
Response to Reviewer’s Comments, “Clustering analysis of very large 

measurement and model datasets on high performance computing 

platforms” 
We thank the reviewers for their detailed feedback. The main message from both 

reviewers appears to be that our work needs to have a greater focus on the data 

analysis aspects, and its context within the broader literature of clustering and other 

data analysis literature.  We appreciate the additional references and can incorporate a 

broader discussion of the techniques the reviewers mentioned, and their pros and 

cons relative to the approach we have taken, in the Introduction of the material.  We 

also note that our inclusion of “introductory” material was in our submitted draft with 

the intent of making the work more accessible to those readers of GMD who may lack 

background in hierarchical clustering – rather than remove that information altogether, 

we can move it to the Supporting Information, referencing it from the main document, 

and thus freeing up more space to discuss related methodologies in more detail. We 

still believe that this implementation of hierarchical clustering is a novel and useful 

addition to the literature, and that the number of other publications and software tools 

designed to speed up or otherwise improve clustering speaks to the importance of the 

subject to the community. 

In order to improve the presentation beyond our submitted draft, we have taken initial 

steps towards, and would like to take the opportunity to work on, further exploration 

of some of the algorithms presented in the reviewers’ comments.  We would like to 

submit a revised draft based on this exploration.  This additional work should be able 

to be completed within a month of the receipt of this response. We have done some 

preliminary tests using the HDBSCAN* algorithm, which was mentioned by both 

reviewers. Our results indicate that while the algorithm provides very quick results for 

low-rank datasets, as evidenced by the 2D cases presented in 1705.07321.pdf (arxiv.org), 

we have found that the  algorithm scales slowly with the dimensionality of the data.  

The  HDBSCAN* algorithm operates efficiently for our 7-dimensional test case (the 

NAPS observation dataset example supplied in our original draft), completing clustering 

in just under 18 minutes, but this speedup diminishes quickly as the dimensionality of 

the problem increases.  This is particularly pertinent to our GEM-MACH simulation 

output case study – based on extrapolated timing curves from our system, a problem 

with a dimensionality of  10968 (24-timesteps per day x 15 months), running 

HDBSCAN* on our full model domain of 290,520 points,  would take approximately 8 

days of wallclock time on our compute cluster, compared to 13 hours with our 

hierarchical clustering algorithm.  We have attached a figure of these timing curves, 

https://arxiv.org/pdf/1705.07321.pdf


with the full model timeseries being represented by the D=10680 curve. We also 

achieved similar timing results for the python fastcluster library, which we also project 

to require roughly 8 days to cluster our full simulation dataset. 

 

Figure 1 Timing curves for HDBSCAN* on subsets of our GEM-MACH model output set in time (D) and space (N). 

We note that many of the algorithms and implementations presented by the reviewers 

are either limited to specific metrics or linkages, require simplifying assumptions, or 

provide less general results than are produced by our implementation of hierarchical 

clustering. One of the main aims of our work was to reduce processing time via more 

efficient construction of a general algorithm, as opposed to reducing processing time 

via algorithm simplifications.  For example, while the HDBSCAN* produces a list of 

clustered points, plus a list of outliers which could not be clustered by the algorithm, 

the selection of which points are to be considered outliers is a function of the input 

parameters provided by the user when running the algorithm.  In 2 or even 3 

dimensions it is fairly easy to verify that the clusters are indeed clusters and the 

outliers are indeed outliers – however, it is much harder to visualize 7 or 10680 



dimensions to verify this visually, and to ensure that important information has not 

been lost in the clustering process. An alternative approach which might achieve the 

same information from HDBSCAN* would be conducting a set of iterative clusterings 

until a suitable solution is found, although this may somewhat decrease the 

computation benefit it provides at lower dimensionalities. With hierarchical clustering, 

the entire dendrogram is generated once, and outliers may be identified via a post-

processing step by finding an appropriate dissimilarity level at which to cut the 

dendrogram. In the case of our 10680-dimensional air quality simulation output 

dataset, this allows for visualising the complex high-dimensional data as an interactive 

map which can be animated by changing the value of the dissimilarity metric threshold.  

An advantage of the approach we have taken aside from its computational efficiency is 

that no prior knowledge of an appropriate level of clustering or outliers is required – it 

is the generation of the entire dendrogram in a single set of calculations allows the 

user to gain that knowledge. 

Nevertheless, we agree with the reviewers that we should present our results in the 

context of other clustering algorithms, to highlight what new analyses our 

implementation makes possible, while also discussing the ways in which the results 

produced by this algorithm differ from other clustering approaches.  

