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Abstract. Certain vertical motions associated with meso-microscale systems are favorable for convection development and10
maintenance, correct initialization of updraft motions is thus significant in convective precipitation forecasts. A three-

dimensional variational-based vertical velocity (�) assimilation scheme has been developed within the high-resolution (3 km)

CMA-MESO (the Mesoscale Weather Numerical Forecast System of China Meteorological Administration) model. This

scheme utilizes the adiabatic Richardson equation as the observation operator for �, enabling the update of horizontal winds

and mass fields of the model’s background. The tangent linear and adjoint operators are subsequently developed and undergo15

an accuracy check. A single-point � observation assimilation experiment reveals that the observational information is

effectively spread both horizontally and vertically. Specifically, the assimilation of � contributes to the generation of

horizontal wind convergence at lower model levels and divergence at higher model levels, thereby adjusting the locations of

convection occurrence. The impact of assimilating � on the forecast is then examined through a series of continuous 10-day

runs. The further assimilation of �, in addition to the conventional and radial wind data assimilation, significantly improves20
the positional forecast accuracy of precipitation, resulting in higher FSS (frequency skill score) values. Additionally, the

assimilation of � demonstrates improved performance in predicting hourly precipitation at higher thresholds (5 and 20 mm

h-1), as indicated by higher ETS (equitable threat score) skills. However, it should be noted that further assimilation of � can

potentially lead to some false precipitation, resulting in slightly lower ETS values at lower thresholds (1 mm h-1) and a

neutral impact on BIAS (bias score) skills. An individual case study conducted within the batch experiments reveals that25

assimilating � has a beneficial impact on the enhancement of vertical motion across different layers of the model, facilitating

the transport of moisture from lower to mid-high model levels, thereby leading to an improvement in forecast skills.

1 Introduction

The vertical component of atmospheric motion plays a pivotal role in defining convection, as it directly influences the

formation and development of clouds along with their associated precipitation. In numerical models, vertical motions are of30
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utmost importance in parameterizing cloud dynamics and microphysical processes. This significance stems from their ability

to describe the coupling between atmospheric dynamics and cloud formation and development. Consequently, they hold a

crucial position in forecasting convective-scale precipitation (see, e.g., Donner et al., 2001; Lang et al., 2007; Panosetti et al.,

2019; Tao et al., 2022). A three-dimensional analysis field that accurately involves both updrafts and downdrafts holds

significant promise in enhancing the forecast accuracy of convective precipitation.35

The vertical velocity (�) is difficult to measure directly or estimate due to its transient nature and relatively small magnitude,

which is typically a few orders of magnitude smaller than the mesoscale horizontal velocities (Lee et al., 2003; Tarry et al.,

2022). The well-known direct measurement is the research aircraft (e.g., LeMone and Zipser, 1980; Houze and Betts, 1981;

Rodts et al., 2003; Anderson et al., 2005; May et al., 2008; Heymsfield et al., 2010) but with limited spatial and temporal

coverage. Besides, the nature of vertical velocities allows them can be inferred from balanced dynamics. The widely40

acknowledged inference of such is the so-called “continue equation”, from which the � pseudo-observations are derived

from horizontal divergence or convergence (Bellamy, 1949; Cifelli et al., 1996). Based on the above principle or other

algorithms (e.g., Williams, 2012), � values can also be retrieved from remote sensing instruments, such as wind profilers

and scanning Doppler radars (e.g., Lee et al., 2003; Liu et al., 2005; Lee et al., 2006; Heymsfield et al., 2010; Giangrande et

al., 2013; Ovchinnikov et al., 2019). Motivated by the development of observation instruments and inversion algorithms, an45
increasing number of updraft and downdraft velocities emerged, especially at the cloud-resolve scale (e.g., Doppler radar and

lightning data), so it is necessary to evaluate the effects of � assimilation on convective-scale precipitation forecasting.

