as a means of computational evaluation but also provide valuable insights for broader

analysis. In light of this, we collaborated with the Carbon Footprint Group created within the IS-ENES3 consortium, which

was responsible for evaluating the Total Energy Cost associated with the CMIP6 experiments100

Total Energy Cost = Useful Simulated Years× JPSY (1)

The Total Energy Cost of an experiment is defined as the product of the Useful Simulated Years, defined as years of simu-

lation that produced data with a scientific value that was either shared between the groups or kept within the producer group

for scientific analysis, and the Jules per Simulated Year (JPSY). This collaboration enabled us to provide for the first time an

estimation of the carbon footprint related to those experiments. The Carbon Footprint was calculated following Equation 2.105

Carbon Footprint = Total Energy Cost×CF×PUE (2)

where the Total Energy Cost is in MWh, CF is the greenhouse gas conversion factor from MWh to CO2 kilogram according

to the supplier bill or the country energy mix, and PUE (Power Usage Effectiveness) accounts for other costs sustained from

the data-center, such as cooling. The results for all the institutions that participated in the study during the CPMIP collection

are shown during the analysis section in Table 10.110

2.2 Uncertainty in the measurements

Understanding measurement uncertainty and machine variability has a significant role in any performance analysis, particularly

when comparing models running across different platforms without advanced performance tools or methods like tracing or

sampling. Before starting the collection of the metrics, we asked each institution to indicate the machine variability, which was

reported to be below 10% for all machines used. This provides an initial rough estimation, subject to future refinement efforts115

like the usage of benchmarking codes for climate science like the one proposed by van Werkhoven et al. (2023).

It is important to note that not all metrics exhibit the same variability range. Certain metrics, such as Parallelisation, Res-

olution, platform, and model Complexity, are constant values determined just by the experimental configurations, the HPC

infrastructure, and model characteristics. These are considered static metrics.

The rest of the metrics are related to the execution speed and therefore subject to different sources of variability. On the one120

hand metrics like the SYPD or CHSY are well-known by the community and straightforward to collect: this results in less

margin of error during collection and any variability should be attributed solely to the machine. On the other hand metrics like

the Actual SYPD, JPSY, Coupling Cost, Memory Bloat, Data Intensity, and Data Output Cost are less common to collect and

this can lead to confusion and human errors (e.g. whether the Actual SYPD should include system interruptions or only queue

time can bring a to systematic misreporting). This represents a second source of variability, difficult to assess and estimate.125

Identifying and understanding this uncertainty is key for accurately interpreting and comparing the performance of models

across different centers. Special effort has been made to ensure the quality and correctness of the metrics presented in this
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work through continuous support of the groups during the collection and double-checking of the reported numbers with the

responsible for each institution whenever needed.

Future collections like this one will contribute to better identify and address metrics uncertainty, while detailed analysis130

of individual metrics will enhance our understanding of their characteristics and exhibit variability. For instance, studies like

Acosta et al. (2023) focus mainly on the Coupling Cost and offer valuable lessons for understanding and measuring this metric.

Therefore, mitigating possible uncertainties arising from misconception or lack of the appropriate tools to collect them in the

future.

3 Analysis135

Analysing metrics derived from diverse models, executed on multiple platforms, and managed by independent institutions

presents a non-trivial challenge. Moreover, the presence of missing values further complicates the analysis, making it difficult

to substitute them with estimations or interpolations, particularly given the relatively limited size of the dataset.

Our approach consisted of first: validating the metrics provided by the institutions. We have sometimes found that the metrics

reported for some models were orders of magnitude apart from the rest. In this case, we started actively communicating with140

the institutions asking them to double-check the values and assisting them in the re-computation process. After going through

this process for each one of the metrics and models we came up with the values reported in Section 2: in Table 2 and Table 3

the reader can find the complete list of models for which the CPMIP metrics were collected, with the name of the institution

that was in charge for the run, the resolution used for the OCN and ATM, the reference for the experiment configuration,

and the CPMIP metrics. Additionally, we include in Table 4 the most relevant information on the HPC platforms used by the145

institutions and some supplementary metrics in Table 10 related to the execution costs in CO2 emissions.

Later, and for each of the metrics analysed in detail in the following sections, we filtered by model selecting those where

the metric was provided, sorting and/or grouping them by the reported value. Finally, to uncover possible relations among the

metrics, we have used both statistical approaches (e.g. Pearson’s correlation, Freedman et al., 2007) and qualitative analysis.