We have begun numerical investigation and a revised manuscript to address these 

issues.  As we mentioned above it will take approximately a month to perform  the 

additional analysis required to fully address the issues raised by the reviewers.  

Responses to specific comments are presented in blue below the original reviewer 

comment. 

We thank the editor and reviewers for their time and efforts and hope that our 

responses herein will make the case for the submission of a revised paper, better 

positioning this work as novel yet within the context of other methodologies present in 

the literature.   

 

 

  



Response to reviewer 1 (responses in italics) 

General comments:  

The main contribution of this paper is the implementation of hierarchical clustering using OpenMP and 

MPI parallelization techniques. The problem presented is of size between 10^5 and 10^6 for either 

measured or modelled air quality variables. Although the proposed algorithm is a clear improvement of 

the naïve implementation on a single core, there could be further room for improvement using 

algorithmic techniques or alternative hierarchical clustering methods.  

Despite the parallelization on a High-Performance Computing (HPC) infrastructure with many cores, the 

wall clock time is still of several hours, while an alternative hierarchical clustering method such as 

accelerated HDBSCAN* would be expected to run in less than a minute for a problem of similar size (or 

alternatively allows to run problems of magnitude 10^7 to 10^8 in hours if the asymptotic performance 

is extrapolated from 1705.07321.pdf (arxiv.org), Figure 6). As such, a comparison with alternative 

hierarchical clustering algorithms is needed (see specific comment 1).  

We thank the reviewers for pointing us to HDBSCAN*.  We were able to apply the Scikit implementation 

to our test cases:  our initial analysis suggests that the algorithm performs well for problems with lower 

levels of dimensionality (e.g. the 7-dimensional NAPS data case where the 7 dimensions are the different 

pollutants), but relatively poorly compared to our algorithm for large-scale problems such as our air-

quality model analysis, where the dimensionality is much higher (10968).  The latter problem can be 

easily reconfigured for different levels of dimensionality; we propose to investigate this aspect and 

compare the algorithms directly as a function of dimensionality in the revised manuscript. We also note 

that this is a different type of clustering, density clustering, and will therefore produce different results 

than our hierarchical clustering algorithm. We propose to add an analysis of the differences in the results 

on our datasets to the revised manuscript. HDBSCAN* also produces what is effectively a single cut of the 

dendrogram, while hierarchical clustering produces the entire dendrogram, allowing for a single run of 

hierarchical clustering to provide more information for analysis after the fact. 

The paper does not include many references on clustering large datasets in other fields. Discussion about 

alternative (hierarchical) clustering algorithms should be included. Three algorithmic techniques for 

accelerating hierarchical clustering should be discussed (implementation might prove more challenging 

for the latter two): connectivity constraint (see specific comment 2), efficient data structures (see specific 

comment 3) and triangular inequality for true distance metrics (see specific comment 4). Other works 

that have provided implementation of parallelization of clustering algorithms (not necessarily 

hierarchical) on HPC, multi-thread CPUs or GPUs should be included (see specific comment 5).  

We will include alternative clustering methods (e.g. HDBSCAN* density clustering and K-means, as well as 

comparing CLINK and SLINK).  However, we also note that some implementation approaches may require 

assumptions, simplifications, or limitations compared to the approach taken in our submitted initial  

draft, and may thus provide modified results.  We propose to discuss alternative approaches and their 

benefits and disadvantages in the revised work. 

I would restructure the paper to reduce the emphasis on “an introduction to hierarchical clustering for 

non-specialists” and focus more on the practical usage and technical analysis of the hierarchical 

https://arxiv.org/pdf/1705.07321.pdf
https://arxiv.org/pdf/1705.07321.pdf


clustering implementation on OpenMP and MPI (specific comments 6-8, technical comments for L65-73 

and L137-195).  

In making our initial submission, we felt that many of the readers of GMD would be unfamiliar with the 

overall use of clustering algorithms (particularly for those more familiar with air-quality chemical 

transport models such as the one used for our high dimensionality example).  For the benefit of those 

readers, we propose moving the introductory material to the Supplemental Information portion of the 

paper, reducing it in the main body to a reference to the supplemental for those desiring introductory 

material.  We will replace this in the main body by more information on the practical usage and technical 

analysis as recommended by Reviewer 1.   

Finally, the presentation of the pre-processing of the NAPS dataset on the second example was not done 

in sufficient details for reproducible results (see specific comment 9).  

