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Abstract.This work developed a CNN-BiLSTM-AM model for convective weather forecasting using 10 

deep learning algorithms based on reanalysis and forecast data from the NCEP GFS, the performance of 11 

the model was evaluated. The results show that: (1) Compared to traditional machine learning algorithms, 12 

the CNN-BiLSTM-AM model has the ability to automatically learn deeper nonlinear features of 13 

convective weather. As a result, it exhibits higher forecasting accuracy on the convective weather dataset. 14 

Furthermore, as the forecast lead time increases, the information value provided by this model also 15 

changes. (2) In comparison to subjective forecasts by forecasters, the objective forecasting approach of 16 

the CNN-BiLSTM-AM model demonstrates advantages in metrics such as Probability of Detection 17 

(POD), False Alarm Rate (FAR), Threat Score (TS), and Missing Alarm Rate (MAR). Specifically, the 18 

average TS score for heavy precipitation reaches 0.336, which is a 33.2% improvement compared to the 19 

forecaster's score of 0.252. Moreover, due to the CNN-BiLSTM-AM model's ability to automatically 20 

extract classification features based on a large sample dataset and consider a comprehensive range of 21 

convective parameters, it effectively reduces the FAR. (3) The interpretability study of the machine 22 

learning-based convective weather mechanism reveals that the importance ranking of convective weather 23 

forecasting factors arranged by machine learning methods largely aligns with the subjective 24 

understanding of forecasters. For example, the total precipitable water (PWAT) is identified as a critical 25 

factor for short-term heavy precipitation forecasting, regional factors have significant impacts on 26 

convective weather, and vertical motion at 300 hPa provides dynamic lifting conditions for convection. 27 

This objective analysis of factor ranking not only further confirms the effectiveness of machine learning 28 

in automatically extracting convective weather features but also validates the rationality of the sample 29 

set construction. Overall, the use of the CNN-BiLSTM-AM model in convective weather forecasting 30 
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demonstrates superior performance compared to traditional machine learning algorithms and subjective 31 

forecasting methods.  32 

1 Introduction 33 

The forecasting of severe convective weather primarily focuses on violent weather phenomena that occur 34 

on small spatial and temporal scales, including hail, thunderstorms, strong winds, short-duration heavy 35 

rainfall, tornadoes, and other hazardous and dangerous weather conditions. Due to the regional intensity 36 

and rapid development characteristics of severe convective weather, forecasting is extremely challenging 37 

(Han et al., 2009; Zheng et al., 2015). Such weather often has a high intensity that can potentially cause 38 

severe casualties and property losses (Wang et al., 2007). For instance, the "Eastern Star" ship sinking 39 

incident in 2015 (Zheng et al., 2016a), the EF4 level tornado event in Funing, Jiangsu in 2016 (Zheng et 40 

al., 2016b), and the massive "720" rainstorm event in Zhengzhou, Henan in 2021 (Gao et al, 2022). In 41 

monitoring and predicting severe convective weather, traditional methods that solely rely on statistical 42 

results or forecaster experience exhibit significant limitations. Firstly, the occurrence condition and 43 

threshold characteristics of severe convective weather will undoubtedly vary among regions with 44 

different seasons, terrains, and climatic backgrounds. This diversity makes it challenging to use a unified 45 

set of physical quantity thresholds to predict categories of severe convective weather in various areas. 46 

Secondly, the volume of data needed to be processed during weather forecasting is considerable, and the 47 

features and threshold ranges of physical quantities extracted by forecasters through statistics or 48 

subjective judgement may not fully capture beneficial information or subtle changes in the data, 49 

especially those at smaller scales. Additionally, due to the complex variations of severe convective 50 

weather, if forecasters lack comprehensive and profound understanding of the rules governing the 51 

development of severe convection, they are unable to completely grasp the useful features during the 52 

development process of such weather. Even though some objective forecasting algorithms exist based 53 

on physical principles and statistical properties of relevant physical quantities, thoroughly extracting 54 

these features remains challenging. Moreover, when extracting features of physical quantities, 55 

forecasters' abilities are constrained by their experiential knowledge and understanding. 56 

The brisk advancement of artificial intelligence in recent years has spurred changes across numerous 57 

domains. Notably, AI algorithms underpinned by deep learning and machine learning have achieved 58 
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substantial progress and found effective applications across diverse sectors. The integration of these 59 

algorithms with meteorological big data often forms an efficacious toolset for severe convective weather 60 

forecasting (McGovern et al., 2017; Reichstein et al., 2019). Li et al. (2018) successfully employed the 61 

random forest algorithm to categorize potential severe convective weather phenomena. Based on this, 62 

they developed forecasting models for short-duration intensive rainfall, thunderstorms, hail, and severe 63 

convection. The training of these models involved leveraging convective indices and physical quantities 64 

possessing explicit physical meanings. Furthermore, they integrated real-time forecast field data from 65 

NCEP's Global Forecast System (GFS) into their predictions. The forecast outcomes of 85 severe 66 

convective occurrences indicated a total misjudgment rate of 21.9% with zero omissions, thereby 67 

confirming the model's extensive suitability for severe convective weather predictions. Herman et al. 68 