3.1 Resolution150

The first attempt to extract valuable information from Table 3 was done by grouping the experiments by resolution, since for

the moment we want to compare the performance achieved by ESMs whose target is similar. We are ignoring here the fact

that for some simulations the set-up has fewer grid points (e.g. reduced Gaussian in the atmosphere or removal of land points

in the ocean) and we are using the total size of the corresponding regular grid. The resolution of a component is measured

as the number of grid points it has (NX x NY x NZ), and the total resolution is given by the sum of the resolutions of their155

constituents. There is not a strict consensus on the connection between the number of grid points and the categorisation of low,

medium, and high resolutions. Thus, for the grouping we have used both the naming provided by the institution in charge of the

experiment and the total number of grid points used for each model configuration. Most configurations have been categorised

as low resolution and use up to 2.10E+07 grid-points in total, or no less than 0.7 degrees latitude-longitude grid spacing for any
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of the components (see Figure 1 and Table 2). On the other hand, only those experiments with an Ocean/Atmosphere resolution160

under 0.5 degree are treated as medium-high resolution configurations (see Figure 2).

Figure 1. Atmosphere and ocean grid-points for low-resolution experiments. The yellow color refers to components that are contributing to

the atmosphere or the ocean but can not be counted as a general circulation model per se (e.g. land-surface, sea ice, vegetation, etc.).

We see in Figure 1 the low-resolution experiments. The number of grid points for the ATM (red) and OCN (blue) components

for each model/institution has been listed in ascending order. We observe that except for EC-Earth, all other models run the

OCN at a higher resolution than the ATM. More precisely, the OCN resolution is between 3 to 5 times bigger for MPI-ESM,

BESM, CM2-SR2, CNRM-CM6, HadGEM3-LL, UKESM-LL and NorESM-MM. While in EC-Earth, it only accounts for 1/3165

of the total model resolution (the remaining 2/3 are used for the ATM). Remarkably, the LM configuration used at NorESM

uses a grid for the OCN which is 22 times bigger than the one for the ATM. As one would expect, the total number of grid

points of an experiment can be explained solely by the ATM and OCN resolution used, but we will show later how adding

more components/features (in yellow in Figure 1) can have quite an impact on the performance anyway.

Figure 2 shows the number of ocean and atmosphere grid points for the medium-high resolution experiments. We observe170

that like most of the low-resolution ones, all experiments use more grid points for the oceanic component than for the atmo-

spheric one (notably, GFDL CM4-piC experiment use 55x more grid points in the OCN component). The ATM resolutions

range between 1 and 0.4 degree, while OCN ones mostly run at 1/4 of a degree, except for the NERC-HadGEM3-GC3.1-HH

experiment which runs the oceanic component at 1/12.
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Figure 2. Atmosphere and ocean grid-points for medium-high resolution experiments

3.2 Complexity175

The complexity of a coupled model, as defined in Table 1, is the number of prognostic variables among all components.

Here, "prognostic" refers to variables that the model directly predicts, such as temperature, atmospheric humidity, salinity,

etc. In other words, variables that can be obtained directly as outcomes of the model. This metric is not well-known by the

community and never collected before, leading to confusion in some cases. Therefore, the values reported have are to be seen

as approximations. Only by continuously measuring these metrics in future collections will we improve our understanding of180

model complexity and its implications on model performance. The data in Table 5 reveals a wide variability in Complexity

(Cmplx) across the models, with most models reporting a value that ranges between 100 to 400. Notably, GFDL (OM4 and

CM4) and EC-Earth have considerably lower Cmplx. IPSL-CM6A model stands out in this context with a Cmplx of 750, which

is markedly higher than the other models, potentially due to its representation of the carbon cycle. Likewise, we were expecting

a much higher value for the EC-Earth-Veg experiment, but it was impossible to get this metric for the vegetation component185

(LPJ-Guess) even after contacting the developers. This highlights the challenge of obtaining this metric with accuracy, partly

due to a lack of awareness of the number of prognostic variables of the components among users of the ESMs, leading to an

overestimation for this metric, and also because the approximation based on the size of the restart files (Balaji et al., 2017, p.

25) is not always accurate. For instance, LPJ-Guess restart file size can measure tens of GB and depends on the Parallelisation

used for this component. What’s more, explaining why NERC HadGEM3-GC31 Cmplx is almost 3 times larger for the lower190

resolution configuration (LL) than for the same experiment using more grid points (MM, HM and HH configurations) represents
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Table 5. Resolution, SYPD, CHSY, Parallelisation and Coupling Cost for experiments that reported the Complexity metric

Institution Experiment Resolution SYPD CHSY Parallelisation Complexity Coupling Cost