A fair point:  we propose including the pre-processing script we used on the NAPS data in our zenodo 

response.  The issues raised by the reviewer are easy to address with additional text within the paper. In 

choosing the stations for analysis we were attempting to provide stations which had concurrent 

measurements of the same species for the largest number of measurement hours – which resulted in 51 

stations being selected.  Not all stations in the NAPS network provide the same information at all 

stations, nor provide them at comparable times.  The number of stations was thus reduced – however, we 

agree that this information should be clarified in the manuscript.   We note that the intent here was to 

provide a useful example of the clustering algorithm for factor analysis using a publicly available dataset. 

 

Brief responses: 

a. How was missing data handled in measurement data? How the algorithm could be used 

on the COVID-19 year (2020) or on the 209 stations not used in the analysis?  

Missing data was simply excluded. There is nothing precluding the use of the algorithm 

on 2020, but the number of hours observed for that year was much smaller than for 

2019. Because the example we presented was factor analysis, what we were looking for 

was concurrent measurements of several pollutants. By decreasing the number of 

pollutants, we could include more measurement hours, which would presumably 

increase the number of stations we could use in the analysis.  The main aim was to 

provide a problem of a reasonably large size, given those constraints, as an example use 

of our methodology. 

b. Were there any techniques used for quality assurance and quality control of the data, 

and in particular to remove outliers?  

We note that there are different meanings of the word “outlier” depending on the field 

(data analysis versus air-quality observations).  In the latter, an outlier refers to data 

which in some way is suspect, the result of measurement error.  Under that latter 

interpretation, we note that the NAPS data undergoes quality assurance and control as 

part of the generation of the database; the numbers released and used within our test 

case are QA/QC’d data.  We can provide references for NAPS’ QA/QC procedures (for 

example https://ccme.ca/en/res/ambientairmonitoringandqa-qcguidelines_ensecure.pdf 

).  These include data flags identifying outliers (over-range values, see section 12.5.4, 

https://ccme.ca/en/res/ambientairmonitoringandqa-qcguidelines_ensecure.pdf


page 64 of the above reference).  If the former interpretation (e.g. “outliers” in the 

context of identification of more unique but valid datapoints which are different from the 

others in the data), no a priori specification by the user on criteria for determining 

outliers is required.   

c. Line 286 gives 366,427 data points.   

i. How to arrive at this number? 51 stations x 24 hours x 365 days = 446,760.   

Not all stations provide data every 24 hours; for example automatic instrument calibration 

events, pre-determined QA/QC may remove some data, and simple instrumentation failure may 

contribute to the lack of records.  As noted above, our choice of number of stations was 

determined by the desire to have stations with a common set of measured species at as many 

times as possible in the measurement record. 

 

ii. How sensitive the results are to the subsampling of the data? Clearly, it will be 

costly to perform a sensitivity analysis with the current version of the algorithm 

on the full dataset and this is why further speed-up of the algorithm would be 

desirable.  

The “subsampling of the data” was not intended as means of reducing the information quantity analysed 

– rather, our intent was merely to show how the algorithm can be used, in this case for factor analysis.  

We chose to do this with stations and times that reported a suite of 7 pollutants concurrently, but this 

could be easily changed. The reviewers’ inference that the “full” dataset would be difficult to analyse is 

incorrect – we can repeat the analysis with the full dataset fairly easily (and at low cost).  We thought the 

given subset was sufficient to demonstrate a possible use (and processing time) for our algorithm – there 

was no intent of reducing the size of the problem to make it more tractable.  Note that our other test 

example makes use of a much larger dataset.  

d. Providing the pre-processed subset of NAPS data used in this analysis in open source 

data repository (and the complete code to automatically generate it) would help to 

improve the reproducibility of the results.    

The NAPS data we used was from a public, open-data repository. We will include the scripts 

we used to pre-process the data as part of the revised version.   