(2018) employed NOAA's global ensemble forecast system data to construct a machine learning model 69 

by using the random forest algorithm. This model encapsulates not only numerical forecasting elements 70 

like convective indices, temperature, pressure, humidity, and wind field but also includes numerous 71 

background forecasting components such as the maximum, minimum, median, longitude, and latitude 72 

values of 1-year and 10-year average recurrence intervals (ARIs). This model has proven successful in 73 

predicting extreme precipitation events 2-3 days ahead. Using the Bayesian approach, Liu et al. (2019) 74 

conducted correlation analysis for thermal and dynamic factors within high-frequency lightning storm 75 

cloud processes. Their findings underscored convective potential energy, convective inhibitory energy, 76 

and low-level wind shear as the most influential forecasting factors – providing crucial insights for high-77 

frequency lightning storm cloud predictions. In contrast to traditional machine learning algorithms (e.g., 78 

shallow neural networks, random forest), deep learning is capable of modeling intricate nonlinear 79 

systems and offering superior levels of abstraction. Importantly, deep learning can express broad function 80 

sets unattainable by shallow networks more flexibly and succinctly. It demonstrates substantial 81 

superiority over traditional methodologies across various fields, including speech processing and image 82 

recognition (Krizhevsky et al., 2012; Lecun et al., 1995; Szegedy et al., 2013). Deep learning has also 83 

found initial applications in short-term meteorological forecasting. For example, Lin et al. (2019) built a 84 

Convolutional Long Short-Term Memory (ConvLSTM) model based on the Weather Research and 85 

Forecasting (WRF) model and lightning data to extract spatiotemporal characteristics for future 12-hour 86 

lightning predictions. Similarly, Gope (2016) constructed a rainstorm prediction model using deep neural 87 
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networks (specifically, stacked autoencoders) based on historical climatic data, capable of forecasting 88 

intense rainfall scenarios in regions like Mumbai and Kolkata, India, 6 to 48 hours in advance. 89 

With the continuous improvement of small and medium-scale observation networks, the gradual 90 

enrichment of observational methods, and the rapid growth of observational data, exploring the 91 

occurrence and development mechanisms in each severe convective weather process, identifying 92 

characteristic parameters and threshold ranges of various types of severe convective weather from a large 93 

amount of numerical model data, and comprehensively considering the geographical and climatic 94 

environment of each region have become key factors for effective forecasting of severe convective 95 

weather. Deep learning algorithms can automatically extract important features from big data, deeply 96 

extract effective information, and comprehensively consider geographical and climatic differences across 97 

regions, which will significantly optimize the results of severe convective weather forecasting. The latest 98 

Pangu-Weather model is capable of predicting meteorological elements, including temperature, wind 99 

speed, and pressure, with high accuracy and fast prediction speed (Bi et al., 2023). Based on the 100 

reanalysis and forecast data from NCEP GFS global numerical model, our research uses deep learning 101 

algorithms to establish a severe convective weather forecasting model and objective forecasting method 102 

that can provide real-time objective forecast products nationwide. 103 

2 Data and methods 104 

2.1 NCEP FNL analysis data  105 

The training and testing data in this study were obtained from the NCEP GFS 0.25°×0.25°FNL (final) 106 

analysis data for the period of 2015-2020. The NCEP FNL analysis data provides global analysis fields 107 

four times daily (02:00, 08:00, 14:00, and 20:00). The selection of forecast factors includes not only 108 

basic meteorological elements such as temperature, geopotential height, humidity, and wind field, but 109 

also commonly used physical quantities reflecting conditions related to water vapor, dynamics, and 110 

energy, such as precipitable water (PWAT), Convective inhibition (CIN), and K-index (Tian et al., 2015). 111 

Additionally, in order to consider geographical variations in convective activity, features such as 112 

elevation, longitude, and latitude are included, resulting in a total of 144 features (see Table 1) to be 113 

analyzed. 114 

Table 1. The selection of parameters 115 
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 parameters level/(hPa) 

Multi-

level 

physical 

quantities 

T（Temperature）、TD（Dew point） 

1000、925、850、70

0、 

500、300、200 

H（Potential height） 

Wind_Speed、Wind_Drection、W（P-coordinate system vertical 

velocity） 

Rh（Relative humidity）、TDD（Temperature dew point 

difference）、Q（Specific humidity）、VAPFLUXDIV（Water vapor 

flux divergence） 

PV（Potential vorticity）、TMPADV（Temperature 

advection）、SITASE（Pseudo-equivalent potential 

temperature）、DIV（divergence）、VOR（vorticity）、VORADV

（vorticity advection） 

Common

ly used 

strong 

convectiv

e 

physical 

quantities 

BCAPE（Bulk Convective Available Potential Energy）、BLI（Bulk 

Lifted Index）、CIN（Convective inhibition）、DCAPE（Downdraft 

Convective Available Potential Energy）、K（K-index）、LI（Lifted 

Index）、Z0（Altitude of the 0 °temperature layer）、Z20（Altitude 

of the -20 °temperature layer）、PWAT（Precipitable 

water）、SHIP（Large hail index）（Allen et al，2015）、SHR1（0-

1km wind shear）、SHR3（0-3km wind shear）、SHR6（0-6km wind 

shear）、SI（Sha index）、TOAT（Total Index） 

 

Other 

quantities 

ELEVATION、LON（Longitude）、LAT（Latitude）  

2.2 Severe convective weather data 116 

In this study, the convective data used were sourced from observational data collected by Chinese surface 117 

meteorological stations and archived by the National Meteorological Information Center. The National 118 

Meteorological Information Center performs quality checks and error data corrections on timed 119 

observations and daily extreme value data for 19 major elements, including temperature, pressure, 120 

precipitation, humidity, and sunshine duration, from over 2400 ground stations nationwide. This process 121 
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addresses systematic issues that may arise during the digitization process, such as data omissions or 122 

duplication. The data undergoes three levels of quality control review at the station, provincial, and 123 

national levels within the routine operations of the meteorological data departments. 124 

