
Dear editors and referees, 

 

Thank you for taking the time to provide such constructive and thorough reviews of our manuscript (GMD-2023-173). 

We greatly appreciate the interests that the editors and the referees have taken in our manuscript.  

 

All the comments and suggestions are very helpful for improving our paper. In the revised manuscript, we have addressed 

all the comments from the referees. Specifically, we have made the following main changes in this revision: 

 

1. We have reformulated the texts, figures and tables in a more compact and clear way. To avoid confusion, 

inaccuracies in statements and terminology have been corrected.   

2. We have provided additional details on the dispersion model, reconstruction method and hyperparameters. 

Discussions around the results have been enhanced to highlight the method’s strengths and limitations. 

3. We have added another validation based on the first release of the European Tracer Experiment, to more 

comprehensively assess the method’s efficiency and applicability. Furthermore, we have included an analysis 

of the reconstruction's sensitivity to the meteorological errors to demonstrate the effect of dispersion model 

errors. 

 

The responses are listed below. To guide the review process, comments from the referee and original texts in the 

manuscript are presented in black, our responses are in blue, and any text modifications made to the manuscript are 

highlighted in red italics. The line numbers mentioned in this response correspond to those in the revised manuscript (the 

clear version, not the marked-up version). Links are provided below for easy navigation in the document. 
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We are looking forward to your reply. 

 

Best regards, 

Yours sincerely 

Sheng Fang 

 

 



Referee #1 

General comments 

The paper presented a source reconstructing procedure by first locating the source location before estimating the emission 

rates. A machine learning method has been used in the first step to locate the source location. The overall results are quite 

interesting and encouraging. 

However, there are several shortcomings in this manuscript. Some of the statements are not accurate and some 

terminology uses are also questionable. The presentation of the machine learning method is not easy to follow for those 

who are not quite familiar with the same method and software. In addition, the dispersion model errors affect the results 

but are not sufficiently considered or discussed. It is also a concern that the method is only tested with a single set of 

experimental data. More test cases are probably needed. 

 

Response to general comments: 

Thank you for your valuable feedback and suggestive comments on our manuscript. We are particularly grateful for 

your remarks about our results being “quite interesting and encouraging”. We have addressed the issues you have raised 

and revised the manuscript accordingly, which are detailed as follows:  

(1) Inaccurate statements and terminology use: 

Following your comments, we have thoroughly reviewed our manuscript and corrected all statements that were 

inaccurate or unclear. Particularly, we have elaborated and rephrased the “Spatiotemporally-decoupled” and “constant-

release assumption” in the introduction section as “Spatiotemporally separated” and “Assumptions on the release 

characteristics”, respectively. Moreover, the title of the revised manuscript has been changed to “A spatiotemporally 

separated framework for reconstructing the source of atmospheric radionuclide releases” to better describe the current 

two-step method. More detailed revisions are provided in the response to your specific comments. Regarding the use of 

terminology, we have provided clear definitions and detailed explanations, such as: 

(1.1) Line 15 of section “Abstract”: “source localization” 

The term “source localization” has been replaced with “source location estimation” in the revised manuscript. For 

example,  

► Lines 13-14 of section “Abstract”: 

“A machine learning model is trained to link these features to the source location, enabling independent source location 

estimations.” 

► Lines 92-96 of section “1. Introduction”: 

“The performance of the proposed method is compared with the correlation-based method in terms of source location 

estimation and the Bayesian method in terms of spatiotemporal accuracy. The sensitivity of the source location estimation 

to the spatial search range, size of the sliding window, feature type, number and combination of sites, and meteorological 

errors is also investigated for the SCK-CEN 41Ar experiment.” 

 

(1.2) Line 60 of section “1. Introduction”: “Deterministic assumption” 

Deterministic assumptions aim to define the physical feature of source parameters. A typical one is the constant-

release assumption, which assumes that the substances are released at a constant rate during the release period (Kovalets 



et al., 2020, 2018; Efthimiou et al., 2018, 2017; Tomas et al., 2021; Andronopoulos and Kovalets, 2021; Ma et al., 2018). 

To avoid confusion, we have replaced the terms “Statistical assumption” and “Deterministic assumption” with 

“Assumptions on model–observation discrepancies” and “Assumptions on the release characteristics”, respectively, in 

the introduction section in the revised manuscript.  

► Lines 41-44 of section “1. Introduction”: 

“To reduce the problem of ill-posedness, most previous studies have attempted to constrain the reconstruction by 

imposing assumptions on the model–observation discrepancies or release characteristics. Assumptions on model–

observation discrepancies are widely used in Bayesian methods to simultaneously reconstruct the posterior distributions 

of spatiotemporal source parameters (De Meutter et al., 2021; Meutter and Hoffman, 2020; Xue et al., 2017).” 

► Lines 64-74 of section “1. Introduction”: 

“Assumptions on the release characteristics aim to reduce the dimension of the solution space to 4 or 5, namely the 

two source location coordinates, the total release, and the release time (or the release start and end time), i.e. an 

instantaneous release at one time or constant release over a period (Kovalets et al., 2020, 2018; Efthimiou et al., 2018, 

2017; Tomas et al., 2021; Andronopoulos and Kovalets, 2021; Ma et al., 2018). Under these assumptions, the 

correlation-based method exhibits high accuracy for ideal cases under stationary meteorological conditions, such as 

synthetic simulation experiments (Ma et al., 2018) and wind tunnel experiments (Kovalets et al., 2018; Efthimiou et al., 

2017). However, previous studies have also demonstrated that real-world applications may be much more challenging, 

(Kovalets et al., 2020; Tomas et al., 2021; Andronopoulos and Kovalets, 2021; Becker et al., 2007) because the release 

usually exhibits temporal variations and may experience non-stationary meteorological fields. The interaction between 

the time-varying release characteristics and non-stationary meteorological fields is neglected in the instantaneous-

release and constant-release assumptions, leading to inaccurate reconstruction.”  