 

Specific comments:  

1.   

a. Add references and discussion on HDBSCAN*, an alternative hierarchical clustering 

method with lower algorithmic complexity:  

i. Campello, J.G.B. et al., Density-Based Clustering Based on Hierarchical Density  

Estimates, LNCS, 2013 ii. McInnes, L. et al., Accelerated Hierarchical 

Density Based Clustering, IEEE  

International Conference on Data Mining Workshops (ICDMW), 2017  

(DOI: 10.1109/ICDMW.2017.12)  

Easy to do – see also our comments above regarding our initial tests with HDBSCAN*. 

https://ieeexplore.ieee.org/xpl/conhome/8211022/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8211022/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8211022/proceeding
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.1109/ICDMW.2017.12


b. It is imperative that the authors compare the results against several of the following 

options to ascertain the value of the proposed implementation:  

i. Scikit-Learn HDBCAN* implementation: sklearn.cluster.HDBSCAN — scikit-learn 1.3.2 

documentation. A final assignment of noisy points to the closest clusters could be done as 

a post-processing step to obtain similar results than hierarchical clustering.  

ii. Accelerated HDBSCAN* implementation: GitHub - scikit-learn-contrib/hdbscan:  

A high performance implementation of HDBSCAN clustering.   

iii. Scikit-learn implementation of hierarchical clustering (as a baseline): 

sklearn.cluster.AgglomerativeClustering — scikit-learn 1.3.2 documentation  

iv. Scikit-learn implementation of hierarchical clustering, but with grid-cell 

connectivity constraints (for air quality model data), see A demo of structured 

Ward hierarchical clustering on an image of coins — scikit-learn 1.3.2 

documentation for a usage example.  

v. Scikit-learn implementation of K-means sklearn.cluster.KMeans — scikit-learn 

1.3.2 documentation with the same number of clusters as the results presented 

in the paper for comparison.  

c. Considerations can be the following:  

i. For which algorithms it is preferable to use pre-computed pairwise dissimilarity 

matrix? What is the memory requirement to load this matrix in the RAM? What 

are the memory constraints of these algorithms that the proposed OpenMP/MPI 

implementation solves for hierarchical clustering?   

ii. Timing comparison. If the proposed algorithm does not compare favorably to 

others (it is not expected it will according to algorithmic complexity), maybe it 

could still be used advantageously for the dissimilarity matrix pre-computation? 

iii. How the other results compare to the hierarchical clustering with median 

linkage and 1-R metric presented in the paper. A quantitative score such as Rand 

Index could be considered as well as a qualitative comparison. The question is 

how the clustering results are sensitive to the choice of method (and its optional 

parameters)? For example, K-means could be very fast, but not very accurate 

(and losing the flexibility of hierarchical clustering).  

iii. Scaling in function of the number of data points (taking a sub-sample of the 

dataset) for different number of clusters and data dimension. Presenting the 

results in log-log plots is the most informative as it allows to easily estimate 

computational budget for larger datasets. 

As noted above, we have already carried out some initial analysis making use of HDBSCAN* (both the 

stock scikit learn version and the contrib version). We’ve found that the relative performance of that 

algorithm versus that ours depends on the dimensionality of the problem posed.  As noted by the 

reviewer, some of the approaches to obtain faster cpu-times may come at the cost of accuracy – for this 

reason, our choice of algorithm implementation with simple averaging was intended to provide high 

accuracy without the use of simplifications.  We are also specifically designing for users with access to 

high performance computing clusters with a large number of processors – the need for simplifications 
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may be less necessary over time.  Nevertheless, we can carry out some of the tests suggested by the 

reviewer. 

• Compare our results against K-means results for the largest possible subset of our data 

• Compare our results against HDBSCAN* result for the largest possible subset of our data 

• Compare our timing and memory usage results against CLINK and SLINK 

Also noted above and in the next comment, 2.a, is that outlier detection is more of a post-analysis step 

with hierarchical clustering.  Our method has the advantage of providing the user with all levels of the 

dendrogram, which in turn allows the user to determine the manner in which outliers occur, and the level 

of the metric at which they occur.   This is certainly worth deeper discussion in the revised manuscript.  

2. Add discussion on connectivity constraints for clusters:  

a. Are all clusters found connected for air quality model data? From the cluster maps 

(Figures 4 and 5), it appears to be so. It would be worth mentioning if so or analyzing 

when it does not occur. Can a similar connectivity constraint be found for station data?  

Because this is hierarchical clustering, all data are clustered in some sense. However, we could consider 

clusters of size 1 to be “unconnected” clusters for a given threshold of the dissimilarity metric. This is a 

major advantage hierarchical clustering which we intend to emphasize in the revised manuscript – after 

running the clustering a single time, you have all the possible groupings available by simply changing the 

dissimilarity threshold, ie, the level at which you cut the dendrogram. 

b. Employing a connectivity constraint (an implementation equivalent to the connectivity 

keyword argument in sklearn.cluster.AgglomerativeClustering, see recommendation 

1.a.iv) could potentially large speed-up and memory savings. I recommend exploring this 

possibility for further speed-up of the algorithm. Note however that in this case we 

would need to be careful with the choice of linkage function (such as Ward’s criterion) to 

avoid “the rich getting richer” phenomenon (getting a few very large clusters and many 

very small clusters).  

