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Abstract. Determining the source location and release rate are critical tasks in assessing the environmental consequences of 8 

atmospheric radionuclide releases, but remain challenging because of the huge multi-dimensional solution space. We propose 9 

a spatiotemporally separated two-step framework that reduces the dimension of the solution space in each step and improves 10 

the source reconstruction accuracy. The separation process applies a temporal sliding-window average filter to the observations, 11 

thereby reducing the influence of temporal variations in the release rate on the observations and ensuring that the features of 12 

the filtered data are dominated by the source location. A machine learning model is trained to link these features to the source 13 

location, enabling independent source location estimations. The release rate is then determined using projected alternating 14 

minimization with the L1-norm and total variation regularization algorithm. This method is validated against the local-scale 15 

SCK-CEN 41Ar field experiment and the first release of the continental-scale European Tracer Experiment, for which the 16 

lowest source location errors are 4.52 m and 5.19 km, respectively. This presents higher accuracy and a smaller uncertainty 17 

range than the correlation-based and Bayesian methods in estimating the source location. The temporal variations in release 18 

rates are accurately reconstructed, and the mean relative errors of the total release are 65.09% and 72.14% lower than the 19 

Bayesian method for the SCK-CEN experiment and European Tracer Experiment, respectively. A sensitivity study 20 

demonstrates the robustness of the proposed method to different hyperparameters. With an appropriate site layout, low error 21 

levels can be achieved from only a single observation site or under meteorological errors. 22 

1. Introduction 23 

Atmospheric radionuclide release is a major environmental concern of the nuclear industry, including nuclear energy and its 24 

heat applications, isotope production, and the post-processing of radioactive waste. Such releases occurred after the Chernobyl 25 

nuclear accident (Anspaugh et al., 1988) and the Fukushima nuclear explosion (Katata et al., 2012), with partially known 26 

source information, i.e. the location. Recently, there have been several atmospheric radionuclide leaks from unknown sources, 27 

such as the 2017 106Ru leakage (Masson et al., 2019) and the 2020 134/137Cs detection in northern Europe (Ingremeau and 28 

Saunier, 2022), which have raised global concerns regarding the subsequent hazard to public health. Identification of source 29 
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information in these events is critical for the safe operation of nuclear facilities, consequence assessment, and emergency 30 

response. 31 

During these events, source data often cannot be directly measured or determined because of the lack of information on the 32 

source of the leak. Instead, source information can only be reconstructed through inversion methods, which identify the optimal 33 

solution by comparing the environmental observations with atmospheric dispersion simulations using different estimates of 34 

the source location and release rate. Such reconstructions simultaneously identify the source location and release rate because 35 

the observations are intuitively determined by both parameters. In this case, the reconstruction searches for a solution over a 36 

large multi-dimensional space, where the dimension is the sum of the number of space coordinates and the length of the 37 

estimated release window. Therefore, the inversion is weakly constrained and can become ill-posed in the case of 38 

spatiotemporally limited observations and uncertainties in the atmospheric dispersion models. Unfortunately, this is quite often 39 

the case for atmospheric radionuclide releases. 40 

To reduce the problem of ill-posedness, most previous studies have attempted to constrain the reconstruction by imposing 41 

assumptions on the model–observation discrepancies or release characteristics. Assumptions on model–observation 42 

discrepancies are widely used in Bayesian methods to simultaneously reconstruct the posterior distributions of spatiotemporal 43 

source parameters (De Meutter et al., 2021; Meutter and Hoffman, 2020; Xue et al., 2017a). This assumes that the model–44 

observation discrepancies follow a certain statistical distribution (i.e. the likelihood of Bayesian methods), with the normal 45 

(Eslinger and Schrom, 2016; Guo et al., 2009; Keats et al., 2007, 2010; Rajaona et al., 2015; Xue et al., 2017a, b; Yee, 2017; 46 

Yee et al., 2008; Zhao et al., 2021) and log-normal (Chow et al., 2008; Dumont Le Brazidec et al., 2020; KIM et al., 2011; 47 

Monache et al., 2008; Saunier et al., 2019; Senocak, 2010; Senocak et al., 2008) distributions being two popular choices. Other 48 

candidates include the t-distribution (with degrees of freedom ranging from 3–10), Cauchy distribution, and log-Cauchy 49 

distribution, all of which were compared against the normal and log-normal distributions in terms of reconstructing the source 50 

parameters of the Prairie Grass field experiment (Wang et al., 2017). The results demonstrate that the likelihoods are sensitive 51 

to both the dataset and the target source parameters. Several studies have constructed the likelihood based on multiple metrics 52 

that measure the model–observation discrepancies in an attempt to better constrain the solution (Lucas et al., 2017; Jensen et 53 

al., 2019). More sophisticated methods involve the use of different statistical distributions for the likelihoods of non-detections 54 

and detections (De Meutter et al., 2021; Meutter and Hoffman, 2020). Recent studies have suggested the use of log-based 55 

distributions and tailored parameterization of the covariance matrix as a means of better quantifying the uncertainties in the 56 

reconstruction (Dumont Le Brazidec et al., 2021). These Bayesian methods have been applied to real atmospheric radionuclide 57 

releases, such as the 2017 106Ru event, and have provided important insights into the source and release process (Dumont Le 58 

Brazidec et al., 2020; Saunier et al., 2019; Dumont Le Brazidec et al., 2021; De Meutter et al., 2021). However, these studies 59 

have also revealed that the likelihood in Bayesian methods must be exquisitely designed and parameterized to achieve 60 

satisfactory spatiotemporal source reconstruction (Dumont Le Brazidec et al., 2021; Wang et al., 2017). With suboptimal 61 

design, the reconstruction may exhibit a bimodal posterior distribution (Meutter and Hoffman, 2020), which remains a 62 

challenge for robust applications in different scenarios.   63 
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Assumptions on the release characteristics aim to reduce the dimension of the solution space to 4 or 5, namely the two source 64 

location coordinates, the total release, and the release time (or the release start and end time), i.e. an instantaneous release at 65 

one time or constant release over a period (Kovalets et al., 2020, 2018; Efthimiou et al., 2018, 2017; Tomas et al., 2021; 66 

Andronopoulos and Kovalets, 2021; Ma et al., 2018). Under these assumptions, the correlation-based method exhibits high 67 

accuracy for ideal cases under stationary meteorological conditions, such as synthetic simulation experiments (Ma et al., 2018) 68 

and wind tunnel experiments (Kovalets et al., 2018; Efthimiou et al., 2017). However, previous studies have also demonstrated 69 

that real-world applications may be much more challenging, (Kovalets et al., 2020; Tomas et al., 2021; Andronopoulos and 70 

Kovalets, 2021; Becker et al., 2007) because the release usually exhibits temporal variations and may experience non-71 

stationary meteorological fields. In addition, inaccurate calculation of the meteorological field input can further intensify these 72 

challenges. The interaction between the time-varying release characteristics and non-stationary meteorological fields is 73 

neglected in the instantaneous-release and constant-release assumptions, leading to inaccurate reconstruction.  74 

Given the assumption-related reconstruction deviations in complex scenarios, we propose a spatiotemporally separated 75 

source reconstruction method that is less dependent on such assumptions. Our approach reduces the complexity of the source 76 

reconstruction using the simple fact that the source location is fixed during the atmospheric radionuclide release process. In 77 

this case, the spatiotemporal variations of observations are influenced by the time-varying release rate, source location, and 78 

meteorology, of which the last variable is generally known. The proposed method reduces the influence of the release rate 79 

through a temporal sliding-window average filter, making the filtered observations more sensitive to the source location than 80 

to the release rate. After filtering, existing methods based on direct observation–simulation comparisons may be unable to 81 

locate the source. Thus, the response features of the filtered observations are extracted and mapped to the source location by 82 

training a data-driven machine learning model using the extreme gradient boosting (XGBoost) algorithm (Chen and Guestrin, 83 