In fact, efforts have been made to assimilate dynamic information associated with atmospheric vertical motions in recent

research. For example, the � information retrieved from lightning data was assimilated based on the well-defined correlation

(Price and Rind, 1992) between the total lightning flash rate and the updraft velocities (Wang et al., 2020; Xiao et al., 2021;50

Gan et al., 2021). These studies have shown that the assimilation of � improves the water vapor and dynamic fields, and thus

produces better convective precipitation forecasts. It should be noted that another work by Gan et al. (2022) revealed that the

assimilation of the “zero” column maximum � can also effectively suppress spurious convections by weakening vertical

motions and reducing the hydrometeors and humidity of the model. The above � assimilation attempts are based on nudging

(Wang et al., 2020), four-dimensional variational (Xiao et al., 2021), or ensemble square root filter (Gan et al., 2021, 2022)55
methods, which are 1) relatively difficult to apply into the operational mesoscale regional models for computational cost

consideration or 2) lack of strict physical constraints.

Since the three-dimensional variational (3D-Var) method is still widely used in operations (Gustafsson et al., 2018) due to its

lower computational costs and ability to assimilate nonmodal variables, the development of a 3D-Var assimilation technique

for � observation becomes necessary. Within the 3D-Var framework, assimilating � faces numerous difficulties, the most60
challenging of which is the establishment of an effective assimilation method that produces a reasonable positive impact on

forecasts. By extending � as a control variable, direct assimilation of � becomes feasible, simplifying the observation

operator into a mapping algorithm from the model space to the observation space. However, as noted by Chen et al. (2020),

the imbalance between microphysical and dynamic fields may lead to excessive noise when directly assimilating �
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observations with the control variable � , accomplished by adding an observation term to the 3D-Var cost function. To65
address this issue, Chen et al. (2020) initially computed horizontal convergence (based on the mass-continuity equation)

from � pseudo-observations derived from total lightning data. Subsequently, an observation operator for horizontal

convergence was developed. To achieve the direct assimilation of � while mitigating noise, a transformation observation

operator, often referred to as the observation operator, is required. This operator ensures adherence to physical constraints

and links the � observations to other model state variables for minimizing the 3D-Var cost function. In this study, the70

adiabatic Richardson equation (Richardson, 1922) is employed as the observation operator of � . This choice enables the

simultaneous update of dynamical and mass fields, thereby promoting a more balanced final analysis. Additionally, this

direct assimilation scheme avoids the inversion errors associated with an indirect assimilation approach.

In this study, a 3D-Var assimilation scheme for � is established within the Mesoscale Weather Numerical Forecast System

of China Meteorological Administration (CMA-MESO) model. The following is the outline of this study: A brief description75

of the basic formulation of 3D-Var and the assimilation strategy for � observation is presented in Sect. 2. In Sect. 3, a single-

point observation experiment is performed to test the spread of observational information of the assimilation scheme. The

effect of assimilating � observations is then assessed by a series of continuous 10-day runs and an individual case within it,

and the results are presented and discussed in Sect. 4. Finally, the main conclusions are addressed in Sect. 5.

2 Assimilation system and vertical velocity assimilation strategy80

2.1 CMA-MESO 3D-Var system

In this study, the CMA-MESO model version 5.0 is used as the forecast model. CMA-MESO (Shen et al., 2020) is a

nonhydrostatic regional mesoscale system with a horizontal resolution of 3 km. The � assimilation scheme is constructed

within the 3D-Var framework of the CMA-MESO model. In the traditional framework of a variational assimilation system,

the best analysis � can be derived from the control variable �� (the control variables for CMA-MESO include the zonal and85

meridional winds, pseudo-relative humidity, temperature, and surface pressure) by minimizing a cost function � of ��
(Courtier et al., 1994):

� �� = 1
2
��T�� +

1
2
���� + � T�−1 ���� + � , (1)

�=��+���, (2)

where �� is the background field, � is the observation error covariance, � is defined as �(��)-�� (� denotes the observation90

operator and �� is the observation), � is the linearized observation operator, and � is associated with the background error

covariance �: �=�T�. The matrix � is statistically based on the National Meteorological Center method.