2.3 Selection of experimental area  125 

The Henan region is not only one of China's important agricultural production areas but also a zone 126 

where modern cities and rural areas coexist with complex terrain due to extensive industrial development. 127 

Furthermore, being located in the mid-latitudes, Henan frequently experiences cold air invasions, while 128 

warm and humid air masses can also reach the region during the summer, often leading to intense rainfall 129 

events resulting from the convergence of warm and cold air masses. Additionally, numerous signs 130 

indicate that China's climate is entering a transitional period, potentially leading to a shift from low 131 

rainfall in summer to higher rainfall in northern regions. Therefore, selecting the Henan region (as 132 

illustrated in Figure 1) as the study area for this research is highly appropriate. Undoubtedly, it will lay 133 

the foundation for future improvements in severe weather warnings and disaster prevention and 134 

mitigation capabilities in the region, reflecting a forward-looking study with a strategic perspective. 135 

 136 
Figure 1: The selected area of experiment ( The white rectangle denotes the selected area: Henan, 31°-37°137 

N，110°-117°E ); Distribution of topography (shaded; unit: m) 138 
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3 Deep learning model 139 

3.1 Deep learning model structure 140 

To forecast severe convective weather more accurately, this study develops a CNN-BiLSTM-AM-based 141 

model for convective prediction. The model consists of Convolutional Neural Network (CNN), 142 

Bidirectional Long Short-Term Memory (BiLSTM), and Attention Mechanism (AM). The CNN extracts 143 

features from the input inventory data, while the BiLSTM effectively captures the interdependencies in 144 

the temporal sequence data. The AM is a mechanism that improves results by capturing the impact of 145 

past feature states on heavy rainfall. The model primarily comprises the CNN, BiLSTM, and AM layers, 146 

including an input layer, CNN layer (with one-dimensional convolutional and pooling layers), BiLSTM 147 

layer (with forward and backward LSTM layers), AM layer, and output layer (see Figure 2 for details)(Lu 148 

et al，2021). During weather forecasting, we analyze historical meteorological images and numerical 149 

products to draw conclusions. To summarize this process briefly, we first analyze meteorological images 150 

or various forecast products to generate situational forecasts. Then, combining the situational forecasts 151 

with local real-time meteorological data, we obtain element forecasts. If we simplify these two steps 152 

further, the first step involves extracting features from meteorological images or forecast products (i.e., 153 

situational forecasting), and the second step involves fitting the extracted features with local historical 154 

meteorological information to obtain the required forecast values (i.e., element forecasting). In the CNN-155 

BiLSTM-AM model, these two steps are transformed accordingly: using the CNN for data feature 156 

extraction and subsequently applying the BiLSTM and AM to match historical meteorological 157 

information in order to derive the element values. Prior to inputting the data into the CNN-BiLSTM-AM 158 

model, we normalize the data and convert it into matrix form. Once these settings are completed, the 159 

model can be trained. 160 
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 161 

Figure 2: CNN-BiLSTM-AM model structure diagram 162 

The training process of CNN-BiLSTM-AM is illustrated in Figure 3, with the main steps outlined as 163 

follows:  164 

1）Input Data: Provide the necessary data for training CNN-BiLSTM-AM.  165 

2）Input Data Normalization: To enhance model training performance, the input data is standardized due 166 

to its significant variations. The normalization formula is expressed as Equation (1): 167 

yi =
xi − x

s
 (1.1) 

Among them, yi is the standardized value, xi is the input data, x is the average value of the input data, 168 

and s is the standard deviation of the input data. 169 

3）Network Initialization: Initialize the weights and biases of each layer in CNN-BiLSTM-AM. 170 

4）CNN Layer Computation: Pass the input data sequentially through the convolutional and pooling 171 

layers within the CNN layer to extract features and obtain output values. 172 
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5）BiLSTM Layer Computation: Use the hidden layer of the BiLSTM layer to compute the output data 173 

from the CNN layer and obtain output values. 174 

6）AM Layer Computation: Compute the output data from the BiLSTM layer using the AM layer and 175 

obtain output values. 176 

7）Output Layer Computation: Calculate the output value of the model by computing the output value 177 

of the AM layer. 178 

8）Error Calculation: Compare the computed output value from the output layer with the true value of 179 

the data set and calculate the corresponding error. 180 

9）Check if the termination conditions for the training process are met: Successful termination conditions 181 

include completing a predetermined number of cycles, reaching a weight below a certain threshold, or 182 

achieving a prediction error rate below a specific threshold. If any of these conditions are met, the training 183 

is completed; otherwise, the training continues. 184 

10）Error Backpropagation: Propagate the calculated error in the opposite direction, updating the weights 185 

and biases of each layer, and then return to step 4 to continue the training. 186 
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 187 
Figure 3: Flow chart of CNN-BiLSTM-AM training process 188 