2016). To fully capture the response features at each observation site, tailored time- and frequency-domain features are 84 

designed and optimized using the feature selection technique of XGBoost. Using this optimized model, the source location is 85 

estimated based on the filtered observations. Once the source location has been retrieved, the non-constant release rate is 86 

determined using the Projected Alternating MInimization with L1-norm and Total variation regularization (PAMILT) 87 

algorithm (Fang et al., 2022), which is robust to model uncertainties. The sequential spatiotemporal reconstruction reduces the 88 

dimension of the solution space at each step, which helps to improve the accuracy and reliability of the reconstruction. 89 

The proposed method is validated using the data from multi-scales field experiments, namely the local-scale SCK-CEN 41Ar 90 

experiment  (Rojas-Palma et al., 2004), and the first release of the continental scale European Tracer Experiment (ETEX-1) 91 

(Nodop et al., 1998), which traced emissions of Perfluoro-Methyl-Cyclo-Hexane (PMCH). The performance of the proposed 92 

method is compared with the correlation-based method in terms of source location estimation and the Bayesian method in 93 

terms of spatiotemporal accuracy. The sensitivity of the source location estimation to the spatial search range, size of the 94 

sliding window, feature type, number and combination of sites, and meteorological errors is also investigated for the SCK-95 

CEN 41Ar experiment.  96 
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2. Materials and Methods  97 

2.1 Source reconstruction models 98 

For an atmospheric radionuclide release, Eq. (1) relates the observations at each observation site to the source parameters:                            99 

𝛍 = 𝐅(𝐫, 𝐪) + 𝛆 ,                     (1) 100 

where 𝛍 = [𝜇1, 𝜇2, ⋯ , 𝜇𝑁]𝑇 ∈ ℝ𝑁  is an observation vector composed of 𝑁  observations, the function 𝐅  maps the source 101 

parameters to the observations, i.e. an atmospheric dispersion model, 𝐫 refers to the source location, 𝐪 ∈ ℝ𝑆 is the temporally 102 

varying release rate, and 𝛆 ∈ ℝ𝑁 is a vector containing both model and measurement errors. 103 

In most source reconstruction models, 𝐅 is simplified to the product of 𝐪 and a source–receptor matrix 𝐀 that depends on 104 

the source location: 105 

𝛍 = 𝐀(𝐫)𝐪 + 𝛆 ,                     (2) 106 

where 𝐀(𝐫) = [𝐴1(𝐫),  𝐴2(𝐫),⋯ , 𝐴𝑁(𝐫)]𝑇 ∈ ℝ𝑁×𝑆 and each row describes the sensitivity of an observation to the release rate 107 

𝐪 given the source location 𝐫.  108 

2.2 Observation filtering for spatiotemporally separated reconstruction 109 

A straightforward way to solve Eq. (2) is to simultaneously retrieve the source location and release rate; however, the solution 110 

space is huge and difficult to constrain. Several studies have noted that the source location can be retrieved separately without 111 

knowledge of the exact release rate, on the condition that the release rate is constant (Efthimiou et al., 2018; Kovalets et al., 112 

2018; Efthimiou et al., 2017; Ma et al., 2018). The key reason is that, in constant-release cases, the relative spatiotemporal 113 

distribution of radionuclides is determined by the meteorological conditions and the relative positions between the source and 114 

receptors, and the constant release rate only changes the absolute values. Although the release rate may counteract the influence 115 

of the meteorological conditions and relative position at a single observation site, it cannot change the whole spatiotemporal 116 

distribution at multiple observation sites. Therefore, by analysing the spatiotemporal distribution of radionuclides at multiple 117 

observation sites, it is possible to locate the source without knowing the release rate under the constant-release assumption.  118 

To provide a more general method, we take advantage of the fact that the source location has been fixed during all known 119 

atmospheric radionuclide releases, such as the Chernobyl nuclear accident (Anspaugh et al., 1988), Fukushima nuclear 120 

explosion (Katata et al., 2012), and 2017 106Ru leakage (Masson et al., 2019). With a fixed source location, the release rate and 121 

meteorology jointly determine the temporal variations of the observations (Li et al., 2019b). The influence of meteorology can 122 

be pre-calculated as the source–receptor sensitivities and subsequently stored in matrix 𝐀(𝐫). By reducing the influence of the 123 

release rate, the constant-release case can be approximated and the sensitivity of the observations to the source location can be 124 

improved, enabling separate source location and release rate estimations and reducing the solution space at each step. For this 125 

purpose, we introduce an operator matrix 𝐏 ∈ ℝ𝑁×𝑁 to reduce the temporal variations of 𝐀(𝐫)𝐪: 126 
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𝛍𝑝 = 𝐏𝛍 = 𝐏𝐀(𝐫)𝐪 + 𝐏𝛆 ,                  (3) 127 

where 𝛍𝑝 refers to the filtered observations. In this study, the following operator matrix is constructed to impose a one-sided 128 

temporal sliding-window average filter (Eamonn Keogh, Selina Chu, 2004): 129 

𝐏 =
1

𝑇

[
 
 
 
 
 
 
 
 
 
1
1 1

⋮
1 1 ⋯ 1
1 1 ⋯ 1 1

1 1 ⋯ 1 1
1 1 ⋯ 1 1

⋱ ⋱ ⋱ ⋱ ⋱
1 1 ⋯ 1 1

1 1 1 1 1 ]
 
 
 
 
 
 
 
 
 

 ,              (4) 130 

where T is the size of the sliding window. This one-sided filter involves the current and previous observations in the window, 131 

acknowledging that future observations are not available for filtering in practice. Although a sliding-window average filter is 132 

used in this study, Eq. (3) is compatible with more advanced processing methods.  133 

2.3 Source location estimation without knowing the exact release rates 134 

After applying the filter in Eq. (4), the peak observations, primarily shaped by the temporal release profile, are smoothed out.  135 

However, the influences of the source position and meteorology remain relatively unchanged, as they determine the long-term 136 

temporal trends of observations and are less affected by the filter. The meteorology is known, so it becomes possible to locate 137 

the source using the filtered observations. Nevertheless, the specificity of source location estimation methods that rely on direct 138 

observation–simulation comparisons may be substantially compromised because the peak amplitude is reduced. A better choice 139 

for locating the source would be to use the response features of the filtered observations, which preserve most of the location 140 

information. Therefore, it is necessary to establish a link between the response features of the filtered observations and the 141 

source location. To achieve this, we train an XGBoost model that maps the response features of the filtered observations to the 142 

coordinates of the source.  143 

XGBoost is an optimized distributed gradient boosting library. Suppose 𝐷 = {(𝐗𝑖 , 𝐫𝑖)}(|𝐷| = 𝑛, 𝐗𝑖 ∈ ℝ𝑝, 𝐫𝑖 ∈ ℝ2), where 144 

the number of samples is 𝑛 and each sample contains 𝑝 features. 𝐗𝑖  is the given input feature vector of the 𝑖-th sample and 145 

𝐫𝑖 = (𝑥𝑖 , 𝑦𝑖)  is the location vector. XGBoost typically uses multiple decision trees (Fig. 1) to fit the target, which can be 146 

formulated as: 147 

�̂�𝑖 = 𝐺(𝐗) = ∑ 𝑓𝑘(𝐗𝑖)
𝐾
𝑘=1 , 𝑓𝑘 ∈ 𝓕 ,                 (5) 148 

where 𝐾  is the number of trees, 𝓕 = {𝑓(𝑥) = 𝛚𝑄(𝑥)}(𝑄: ℝ𝑝 → 𝑀,𝛚 ∈ ℝ𝑀)  is the space of the decision trees, and 𝑄 149 

represents the structure of each tree, mapping the feature vector to 𝑀 leaf nodes. Each 𝑓𝑘 corresponds to an independent tree 150 

structure 𝑄 with leaf node weights 𝛚 = (𝜔1, 𝜔2, ⋯ , 𝜔𝑀). Equation (5) is then used to predict �̂�𝑖 = (�̂�𝑖 , �̂�𝑖) for the 𝑖-th sample. 151 
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Figure 1. Flowchart of XGBoost for predicting �̂�𝑖  based on decision tree model. The yellow squares are the root nodes within each tree, 153 
representing the input features in this paper. The purple ellipses denote the child nodes where the model evaluates input features and make 154 
decisions to split the data. The green rectangles depict the leaf nodes and refer to the prediction results. The vertical rectangles abstract the 155 
internal splitting processes of the trees, indicating decision-making not explicitly detailed in the diagram. 156 