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2982
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2.2 Observation operator for vertical velocity

The observation operator � is used to derive the model equivalent of the observations from the model state variables (Kalnay,

2002). In this study, the adiabatic Richardson equation (Richardson, 1922) is used as the observation operator:95

�� ��
��
=− ��� ∙ �ℎ − �ℎ ∙ �� + � �

∞� ∙ (��ℎ)��� , (3)

where � is the ratio of specific heat capacities of air at a constant pressure (��) and at a constant volume (��), � is pressure, �

is the height, �ℎ is the horizontal wind (components � and �), � is the acceleration due to gravity and � is density. The

Richardson equation combines the continuity equation, adiabatic equations, and hydrostatic relation, which enables the 3D-

Var method to adjust the dynamic and mass fields simultaneously and results in a more balanced analysis field. As the100
terrain-following vertical coordinate (Gal-Chen and Somerville, 1975) used in the CMA-MESO model is expressed as:

�� = ��
�−��(�,�)
��−��(�,�)

, (4)

here, �� is the top height of the model upper boundary and �� is the topographic height, the Eq. (3) in the terrain-following

vertical coordinate can be expressed as:
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where � and � are the zonal and meridian wind components, respectively. Π is the dimensionless pressure, and Π = ( �
�0
)
� ��,

�0 = 1000 hPa, and R is the gas constant. The parameter � in Eq. (5) can be expressed as � =
��

�. ∆�� and ∆�� in Eq. (5)

are defined as follows:

∆�� = �� − �� �, � , (6)110
∆�� = �� − �(�, �), (7)

�� in Eq. (5) is the � under the terrain-following vertical coordinate and is expressed as:

�� = ���
��
= ��

∆��
(� − ∆��

∆��
��), (8)

where �� is the � value at the surface and �� = � ���
��
+ � ���

��
.

The observation operator links the � variable to the �, �, and Π variables. � and � are control variables, and Π is related to115

the surface pressure (control variable). Thus, as � is assimilated through Eq. (5), the � of the initial field is not updated

directly, but the horizontal winds and pressure fields are updated. Since the � observation term is added as a new kind of

observation to the cost function of the 3D-Var system within the CMA-MESO model, modifications made to the existing

3D-Var system include the following: 1) the observation operator for � is established to calculate observation innovation; 2)

the tangent linear of the observation operator and its adjoint for the � term are included to calculate the cost function and its120

gradient values.



5

2.3 Accuracy check

After completion of the � observation operator, the correctness of the adjoint operator should be checked (adjoint check).

For the tangent linear � and its adjoint �T of an observation operator, the following formula is always satisfied:

< � �� ,� �� >=< �T � �� , �� >, (9)125

where �� represents a small perturbation and < > stands for the inner product of the vectors. The difference between the left-

hand side and the right-hand side of Eq. (9) is expected to approach zero, typically with at least 13 significant digits. The test

results show that term < � �� ,� �� > is equal to 0.100159014620902D-17 (D: double precision), and term

< �T � �� , �� > is equal to 0.100159014620902D-17. The difference between the two terms is 0.577778983316171D-

33, which is achieved with 16 digits of accuracy. As a result, the adjoint check has successfully passed under double130
precision.

For a tangent linear operator, it is also necessary to verify the correctness of the gradient (gradient check) using the following

standard:

Φ � = � ��+� −� ��
��� ��

, (10)

lim
�→0

Φ � =1, (11)135

where �� is the gradient of � and the symbol � indicates a small value. For values of � that are near but not too close to the

machine zero, the value of Φ � is expected to be close to 1. The results of the gradient check are presented in Table 1,

showing a satisfactory approximation of the gradient with 8 digits of accuracy achieved (�=10-7). This suggests that the

tangent linear operator is accurate within the rounding error of the computer.