This is a fair point, and warrants some investigation. Our concerns with implementing this at this time 

are how it might impact the parallelisability of the code, and how the connectivity constraint would 

impact the results with high-dimensional data. It’s easy to understand (and visualize) how the 

connectivity constraint works in 3 dimensions with a Euclidean distance metric, but less obvious how a 

constraint like this would affect clustering in 11,000 dimensions and with other metrics such as 

correlation. 

3. Add references and discussion on more efficient hierarchical clustering algorithms (see technical 

comments for L10  for more details on computational efficiency comparison):  

a. Improved data structure that speed-up hierarchical clustering (in both theory and 

practice): Eppstein,D., Fast Hierarchical Clustering and Other Applications of Dynamic 

Closest Pairs, ACM Journal of Experimental Algorithmics, 2000  

(https://doi.org/10.1145/351827.351829)  

b. Defays, D., An efficient algorithm for complete link method, The Computer Journal, 1977 

(https://doi.org/10.1093/comjnl/20.4.364)  

Certainly – these can be added to the introductory material as well as some discussion there of the pros 

and cons of the different approaches. 

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://doi.org/10.1145/351827.351829
https://doi.org/10.1145/351827.351829
https://doi.org/10.1145/351827.351829
https://doi.org/10.1093/comjnl/20.4.364
https://doi.org/10.1093/comjnl/20.4.364
https://doi.org/10.1093/comjnl/20.4.364


4. If a true distance metric is used such as the Euclidean distance, then the use of the triangle 

inequality could reduce memory requirements and potentially speed-up the algorithm. The 

triangular inequality has been used for K-means in 10.1109/ACCESS.2019.2907885, but it has 

also been explored for hierarchical clustering. Please mention the references and discuss how 

exploiting the triangular inequality or other data summarization techniques could potentially 

speed-up computation while reducing memory requirements.  

a. Zhou J. and Sander, J., Data Bubbles for Non-Vector Data: Speeding-up Hierarchical  

Clustering in Arbitrary Metric Spaces, Proceedings VLDB Conference, 2003  

(https://doi.org/10.1016/B978-012722442-8/50047-1)  

b. Kull M., Fast Clustering in Metric Spaces, Master Thesis, 2004 (pdf: content (ut.ee))  

Certainly.  We should also mention the potential limitations of these methodologies.  For example, the 

Euclidean distance is one possible metric, though others (such as 1-R as used in our analysis) are possible, 

as are combined metrics.  Our code can be used with multiple distance metrics and can easily be 

extended to include others.   

5. Please add references and discussion on other works doing parallelization of clustering 

algorithms on MPI/OpenMP, multi-thread CPUs or GPUs (also check references therein and 

paper citing these works):  

a. Kweldlo W. and Czochanski P.J., A Hybrid MPI/OpenMP Parallelization of K-Means  

Algorithms Accelerated Using the Triangle Inequality, IEEE Access, 2019  

(DOI: 10.1109/ACCESS.2019.2907885)  

b. Woodley, A et al., Parallel K-Tree: A multicore, multinode solution to extreme clustering,  

Future Generation Computer Systems, 2019  

(https://doi.org/10.1016/j.future.2018.09.038)  

c. Jin C. et al., DiSC: A Distributed Single-Linkage Hierarchical Clustering Algorithm using  

MapReduce, International Workshop on Data Intensive Computing in the Clouds  

(DataCloud), November 2013 (pdf: cjinDataCloud13.pdf (northwestern.edu))  

Certainly.  Again, these will be added to the Introduction.   

6. Can you expand on why you choose the average linkage function for the examples presented in 

the paper? Would other linkage functions work as well both in term of computational efficiency 

and subjective accuracy?  The average is one of the most intuitive linkage functions, but our 

implementation of the algorithm includes all 7 common linkage functions, and in our testing 

before submission of the original manuscript, choice of linkage did not impact efficiency.   

7.   

a. Can you expand on why Pearson’s correlation coefficient (1-R) was used as the choice of 

metric?  