XGBoost trains 𝐺(𝐗) in Eq. (5) by continuously fitting the residual error until the following objective function is minimized:  157 

𝑂𝑏𝑗(𝑡) = ∑ (𝐫𝑖 − (�̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝐗𝑖)))
2

𝑛
𝑖=1 + ∑ 𝛺(𝑓𝑖)

𝑡
𝑖=1  ,             (6) 158 

where 𝑡 represents the training of the 𝑡-th tree and 𝛺(𝑓𝑖) is the regularization term, given by: 159 

𝛺(𝑓) = 𝛶𝑀 +
1

2
𝜆 ∑ 𝜔𝑗

2𝑀
𝑗=1  ,                  (7) 160 

where 𝑀 is the number of leaf nodes, 𝜔𝑗 is the leaf node weight for the 𝑗-th leaf node, and 𝛶, 𝜆 are penalty coefficients. The 161 

minimization of Eq. (6) provides a parametric model 𝐺(𝐗) that maps the feature ensemble 𝐗 extracted from 𝛍𝑝 to the source 162 

location 𝐫. 163 

To comprehensively evaluate the influence of the source location, both time- and frequency-domain features (as outlined in 164 

Table 1) are considered during the training process and mapped to the source location by 𝐺(𝐗). Among the time-domain 165 

features, the wave rate quantifies the fluctuations of 𝛍𝑝 over time, while the temporal mean and median values are measures 166 

of the central tendency of 𝛍𝑝 (Witte and Witte, 2017). The sample entropy measures the complexity of 𝛍𝑝, with a lower sample 167 

entropy indicating greater self-similarity and less randomness in 𝛍𝑝. The frequency-domain features are calculated based on 168 
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the fast Fourier transform (FFT). The FFT mean is the mean value of the Fourier coefficients for 𝛍𝑝 and the FFT shape mean 169 

describes the shape of the Fourier coefficients. These quantities are formulated as follows: 170 

FFT mean =
1

𝑁
∑ |𝜇𝑖𝑘|

𝑁
𝑘=1  ,                  (8) 171 

FFT shape mean =
1

∑ |𝜇𝑖𝑘|𝑁
𝑘=1

∑ 𝑘|𝜇𝑖𝑘|
𝑁
𝑘=1  ,               (9) 172 

where 𝜇𝑖𝑘  is the Fourier coefficient and 𝑁 is the length of 𝛍𝑝. These features are calculated from the simulated observations at 173 

each site and provided to XGBoost as initial inputs.  174 

Table 1. Summary of the basic information on the observation series features. 175 

Attribute Feature Description 

Time domain 

Wave rate 
Difference between 90-th and 10-th quantile of normalized 

observation series 

Mean Temporal mean value of observation series 

Median Temporal median value of observation series 

Sample entropy Complexity of observation series 

Frequency domain 

FFT mean Amplitude of power spectral density by FFT 

FFT shape mean Shape of power spectral density by FFT 

2.4 Release rate estimation 176 

Once the source location has been retrieved, many existing methods can be used to inversely estimate the release rate. In this 177 

study, we choose the recently developed PAMILT method (Fang et al., 2022) because it can correct the intrinsic model errors 178 

of the release rate estimation and accurately retrieve the temporal variations in the release rates.  179 

2.5 Numerical implementation 180 

2.5.1 Pre-screening of potential source locations 181 

To reduce the computational cost and remove low-quality samples, the search range for the source location is pre-screened by 182 

evaluating the correlation coefficients between the observations and atmospheric dispersion model simulations, where the 183 

candidate source locations are randomly sampled in the considered calculation domain. Because the release rate is unknown, 184 

it is assumed to be 1 for all simulations. Source locations corresponding to the highest 40% of correlation coefficients are 185 

selected as the search range of the subsequent refined source location estimation using XGBoost.  186 
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2.5.2 Samples for training XGBoost 187 

The samples for training 𝐺(𝐗)  in Eq. (5) are generated based on the simulations described in Sect. 2.5.1, and the source 188 

locations of these simulations are within the search range determined according to Sect. 2.5.1. The simulation data are scaled 189 

by a constant factor (the ratio between the median value of all observations and that of the simulations using a unit release 190 

rate), which ensures that the simulations and observations have the same order of magnitude. Gaussian noise is added to the 191 

simulation data to simulate the statistical fluctuations of the measurements. The simulations between the first and last data 192 

points above the noise level are filtered by a temporal sliding-window average filter with a window size of 5, yielding samples 193 

for feature extraction as described in Sect. 2.3.  194 

2.5.3 Automatic optimization of XGBoost model 195 

The XGBoost model for source location estimation is automatically optimized with respect to the hyperparameters and feature 196 

selection. Specifically, the Bayesian optimization algorithm is used to optimize the hyperparameters by minimizing the 197 

following generalization coefficient (GC) defined under the five-fold cross-validation framework:  198 

GC = (1 − MCV)2 + 𝑉𝑎𝑟(𝑅𝑘
2) ,                 (10) 199 

MCV =
1

5
∑ 𝑅𝑘

2
𝑘  ,                    (11) 200 

where 𝑅𝑘
2 is the goodness of fit and 𝑘 is the index of each fold (𝑘 = 1, 2, … , 5). MCV is the mean cross-validation score 𝑅𝑘

2 201 

among the five folds and 𝑉𝑎𝑟(𝑅𝑘
2) measures the variance of 𝑅𝑘

2. This function aims to balance the average and the variance of 202 

𝑅𝑘
2, thus enhancing the generalization ability of the XGBoost model. In this study, the optimized hyperparameters include 203 

max_depth (maximum depth of a decision tree), learning_rate (step size shrinkage when updating), n_estimators (number of 204 

decision trees), min_child_weight (minimum sum of sample weight of a child node), subsample (subsample ratio of the training 205 

samples), colsample_bytree (subsample ratio of columns when constructing a decision tree), reg_lambda (L2 regularization 206 

term on weights), and gamma (minimum loss reduction required to split the decision tree). 207 

The initial input features (Table 1) are optimized through a feature selection step, where MCV serves as the selection 208 

criterion. The selection is implemented by recursively removing the feature with the least importance, and reassessing the 209 

MCV based on cross-validation (Akhtar et al., 2019). Initially, an XGBoost model is trained with all features, and the 210 

importance of each feature is assessed based on its contribution to the model accuracy. The feature with the least importance 211 

is removed and the XGBoost model is retrained using the remaining features. The feature importance and MCV are updated 212 

accordingly and another feature is removed. This iterative process continues until the optimal number of features is identified, 213 

corresponding to the highest MCV achieved during the process. The overall flowchart of the proposed spatiotemporally 214 

separated source reconstruction model is shown in Fig. S1. 215 
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2.6 Validation case 216 

2.6.1 Field experiments 217 

The proposed methodology was validated against the observations of the SCK-CEN 41Ar and ETEX-1 field experiments. The 218 

SCK-CEN 41Ar experiment was carried out at the BR1 research reactor in Mol, Belgium, in October 2001 as a collaboration 219 

between NKS and the Belgian Nuclear Research Centre (SCK-CEN) (Rojas-Palma et al., 2004). The major part of the 220 

experiment was conducted on 3–4 October, during which time 41Ar was emitted from a 60-m stack with a release rate of 221 

approximately 1.5 × 1011 Bq h−1. Meteorological data such as wind speed and direction were provided by the on-site weather 222 

mast. For most of the experimental period, the atmospheric stability was neutral, and the wind was blowing from the southwest. 223 