Table 1. Verification of gradient correctness: values of Φ � for different � values (symbols defined in Eq. (10)).140

� Φ �

10-4 1.00000684582308

10-5 1.00000068454433

10-6 1.00000006939151

10-7 1.00000000569911

10-8 1.00000003421803

10-9 1.00000055706492

10-10 1.00000626084813

10-11 1.00001576715311

10-12 1.00053861393468

10-13 0.998162037654562
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3 Single-point observation experiment

To investigate the spatial propagation of pseudo-observation information for variable � , a single � pseudo-observation is

assimilated to assess the changes in various variables. This pseudo-observation of � is positioned at an altitude of 5448.6 m

(23th model level, approximately 500 hPa) at coordinates (38.0° N, 115.2° E) (depicted as solid white or black dots in Fig. 1)145

with a value of 1 m s-1. The observation error is set to 0.5 m s-1. The background field’s � value at this location is -0.04 m s-1,

resulting in an innovation (observation minus background) of approximately 1.04 m s-1.

The analysis increment induced by this observation is depicted in Fig. 1. The computed analysis increments of the horizontal

wind field and its convergence at the 13th (~850 hPa) or 27th (~400 hPa) model level exhibit an isotropic structure centered

around the observation site. Since a positive � value is assimilated, a horizontal wind convergence increment is observed at150
the lower (13th) model level, while a horizontal wind divergence increment occurs at the middle (27th) model level. The

increments of horizontal wind at the lower and middle model levels can reach 0.060 and 0.077 m s-1, respectively. As the �

observation operator is not directly linked to temperature and specific humidity but is instead related to dimensionless air

pressure, adjustments to temperature and humidity are achieved through weak physical constraints, resulting in relatively

small increments in temperature (~ -8.7×10-6–2.6 ×10-5K in Fig. 1 (d)) and specific humidity (~ -7.0×10-8–6.4 ×10-8 kg kg-1155
in Fig. 1 (c)). From the vertical cross-section of the analysis increment for each variable (Fig. 2), it can be seen that the

increase in specific humidity is primarily concentrated in the lower layer below the observation location, while the increases

in the other three variables are distributed throughout the entire layer. Regarding the increase in horizontal wind component

� , below the single point observation, there is a convergence of � wind that extends to 1000 hPa. Above the single point

observation, there is a divergence of � wind that extends to approximately 150 hPa. It is worth noting that there are currently160

no constraints on the � assimilation impact propagation in the vertical direction. However, it is better to set limits to prevent

excessive increments at higher model levels, thus leading to more realistic forecasts.
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Figure 1: Analysis increments of different variables at 1500 UTC on July 4, 2020, for the single observation experiment. (a)
Horizontal wind (vector; only values greater than 0.01 are shown; unit: m s-1) and horizontal wind divergence (color; unit: 10-6 s-1)165
increments at the 13th (~850 hPa) level of the model; (b) is the same as (a) but for the 27th (~400 hPa) level of the model. (c)
Specific humidity (interval is 10-8; unit: kg kg-1) and (d) temperature (interval is 2.5×10-6 K) increments at the 13th level of the
model. The solid white (black) dots in (a) and (b) ((c) and (d)) indicate the locations of the single � observation (38.0° N, 115.2° E).
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Figure 2: The analysis increments of (a) zonal wind �, (b) meridional wind � (unit: m s-1), (c) specific humidity (unit: kg kg-1), and170
(d) temperature (unit: K) in a vertical cross-section at 38.0° N at 1500 UTC on July 4, 2020, for the single observation experiment.
The solid black dots in the figure represent the locations of the single observation.

4 Validation

In this section, a series of runs are conducted from July 1 to 10, 2020, to evaluate the influence of assimilating �

observations on convective precipitation forecasting. Especially, the case that took place on July 9, 2020, from the batch175
experiments is utilized to have a further study.