BSC EC-Earth3 1.99E+07 15.20 1491 768 34 0.080

CNRM-CM6-1-atm 2.98E+06 7.30 1292 393 128

CNRM-CM6-1 1.10E+07 8.10 1541 520 181

CNRM-CM6-1-HR-atm 2.36E+07 2.20 8520 781 128

CNRM-CM6-1-HR 1.37E+08 1.50 21552 1347 181

ESM2-1-atm 2.98E+06 7.10 1352 400 335

CNRM-CERFACS

ESM2-1 1.10E+07 4.70 4289 840 393

OM4-p25 1.26E+08 11.50 9748 4671 11 0.130

OM4-p5 3.32E+07 15.90 1962 1300 13 0.140

CM4 1.28E+08 9.98 15388 6399 31 0.260
GFDL

ESM4 3.76E+07 8.65 13576 4893 140 0.270

IITM IESM 1.83E+06 8.00 996 332 168

IMPE BESM 6.88E+06 3.60 1853 278 132

IPSL IPSL-CM6A 1.06E+07 12.00 1900 950 750 0.050

KNMI EC-Earth3 1.99E+07 16.20 1286 868 34

HadGEM3-GC3.1-HM 1.99E+08 0.58 192662 4656 54 0.210

HadGEM3-GC3.1-HH 1.26E+09 0.49 588931 12024 54

HadGEM3-GC3.1-LL 1.14E+07 4.25 12198 2160 150 0.047

UKESM1-AMIP 2.35E+06 1.64 7376 504 202

NERC

UKESM1-0-LL 1.14E+07 2.02 8554 720 252 0.078

HadGEM3-GC31-LL 1.14E+07 4.00 13392 2232 228 0.061

HadGEM3-GC31-MM 1.44E+08 1.65 62836 4320 236 0.105UKMO

UKESM1-0-LL 1.14E+07 4.30 16074 2880 372 0.098

a challenge. Similarly, the notable differences between NERC and UMKO measurements, despite both running HadGEM-

GC3.1 and UKESM1 models but on different platforms, raise questions about their source, which requires further investigation.

Nonetheless, the data from CNRM-CERFACS provides evidence supporting the idea that the Cmplx of a model should

remain consistent regardless of the resolution, and only increase as additional features are simulated by the ESM. For instance,195

the Cmplx of CNRM-CM6 ATM standalone runs (CNRM-CM6-1-atm and CNRM-CM6-1-HR-atm) is 128 and grows up to

181 when the OCN component is included for the coupled configuration (CNRM-CM6-1 and CNRM-CM6-1-HR). The same

is also observed for the CNRM-ESM2 model, where the Cmplx increases from 335 to 393 when adding the OCN component.

Furthermore, in both cases, the ESMs require more processing elements when running the coupled version. This shows a clear

interconnection between the Parallelisation and Cmplx as both will grow when comparing standalone and coupled simulations,200

other examples are: NERC standalone execution UKESM1-AMIP and UKESM1-LL coupled version, GFDL standalone OM4

(OCN only) runs and the coupled configurations ESM4 and CM4, and CNRM-CM6-atm (ATM only), CNRM-CM6-1 (ATM

and OCN) and IPSL-CM6A (ATM, OCN and chemistry).

Therefore, Cmplx usually reduces the SYPD achieved and/or increases the CHSY given that adding a new component will,

at best, only increase the latter. Maintaining the same throughput when increasing the Cmplx requires the use of more parallel205

resources, which translates into more costly executions and is usually correlated to parallel efficiency loss due to the need for
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Table 6. Experiments that reported the Data Output cost (DO) and Data Intensity (DI) metrics

Institution Experiment Resolution Complexity SYPD CHSY Parallelisation DO DI

EC-Earth3 1.99E+07 34 15.20 1213 768 1.12 0.0410
BSC

EC-EarthVeg 1.99E+07 12.36 1491 768 1.13 0.0590

CMCC CM2-SR5 6.94E+06 397 6.68 2069 576 1.04 0.0500

OM4-p5 3.32E+07 13 15.90 1962 1300 0.0392

OM4-p25 1.26E+08 11 11.50 9748 4671 0.0178

ESM4-piC 3.76E+07 140 8.65 13576 4893 0.0032
GFDL

CM4-piC 1.28E+08 31 9.98 15388 6399 1.24 0.0058

IMPE IMPE-BESM 6.88E+06 132 3.60 1853 278 0.0200

IPSL IPSL-CM6A 1.06E+07 750 12.00 1900 950 1.20 0.0700

HadGEM3-GC3.1-LL 1.14E+07 150 4.25 12198 2160 1.41 0.0160

HadGEM3-GC3.1-HM 1.99E+08 54 0.58 192662 4656 0.0006

HadGEM3-GC3.1-HH 1.26E+09 54 0.49 588931 12024 1.41 0.0004

UKESM1-AMIP 2.35E+06 202 1.64 7376 504 1.31 0.0030

NERC

UKESM1-0-LL 1.14E+07 252 2.02 8554 720 1.19 0.0050

NorESM2-LM 1.01E+07 13.84 1665 960 0.0650
NorESM

NorESM2-MM 1.14E+07 8.96 4886 1824 0.0600

SMHI EC-EarthVeg 1.99E+07 12.44 1667 864 0.0280

UKESM1-0-LL 1.14E+07 372 4.30 16074 2880 1.03 0.0190

HadGEM3-GC31-LL 1.14E+07 228 4.00 13392 2232 1.03 0.0740UKMO

HadGEM3-GC31-MM 1.44E+08 236 1.65 62836 4320 1.02 0.0500

coupling synchronisations and interpolations (e.g. see GFDL results in Table 5). The relation between Cmplx and the Coupling

Cost is further discussed in subsection 3.5.