The prediction process of CNN-BiLSTM-AM is illustrated in Figure 4 and consists of the following 189 

main steps: 190 

1) Input Data: Provide the input data required for prediction.  191 

2) Data Standardization: Normalize the input data.  192 

3) Prediction: Feed the standardized data into the trained CNN-BiLSTM-AM model and obtain the 193 

corresponding output values.  194 

4) Data Standardization Recovery: The output values obtained from CNN-BiLSTM-AM are in 195 

standardized form. To restore them to their original values, apply Equation (2) to convert the standardized 196 

values back. 197 

xi = yi ∗ s + x̅ (1.2) 
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Among them, xi represents the recovered value of the standardized value, yi represents the output 198 

value of CNN-BiLSTM-AM, s represents the standard deviation of the input data, and x̅ represents the 199 

mean value of the input data. 200 

5) Output Results: Present the recovered results after restoration as the completion of the prediction 201 

process. 202 

 203 

Figure 4: Flow chart of CNN-BiLSTM-AM prediction process 204 

3.2 Construction of training and testing datasets 205 

The prediction of severe convective weather can be viewed as a binary classification problem, 206 

distinguishing between its occurrence (labeled as 1) and non-occurrence (labeled as 0). Consequently, 207 

we can utilize actual severe weather data to calibrate the numerical analysis field, thus constructing 208 

training and testing sample datasets. Since NCEP FNL provides both analyzed and forecasted grid-based 209 

fields while the observed data is in scattered form, the observed data needs to be gridded. If a related 210 

weather event occurs within a grid radius of R, it is considered that the event occurs at that grid point 211 

(labeled as 1); otherwise, it is considered that the event does not occur at that grid point (labeled as 0). 212 

Considering that convective weather is typically associated with mesoscale weather systems, we 213 

conducted experiments and determined to use R=20km. Setting R too small may result in missing severe 214 

convective events, whereas setting it too large may lead to false alarms. 215 
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The occurrence probability of severe convective weather is relatively low, resulting in a significant class 216 

imbalance where positive samples (i.e., samples with severe convective events) are much fewer than 217 

negative samples (i.e., samples without severe convective events). This presents a typical issue of 218 

imbalanced data (Krawczyk et al., 2016). To address this, we employed the oversampling technique 219 

(Buda et al., 2017) by randomly duplicating positive samples to achieve a balanced distribution between 220 

positive and negative samples. With this approach, we constructed the training and testing datasets using 221 

real-time data from January to December between 2015 and 2020, as well as NCEP FNL data. The testing 222 

dataset consisted of one randomly selected day from each month during the aforementioned period, 223 

totaling 72 days, while the training dataset comprised the remaining samples. During the training process, 224 

we utilized the ADAM optimizer (Kingma and Ba, 2014) with a learning rate set at 10-4, and default 225 

values were used for other settings (Perol et al., 2017). The CNN-BiLSTM-AM model was trained for 226 

30 epochs with a batch size of 64. Through training and parameter tuning, we obtained the optimal 227 

prediction model. This model can incorporate NCEP FNL data and transform features into a four-228 

dimensional array of M×28×32×1 (M represents the number of samples), enabling predictions for severe 229 

convective weather. 230 

4 Results 231 

4.1 Evaluation methods 232 

Commonly used verification measures for evaluating forecast results include the Probability of Detection 233 

(POD), the Threat Score (TS), the Equitable Threat Score (ETS), the Bias (BIAS), the False Alarm Ratio 234 

(FAR), and the Missed Alarm Ratio (MAR). These measures are defined as follows: 235 

POD =
h

h +m
 (1.3) 

TS =
h

h +m+ f
 (1.4) 

ETS =
h − hrandom

h + f +m +−hrandom
, hrandom = (h + f) ∗ (h +m)/(h +m + f + c) (1.5) 

BIAS =
h + f

h + m
 (1.6) 
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FAR =
f

h + f
 (1.7) 

MAR =
m

h +m
 (1.8) 

Among them, h represents the number of occurrences when both the forecast and observed events appear, 236 

m represents the number of occurrences when the observed event appears but the forecast does not, f 237 

represents the number of occurrences when the forecast event appears but the observed event does not, 238 

and c represents the number of occurrences when neither the forecast nor the observed event appears. 239 

4.2 Evaluation of different models 240 

To investigate the differences between the CNN-BiLSTM-AM model and traditional machine learning 241 

algorithms, this study compared their forecasting performance on convective weather test dataset from 242 

2015 to 2017. Figure 5 presents a comparative analysis of predicted and observed precipitation between 243 

the observations and various models. The figure suggested that the SVM and KNN methods resulted in 244 

subpar precipitation prediction, as evidenced by their relatively high RMSE values of 2.42mm and 245 

2.79mm respectively. Compared to the WRF model, these figures represent reductions of 22.68% and 246 

10.86%. Additionally, the correlation coefficients between the predicted and actual precipitation were 247 

low due to more dispersed distributions. On the contrary, RF and GBDT methods demonstrated superior 248 

performance in precipitation prediction. They achieved smaller RMSE values between the predicted and 249 

actual rainfall, reaching 1.62mm and 1.89mm respectively, representing reductions of 48.24% and 39.62% 250 

when compared with the WRF model. These methods also exhibited stronger correlations, indicated by 251 

higher correlation coefficients, suggesting concentrated distributions of predicted rainfall and actual 252 

precipitation errors. However, despite the promising results obtained by RF and GBDT methods, the 253 

CNN-BiLSTM-AM model proposed in this study outperformed them. The distribution of the predicted 254 

and actual precipitation using the CNN-BiLSTM-AM method was notably more concentrated, leading 255 

to the smallest overall error. Specifically, the RMSE value for the CNN-BiLSTM-AM model was merely 256 

1.22mm, marking reductions of 61.02%, 49.59%, 56.27%, 35.45%, and 24.9% in comparison to WRF, 257 

SVM, KNN, GBDT, and RF models respectively. Furthermore, it reached an impressive correlation 258 

coefficient of approximately 99% between the predicted precipitation and the actual data. Based on this 259 

evidence, it is clear that the CNN-BiLSTM-AM model substantially surpasses traditional machine-260 
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learning algorithms such as SVM, KNN, GBDT, and RF in the context of precipitation prediction. 261 