4.1 The pseudo-� observations and precipitation observations

The pseudo- � observations used in this section are derived from radar reflectivity data. Notably, the assimilation

experiment’s scope can be extended to encompass � that is observed or retrieved from alternative sources.

The radar data employed to derive pseudo-observations of � are sourced from the China Next-Generation Weather Radar180
(CINRAD) network and subjected to quality control procedures. Radar reflectivity serves as an indicator of convection
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intensity, while � determines the vigor of convection. Radar reflectivity encompasses information about updraft motion,

making it suitable for deriving pseudo-observations of � . Given that the vertical profile of � within the convective zone

assumes a parabolic shape (Yuter and Houze, 1995; Collois et al., 2013; Schumacher et al., 2015), empirical Eq. (12), as

utilized by Liu et al. (2010), can be employed to derive pseudo-� observations.185

� = (� × � − �0 + �) × �−(�×(���−�0))2, (12)

here, �, �, and � represent coefficients, with � and � set to 0.1 and 0.3 respectively, in accordance with Liu et al. (2010). The

coefficient �0 (which is 35 dBZ in this study) denotes the minimum reflectance factor value employed for � retrieval, and

Z represents the reflectivity factor, which is larger than �0 . ��� is the height of the observation and �0 signifies the height

(unit: km) at which the maximum � value is attained, while � defines the primary distribution range of � in the vertical190
direction.

The precipitation observations used to evaluate the model forecast performance are sourced from a merged hourly 0.1°×0.1°

precipitation grid dataset, combining data from China ’ s automatic stations and the Climate Prediction Center morphing

technique (CMORPH) satellite precipitation data.

4.2 The batch experiment195

To assess the assimilation impact of � pseudo-observations, a series of continuous 10-day runs spanning from July 1 to July

10, 2020, were conducted. The simulation area corresponds to the operational area of the CMA-MESO model (refer to Fig. 3

(a)), centered at coordinates (35.05° N, 107.5° E). The horizontal grid comprises 2501×1671 grid points with a grid spacing

of 0.03° (~3 km). The vertical dimension is represented by 49 levels extending to a model top of 35 km. Initial and lateral

boundary conditions are from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS)200
data. The WSM 6-class microphysics scheme (Hong and Lim, 2006), Dudhia shortwave radiation scheme (Dudhia, 1989),

Rapid Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer et al., 1997), and New Medium Range

Forecast (NMRF) planetary boundary layer scheme (Han and Pan, 2006) are adopted. Additionally, cumulus

parameterization is closed in these simulations.

4.2.1 Experimental design205

Two sets of distinct experiments were configured, and an overview of the experimental setup is depicted in Fig. 3 (b). Both

the CTRL and DA-W experiments were initialized at 0000 UTC daily from July 1 to July 10, 2020, and run until 1200 UTC

each day. The first 3 hours were considered as the “spin-up” period. In the CTRL experiments, observations from aircraft

measurements, radiosondes, and other sources (for a comprehensive list, refer to Fig. 3 (b)) were assimilated from 0300 to

0600 UTC with a 1-hour assimilation interval (radial velocity observations are available at each analysis time, while other210
data sources are only available at 0300 and 0600 UTC). The CTRL-1CY experiment indicates assimilation at 0300 UTC

only, while the CTRL-2CY experiment represents assimilation at 0300 and 0400 UTC, and so on (the number preceding the
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experiment name “CY” represents the assimilation iterations). The DA-W experiments are similar to the CTRL experiments

but include the assimilation of � pseudo-observations (� pseudo-observations are available at each analysis time).