3.3 Data output

ESMs generate a large amount of output data, including model results, diagnostics, and intermediate variables, which need210

to be written to storage. Writing and saving this massive amount of data to disk or other storage mediums is time-consuming

and can affect the overall performance of the model. Concurrent access to storage resources by multiple processes or multiple

model instances can create contention, may represent an I/O bottleneck, and eventually degrade performance and scalability.

CPMIP metrics add two metrics to quantify and evaluate the I/O workload: the Data Output Cost (DO), which reflects the cost

of performing I/O and is determined as the ratio of CHSY with and without I/O; and the Data Intensity (DI), which measures215

the data production efficiency in terms of data generated per compute hour (i.e. GB/Core-hour).

Data Output Cost

From Table 6, we see that all the experiments conducted by UKMO and CMCC reported a DO below 1.05, even though

the DI varies considerably between the different experiments. Moreover, we observe that the DO is much higher for the same

ESM (HadGEM-GC31-LL and UKESM1-0-LL) when executed by NERC, reaching 1.19 for UKESM1-0-LL and 1.41 for220

HadGEM3-GC31-LL. It is not possible to know, however, if this is due to the difference between the HPC platform used or

to differences in the model I/O configuration. This underscores the importance of of the specific model’s I/O configuration in
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influencing the DO metric. Besides, neither the metrics collected from UKMO nor the ones reported from NERC show that the

DO should increase when running higher-resolution experiments (HadGEM3-GC31-MM and HH configurations). Moreover,

EC-Earth and EC-Earth-Veg DO measurements are almost the same, suggesting that adding the vegetation model to EC-Earth225

does not increase the cost of the I/O, while UKESM runs conducted by NERC show that the DO is much higher when running

the ATM standalone configuration, UKESM-AMIP, that the coupled run, UKESM-1-LL. Thus, the increase in Complexity or

Resolution does not increase the cost of the I/O but the cost of the whole ESM simulation, which can diminish the DO metric

if I/O workload stays constant.

Data Intensity230

As seen in Table 6, the DI is generally of the order of MB per core-hour and gets smaller as we move to higher-resolution

experiments (i.e. higher CHSY), meaning that the amount of data generated does not grow proportionally with the number of

grid points nor with the execution cost. For instance, the DI reported for NERC-HadGEM, UKMO-HadGEM, NorESM2 and

GFLD-OM4 experiments decreases when increasing the resolution. Thus, we observe a positive correlation between the SYPD

and the DI.235

3.4 Workflow and infrastructure costs

The real execution time of climate experiments can not be explained only by the speed at which a model can run. Queue

times before having access to the HPC resources (usually managed by an external scheduler), service disruption, errors in the

model/workflow manager, etc. can heavily extend the time-to-solution of ESMs. From the data in Table 1, we see that the

difference between the SYPD and ASYPD reported varies a lot between institutions. Some claim that they had no overhead in240

their runs (KNMI), while for others it can account for up to 78% (NorESM2-LR). The histogram in Figure 3 helps illustrate the

spread of the ASYPD overhead: it rarely surpasses 50% and half of the institutions reported it to be less than 20%. Judging from

the spread of this metric and from the discussions after the collection, we consider that there are two groups: 1) Institutions

that included solely the queue time, which reported an overhead under 20%, and 2) Institutions including not only the queue

time but also the system interruptions and/or workflow management, which reported much higher values.245

The results support the idea that queuing time represents an increment of around 10-20% to the speed of the ESM. On the

other hand, adding interruptions and workflow management the total execution time could increase up to 40-50% compared

to the simulation time alone. We do not have enough supporting data to draw any definitive conclusions, so we believe that it

would be essential to add finer granularity to the ASYPD metric to be able to differentiate both factors. BSC CMIP6 results

using the same configuration on two different platforms (Marenostrum and CCA) proved that the percentage of each part250

(queue time, interruptions or post-processing) could change among platforms even though the CMIP6 experiment is the same4.