 262 

Figure 5: Scattered density plots of the observed and machine-learning corrected precipitation (a: 10-fold 263 

cross-validation training dataset of KNN model, b: 10-fold cross-validation training dataset of RF model, c: 264 

10-fold cross-validation training dataset of GBDT model, d: 10-fold cross-validation training dataset of SVM 265 

model, e: CNN-BiLSTM-AM model forecasts, and f: WRF forecasts)  266 

(a) (b)

(c) (d)

(e) (f)
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To further investigate the reliability of the CNN-BiLSTM-AM model, we compared it with the other five 267 

models using the cumulative distribution probability scatter plots and Taylor plots, and the results were 268 

shown in Figure 6. From the data provided in the figure, it was evident that the CNN-BiLSTM-AM 269 

model outperforms the other models significantly. It exhibited a standard deviation of 1.02 and a 270 

correlation coefficient of 0.99. Following closely behind as the second most accurate model is the RF 271 

model, boasting a standard deviation of 1.12 and a correlation coefficient of 0.97. The KNN model 272 

demonstrated the weakest performance, with a standard deviation and correlation coefficient of 1.26 and 273 

0.90 respectively. The accuracy metrics of the SVM, and GBDT models fell between those of the 274 

superior (CNN-BiLSTM-AM and RF) and inferior (KNN) models. Specifically, their standard deviations 275 

and correlation coefficients were recorded as follows: SVM - 1.24 and 0.91; GBDT - 1.20 and 0.94. In 276 

conclusion, the CNN-BiLSTM-AM model held a distinct advantage in its ability to effectively extract 277 

the development characteristics of convective weather, thereby achieving superior precipitation 278 

prediction. 279 

 280 

Figure 6: The cumulative distribution probability scatter plots of the observed precipitation and the predicted 281 

precipitation of 6 models(a) ; Taylor distribution plot of different model performance(b)  282 

4.3 Individual Case Forecast Evaluation 283 

On July 22, 2022, widespread thunderstorms and short-term heavy precipitation occurred in Henan and 284 

central Inner Mongolia, China. The forecast performance of this weather process is illustrated in Table 285 

2 and Figure 7. From the comparison of various prediction methods in the table, we can conclude that: 286 

Regardless of whether it was the CNN-BiLSTM-AM model or other algorithms such as Gradient 287 

(b)(a)
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Boosting Decision Trees (GBDT), Random Forests (RF), Support Vector Machines (SVM), or K-Nearest 288 

Neighbors (KNN), the forecast performance for convective weather showed a decreasing trend with 289 

increasing forecast duration. Additionally, the Probability of Detection (POD) and Threat Score (TS) 290 

significantly decreased, while the False Alarm Ratio (FAR) significantly increased. This can be attributed 291 

to the nonlinear and complex nature of convective system development, which leads to diminishing 292 

predictability with longer forecast durations. Among the five learning models tested, the CNN-BiLSTM-293 

AM model demonstrated the best predictive performance in the 2-6 hour forecast duration. For example, 294 

within the 2-6 hour time range, the POD, Equitable Threat Score (ETS), and TS values for the CNN-295 

BiLSTM-AM model were 0.550, 0.524, 0.484, 0.470, 0.463, 0.495, 0.453, 0.384, 0.310, 0.245, and 0.440, 296 

0.375, 0.338, 0.306, 0.226, respectively. Compared to the second-ranked RF model, they improved by 297 

15.30%, 23.88%, 17.48%, 16.34%, 19.64%, 21.32%, 26.89%, 21.52%, 14.81%, 20.69%, and 17.33%, 298 

23.76%, 25.19%, 60.21%, 88.33%. Overall, the CNN-BiLSTM-AM model showed a significant 299 

improvement in forecast performance compared to other machine learning algorithms. As the forecast 300 

duration increased, the CNN-BiLSTM-AM model outperformed other machine learning models in terms 301 

of forecast results. For example, at the 3rd hour, the difference in TS values between the CNN-BiLSTM-302 

AM model and GBDT, RF, SVM, KNN models were 0.129, 0.072, 0.152, 0.163, representing 303 

improvements of 52.44%, 23.76%, 68.16%, 76.89%. At the 6th hour, the corresponding TS differences 304 

were 0.110, 0.106, 0.111, 0.112, showing improvements of 94.83%, 88.33%, 96.52%, 98.25%. Therefore, 305 

it can be observed that beyond the 2-hour forecast stage, the CNN-BiLSTM-AM model performs more 306 

prominently in convective weather forecasting. The figure 6 clearly illustrates the variations in forecast 307 

performance across different models. In the 1-hour forecast duration, both deep learning and machine 308 

learning algorithms did not exhibit significant changes in forecast performance. This can be attributed to 309 

the fact that within the 0-1 hour time range, convective system morphology undergoes minimal changes, 310 

and the NCEP fnl analysis data contains sufficient information about the initial stage of convection, 311 

allowing effective prediction relying solely on analysis data. However, within the 2-6 hour forecast 312 

duration, the CNN-BiLSTM-AM model consistently outperformed the machine learning methods, 313 

particularly as the lead time extended. The performance gap between the CNN-BiLSTM-AM model and 314 

other machine learning models gradually widened. This indicates that the CNN-BiLSTM-AM model 315 

possesses nonlinear evolution recognition and prediction capabilities, with its provided information 316 
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becoming more valuable as the forecast duration increases. These findings further confirm the 317 

advantages of deep learning methods in severe convection forecasting. 318 

Table 2. Comparison of various models on convective weather case on July 22, 2022 319 