215
Figure 3: The simulation domain (a) and the numerical experimental scheme (b) for the CTRL and DA-W batch experiments.
Both experiments utilize NCEP GFS data as the initial condition (IC) and boundary condition (BC). The abbreviation “Fcst”
represents forecast. The assimilated data comprises conventional observations from aircraft measurements (AIREP), radiosondes
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(TEMP), ships (SHIP), and ground stations (SYNOP). In addition, cloud-track-wind (SATOB), precipitable water derived from
the Global Positioning System (GPSPW), refractivity radio-occultation data from the Global Navigation Satellite System (GNSS-220
RO), wind profiler radar (WPR), velocity-azimuth display (VAD) wind, and the radar radial velocity (VR) observations are
assimilated. The pseudo-� data is also assimilated for the DA-W experiments.

4.2.2 Results

To statistically evaluate the performance of the CTRL and DA-W experiments for precipitation forecasting, the equitable

threat score (ETS; Gandin and Murphy, 1992), the neighborhood-based fractions skill score (FSS; Roberts and Lean, 2008),225
and the bias score (BIAS; Anthes, 1983) are calculated for the forecast hourly accumulated precipitation. Forecasts with

higher ETS (close to 1) and FSS (close to 1) and closer BIAS to 1, demonstrate better forecast skills. Figs. 4-6 present the

10-day averaged forecast skills for the hourly accumulated precipitation from 0600 UTC to 1200 UTC. For the threshold of 1

mm h-1, it is not always the case that the ETS improves as the number of assimilation times increases for both the CTRL and

DA-W experiments. However, with an increase in the scoring threshold, especially for 20 mm h-1, a higher score is generally230
achieved with more assimilation times, indicating a positive impact of multiple assimilations on the forecast. When

comparing the ETS scores of the CTRL and DA-W experiments with the same assimilation times, it can be seen that the DA-

W experiment has a neutral or slightly negative effect on the forecast at the threshold of 1 mm h-1. However, at thresholds of

5 and 20 mm h-1, the DA-W experiment achieves higher scores than the CTRL experiment in most situations, regardless of

whether it involves multiple or single assimilation. Moreover, the experiment with 3 assimilation times (denoted by235
experimental names ending with “3CY”) demonstrate the most significant improvements compared to the experiments with

other assimilation times.

The FSS scores provide clearer results: for experiments with the same assimilation times in CTRL and DA-W (e.g., the DA-

W-2CY compared to the CTRL-2CY experiment), the DA-W experiment consistently achieves better scores, indicating that

the assimilation of � has a positive impact on the forecast of precipitation location. From the BIAS scores, the DA-W240
experiments have a neutral impact on the forecast compared to the CTRL experiments. In the first 3-hour forecast, the DA-

W experiment generally performs worse than the CTRL experiment (with the same assimilation times) for each threshold

value, primarily because it produces more false alarms. However, in the latter 3-hour forecast, the DA-W experiment

demonstrates better scores compared to the CTRL experiment.
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245
Figure 4: The 10-d (July 1 to July 10, 2020) averaged equitable threat score (ETS; solid dots) of the predicted hourly accumulated
precipitation from 0600 to 1200 UTC of the CTRL and DA-W experiments for thresholds of (a) 1 mm h-1, (b) 5 mm h-1, and (c) 20
mm h-1. The top (bottom) of the line that passes through the solid dot corresponds to the maximum (minimum) ETS value for
those 10 days.
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250
Figure 5: Same as Fig. 4 but for the neighborhood-based fractions skill score (FSS).
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Figure 6: Same as Fig. 4 but for the bias score (BIAS). The black dashed line represents BIAS value equals to 1.

4.3 Case study

The case initialized on July 9, 2020 from the batch experiments is chosen to have a further test. Fig. 7 presents the ETS, FSS,255
and BIAS scores for different thresholds. In both the CTRL and DA-W experiments, increasing the assimilation times does

not necessarily result in higher ETS scores, particularly for the 1 mm h-1 threshold. However, when comparing the CTRL

and DA-W experiments with the same assimilation times, the DA-W experiment consistently achieves higher scores. The

FSS scores indicate that, except for the period from 0600 to 0700 UTC, the hourly accumulated precipitation exhibits higher
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scores with more assimilation times, and the DA-W experiment consistently outperforms the CTRL experiment. Regarding260
the BIAS scores, the DA-W experiment has a neutral effect on the forecast compared to the CTRL experiment.