As illustrated in Fig. 2(a), the source coordinates were (650 m, 210 m). The 60-s-average ground-level fluence rates were 224 

continuously collected by an array of NaI (Tl) gamma detectors, with different observation sites used on the two days. To 225 

convert the measured fluence rates to gamma dose rates (mSv/h), we used the 41Ar parameters of a previous study (Li et al., 226 

2019a): 𝐸𝛾 = 1.2938 MeV , 𝑓𝑛(𝐸𝛾) = 0.9921 , 𝜇𝑎 = 2.05 × 10−3 m−1 , and 𝜔 = 7.3516 × 10−1 Sv Gy−1 . More details of 227 

these measurements can be found in (Rojas-Palma et al., 2004).  228 

The ETEX-1 experiment took place at Monterfil in Brittany, France, on 23 October 1994 (Nodop et al., 1998). During 229 

ETEX-1, a total of 340 kg of PMCH was released into the atmosphere on 23 October 1994 at 16:00:00 UTC and 24 October 230 

1994 at 03:50:00 UTC. As illustrated in Fig. 2(b), the source coordinates were (-2.0083°E, 48.058°N). A total of 3104 available 231 

observations (3-h-averaged concentrations) were collected at 168 ground sites. ETEX-1 has been widely used as a validation 232 

scenario for reconstructing atmospheric radionuclide releases (Ulimoen and Klein, 2023; Tomas et al., 2021). The candidate 233 

source locations are uniformly sampled from the green shaded zone. We choose two groups of observation sites: the first 234 

comprises four sites (i.e. B05, D10, D16, F02) randomly selected from the sites within the sample zone (Group 1, with a total 235 

of 92 available observations), and the second involves four sites (i.e. CR02, D15, DK08, S09) randomly selected from the sites 236 

beyond the sample zone boundaries (Group 2, with a total of 90 available observations). Compared with the SCK-CEN 41Ar 237 

experiment, the ETEX-1 observations exhibit temporal sparsity, lower temporal resolution, and increased complexity in 238 

meteorological conditions. 239 
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 240 

Figure 2. Release location and observation sites of two field experiments. (a) SCK-CEN 41Ar experiment. The map was created based on 241 
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the relative positions of the release source and observation sites (Drews et al., 2002). The coordinates of the sample border are (500 m, −200 242 
m) and (1180 m, 580 m) on Oct. 3, and (450 m, 10 m) and (850 m, 450 m) on Oct. 4. This figure was plotted using MATLAB 2016b, rather 243 
than created by a map provider; (b) ETEX-1 experiment. The map was created based on the real longitudes and latitudes of the release source 244 
and observation sites (Nodop et al., 1998). The coordinates of the sample border are (10°W, 40°N) and (10°E, 60°N). This figure was plotted 245 
using the cartopy function of Python, rather than created by a map provider. 246 

2.6.2 Simulation settings of atmospheric dispersion model 247 

For the SCK-CEN 41Ar field experiment, the Risø Mesoscale PUFF (RIMPUFF) model was employed to simulate the 248 

dispersion of radionuclides and calculate the dose rates at each observation site (Thykier-Nielsen et al., 1999). The simulations 249 

used on-site measured meteorological data and the modified Karlsruhe–Jülich diffusion coefficients. The calculation domain 250 

measured 1800 m×1800 m and the grid resolution was 10 m×10 m. The release height of 41Ar was assumed to be 60 m. Other 251 

RIMPUFF calculation settings followed those of a previous study (Li et al., 2019a), and have been validated against the 252 

observations. To establish the datasets for the XGBoost model, 2050 simulations and 1000 simulations with different source 253 

locations were performed by RIMPUFF for the experiments on Oct. 3 and Oct. 4, respectively. Candidate source locations 254 

were randomly sampled from the shaded zones in Fig. 2(a), which were determined according to the positions of the 255 

observation sites and the upwind direction. Each simulation, along with its corresponding source location, forms one 256 

sample. As described in Sect. 2.5.1, we calculated the correlation coefficient for each sample and preserved the 40% of samples 257 

with the highest 40% of correlation coefficients (i.e. 820 samples for Oct. 3 and 400 samples for Oct. 4). The constant factors 258 

mentioned in Sect. 2.5.2 are 1.53×1011 and 1.48×1011 for Oct. 3 and Oct. 4, respectively.  259 

For the ETEX-1 experiment, the FLEXible PARTicle (FLEXPART) model (version 10.4) was applied to simulate the 260 

dispersion of PMCH (Pisso et al., 2019). The meteorological data were obtained from the United States National Centers of 261 

Environmental Prediction Climate Forecast System Reanalysis, and have a spatial resolution of 0.5°×0.5° and time resolution 262 

of 6 h. To rapidly establish the relationship between the varying source locations and the observations, 182 backward 263 

simulations were performed using FLEXPART with a time interval of 3 h, grid size of 0.25°×0.25°, and 8 vertical levels (from 264 

100–50000 m). Only the lowest model output layer was used for source reconstruction. Candidate source locations were 265 

uniformly sampled from the shaded zone in Fig. 2(b), resulting in a total of 6561 source locations. As described in Sect. 2.5.1, 266 

2624 candidate source locations were preserved following the pre-screening step. The constant factors mentioned in Sect. 2.5.2 267 

are 5.60×1012 and 2.86×1013 for Group 1 and Group 2, respectively.  268 

2.7 Sensitivity study 269 

(1) Search range 270 

The search range is controlled by the pre-screening threshold, which is the top proportion of the correlation coefficients in 271 

the pre-screening step. Specifically, we use source locations corresponding to the highest 20%, 40%, 50%, 60%, 80%, and 272 

100% of correlation coefficients to define the search ranges, with a lower proportion indicating a narrower and more focused 273 

search area. 274 
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(2) Size of the sliding window 275 

Temporal filtering with different sliding-window sizes is applied to separate the source location estimation from the release 276 

rate estimation. In this study, the size of the sliding window ranges from 3–10. With these filtered data, the XGBoost model is 277 

trained using the same pattern for the source location estimation.  278 

(3) Feature type 279 

The XGBoost model is trained using only time-domain features and only frequency-domain features to investigate the 280 

influence of these features on the source location estimation. The performance of the time-feature-only and frequency-feature-281 

only models is compared with the all-features result.  282 

(4) Number and combination of observation sites 283 

The XGBoost model is trained and applied to the source location estimation with different numbers of observation sites, 284 

namely a single site, two sites, and three sites. For the two- and three-site cases, the model is trained using different 285 

combinations of sites and the source location is estimated accordingly.  286 

(5) Meteorological errors 287 

Meteorological errors are important uncertainties in source reconstruction, especially the random errors in the wind field 288 

(Mekhaimr and Abdel Wahab, 2019). To simulate such uncertainties, a stochastic perturbation of ±10% is introduced to the 289 

observed wind speeds in the x and y components, and a ±1 stability class perturbation is applied to the stability parameters 290 

(e.g., from C to B or D). For both days, 50 meteorological groups are generated based on these random perturbations. 291 

In all the sensitivity tests, the source location is estimated 50 times with randomly initialized hyperparameters to demonstrate 292 

the uncertainty range of the proposed method under different circumstances. The performance of source location estimation is 293 

compared quantitatively using the metrics specified in Sect. 2.8.3.  294 

2.8 Performance evaluation 295 

2.8.1 Observation filtering 296 

The feasibility of filtering is demonstrated using both the synthetic and real observations of the SCK-CEN 41Ar experiment 297 

and the real observations of the ETEX-1 experiment. The synthetic observations are generated by a simulation using a synthetic 298 

temporally varying release profile with sharp increase, stable, and gradual decrease phases (as illustrated in Fig. S2), which is 299 

typical for an atmospheric radionuclide release (Davoine and Bocquet, 2007). Because several temporal observations are 300 

missing at some observation sites, we only choose observations sampled between 24 October 1994 09:00:00 UTC and 26 301 