Models Forecast duration POD FAR ETS TS 

CNN-BiLSTM-AM 

1h 0.618 0.389 0.501 0.484 

2h 0.550 0.430 0.495 0.440 

3h 0.524 0.454 0.453 0.375 

4h 0.484 0.482 0.384 0.338 

5h 0.470 0.538 0.310 0.306 

6h 0.463 0.646 0.245 0.226 

GBDT 

1h 0.633 0.386 0.486 0.473 

2h 0.433 0.558 0.277 0.319 

3h 0.427 0.652 0.200 0.246 

4h 0.409 0.733 0.145 0.197 

5h 0.402 0.783 0.111 0.164 

6h 0.372 0.824 0.083 0.116 

RF 

1h 0.651 0.412 0.477 0.481 

2h 0.477 0.525 0.408 0.375 

3h 0.423 0.632 0.357 0.303 

4h 0.412 0.721 0.316 0.270 

5h 0.404 0.790 0.270 0.191 

6h 0.387 0.803 0.203 0.120 

SVM 

1h 0.413 0.405 0.459 0.451 

2h 0.249 0.545 0.138 0.271 

3h 0.186 0.636 0.088 0.223 

4h 0.126 0.710 0.047 0.182 

5h 0.094 0.790 0.025 0.170 

6h 0.076 0.854 0.013 0.115 

KNN 1h 0.391 0.400 0.328 0.253 
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2h 0.332 0.512 0.165 0.443 

3h 0.281 0.616 0.143 0.212 

4h 0.245 0.709 0.098 0.180 

5h 0.170 0.801 0.062 0.142 

6h 0.101 0.868 0.038 0.114 

 320 

Figure 7: Comparison of forecast performance of different models 321 

To assess how errors vary in different models, we selected Zhengzhou in Henan as specific region for 322 

evaluation and analysis. The boxplots of the predicted precipitation and the actual precipitation of 6 323 

models at 12 stations in Zhengzhou show that(see Figure 8), the CNN-BiLSTM-AM gave more accurate 324 

results than the other models, its difference between the observed precipitation and the predicted 325 

precipitation was very small, which is significantly superior to those of the other models; For the RF and 326 

GBDT models, the difference between the observed precipitation and the predicted precipitation was not 327 

(a) (b)

(c) (d)
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significant and both showed better performance than KNN and SVM models. Overall, the CNN-328 

BiLSTM-AM model showed the best performance with higher accuracy for all stations, and the KNN 329 

and SVM model illustrated the lowest performance among other models and approaches.  330 

 331 

Figure 8: The boxplots of the predicted precipitation of the KNN(a), RF(b), GBDT(c), SVM(d), CNN-332 

BiLSTM-AM(e), and WRF(f) models at 12stations and the boxplots of the actual precipitation (gray). 333 

4.4 Spatial–temporal variations in the best model 334 

Figure 9 depicts the diurnal variations offered by diverse models in July 2022, and also shows the diurnal 335 

fluctuation in precipitation in the initial WRF forecast. The precipitation forecast by the original WRF 336 

weather prediction model exhibits noticeable inaccuracies. As can be seen from the figure, WRF's 337 

precipitation forecast displays a distinct diurnal variation trait, characterized by substantial discrepancies 338 

between early morning and afternoon hours, namely between 9:00 am and 13:00 pm (Figure 9f). This 339 

(b)(a)

(c)

(e)

(d)

(f)
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indicates that WRF's precipitation forecast tends to be inaccurate and displays significant errors in diurnal 340 

variation. 341 

Compared to the precipitation forecast results of different ML models, the diurnal variation error was 342 

considerably lessened (Figure 9a, b, c, d, and e). Initially, the mean precipitation forecast by the CNN-343 

BiLSTM-AM model aligns well with the actual average precipitation trajectory, with minimal error and 344 

devoid of diurnal variation (Figure 9e). This suggests that the predicted and actual distributions of 345 

precipitation are in agreement. However, the results performed between 9:00 am and 13:00 pm during 346 

January 2021 were not very satisfactory. This could be attributed to the inadequate generalization 347 

abilities of the training model and the excessive volatility of actual precipitation at these specific times. 348 

Based on the above comparative analysis, it can be inferred that the CNN-BiLSTM-AM model 349 

outperforms other models. 350 

In oreder to facilitate a more intuitive comparison, we visualized the distribution of forecast results for 351 

different models (see Figure 10). As can be seen from Figure 10, the RMSE (Figure 10a, b, c, d, and e) 352 

distribution of precipitation of 5 models show that the performance of the CNN-BiLSTM-AM model is 353 

better than the other machine learning models, RMSE value is mostly between 0.11mm and 3.87mm. 354 

The performances of the RF, SVM, GBDT, and KNN models are not as good as CNN-BiLSTM-AM, 355 

their RMSE were recorded as follows: RF: 0.10mm-4.25mm, SVM: 0.38mm-4.31mm; GBDT: 0.33mm-356 

4.68mm, KNN: 0.56mm-4.82mm. From the 24-hour forecast scores (Fig.8f), the CNN-BiLSTM-AM 357 

model consistently outperformed the subjective predictions of the forecasters. This indicates that the 358 

CNN-BiLSTM-AM model, based on deep learning techniques, significantly improved the forecast 359 

accuracy for this severe convective weather event, providing forecasters with valuable guidance and 360 

reference.  361 
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 362 
Figure 9: KNN(a), RF(b), GBDT(c), SVM(d), CNN-BiLSTM-AM(e), and WRF(f) daily variation of predicted 363 

and actual precipitation on July 2022. 364 

 365 
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 366 

Figure 10: RMSE distribution of CNN-BiLSTM-AM(a), RF(b), SVM(c), KNN(d), GBDT(e) models in Henan; 367 

TS scores of strong convective weather on July 22, 2022 (f)  368 

(a) (b)

(c) (d)

(e)
(f)

22

https://doi.org/10.5194/gmd-2023-187
Preprint. Discussion started: 25 October 2023
c© Author(s) 2023. CC BY 4.0 License.