Figure 7: The equitable threat score (ETS; (a)–(c)), the neighborhood-based fractions skill score (FSS; (d)–(f)), and the bias score
(BIAS; (g)–(i)) for the predicted hourly accumulated precipitation of the CTRL and DA-W experiments (the black dashed lines in
(g) and (i) represent BIAS values equal to 1). The analysis focuses on thresholds of 1 mm h-1, 5 mm h-1, and 20 mm h-1 for the case265
initialized at 0000 UTC July 9, 2020.

Fig. 8 displays the 6-hour accumulated precipitation of the CTRL-4CY and DA-W-4CY experiments, with the majority of

precipitation occurring in Jiangxi Province. The heavy precipitation center exhibits a maximum 6-hour accumulated

precipitation exceeding 100 mm. The CTRL-4CY experiment successfully captures the forecast location of this heavy

rainfall area, although the overall precipitation intensity is low. In contrast, the DA-W-4CY experiment performs better in270
forecasting the intensity of heavy precipitation.

In Fig. 8(a), line A-B represents the observed main precipitation belt. Fig. 9 shows the sections along the line A-B for the

CTRL-4CY and DA-W-4CY experiments at 0700 UTC on July 9, 2020. The DA-W-4CY experiment effectively enhances

the � values across the entire model layers. This enhancement is achieved by generating increments of wind convergence

(less than -4×10-4 s-1) at the lower (the 13th) level of the model while inducing divergence or weak wind convergence275
increments at the middle (the 23th) level of the model (Fig. 10). Such a configuration of the horizontal wind field enables the
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model to generate specific vertical velocities in the middle and lower levels, leading to a decrease in water vapor below 850

hPa compared to the CTRL-4CY experiment (Fig. 9(c)). Simultaneously, positive increments of water vapor are observed in

the middle and upper layers of the model. Consequently, upward movement enhances the vertical transport of water vapor,

promoting water vapor saturation and facilitating cloud formation, ultimately resulting in rainfall.280
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Figure 8: The 6-hour (0600 to 1200 UTC) accumulated precipitation (units: mm) on July 9, 2020 for the (a) observations (OBS), (b)
CTRL-4CY, and (c) DA-W-4CY experiments. The areas enclosed by dotted purple lines indicate regions with observed strong
rainfall.

285
Figure 9: Cross sections of the � (units: m s-1) at 0700 UTC on July 9, 2020, along line A–B in Fig. 8 (a) for the (a) CTRL-4CY and
(b) DA-W-4CY experiments. (c) represents the difference in water vapor between the CTRL-4CY and DA-W-4CY experiments
(units: g kg-1).
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Figure 10: The analysis increments of horizontal wind (vector; unit: m s-1) and horizontal wind divergence (color; unit: 10-4 s-1) of290
the (a, b) CTRL-4CY and (c, d) DA-W-4CY experiments at the (a, c) 13th (~850 hPa) and (b, d) 23th (~500 hPa) model levels at
0600 UTC on July 9, 2020.

5 Conclusions and discussion

Dynamical processes, especially vertical air motions, play a crucial role in convective precipitation forecasts as they

contribute to the development of clouds and precipitation. In this study, a 3D-Var data assimilation scheme for �, based on295
the adiabatic Richardson equation, is developed within the high-resolution (3 km) CMA-MESO model. The CMA-MESO

3D-Var system employs the horizontal wind components � and � as momentum control variables. The observation operator

for � establishes the relationship between � and � , � , as well as Π (dimensionless air pressure). This allows the � and �

fields to be updated directly by assimilating � observations. The results of the single observation test indicate a reasonable

distribution of horizontal wind increments. Specifically, horizontal wind convergence (resulting from assimilating a positive300

value of �) is observed at the lower model level (~850 hPa), while a horizontal wind divergence tends to occur at the higher

model level (~400 hPa). These adjustments contribute to the establishment or reinforcement of convection in these areas.