As the focus of the paper was demonstration of the algorithm on air quality datasets, we 

used the (1-R) metric which was shown to provide meaningful results for airshed mapping in 

our referenced previous work (which also made cases for Euclidean distance and a product of 

(1-R) and Euclidean distance). There is no reason any other metric should change our timing 

results, as the creation of the dissimilarity matrix does not contain the lion’s share of the 

processing time, although they will obviously change the clustering results. This may be 

worth exploring if there is space in the revised manuscript. 

https://doi.org/10.1109/ACCESS.2019.2907885
https://doi.org/10.1109/ACCESS.2019.2907885
https://doi.org/10.1016/B978-012722442-8/50047-1
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b. This metric will ignore linear transforms (additive and multiplicative shifts in the data), is 

this a desired feature?   True – in the context of an air-quality analysis, the issue the 

reviewer identifies can manifest as a plume measured at two different distances 

downwind by a pair of monitoring stations having a between-station correlation of unity, 

but the magnitudes of concentrations may be very different, the downwind station 

having very low concentrations compared to the station closer to the source.  However, 

by the same token, the 1-R metric may thus identify such locations that are affected by 

the same sources, regardless of proximity.  The choice of a metric may thus depend on 

the desired information to be gained.  The algorithm is easily modified for other metrics. 

c. Line 287: Why is the normalization of the species necessary since 1-R is already doing a 

normalization? Is this step really necessary or I am missing something? The test case 

here (factor analysis on NAPS data) looks across different chemical species, some of 

which may be observed in very different units and hence the numerical values may vary 

by orders of magnitude – this is illustrated by the fact that we had to multiply CO and SO2 

by 100 and 10, respectively, in order to plot them on the same y axis in figure 10. 

Normalization in this case attempts to prevent species with high real number values (in 

one set of units) from having outsized effects on the results of the suite of species. 

8. The results shown do not take advantage of the hierarchical clustering analysis. Instead, an 

arbitrary number of clusters is chosen (50 and 100 in the examples). More efficient computation 

could thus be potentially obtained simply using a highly optimized version of K-means if the 

number of clusters does not need to be varied. That is, why do we need hierarchical clustering, 

could other non-hierarchical clustering methods work as well?  

We have found in practical applications (c.f. Soares et al paper referenced in our original submission) that 

one of the questions we have to answer is “What is the appropriate number of clusters?” or “At what 

levels in the metric are stations clustering?”  Knowing that a large ground of stations cluster at an R level 

of 0.95 for example tells us that with respect to correlation, some of those stations may be redundant, 

resulting in considerable savings and/or a better deployment of station locations.  Hierarchical clustering 

provides a full analysis of the data – and that information is useful for analysing AQ data – making no 

assumptions on the methodology allows features that might unexpected to be identified.    

9. Not many details were provided on the data pre-processing for stations. Please expand for better 

reproducibility of the results.  

a. How was missing data handled in measurement data? How the algorithm could be used 

on the COVID-19 year (2020) or on the 209 stations not used in the analysis?  

b. Were there any techniques used for quality assurance and quality control of the data, 

and in particular to remove outliers?  

c. Line 286 gives 366,427 data points.   

i. How to arrive at this number? 51 stations x 24 hours x 365 days = 446,760.   

ii. How sensitive the results are to the subsampling of the data? Clearly, it will be 

costly to perform a sensitivity analysis with the current version of the algorithm 

on the full dataset and this is why further speed-up of the algorithm would be 

desirable.  



d. Providing the pre-processed subset of NAPS data used in this analysis in open source 

data repository (and the complete code to automatically generate it) would help to 

improve the reproducibility of the results.  

See above responses. 

  

Technical (line-by-line):  

L1: Although it is rather subjective, I would not call a dataset with between 10^5 and 10^6 data points a 

“very large dataset”. For example, by comparing to Table 1 of Woodley et al. 2019, we see examples of 

other works with data sets of size between 10^4 to 10^9 while the work of the referenced paper uses a  

dataset of size 10^11. To be a bit more precise, I suggest changing the title to “An Implementation of 

Hierarchical Clustering Analysis on High-Performance Computing Platforms for Large Air Quality 

Datasets”  

We will consider this carefully and examine the literature with an eye to the sizes of datasets being 

clustered before revising the manuscript. 

L10: “Modern implementations of the algorithm have O(n^2log(n)) computational complexity and 

memory O(n^2) usage.” That statement is not true. For example, even Defays’ 1977 CLINK algorithm for 

complete-linkage hierarchical clustering has a complexity of O(n^2) and O(n^2) memory. Eppstein’s 2000 

fast hierarchical clustering can achieve O(n^2 log^2 n) time complexity and O(n) space or alternatively 

O(n^2) time and O(n^2) space. Accelerated HDBCAN* from McInnes 2017 has a time complexity of O(n 

log n), but it is a slightly different hierarchical clustering approach which excludes some data points as 

noise/outliers.  