5 Discussion 369 

5.1 Stability analysis of the proposed models 370 

The preceding results presented the visualized outcomes of various correction methods, which may not 371 

fully prove the stability of different approaches. To further evaluate the stability of various machine-372 

learning models, we compared their performance on strong convective weather forecasting during the 373 

flood season (April-September) from 2020 to 2022 by using six evaluation metrics: RMSE, FAR, MAR, 374 

POD, TS, and accuracy. The specific results are presented in Figure 11. This comprehensive analysis 375 

will provide a more accurate assessment of the stability of different models. 376 

The RMSE values of the five machine-learning models were lower than that of the WRF model, with the 377 

CNN-BiLSTM-AM model having the smallest RMSE of 1.12mm. This represented a 63.04% reduction 378 

in RMSE compared to the output precipitation of the WRF model. From the perspective of solving 379 

regression problems, the model effectively corrected the deviation in precipitation predicted by the 380 

numerical forecast model. In comparison to other machine-learning algorithms, the accuracy of the CNN-381 

BiLSTM-AM model showed a significant improvement, demonstrating the stability of deep-learning 382 

methods for nonlinear problems such as precipitation, often achieving superior application results. 383 

FAR and MAR are two important indicators for evaluating precipitation forecasting accuracy, reflecting 384 

false and missing alarm rates, respectively. As shown in the figure, the FAR of the CNN-BiLSTM-AM 385 

model was higher than that of all the other corrected models, while its MAR was lower than that of all 386 

the other models. This situation might be due to the fact that while the CNN-BiLSTM-AM model 387 

effectively fits precipitation, it also has side effects, leading to precipitation forecasts in the absence of 388 

actual precipitation. The FAR and MAR values obtained by the other four machine-learning algorithms 389 

were lower than those of the WRF model, indicating that these machine-learning methods can reduce the 390 

false and missing rates of the WRF model precipitation forecasts to a certain extent. 391 

Finally, the POD,TS and accuracy scores of the five machine-learning models were significantly higher 392 

than that of the WRF model, with the CNN-BiLSTM-AM model achieving the best performance among 393 

all models. These results indicate that the CNN-BiLSTM-AM model exhibits an ideal performance in 394 

correcting precipitation forecasts from the WRF model, outperforming other machine-learning methods 395 

in terms of precipitation correction. 396 
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 397 
Figure 11: Evaluation histograms of precipitation predicted by 6 models and actual precipitation in different 398 

months ((a), (b), (c), (d), (e), and (f) represent RMSE(mm), FAR, MAR, POD, TS, and ACCURACY 399 

respectively). 400 

5.2 Explainability of the mechanism of severe convective weather based on machine learning 401 

Although machine learning and deep learning methods have made significant breakthroughs in various 402 

fields, effectively predicting severe convective weather using these methods still remains a "black box" 403 

challenge (McGovern et al., 2019), with the specific details being difficult to ascertain. Currently, many 404 

researchers are attempting to uncover this "black box" and have developed several model interpretation 405 

and visualization (MIV) techniques. Through MIV, users of machine learning can gain a better 406 

understanding of the strengths, weaknesses, and optimal application scenarios of the models, thereby 407 

increasing trust in the models and enhancing their practicality. If the machine learning forecasts 408 

outperform human forecasters, MIV can also help improve subjective judgment and prediction results, 409 

as well as validate new scientific hypotheses and conjectures (McGovern et al., 2019). In this section, 410 

we apply a method of ranking the importance of forecast factors to analyze the forecasting process of the 411 

(a)

(c) (d)

(e) (f)
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deep learning model, aiming to unravel the mystery of the "black box" in deep learning for predicting 412 

severe convective weather. 413 

5.2.1 Technical method 414 

By employing the Random Forest (RF) algorithm, we can conduct an importance analysis of forecast 415 

factors to ascertain the significance of each predictor and establish a priority ranking. The fundamental 416 

principle involves measuring the contribution of each feature in every tree within the random forest, 417 

averaging these values, and then comparing the contributions among the features. Typically, we can 418 

utilize the Gini index or Out-of-Bag (OOB) error rate as evaluation metrics. In this study, we solely focus 419 

on the approach that employs the Gini index for assessment. Here, we denote Variable Importance 420 

Measures (VIM) as the score reflecting the importance of variables, GI represents the Gini index, 421 

VIMj
(Gini)

 denotes the Gini index score for the j-th feature (Xj). Assuming there are J features, X1, X2, 422 

X3, ..., XJ, I decision trees, and C categories, the Gini index of node q in the i-th tree is calculated as 423 

follows: 424 

GIq
(i)

=∑∑ Pqc
(i)
P
qc′
(i)

= 1 −∑(Pqc
(i)
)2

|C|

c=1c′≠c

|C|

c=1

 (1.9) 

Among them, C represents the categories, and Pqc denotes the proportion of category c at node q. The 425 

change in Gini index for a feature is given by: 426 

VIMj
(Gini)(i)