The impact of assimilating pseudo-observations of � on forecasts is then investigated through the study of a series of

continuous 10-day runs and an individual case within it. The pseudo-� observations are derived based on the empirical

relationship between radar reflectivity factor and � . It should be noted that the � assimilation scheme established in this305

study is also applicable to other sources of � . Two sets of experiments were configured, including CTRL and DA-W

experiments with different assimilation iterations. Both sets of experiments assimilated aircraft measurements, radiosondes,
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and other observations (for a comprehensive list, refer to Fig. 3 (b)) at 1-hour intervals during a 3-hour data assimilation

period. In addition, the pseudo-� observations are also assimilated in the DA-W experiments. The DA-W experiment

achieves better FSS scores than the CTRL experiment (with the same assimilation times), indicating an improved positional310
forecast accuracy of precipitation. As for the ETS skills, the DA-W experiment demonstrates enhanced performance

compared with the CTRL experiment at higher thresholds (5 and 20 mm h-1). However, the DA-W experiments tend to

generate some spurious precipitation, resulting in inconsistent improvements in BIAS compared to the CTRL experiments.

The individual case study indicates that the DA-W experiment contributes to enhancing upward motion in convective

regions, resulting in improved forecasts of heavy precipitation that are closer to the observations.315

Our study has successfully achieved the direct assimilation of � within the current CMA-MESO 3D-Var system, yielding

promising preliminary results. However, there are certain limitations that cannot be overlooked and require further attention.

For instance, 1) the current approach does not take into account the cross correlation between different control variables of

the matrix �. The adjustments in temperature and humidity increments are achieved by weak physical constraints. However,

the analysis field is significantly affected by the matrix � (Navon et al., 2005). 2) The pseudo-observations of � used in this320

study are derived from radar reflectivity. However, certain instruments, such as wind profilers, are capable of acquiring �

observations. In addition, the radial velocity also includes vertical velocity information. It is valuable to conduct further

testing to assess the impact of assimilating these � observations on forecasts. 3) Radar reflectivity observations have

traditionally been employed to initialize the moisture field and hydrometeors of regional models (e.g., Albers et al., 1996;

Sun and Crook, 1997; Hu et al., 2006; Wang et al., 2013; Lai et al., 2019; Liu et al., 2022), and the benefits of assimilating325
high-resolution radar data might diminish due to inconsistencies in dynamic information. It is imperative to concurrently

update dynamical variables to maintain a balanced initial field. Our approach could potentially address this issue, given that

direct assimilation of � observations is possible. As the CMA-MESO model progresses in incorporating radar reflectivity

factor assimilation, the combined assimilation of water vapor, hydrometeors, and � warrants further exploration.

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2982
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Code availability330

The CMA-MESO v5.0 source code is provided by the Chinese Meteorological Administration and cannot be publicly

available due to the copyright license requirement from the China Meteorological Administration Earth System Modeling

and Prediction Centre (CEMC). If someone wishes to acquire the code to reproduce the study, please contact the operational

management department of the CEMC via email (sunqin@cma.gov.cn) or phone (+86-10-58994128). The code of the

observation operator, the tangent linear of the observation operator, and the adjoint operator for � is available at335
https://doi.org/10.5281/zenodo.10073822.

Data availability

The model outputs from the “Single-point observation experiment” and “Case study” sections, along with the processed data

from the “The batch experiment” section of the paper, are available at https://doi.org/10.5281/zenodo.10867909. The NCEP

GFS data used are available at https://rda.ucar.edu/datasets/ds084.1/. The raw Doppler radar and precipitation observations340
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