October 1994 03:00:00 UTC for the source location estimation. The simulations corresponding to the synthetic and real 302 

observations should first be processed following the procedure described in Sect. 2.5.2. The filtering performance is evaluated 303 

by comparing the simulation–observation differences before and after the filtering step. Several statistical metrics can be used 304 

to quantify this difference, including the normalized mean square error (NMSE), Pearson’s correlation coefficient (PCC), and 305 

the fraction of predictions within a factor of 2 and 5 of the observations (FAC 2 and FAC 5, respectively) (Chang and Hanna, 306 
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2004). 307 

2.8.2 Optimization of the XGBoost model 308 

The hyperparameters are optimized with respect to the GC in Eq. (10) and the features are optimized with respect to the MCV 309 

in Eq. (11). Larger values of MCV and smaller values of GC indicate better optimization performance. In addition, the 310 

importance of each feature to the XGBoost training is evaluated with the built-in feature importance measure of the XGBoost 311 

model.  312 

2.8.3 Source reconstruction 313 

The relative errors in the source location (𝛿𝐫) and total release (𝛿𝑄) are calculated to evaluate the source reconstruction accuracy: 314 

𝛿𝐫 =
|𝐫𝑡𝑟𝑢𝑒−𝐫𝑒𝑠𝑡|

𝐿𝐷
× 100% ,                   (12) 315 

𝛿𝑄 =
𝑄𝑡𝑟𝑢𝑒−𝑄𝑒𝑠𝑡

𝑄𝑡𝑟𝑢𝑒
× 100% ,                           (13) 316 

where 𝐫𝑡𝑟𝑢𝑒  and 𝑄𝑡𝑟𝑢𝑒   refer to the real source location and total release of the field experiment and 𝐫𝑒𝑠𝑡   and 𝑄𝑒𝑠𝑡   are the 317 

estimated location and total release, respectively. 𝐿𝐷 represents the range of the source domain, which is the distance between 318 

the lower and upper borders of the sampled zone (Fig. 2). The values of 𝐫𝑡𝑟𝑢𝑒, 𝐿𝐷, and 𝑄𝑡𝑟𝑢𝑒 are listed in Table 2. In addition 319 

to the total release, the reconstructed release rates are also compared with the true temporal release profile.  320 

Table 2. Parameter settings of field experiments.  321 

Experiment Case 

Parameters 

𝐫𝑡𝑟𝑢𝑒 𝐿𝐷 𝑄𝑡𝑟𝑢𝑒 

SCK-CEN 41Ar 
Oct. 3 (650 m, 210 m) 1034.8 m 423.10 GBq 

Oct. 4 (650 m, 210 m) 565.7 m 1045.09 GBq 

ETEX-1 

Group 1 (2.0083°W, 48.058°N) 2620.5 km 340 kg 

Group 2 (2.0083°W, 48.058°N) 2620.5 km 340 kg 

2.8.4 Comparison with the Bayesian method 322 

The proposed method is compared with the popular Bayesian method based on the SCK-CEN 41Ar and ETEX-1 experiments, 323 

with the same search range used for locating the source in both methods (Fig. 2). The Bayesian method is augmented with an 324 

in-loop inversion of the release rate at each iteration of the Markov chain Monte Carlo sampling. The prior distribution of the 325 

Bayesian method is a uniform distribution and the likelihood is a log-Cauchy distribution. More detailed information is 326 
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presented in Supplementary Note S1.  327 

2.8.5 Uncertainty range  328 

The uncertainty ranges are calculated and compared for the correlation-based method, the Bayesian method, and the proposed 329 

method. For the correlation-based method, the uncertainty range is calculated using the source locations with the top-50 330 

correlation coefficients. For the proposed method, the uncertainty range is calculated from 50 Monte Carlo runs with randomly 331 

initialized hyperparameters. The Bayesian method provides the uncertainty range directly through the posterior distribution. 332 

For consistency with the other two methods, the results with the top-50 frequencies are selected for the comparison.  333 

3. Results and Discussion 334 

3.1 Filtering performance 335 

Figure S3 displays the original and filtered observations at different observation sites for both days. The results demonstrate 336 

that the peak values have been smoothed out and the long-term trends are preserved to a large degree. Figure 3 compares the 337 

filtering performance for both the synthetic and real observations, where the constant-release simulations are plotted against 338 

the observations before and after filtering. For the synthetic observations, the filtered data are more concentrated along the 1:1 339 

line for both days, and all filtered data fall within the 2-fold lines for Oct. 3. For the real observations, the dots before filtering 340 

in Fig. 3 have a dispersed distribution for both Oct. 3 and Oct. 4, indicating limited correlations with the simulations. After 341 

filtering, the dots are more concentrated towards the 1:1 line for both the SCK-CEN 41Ar and ETEX-1 experiments. These 342 

phenomena indicate a noticeably increased agreement between the filtered observations and the constant-release simulations. 343 
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 344 

Figure 3. Scatter plots of the original (yellow squares) and filtered (green squares) observations versus the constant-release simulation results. 345 
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SCK-CEN 41Ar experiment: (a) Oct. 3 (synthetic observations); (b) Oct. 4 (synthetic observations); (c) Oct. 3 (real observations); (d) Oct. 4 346 
(real observations); ETEX-1 experiment: (e) Group 1 (real observations); (f) Group 2 (real observations).   347 

Table 3 quantitatively compares the results presented in Fig. 3. For each case, all metrics are greatly improved after filtering, 348 

confirming the better agreement between the filtered observations and the constant-release simulations. The improved 349 

agreement indicates that the filtering step significantly reduces the influence of temporal variations in release rates across the 350 

observations. The filtering performs better with the synthetic observations than with the real observations because the synthetic 351 

observations are free of measurement errors. The filtering process produces a better effect with the SCK-CEN 41Ar experiment 352 

than with the ETEX-1 experiment, owing to the sparser observations in the ETEX-1 experiment (Fig. S3).  353 

Table 3. Quantitative metrics for the filtering validation. 354 

Experiment Case NMSE PCC FAC2 FAC5 

SCK-CEN 41Ar 

Oct. 3 (synthetic observations) 

Before filtering 0.6970 0.5315 0.7647 0.8235 

After filtering 0.0239 0.9514 1 1 

Oct. 4 (synthetic observations) 

Before filtering 0.9290 -0.0267 0.7292 0.7292 

After filtering 0.0956 0.6179 0.9412 0.9779 

Oct. 3 (real observations) 

Before filtering 1.4437 0.3572 0.3824 0.5147 

After filtering 0.2730 0.6976 0.7273 0.8864 

Oct. 4 (real observations) 

Before filtering 1.9290 -0.2099 0.3073 0.4948 

After filtering 0.3668 0.2802 0.6552 0.9310 

ETEX-1 

Group 1 (real observations) 

Before filtering 10.9936 0.3414 0.1000 0.2167 

After filtering 6.6769 0.5145 0.2500 0.3667 

Group 2 (real observations) 

Before filtering 5.8705 -0.2824 0.0667 0.1167 

After filtering 4.9799 -0.2695 0.1167 0.2500 

3.2 Optimization of XGBoost model 355 

3.2.1 Hyperparameters 356 

Table S1 summarizes the optimal hyperparameters and corresponding GCs used for source location estimation in this study; 357 

Tables S2–S5 includes all the optimal hyperparameters used in the 50 runs of the SCK-CEN 41Ar and ETEX-1 experiments. 358 

The optimal GCs of the SCK-CEN 41Ar experiment are smaller than those of the ETEX-1 experiment, indicating better fitting 359 

performance. This is because the sparse observations of the ETEX-1 experiment (Fig. S3) are more sensitive to the added 360 
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Gaussian noise (see Sect. 2.5.2). 361 

3.2.2 Feature selection 362 

Figure 4 compares the importance of the selected features at each site for the two experiments. The time-domain features are 363 

dominant for both days in the SCK-CEN 41Ar experiment (Fig. 4a and 4b). For Oct. 3, Site B is the most important, possibly 364 

because it is farthest away in the crosswind direction. For Oct. 4, the four sites provide redundant feature information, and 365 

many features are removed. This is because the distribution of observation sites is almost parallel to the wind direction on this 366 

day. According to Fig. S3(b), the measurements from Sites A and B have a high correlation, thus leading to the removal of 367 

features from Site A on Oct. 4. In summary, the feature selection process adapts XGBoost to different application scenarios. 368 