= ∑VIMjq
(Gini)(i)

q∈Q

 (1.10) 

Suppose there are I trees in the Random Forest (RF), then: 427 

VIMj
(Gini)

=∑VIMj
(Gini)(i)

I

i=1

 (1.11) 

Finally, normalization is performed: 428 
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VIMj
(Gini)

=
VIMj

(Gini)

∑ VIM
j′
(Gini)J

j′=1

 (1.12) 

5.2.2 The interpretability of machine learning models 429 

Using the RF algorithm, we conducted an importance analysis of forecast factors on the training and 430 

testing datasets of CNN-BiLSTM-AM model constructed by us, obtaining the relative rankings of each 431 

forecast factor's importance and their corresponding correlation coefficients (see Figures 12). From the 432 

figures, it is evident that moisture conditions are crucial for severe convective weather, with the most 433 

important feature being precipitable water (PWAT), which significantly outweighs the second-ranked 434 

feature. Geographic location also has a significant impact on severe convective weather, with longitude 435 

(LON) and latitude (LAT) ranking second and third among all indicators, respectively. As convective 436 

weather fundamentally arises from temperature variations, when the near-surface air absorbs sufficient 437 

heat and expands, its density decreases, leading to an unstable atmosphere that triggers convective 438 

weather. Therefore, the temperature (T) feature ranks fourth. Strong convection imposes certain 439 

requirements on atmospheric dynamic lifting conditions, with 300hPa vertical motion (W300) ranking 440 

fifth. Atmospheric energy conditions have some influence on severe convective weather but are not the 441 

most important factors, as Bulk Convective Available Potential Energy (BCAPE) and Lifted Index (LI) 442 

rank sixth and seventh, respectively. These features align closely with the importance distribution of 443 

physical quantities related to short-term severe convective weather obtained by Tian et al. (2015) through 444 

statistical analysis. Additionally, these features are consistent with the characteristics of various types of 445 

severe convective weather analyzed by forecasters in terms of moisture, energy, dynamics, and other 446 

conditions (Zeng & Yang, 2020; Zhang et al., 2020; Zhang et al., 2022).These results demonstrate the 447 

high effectiveness of machine learning in automatically extracting features and further confirm the 448 

rationality of constructing the sample dataset. 449 
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 450 
Figure 12: Relative importance of forecast factors (top 20 most important forecast factors); The correlation 451 

coefficient between each of the forecast factors  452 

6 Summary 453 

This study utilizes the NCEP Global Forecast System (GFS) reanalysis data and forecast data to construct 454 

a CNN-BiLSTM-AM model for predicting severe convective weather using deep learning techniques 455 

and comprehensively evaluate the performance of this model. Furthermore, to gain a better understanding 456 

of the "black box" principles of deep learning for severe convective weather prediction, we visualize the 457 

training process by ranking the importance of forecast factors. The main conclusions are as follows: 458 

1）Compared to traditional machine learning algorithms such as Gradient Boosting Decision Trees 459 

(GBDT), Random Forest (RF), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN), the 460 

CNN-BiLSTM-AM model can automatically identify and learn deeper nonlinear features of severe 461 

convective weather. Consequently, it achieves higher prediction accuracy on the severe convective 462 

weather dataset. Moreover, as the lead time increases, all algorithms exhibit a decreasing trend in their 463 

forecasting performance. 464 

2）In comparison to subjective forecasts made by meteorologists, the CNN-BiLSTM-AM model 465 

demonstrates good performance in forecasting severe convective weather, with improvements in scoring 466 

metrics such as Probability of Detection (POD), False Alarm Rate (FAR), Threat Score (TS), and 467 

Equitable Threat Score (ETS). Specifically, the average TS score of the CNN-BiLSTM-AM model for 468 

heavy precipitation reaches 0.336, representing a 33.2% improvement compared to the meteorologists' 469 

score of 0.252. Additionally, due to its training with a large-scale sample dataset, the model can 470 

automatically extract classification features and consider various parameters related to severe convective 471 

weather conditions. This enables it to assess the convective conditions at each grid point within the 472 

(a)
(b)
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forecast range, resulting in a lower miss rate than false alarm rate. This lower miss rate provides better 473 

guidance for meteorologists' forecasts. 474 

3）Using the RF algorithm, we perform an importance analysis of forecast factors on the training and 475 

testing datasets of the CNN-BiLSTM-AM model, obtaining the relative rankings and correlation 476 

coefficients of each forecast factor. The analysis results reveal that for severe convective weather, 477 

precipitable water (PWAT) is the most critical moisture condition, with its importance significantly 478 

surpassing the second-ranked feature. Geographic location also has a significant impact, with longitude 479 

(LON) and latitude (LAT) ranking second and third among all factors, respectively. As convective 480 

weather fundamentally arises from temperature variations, temperature (T) ranks fourth. Strong 481 

convection imposes certain requirements on atmospheric dynamic lifting conditions, with 300hPa 482 

vertical motion (W300) ranking fifth. Atmospheric energy conditions have some influence on severe 483 

convective weather but are not the most important factors, as Bulk Convective Available Potential 484 

Energy (BCAPE) and Lifted Index (LI) rank sixth and seventh, respectively. Through this ranking 485 

analysis of forecast factors, we find that the order of importance determined by deep learning for severe 486 

convective weather prediction is roughly consistent with the subjective understanding of meteorologists. 487 

This further demonstrates the effectiveness of deep learning in automatically extracting features for 488 

severe convective weather and verifies the rationality of constructing the sample dataset. 489 

  490 
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