From the metrics listed in Table 3, we see that the difference between SYPD and ASYPD for the same model can significantly

vary depending on the machine used for execution. For EC-Earth3 (standard and vegetation experiments), the overhead ranges

from 0% at KNMI to 0.35-0.40% at BSC and up to 0.47% at SMHI. However, it is important to note that the value provided

4https://shorturl.at/lzAHO, retrieved February 6, 2024
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Figure 3. Histogram of the Actual SYPD overhead

by KNMI only accounts for the queue time, and they reported having instant access to the HPC resources. Furthermore, for255

HadGEM3-GC3.1-LL, we observe that NERC and UKMO runs are similar in the model execution speed, achieving approx. 4

SYPD, but totally different in the ASYPD. The overhead due to the workflow at UKMO is just 11%, whereas at NERC it takes

75%. We see something similar when comparing the same institutions for the UKESM-LL execution, where the overhead in

UKMO is almost the same as before (16%), but it has drastically decreased at NERC. As we expected, the ASYPD overhead is

related to the model SYPD, but more importantly to the workload of the platform used for the runs. Furthermore, we observed260

that for UKMO and MPI the smaller the Parallelisation, the smaller the overhead due to the workflow.

3.5 Coupling Cost

Coupling Cost (Cpl C, Equation 3) is an essential metric evaluated in this study. It quantifies the overhead introduced by cou-

pling within an Earth System Model (ESM). This overhead encompasses various factors, including the coupling algorithms

used for grid interpolations and calculations for conservative coupling. Additionally, it incorporates the impact of the load im-265

balance, which arises when different independent components of the ESM finish their computations at varying rates, potentially

leaving processing elements idle. It is defined as follows:

Cpl_Cost≡
TMPM −

∑
cTCPC

TMPM
(3)

Where TM and PM are the runtime and Parallelisation for the whole coupled model, and TC and PC the same for each

individual component it uses.270

Figure 4 shows the list of institutions ordered from lower to higher Cpl C. Most institutions reported that the cost increase

due to the coupling accounts for around 5-15% of the total. Only 4 (over the 16 that reported this metric) show an increase

of over 20%. The data from GFDL (OM4-p5, OM4-p25, ESM4-piC, and CM4-piC) and UKMO (UKESM-LL and UKESM-

AMIP) suggests that the increase in Complexity leads to higher Cpl C and lower SYPD. This aligns with the expectations,

as the addition of a new component to the ESM will likely slow down the model and make the load balancing harder. It is275
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noteworthy that a similar trend is observed in EC-Earth experiments. Even though we don’t know the exact value for EC-

EarthVeg Cmplx, it is known to be higher than in the standard EC-Earth (ATM-OCN) configuration due to the inclusion of

vegetation and chemistry models. When comparing the performance of these two runs, we see a decrease in the SYPD and a

concurrent increase in the Cmplx and Cpl. C, as discussed in more detail in subsection 3.2.

In general, the Cpl C tends to rise when running experiments that use a higher Parallelisation. This could reflect a problem in280

the coupling phase. It can occur that the coupling algorithm is not scaling correctly or that the higher resolution configuration

is not well-balanced. It is also likely that since the computing cost of running configurations in lower resolutions is smaller

and less time-consuming, institutions can afford to run more spin-up tests and come up with a better distribution of processes

among the coupled components to obtain a better load balance. In comparison, the contrary will happen for higher resolutions.

Since there are no specific tools to balance a coupled model, these institutions are forced to use a trial-and-error approach,285

which is not trivial for complex configurations with several components and/or differences in the time-stepping among them.

For these cases, a finer granularity in the Cpl C metric and new ways to achieve a well-balanced configuration could be

needed, splitting interpolation algorithm and waiting time in different sub-metrics or providing some of the CPMIPs (SYPD,

CHSY . . . ) not only for the coupled version but also per component.

Figure 4. Coupling cost for all the institutions that provided the metric
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Table 7. Metrics for models available on different HPC platforms

Experiment Institution Resolution SYPD CHSY Parallelisation

BSC 1.99E+07 15.20 1213 768
EC-Earth3

KNMI 1.99E+07 16.20 1286 868

BSC 1.99E+07 12.36 1491 768
EC-Earth3Veg

SMHI 1.99E+07 12.44 1667 864

NERC 1.14E+07 4.25 12198 2160
HadGEM3-GC3.1-LL

UKMO 1.14E+07 4.00 13392 2232

NERC 1.14E+07 2.02 8554 720
UKESM1-0-LL

UKMO 1.14E+07 4.30 16074 2880

3.6 Speed, cost, and Parallelisation290

The speed of execution (SYPD) of a model is a fundamental metric that requires careful consideration. However, taken alone,

it may not be enough to shed light on the model’s performance itself. The meaning of a model’s speed can only be fully

understood when correlated to other important metrics. Among these the Parallelisation (Paral, i.e. the number of parallel

resources allocated) stands out as a factor closely related to the speed and that, at the same time, directly influences the

computational cost (CHSY) of the model execution. In this section, we show a detailed analysis of these three interconnected295

metrics. Contrary to what one would expect, the SYPD achieved by the models in this study is not always related to the

resolution used nor to the Paral allocated. Although if we analyse how the same model performs on different HPC machines

(Table 7), we note that higher values of Paral usually correspond to faster but more energy-consuming simulations.