Figure S4(a) and S4(b) shows the variations in MCV with the number of features for the x and y coordinates. The MCV first 369 

increases with the number of features, and then decreases slightly after reaching the maximum. The optimal number of features 370 

for Oct. 4 is noticeably smaller than for Oct. 3. In addition, the selected features for Oct. 3 involve all four sites, whereas those 371 

for Oct. 4 involve three sites. The reduced features and site numbers indicate a high level of redundancy in the observations 372 

acquired on Oct. 4. This is because the observation sites are parallel to the downwind direction and provide similar location 373 

information in the crosswind direction.  374 

For the ETEX-1 experiment, Fig. 4c and d shows that the features of Group1 and Group2 are largely preserved after the 375 

feature selection process (only one feature is removed for each case), indicating less redundancy than that in the SCK-CEN 376 

41Ar experiment. The time-domain features are dominant, but the frequency-domain features at some sites (e.g. D16 and S09) 377 

also play important roles. The MCVs of the ETEX-1 experiment have similar variation trends as those for the SCK-CEN 41Ar 378 

experiment (Fig. S4c and S4d).  379 
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 381 

Figure 4. Feature importance of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 experiment: (c) Group 1; (d) Group 2. 382 

3.3 Source reconstruction 383 

3.3.1 Source locations 384 

Figure 5 compares the best-estimated source locations of the correlation-based method, the Bayesian method, and the proposed 385 

method with the ground truth. The pre-screening zone covers the true source location for both days, but the areas with the 386 
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highest correlation coefficients are still too large for the point source to be accurately located. The locations with the maximum 387 

correlation exhibit errors of 270.19 m and 36.06 m for Oct. 3 and Oct. 4, respectively, indicating that the correlation-based 388 

method may produce biased results in the case of non-constant releases. The Bayesian method estimates the location with 389 

errors of 19.62 m and 52.81 m for Oct. 3 and Oct. 4, respectively. In comparison, the proposed method achieves the best 390 

performance. The estimates without feature selection are only 10.65 m (Oct. 3) and 20.62 m (Oct. 4) away from the true 391 

locations. Feature selection further reduces these errors to 6.19 m (Oct. 3, a relative error of 0.60%) and 4.52 m (Oct. 4, a 392 

relative error of 0.80%), which are below the grid size (10 m×10 m) of the atmospheric dispersion simulation. The ability to 393 

estimate the source location with accuracy surpassing the grid size can be attributed to the strong fitting capability of the 394 

optimized XGBoost model (Chen and Guestrin, 2016; Grinsztajn et al., 2022). However, this capability, although inherent, is 395 

not present across all optimized XGBoost models, as external factors such as observation noises and meteorological data 396 

inaccuracies can also impact the accuracy of source location estimation.  397 

For the ETEX-1 experiment, the pre-screening zone also covers the true source location for Group 1 and Group 2. The 398 

source locations estimated by the correlation-based method are 411.85 km and 486.41 km away from the ground truth for 399 

Group 1 and Group 2, respectively. The location error of the Bayesian method estimates is only 30.50 km for Group 1, but 400 

increases to 520.77 km for Group 2, indicating the sensitivity of this method to the observations. In contrast, the proposed 401 

method achieves much lower source location errors of 5.19 km for Group 1 (a relative error of 0.20%) and 17.65 km for Group 402 

2 (a relative error of 0.70%). Group1 exhibits a lower source location error than Group 2, because the observation sites of 403 

Group 1 are closer to the sampled source locations than those of Group 2 and better characterize the plume. Feature selection 404 

did not remove many features (Fig. 4c and 4d), so the estimated source locations with and without feature selection basically 405 

overlap for both groups. 406 
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 407 

Figure 5. Source location estimation results of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 experiment: (c) Group 1; (d) 408 
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Group 2. A detailed enlargement of the region around (2.5°W, 47.5°N) to (1.5°W, 48.5°N) is shown in the bottom right corner in (c) and (d) 409 
to highlight the source location estimation results of the proposed method. The yellow dots denote the maximum correlation points, which 410 
are the results of the correlation-based method. The green and red stars represent the results based on XGBoost before and after feature 411 
selection, respectively. The cyan diamonds represent the results based on the Bayesian method. 412 

3.3.2 Release rates 413 

Figure 6 displays the release rates estimated by the Bayesian and PAMILT methods based on the source location estimates in 414 

Fig. 5. For the SCK-CEN 41Ar experiment (Fig. 6a and 6b), the release rates provided by the Bayesian method present several 415 

sharp peaks, corresponding to overestimates of up to 269.03% (Oct. 3) and 532.35% (Oct. 4). Furthermore, the Bayesian 416 

estimates exhibit unrealistic oscillations in the stable release phase. In contrast, the PAMILT method successfully retrieves the 417 

peak releases without oscillations for both days. Both the Bayesian and PAMILT estimates give delayed release start times, 418 

but accurately estimate the end times, especially for Oct. 3. The PAMILT estimate underestimates the total release by 30.01% 419 

and 45.95% for Oct. 3 and Oct. 4, respectively; these values decrease to about 23.83% and 30.60%, respectively, after feature 420 

selection. The Bayesian method gives better total releases because of the overestimated peaks.  421 

For the ETEX-1 experiment (Fig. 6c and 6d), the Bayesian estimates exhibit notable fluctuations, leading to 422 

underestimations of 58.11% for Group1 and 51.44% for Group 2. Furthermore, the temporal profile of the Bayesian estimates 423 

for Group 2 falls completely outside the true release window. In contrast, most releases using the PAMILT estimates are within 424 

the true release time window, especially for Group 2, despite the overestimations reaching 52.38% for Group 1 and 57.65% 425 

for Group 2, after the feature selection process. Compared with the SCK-CEN 41Ar experiment, the increased deviation in the 426 

ETEX-1 experiment is caused by the sparsity of observations at the four sites (Fig. S3). 427 
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 428 

Figure 6. Release rate estimation results with different location estimates of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-429 
1 experiment: (c) Group 1; (d) Group 2. The release rates labelled XGBoost or XGBoost+feature selection are estimated using the PAMILT 430 
method. 431 

3.3.3 Uncertainty range 432 

Figure 7 compares the spatial distribution of 50 estimates produced by different methods. For the SCK-CEN 41Ar experiment, 433 

the estimates of the correlation-based method are highly dispersed for both days, leading to a very uniform distribution of the 434 

x coordinate for Oct. 3 and two separate distributions of both the coordinates for Oct. 4. The Bayesian method produces a 435 

multimodal distribution for both days, in which the estimates are more concentrated than those of the correlation-based method. 436 

The corresponding full posteriori distributions in Fig. S5(a) and S5(b) better reveal the multimodal feature of the Bayesian 437 

method, with several peaks of similar probabilities in the estimates of both coordinates on Oct. 3 and the y coordinate on Oct. 438 

4. The multimodal feature indicates the difficulty of constraining the solution in simultaneous spatiotemporal reconstruction, 439 

as reported in a previous study (Meutter and Hoffman, 2020). In comparison, the proposed method provides the most 440 

concentrated source location estimates. The feature selection moves the centre of the distribution closer to the true location 441 

and narrows the distribution of the estimates, especially for Oct. 4.   442 

For the ETEX-1 experiment, the estimates of the correlation-based method are quite dispersed, whereas those of the 443 
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Bayesian method are more concentrated. The Bayesian estimates are close to the truth for Group 1, but deviate noticeably for 444 

Group 2. This phenomenon indicates that the Bayesian method is sensitive to the observations, especially when the 445 

observations are sparse. Figure S5(c) and S5(d) reveals that the Bayesian-estimated posterior distribution is multimodal for 446 

both ETEX-1 groups; this can be avoided by using additional observations (Fig. S5e). In contrast, the proposed method 447 

provides estimates that are concentrated around the truth for both Group 1 and Group 2, indicating its efficiency in the case of 448 

sparse observations. Due to the shorter distance between observation sites and the sampled source locations, the uncertainty 449 

range of source location for Group 1 is narrower than that for Group 2.   450 
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 451 