Given our preliminary findings described above, the complexity also appears to involve the dimensionality 

of the data (this is noted in some but not all of the references describing the original algorithms). We will 

have to consider this carefully and present a full accounting of how these input sizes impact algorithm 

performance. 

L53: Provide citation for hierarchical clustering  

We will add this. 

L59-60: Provide citation for PMF and K-means  

We will add these. 

L63: “memory required scales as the number of input data squared” -> only if all pair of distance are 

precomputed, alternative implementation can trade-off memory requirements and computational 

complexity, see comment for line 10.  

Fair point. See above, we will improve our discussion of the complexity. 

L65-73: “worse, the computation time scales as the number of input data cubed” -> only for a naïve 

implementation of the algorithm. Consider removing the example of time and space requirements for 

the naïve O(n^3) implementation as it should not be considered in practice for larger problems.   



We do note that “Modern implementations of the algorithm have 𝑂(𝑛2 𝑙𝑜𝑔 (𝑛)) computational 

complexity and 𝑂(𝑛2) memory usage” but we will need to strengthen this discussion, as there are some 

algorithms which appear to have 𝑂(𝑛 𝑙𝑜𝑔 (𝑛))  or 𝑂(𝑛2)  time complexity and 𝑂(𝑛2)  or 𝑂(𝑛) memory 

usage. It is possible that some of the discrepancy here comes from worst case vs average case, but we 

will need to examine this discussion closely. 

L84: “To solve these problems, we turn to parallel computing.“ -> Although parallel computing on a high 

performance computing platform is a sensible solution to squeeze out further performance, it would 

have been preferable to first seek to optimize the clustering algorithms themselves with appropriate 

data structures and constraints or to select a more efficient hierarchical clustering alternative such as 

HDBSCAN*. Only after this optimization is performed, we should consider parallel computing to push 

further the performance. I would rephrase.  

We agree that we can make a better case for our solution by providing comparisons against some of the 

other methods to demonstrate which trade-offs need to be made in terms of assumptions, 

simplifications, heuristics and the output results. 

L113: “HC” -> “High-Performance Computing (HPC)”  

L114 and 494: “To our knowledge this is the first time a hierarchical clustering analysis has been 

performed on such large datasets”. -> might be true for air quality data, but certainly not true in general. 

Although only references to clustering using DBSCAN and K-means are known to have been pushed to 

the extreme (up to 10^11 data points in Woodley et al. 2019), the accelerated HBDSCAN* hierarchical 

clustering of McInnes et al. 2017 has been tested for datasets of 200,000 data points (Python 

implementation running in less than a minute for 50-dimensional data).  

Fair enough, we will temper our statement and add appropriate qualifiers. 

L124: “The data could be any sort of 2-dimensional data” -> This statement is confusing as it refers to the 

fact that the data can be stored in a 2D-array. Usually, the number rows will be the data size (number of 

samples) whereas the number of columns is the number of dimensions of the data. Please rephrase to 

clarify that is not the data that is 2-dimensional but that the array in which the data is stored has rows 

and columns. It could be clarified here that some data can be vectorized to combine several 

“dimensions” (time, spatial, different variables, etc.).  

This language can be tightened to be more precise.  

L137-195: I don’t find this example necessary, interesting, or useful. I would replace the example with a 

more general discussion on hierarchical clustering, the choice of metrics, linkage functions and its 

different applications in air quality (see specific comments 6-7).  

See above. 

L231: “operated by Shared Services Canada” -> that might not be clear to what is refers to a general 

audience, might want to add “the department responsible for providing computing infrastructure for the 

Government of Canada”.  

Thank you we will provide this clarification. 



L298: “which would be prohibitive using (…) K-means” -> Efficient implementations of K-means scale 

generally better than hierarchical clustering, so this is not a fair comparison. For example, see Woodley 

et al. 2019, Table 1 and McInnes et al., 2017, Figure 6.  

We will examine this in the revised manuscript. 

L304: Isn’t the wall clock limit 6 hours on the current Shared Services Canada infrastructure?  

It depends on the system. Initially we were performing our analysis on a system with a 4.5 hour time 

limit, but we have also done it on a system with a 6 hour time limit. 