Figure 5. Comparison between CHSY and Parallelisation for both low and medium-high resolution experiments. Experiment configurations

are arranged from left to right in ascending number of gridpoints. Note that vertical axis use a logarithmic scale for better visualisation
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Figure 6. Parallelisation for low (grey) and medium-high (black) resolution models

As seen in Figure 5, the Paral and the CHSY are closely correlated in low-resolution models (e.g. CMCC-CM2-SR5,

NorESM2-LM, IPSL-CM6A, NERC-HadGEM3-GC3.1-LL, UKMO-HadGEM3-GC3.1-LL, UKMO-UKESM1-0-LL, NorESM2-300

MM, BSC-EC-Earth3, BSC-EC-EarthVeg, KNMI-EC-Earth3, SMHI-EC-EarthVeg), showing that models do not scale in the

current generation of HPC platforms. Otherwise, one would see that the CHSY of ESMs with similar Resol do not increase

when using more processors given that the models run faster (i.e. higher SYPD). From the data, it is also clear which models are

under-performing. Take for instance KNMI-EC-Earth3-AerChem, despite using a smaller Parallelisation compared to its fam-

ily counterparts (BSC-EC-Earth3, BSC-EC-EarthVeg, KNMI-EC-Earth3 and SMHI-EC-EarthVeg), exhibits a higher CHSY.305

Similarly, NERC-UKESM1-AMIP and NERC-UKESM1-0-LL employ less Parallelisation compared to UKMO-UKESM1-0-

LL, yet the CHSY does not decrease proportionally. Also, as illustrated in Figure 6, the level of Parallelisation tends to increase

as we move to higher-resolution experiments. Thus, and given that we do not observe a relation between the Resolution and the

SYPD achieved, we conclude that most institutions try to maintain at high-medium resolution the same SYPD achieved when

running lower-resolution configurations, at the cost of increasing the CHSY. Future collections that include more medium-high310

resolution experiments will help creating further relationships for these experiments.

In addition, and already discussed in subsection 3.5, the Cpl C grows together with the Parallelisation, although there isn’t

any sign that it limits the speed of the models.
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Table 8. Resolution, SYPD, CHSY, Paral and Memory Bloat results for UKESM, EC-Earth and HadGEM3-GC31 experiments

Experiment Resolution SYPD CHSY Parallelisation Memory Bloat

BSC-EC-Earth3 1.99E+07 15.2 1213 768 59.50

BSC-EC-EarthVeg 1.99E+07 12.4 1491 768 68.48

NERC-HadGEM3-GC3.1-LL 1.14E+07 4.3 12198 2160 56.80

NERC-HadGEM3-GC3.1-HM 1.99E+08 0.6 192662 4656 154.00

NERC-HadGEM3-GC3.1-HH 1.26E+09 0.5 588931 12024 183.00

UKMO-HadGEM3-GC31-LL 1.14E+07 4.0 13392 2232 46.00

UKMO-HadGEM3-GC31-MM 1.44E+08 1.7 62836 4320 120.00

NERC-UKESM-AMIP 2.35E+06 1.6 7376 504 52.50

NERC-UKESM-LL 1.14E+07 2.0 8554 720 28.00

3.7 Memory Bloat

The Memory Bloat (Mem B, Equation 4) is the only CPMIP metric to evaluates models’ memory usage by computing the ratio315

between the real to the ideal memory size. It is defined as:

Memory_Bloat≡ M −Parallelisation ·X
Mi

(4)

Where M is the actual memory size, X is the binary file size and Mi the ideal memory size. The ideal memory size represents

the size of the complete model state, which can be obtained by exploring the restart file size. This ratio is typically falls between

10-100. Large Mem B values signal of excessive buffering. As an example (Balaji et al. (2017)), for a rectangular grid with a320

halo size of 2 in X and Y directions, and a 20x20 domain decomposition, the 2-D array including halos is 576 (24x24) instead

of 400 (20x20), resulting in a bloat factor of 1.44. Similarly, a 10x10 decomposition would yield an array area of 196, and a

bloat ratio of 1.96.