Figure 7. Spatial distribution of 50 source location estimates of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 experiment: 452 
(c) Group 1; (d) Group 2. Each circle denotes an individual estimate as detailed in Sect. 2.8.5, with colour variations indicating the respective 453 
method employed. Histograms along the axes represent the frequency distribution of the estimates along the respective axis. 454 

Figure 8 compares the uncertainty range and mean total release of the release rate estimations for the SCK-CEN 41Ar 455 

experiment. For Oct. 3, the Bayesian estimates significantly overestimate the mean values and have a large uncertainty range, 456 
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whereas the mean PAMILT estimate is very close to the true release and the uncertainty range is smaller than that of the 457 

Bayesian method. For Oct. 4, the mean Bayesian estimate exhibits greater deviations than the mean PAMILT estimate. Feature 458 

selection improves the mean estimate and reduces the uncertainty range of PAMILT because it improves the source location 459 

estimation, thus reducing the deviation in the inverse model of the release rate. On Oct. 3 and Oct. 4, the PAMILT method 460 

underestimates the total release by 18.30% and 47.42%, respectively, whereas the Bayesian method gives overestimations of 461 

153.61% and 42.29%, respectively.  462 

 463 

Figure 8. Release rate estimates over 50 calculations of SCK-CEN 41Ar experiment. (a) Oct. 3-Bayesian method; (b) Oct. 3-PAMILT method; 464 
(c) Oct. 4-Bayesian method; (d) Oct. 4-PAMILT method. The shadow represents the uncertainty range between the lower quartile and the 465 
upper quartile. The shadow of each figure is amplified by an enlarged subgraph. The legends in each figure provide the mean estimates for 466 
the total release.  467 

Figure 9 compares the uncertainty ranges of the release rate estimates for the two ETEX-1 groups. For both groups, the 468 

Bayesian estimates exhibit noticeable underestimations (including the mean estimate) and small uncertainty ranges (Fig. 9a 469 

and 9c). The Bayesian estimates fall completely outside the true release window for Group 2 (Fig. 9c). The mean PAMILT 470 

estimates are more accurate than the mean Bayesian estimates, with most releases within the true release window (Fig. 9b and 471 

9d). However, the PAMILT estimates have a large uncertainty range for the ETEX-I experiment than for the SCK-CEN 41Ar 472 

experiment, implying that the source–receptor matrices of the ETEX-1 experiment are more sensitive to errors in source 473 

location than those of the SCK-CEN 41Ar experiment. This greater sensitivity originates from the complex meteorology in the 474 



27 

 

ETEX-1 experiment. As for the mean total releases, the Bayesian method produces underestimations of 70.93% for Group1 475 

and 74.15% for Group2. In comparison, the proposed method gives deviations of only 0.71% for Group 1 and 0.09% for Group 476 

2, after feature selection.  477 

 478 

Figure 9. Release rate estimates over 50 calculations of ETEX-1 experiment. (a) Group 1-Bayesian method; (b) Group 1-PAMILT method; 479 
(c) Group 2-Bayesian method; (d) Group 2-PAMILT method. 480 

Table 4 lists the mean and standard deviation of the relative errors for the 50 estimates given by different methods. The 481 

correlation-based method produces the largest mean relative error and standard deviation for source location estimation, except 482 

for Group 2 of ETEX-I. For the SCK-CEN 41Ar experiment, the proposed method gives the smallest mean error, about half of 483 

that of the Bayesian method. Its standard deviation is around one-quarter of that of the Bayesian method for Oct. 3, but is 484 

slightly larger for Oct. 4. For the total release, the PAMILT method gives a better standard deviation of the relative error for 485 

both days and a better mean relative error for Oct. 3, whereas the Bayesian method produces a better mean relative error for 486 

Oct. 4. Feature selection reduces the mean relative error, except for the total release for Oct. 3, and slightly increases the 487 

standard deviation of the source location and total release results for Oct. 3. The mean relative error of the total release averaged 488 

on the two days is 65.09% lower than that of the Bayesian method. 489 

For the ETEX-1 experiment, the Bayesian method exhibits case-sensitive performances with respect to the mean relative 490 

error of source location estimation, whereas the proposed method gives the most accurate source locations with small 491 

uncertainties for both groups. As for the total release, the proposed method gives smaller mean relative errors than the Bayesian 492 

methods, but the Bayesian method has a smaller standard deviation. Feature selection significantly reduces the mean relative 493 
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error for the two groups. The mean relative error of the total release averaged over the two groups is 72.14% lower than that 494 

of the Bayesian method. 495 

Table 4. Relative errors of source reconstruction. 𝛿𝐫 represents the relative error of source location, which is positive and 𝛿𝑄 denotes the 496 

relative error of total release, where a positive value indicates overestimation and a negative value denotes underestimation. 497 

Experiment Case 

Statistical 

parameters 

(Relative error) 

Correlation-

based method 

Bayesian 

method 

The proposed method 

XGBoost 
XGBoost+ 

feature selection 

SCK-CEN 41Ar 

Oct. 3 

𝛿𝐫 

Mean 14.10% 11.88% 5.18% 4.68% 

Std 11.37% 7.53% 1.79% 2.05% 

𝛿𝑄 

Mean - 153.61% -16.93% -18.30% 

Std - 189.76% 9.45% 8.01% 

Oct. 4 

𝛿𝐫 

Mean 14.30% 12.83% 6.83% 4.71% 

Std 9.60% 1.68% 1.76% 1.53% 

𝛿𝑄 

Mean - 42.29% -54.12% -47.42% 

Std - 15.05% 6.47% 5.85% 

ETEX-I 

Group 1 

𝛿𝐫 

Mean 16.95% 3.22% 2.32% 2.42% 

Std 7.46% 2.75% 1.43% 1.43% 

𝛿𝑄 

Mean - -70.93% 18.12% -0.71% 

Std - 17.87% 99.85% 102.01% 

Group 2 

𝛿𝐫 
Mean 21.9% 23.97% 5.21% 4.97% 

Std 5.05% 1.97% 2.42% 2.35% 

𝛿𝑄 
Mean - -74.15% 16.67% 0.09% 

Std - 11.68% 93.50% 109.56% 

3.4 Sensitivity analysis results 498 

3.4.1 Sensitivity to the search range  499 

Figure 10 displays the source location errors obtained using different pre-screening thresholds to determine the search range. 500 

The error is smaller with a lower threshold, implying that a small search range helps reduce the mean and median errors. As 501 

the threshold increases, the mean and median errors, as well as the error range, show an overall tendency to increase, but not 502 
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in a strictly monotonic way. The mean/median error is less than 12% for Oct. 3 and less than 22% for Oct. 4, indicating robust 503 

performance in these tests. Feature selection reduces the mean/median, range, and the lower bound of the errors in most tests, 504 

demonstrating its efficiency.  505 

 506 

Figure 10. Distribution of relative error (%) over 50 runs with different search ranges. The blue and red solid lines denote average relative 507 
error (%) and median relative error (%), respectively. The upper and lower boundaries represent the upper and lower quartiles of relative 508 
error (%), respectively. The fences are 1.5 times the inter-quartile ranges of the upper/lower quartiles. The red circles denote data that are 509 
not included between the fences. (a) Oct. 3; (b) Oct. 4. 510 

3.4.2 Sensitivity to the size of the sliding window 511 

Figure 11 shows the source location errors obtained with different sliding-window sizes. The mean/median error is less than 512 

8% for Oct. 3 and less than 11% for Oct. 4, both of which are smaller than for the various search ranges. This indicates that 513 

the proposed method is more robust to this parameter than to the search range. For both days, the lowest mean/median and 514 

error range occur with relatively large window sizes, i.e. window size of 9 for Oct. 3 and window size of 10 for Oct. 4. This is 515 

because a large window size increases the strength of the filtering and removes the temporal variations in the release rates 516 

more completely. However, a large window size leads to increased computational cost. Because the errors vary in a limited 517 

range, a medium window size provides a better balance between accuracy and computational cost. Feature selection improves 518 

the results for medium and small window sizes, but may have less effect with large window sizes. This tendency implies that 519 

it is more appropriate to apply feature selection with medium window sizes than with large window sizes, as in this study.  520 
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 521 