L451: “The authors would like to emphasize that there may be many considerations required to obtain 

the best performance on any given high-performance computing cluster.” -> could you enumerate a few 

of them?  

Yes, we will provide this in a revised manuscript.  

  



Response to reviewer 2 

 

Dear Author(s), 

Firstly, I would like to commend your efforts in developing a hierarchical clustering 

method based on the integration of MPI and OpenMP. The application of your method 

to air-quality model analysis, and its efficacy on large-scale data in a distributed 

memory architecture cluster, is indeed noteworthy. 

However, before this paper can be considered outstanding, there are several areas that 

could be improved upon. I would like to highlight these and provide some suggestions: 

1、The paper could benefit from a more comprehensive review of related work on the 

parallelization of hierarchical clustering and other clustering methods. There is existing 

literature where scholars have made efforts to parallelize hierarchical clustering on 

distributed clusters, such as "A scalable algorithm for single-linkage hierarchical 

clustering on distributed-memory architectures," "A novel parallelization approach for 

hierarchical clustering," and "A hierarchical clustering algorithm for MIMD 

architecture." The current version of the manuscript seems to lack a thorough survey 

of these related studies. 

Thank you for these references, we will include them in the introduction of the revised 

manuscript. As we mentioned above, these references seem to indicate a need within the 

community for high-performance implementations such as we are presenting here. 

2、In lines 80 to 86, the manuscript discusses the shift towards parallel computing to 

address the issues of high time and space complexity associated with hierarchical 

clustering of ultra-large scale data. However, I would suggest considering existing high-

performance hierarchical clustering algorithms that reduce complexity at the 

algorithmic level before resorting to increased computational resources, which could 

be more effective. Improvements could be further amplified when combined with the 

additional computational resources. Several high-performance algorithms have already 

been optimized for time and space complexities in the field of hierarchical clustering. 

Here are a few notable methods: 

 

a. SLINK (Single-Linkage Clustering): Optimized for single-linkage hierarchical clustering, 

SLINK algorithm reduces the time complexity to O(n^2) and space complexity to O(n). 

 

b. CLINK (Complete-Linkage Clustering): Similar to SLINK, optimized for complete-

linkage clustering with a time complexity of O(n^2), although it may be slower with 



different data types. 

 

c. Fastcluster: An efficient hierarchical clustering library for larger datasets, providing 

efficient implementations for different linkage strategies such as single, complete, and 

average linkage. 

 

d. BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies): Designed for 

large datasets, BIRCH initially compresses data using a CF Tree before applying 

hierarchical clustering. 

 

e. HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise): 

A density-based clustering algorithm extending DBSCAN, converting the concept of 

core distance into hierarchical clustering to identify clusters of varying density. 

 

f. Efficient Agglomerative Clustering using a Heap (EAC): EAC uses a heap data structure 

to optimize the process of finding the nearest cluster pair, making the merging steps 

more efficient. 

 

g. Divisive Analysis Clustering (DIANA): A divisive clustering algorithm that starts with a 

cluster of all samples and recursively splits it into smaller clusters, which may be more 

efficient for large datasets compared to agglomerative methods. 

As we mentioned above, each of these approaches has limitations, drawbacks, underlying 

assumptions about the input data, or heuristics, or is simply a different type of clustering, 

and therefore will not produce the same general-purpose cluster-once analyse-after result 

produced by hierarchical clustering. We certainly agree that comparing some of these 

methods to our method will help make the case for our new implementation of hierarchical 

clustering which implements all 7 common linkages and can easily accommodate different 

dissimilarity metrics. 

3、The manuscript would also benefit from an expanded discussion on the necessity of 

using the hierarchical clustering method. Readers not specialized in the field may 

wonder why one must use a hierarchical clustering method, which is relatively more 

complex, over other faster clustering methods such as K-means. A balance between 

effectiveness and efficiency could be better articulated. 

As we have already discussed, we agree that this will help our narrative and thank you for 

the suggestion. 

4、Additional experimentation would strengthen the paper's contribution. 

Comparisons of the proposed method with previous parallel hierarchical clustering 



algorithms, traditional high-performance hierarchical clustering methods like 

HDBSCAN, and simpler clustering methods such as K-means, would be highly 

illustrative. Such comparisons would highlight the necessity, advantages, and 

advancements of your work. 

See above. 

Regrettably, considering the aforementioned points, I believe the article is not yet 

suitable for acceptance in its current form. 

 

 

Best regards  

 