Table 8 presents the Mem B values reported for various models along other CPMIP metrics. We observe how the Mem

B increases with the resolution (e.g. NERC-HadGEM31), likely due to larger subdomains assigned to each compute unit in325

higher resolutions if the Parallelisation does not increase proportionally. Additionally, Mem B also increases when Complexity

grows but the Parallelisation remains constant (e.g. BSC-EC-Earth3 with and without the vegetation model) as it requires

keeping more data in memory. It is important to acknowledge the challenges in obtaining accurate memory usage for such

applications, and the authors are aware that institutions faced difficulties in providing this data. Therefore, the reliability of the

reported values varies between sources, and should be contrasted by future measurements (e.g. CPMIP collection for CMIP7).330

Precise memory measurements, however, can only achievable with more advanced tools and approaches (memory profilers,

MPI environment variables, etc.).
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Table 9. Other CMIP6 measurements. The "Useful" metric, whenever used, accounts only for experiments that led to scientific value. The

Power Usage Effectiveness (PUE) depends on the HPC machine used (Table 4)

Institution
Useful

Simulated Years*

Total

Simulated Years

Useful Data

Produced (PB)

Total Data

Produced (PB)

Useful core

hours (millions)

Total core

hours (millions)

Total

Person/Months

Total Energy

Cost (TeraJoules)
PUE

Conversion Factor

(MWh - kg CO2eq)

Carbon Footprint

(tons CO2)

CMCC 965 0.097 1.99 7 1.61 1.84 408 329

CNRM-CERFACS 47,000 1.350 2.48 160.00 365.00 450 6.18 1.43 40 97

DKRZ 1,276 1,321 0.600 5.52 5.90 0.41 1.19 184 24

EC-Earth 28,105 38,854 0.800 1.41 31.13 46.36 115 1.24 1.35 357 165

IPSL 75,000 165,000 1.800 7.60 150.00 320.00 200 8.72 1.43 50 172

MPI-M 24,175 35,000 1.930 16.31 0.62 1.19 184 37

NCC-NorESM2 23,096 0.600 27.23 80.00 150 1.69

NERC 640 0.460 55.50 2.17 1.10 0 0

UKMO 37,237 10.400 683.00 26.70 1.35 87 868

. *The Useful Simulated Years column values can differ from Table 1 given that some of the experiment runs were not shown in that table

3.8 Carbon footprint

In addition to the CPMIP collection, we have also gathered the general metrics shown in Table 10. These metrics provide

both useful (only accounting for simulations that produced data with scientific value) and total (encompassing all simulations,335

including spin-up and any runs that were finally discarded) numbers for the complete execution of CMIP6 experiments at the

different institutions. They can be used to provide an idea about the total and useful number of years simulated, data produced

and core hours consumed to finish the European community CMIP6 experiments. Although we did our best to collect the most

updated data, we are aware that these numbers could have changed since the data collection was finished. We know that some

institutions were doing some minor and final executions and updating databases such as ESGF. However, we consider Table 10340

a very good representation of the effort done for the collection during CMIP6. In any case and taking into account the previous

reasons, we do not analyse the results themselves and we will use this information to evaluate the Carbon Footprint associated

with running models for large-scale projects like CMIP6, which is also a very interesting example for the community. By

considering the useful Simulated Years, the HPC machine efficiency, and the KWH to CO2 conversion rates provided by each

energy supplier, we calculated the Carbon Footprint (in tons of CO2) using Equation 2. As the reader can see, NERC reported a345

zero Carbon Footprint due to their green tariff power supplier. Among other institutions, CMCC is the one with the highest CF,

followed by EC-Earth. Both significantly surpass the emissions of the other institutions: CERFACS, MPI, and UKMO have very

small CO2 emissions per kWh. Regarding machine efficiency, CMCC reported that Zeus is the least power-efficient machine,

with a Power Usage Effectiveness (PUE) of 1.84. CERFACS, IPSL, EC-Earth and UKMO reported similar values for their

machines, while DKRZ, MPI-M and NERC have reported a PUE under 1.2. We believe that CMCC’s Carbon Footprint may350

be overestimated, considering they simulated fewer than 1000 years yet reported nearly double the CO2 emissions compared

to EC-Earth or IPSL, despite these institutions having simulated longer experiments (in SY). The Total Energy Cost of UKMO

seems too big compared to their reported Useful Simulated Years. However, this can be attributed to the cost of maintaining

the useful data produced, which amounts to 10.4 PB of disk space. The total Carbon Footprint is 1692 tCO2, even when
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accounting for the experiments executed by only 8 out of the 49 institutions that are enlisted in CMIP65. Based on a 2018355

study by Acosta et al. Acosta and Bretonnière (2018), the Earth science group at the BSC, comprising around 80 people, had

a CO2 equivalent of commuting (29 tCO2eq/yr), computing infrastructure (397 tCO2eq/yr), building and infrastructure (117

tCO2eq/yr), and travel (255 tCO2eq/yr). The total budget was, therefore, estimated to be near 800 tCO2eq/yr. Consequently,

the carbon footprint from the execution of only this small subset of experiments more than doubles our budget in a single year.