Figure 11. Sensitivity to the size of the sliding window. (a) Oct. 3; (b) Oct. 4. 522 

3.4.3 Sensitivity to the feature type 523 

Figure 12 compares the results obtained with different feature types. For Oct. 3, the source location errors are quite low when 524 

using only the time-domain features for the reconstruction; indeed, the errors are only slightly larger than when using all the 525 

features. In contrast, the results obtained using only the frequency-domain features exhibit larger errors, indicating that the 526 

time-domain features make a greater contribution to the results for Oct. 3. For Oct. 4, the mean source location errors are 527 

similar when using either the time- or frequency-domain features, but the error range is higher when the frequency-domain 528 

features are used. In addition, the errors of both single-domain-feature results are higher than those of the all-feature results, 529 

indicating that both feature types should be included to ensure accurate and robust source location estimation.  530 
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 531 

Figure 12. Sensitivity to the feature type. (a) Oct. 3; (b) Oct. 4. 532 

3.4.4 Sensitivity to the number and combination of observation sites 533 

Figure 13 compares the results obtained with different numbers and combinations of observation sites. The results indicate 534 

that the source location error may be more sensitive to the position of the observation site than to the number of sites included. 535 

The error level of all-site estimations is relatively low for both days, indicating that increasing the number of observation sites 536 

better constrains the solution and help improve the robustness of the model. However, the lowest error levels are achieved by 537 

a subset of sites, i.e. Site ABD on Oct. 3 and Site BD on Oct. 4. This is possibly because including all observation sites may 538 

cause overfitting and reduce the prediction accuracy. This overfitting can be alleviated by using only representative sites at 539 

appropriate position, which capture the environmental variability and provide clear information for locating the source. For 540 

Oct.3, multi-site estimations with Site B always produce low error levels, and single-site estimation using Site B also achieves 541 

high accuracy. For Oct.4, multi-site estimations with Site BD always achieve relatively low error levels. These results 542 

demonstrate the importance of using representative sites for source location estimation. The representative sites (Site B for 543 

Oct. 3 and Site BD for Oct. 4) are consistent with the importance calculated in the feature selection step (Fig. 4), preliminarily 544 

indicating the potential for feature selection to identify representative sites. In addition, feature selection reduces the mean 545 

error level in most cases. 546 



32 

 

 547 

Figure 13. Sensitivity to the number and combination of observation sites. (a) Oct. 3; (b) Oct. 4.  548 

3.4.5 Sensitivity to the meteorological errors 549 

Figure 14 illustrates the distribution of mean relative source location errors (averaged across 50 groups of hyperparameters) 550 

retrieved with 50 perturbed meteorological inputs. For Oct. 3, the estimates generally present a low error level (generally below 551 

10%), and the 50th percentile error level is lower than the error of the unperturbed results (4.68%). In comparison, for Oct. 4, 552 

most perturbed results exhibit larger errors (primarily 10%–20%) than the unperturbed result (4.71%), indicating that models 553 

for Oct. 4 are more sensitive to the meteorological errors. This sensitivity difference results from the layout of the observation 554 

sites (Fig. 2a). The sites on Oct. 3 were almost perpendicular to the prevailing wind direction, capturing the plume under a 555 

large range of wind directions. In contrast, the sites on Oct. 4 were basically parallel to the wind direction, capturing the plume 556 

only for a very limited range of wind directions. This result indicates the importance of site layout for robust reconstruction in 557 

the presence of meteorological errors.  Feature selection slightly changes the mean relative error distribution and its percentiles 558 

for both days, indicating that meteorological errors may alter the importance of each feature and reduce the effectiveness of 559 

feature selection. In addition to meteorological errors, dispersion errors such as wet deposition parameterization (Zhuang et 560 

al., 2023) may influence the result, but these errors are not dominant in the two field experiments. The handling of such 561 

dispersion errors will be investigated in future work.  562 
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 563 

Figure 14. Sensitivity to the meteorological errors. The violin plots illustrate the kernel density estimation of errors under different 564 
meteorological groups for XGBoost models before and after feature selection. The vertical black lines inside the violins depict the 565 
interquartile range, capturing the 25th, 50th (red dots), and 75th percentiles of mean relative errors. The blue dots denote the mean relative 566 
source location errors for models without meteorological perturbation, as listed in Table 4. 567 

4. Conclusions 568 

In this study, we relaxed the unrealistic constant-release assumption of source reconstruction. Instead, we took advantage of 569 

the fact that most atmospheric radionuclide releases have a spatially fixed source, and thus the release rate mainly influences 570 

the peak values in the temporal observations. Based on this, a more general spatiotemporally separated source reconstruction 571 

method was developed to estimate non-constant releases. The separation process was achieved by applying a temporal sliding-572 

window average filter to the observations. This filter reduces the influence of temporal variations in the release rates on the 573 

observations, so that the relative spatiotemporal distribution of the filtered observations is dominated by the source location 574 

and known meteorology. A response feature vector was extracted to quantify the long-term temporal response trends at each 575 

observation site, involving tailored indicators of both the time and frequency domains. The XGBoost algorithm was used to 576 

train a machine learning model that links the source location to the feature vector, enabling independent source location 577 

estimation without knowing the release rate. With the retrieved source location, the detailed temporal variations of the release 578 

rate were determined using the PAMILT algorithm. Validation was performed against the two-day SCK-CEN 41Ar field 579 

experimental data and two groups of ETEX-1 data. The results demonstrate that the proposed method successfully removes 580 
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the influence of temporal variations in release rates across observations and accurately reconstructs both the spatial location 581 

and temporal variations of the source.  582 

For the local-scale SCK-CEN 41Ar experiment, source location was reconstructed with lowest errors of only 0.60% (Oct. 3) 583 

and 0.80% (Oct. 4), significantly lower than for the correlation-based method and Bayesian method. In terms of the release 584 

rate, the PAMILT method reconstructed the temporal variations, peak, and total release with high accuracy, thus avoiding the 585 

unrealistic oscillations given by the Bayesian estimate. The proposed method produced smaller uncertainty ranges than the 586 

Bayesian method and avoided the multimodal distribution of the Bayesian method. The feature selection process removed the 587 

redundant features and reduced the reconstruction errors. For the continental-scale ETEX-1 experiment, the lowest relative 588 

source location errors were 0.20% and 0.70% for Group 1 and Group 2, respectively, which were again lower than for the 589 

correlation-based and Bayesian methods. The proposed method provides highly accurate mean estimates of the release rate for 590 

both groups, although with a large uncertainty range. 591 

Sensitivity analyses on the SCK-CEN 41Ar experiment revealed that the proposed method exhibits stable source location 592 

estimation performance with different parameters and remains effective with only a single observation site, as long as the 593 

selected site is appropriately located. Moreover, the proposed method shows robust source location estimation in the presence 594 

of meteorological errors, with mean source location error levels below 10%, on condition that the site layout is appropriate.  595 

These results demonstrate that spatiotemporally separated source reconstruction is feasible and achieves satisfactory 596 

accuracy in multi-scale release scenarios, thereby providing a promising framework for reconstructing atmospheric 597 

radionuclide releases. However, the proposed method does not consider the influence of temporal variations in the release rate 598 

on the plume shape. Our future efforts will be directed towards integrating spatial features to further enhance the method. 599 

 600 

Code and data availability. The code and data for the proposed method can be downloaded from Zenodo 601 

(https://doi.org/10.5281/zenodo.11119861). More recent versions of the code and data will be published on GitHub.com 602 

(https://github.com/rocket1ab/Source-reconstruction-gmd, last access: 06 May 2024). The implementation is provided in 603 

Python, and the instruction file is also available in the provided link. 604 
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