This finding is consistent with observations from other groups within the community, such as a similar study conducted by360

CERFACS between 2019 and 2021, which reported a total budget of around 700 tCO2eq/yr. Nonetheless, the contributions

that CMIP6 has to climate science are invaluable and beyond the immediate costs associated to running the simulations.

4 Drawbacks and actions recommended

Thanks to the experience learned from the data collection and analysis done, we recognise the importance of highlighting the

specific drawbacks we have found during this first collection as well as our recommendations to improve the collection and365

analysis for future iterations of multi-model climate research projects, such as CMIP7. The authors will continue working on

this topic in the future not only to provide new approaches to facilitate the collection, but also in fostering the collaboration of

the weather and climate science community to address the computational challenges of Earth modelling. Table 10 shows a list

of the main drawbacks along suggested actions for improvement.

5https://wcrp-cmip.github.io/CMIP6_CVs/docs/CMIP6_institution_id.html
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Table 10. Drawbacks and Recommended Actions for CMIP6 Metrics

Drawbacks Recommended Actions

CPMIPs are not enough to compare the perfor-

mance of different ESMs running on different

HPC platforms.

Multi-model comparisons will be better grounded once more

data is available. Integrating the CPMIPs in the High-

Performance Climate and Weather (HPCW, van Werkhoven

et al., 2023) benchmark to evaluate the performance of the dif-

ferent machines used by the community.

Lack of resources and time to collect metrics after

CMIP experiments.

Perform metric collection before or during CMIP experiments.

Develop portable and automated processes for efficient collec-

tion.

Inconsistencies in metric collection hinder inter-

model comparisons.

Normalise metric collection methods across institutions before

multi-model runs. Develop tools to automatise the collection

(e.g. integrated into the workflow manager).

Difficulty in identifying computational bottle-

necks due to limited information.

Split sensitive metrics into sub-metrics for finer analysis. For

instance, the Coupling Cost should separate interpolation from

load-imbalance cost, and the ASYPD should differentiate be-

tween queue time and system interruptions.

5 Conclusions370

One of the limiting factors for climate science is the computational performance that Earth System Models (ESM) can achieve

on modern High-Performance Computing (HPC) platforms. This limitation imposes constraints on the number of years that can

be simulated, the number of ensembles that can be used, the resolution used by the models, the number of features simulated

in one experiment, I/O intensity, data diagnostics calculated during the run, etc. Evaluating the performance of an ESM is

a tremendous amount of work that generally requires: profiling the application, using tools to visualise and understand the375

profiling information, and developing and applying solutions based on the bottlenecks found. This process becomes even more

complex when dealing with models used in large-scale multi-model projects like CMIP6, where multiple ESM are executed by

different institutions that have access to diverse HPC platforms. To address these challenges, the Computational Performance

Model Intercomparison Project (CPMIP) metrics were designed to be: universally available, easy to collect, and representative

of the actual performance of ESMs and of the entire life-cycle of modeling (i.e. simulation and workflow costs).380

This paper presents, for the first time, the results obtained from the CPMIP collection during the CMIP6 exercise. It provides

the list of 14 institutions involved, primarily from the IS-ENES3 consortium, along with the 33 CMIP6 experiment configu-

rations and the CPMIP metrics collected for each experiment. Furthermore, it goes well beyond mere data presentation and

offers in-depth analysis for each metric collected to demonstrate the broader utility of the CPMIP collection. For instance, this
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study investigates the resolution used by each model on the oceanic and atmospheric components, explores the relationship385

between execution speed and cost with the other metrics, assesses the impact of running models with higher processor counts,

complexity, or I/O requirements, examines the overhead caused by queuing and workflow management, explores the coupling

cost across different configurations, etc.

Besides the CPMIP metrics analysis, this paper highlights results obtained from collaborations with other groups, such as

the Carbon Footprint Group. This collaboration underscore the shared concern of multiple institutions regarding computational390

performance in climate science and the joint effort to estimate the carbon footprint of the simulations conducted during the

CMIP6 exercise.

Finally, the paper addresses the main issues and drawbacks encountered during the collection and analysis of the metrics,

including the heterogeneity of the models and HPC machines used, as well as uncertainty in the metric measurements reported.

These points should be of particular interest to the partners, aiming to improve and facilitate future collections. The paper395

also proposes recommendations to confront these challenges, which can be adopted by the community for the development

of novel tools and more finely-grained metrics that would facilitate upcoming similar works. Moreover, the improvement

and development of benchmarks specially designed for climate science will significantly enhance multi-platform performance

comparisons. Continuous collection of these metrics in future multi-model projects (e.g. CMIP7) will facilitate the development

of a shared database for the community and vendors.400
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