 

(1.3) Line 108 of section “2.1 Source reconstruction models”: “𝐀(𝐫) = [𝑨𝟏(𝐫),  𝑨𝟐(𝐫),⋯ , 𝑨𝑵(𝐫)]𝑻 ∈ ℝ𝑵×𝑵” 

The matrix 𝐀(𝐫)  is not a square matrix in general. We have modified the dimension of the matrix: 𝐀(𝐫) =

[𝐴1(𝐫),  𝐴2(𝐫),⋯ , 𝐴𝑁(𝐫)]𝑇 ∈ ℝ𝑁×𝑆, where 𝑁 is the number of sequential time steps and 𝑆 is the length of release rate 

vector 𝐪.  

► Lines 99-108 of section “2.1 Source reconstruction models”: 

“For an atmospheric radionuclide release, Eq. (1) relates the observations at each observation site to the source 

parameters:                            

𝛍 = 𝐅(𝐫, 𝐪) + 𝛆 ,                    (1) 

where 𝛍 = [𝜇1, 𝜇2,⋯ , 𝜇𝑁]𝑇 ∈ ℝ𝑁  is an observation vector composed of observations at 𝑁  sequential time steps, the 

function 𝐅 maps the source parameters to the observations, i.e. an atmospheric dispersion model, 𝐫 refers to the source 

location, 𝒒 ∈ ℝ𝑆 is the temporally varying release rate, and 𝛆 ∈ ℝ𝑁 is a vector containing both model and measurement 

errors. 

In most source reconstruction models, 𝐅 is simplified to the product of 𝐪 and a source–receptor matrix 𝐀 that depends 

on the source location: 

𝛍 = 𝐀(𝐫)𝐪 + 𝛆 ,                    (2) 

where 𝑨(𝒓) = [𝐴1(𝒓),  𝐴2(𝒓),⋯ , 𝐴𝑁(𝒓)]𝑇 ∈ ℝ𝑁×𝑆  and each row describes the sensitivity of an observation to the 

release rate 𝐪 given the source location 𝐫.” 

 

(1.4) Line 131 of section “2.2 Spatiotemporal decoupling”: “sliding window” 



As outlined in Eq. (4), a one-sided window is employed. This one-sided temporal sliding-window average filter 

involves the current and previous observations in the window, acknowledging that future observations are not available 

for filtering in practice. Compared to the centered window, the one-sided window excels in real-time data processing 

and rapid response to changes in the observations, making it more suitable for real applications.  

► Lines 128-133 of section “2.2 Observation filtering for spatiotemporally separated reconstruction”: 

“In this study, the following operator matrix is constructed to impose a one-sided temporal sliding-window average filter 

(Eamonn Keogh, Selina Chu, 2004): 

𝐏 =
1
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where T is the size of the sliding window. This one-sided filter involves the current and previous observations in the 

window, acknowledging that future observations are not available for filtering in practice. Although a sliding-window 

average filter is used in this study, Eq. (3) is compatible with more advanced processing methods.” 

 

(1.5) Line 228 of section “2.6.2 Simulation settings of atmospheric dispersion model”: “sample” 

This term refers to an individual simulation using one of the candidate source locations. Therefore, each “sample” 

represents a simulated dispersion scenario with a different candidate source location. To clarify this point, we have 

replaced the term “sample” with “simulation” in the revised manuscript and explained the meaning of “sample”. 

► Line 253-257 of section “2.6.2 Simulation settings of atmospheric dispersion model”: 

“To establish the datasets for the XGBoost model, 2000 simulations and 1000 simulations with different source locations 

were performed by RIMPUFF for Oct. 3 and Oct. 4, respectively. Candidate source locations were randomly sampled 

from the shaded zones in Fig. 2a, which were determined according to the positions of the observation sites and the 

upwind direction. Each simulation, along with its corresponding source location, forms one sample.” 

 

(2) Presentation of the machine learning method: 

We have added descriptions to the figure caption of the Fig. 1 and relabeled the root nodes using yellow squares in 

Fig. 1, providing a more accurate and detailed introduction to the decision tree model. To avoid confusion, we have 

replaced the symbol “T” with “M” in Eq. (7) and have provided additional descriptions for all the parameters. 

► Lines 149-163 of section “2.3 Source location estimation without knowing the exact release rates”: 

“where 𝐾 is the number of trees, 𝓕 = {𝑓(𝑥) = 𝛚𝑄(𝑥)}(𝑄: ℝ𝑝 → 𝑀,𝛚 ∈ ℝ𝑀) is the space of the decision trees, and 𝑄 

represents the structure of each tree, mapping the feature vector to 𝑀 leaf nodes. Each 𝑓𝑘 corresponds to an independent 

tree structure 𝑄 with leaf node weights 𝛚 = (𝜔1, 𝜔2,⋯ ,𝜔𝑀). Equation (5) is then used to predict 𝐫̂𝑖 = (𝑥̂𝑖 , 𝑦̂𝑖) for the 

𝑖-th sample. 
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Figure 1. Flowchart of XGBoost for predicting 𝐫̂𝑖  based on decision tree model. The yellow squares are the root nodes 

within each tree, representing the input features in this paper. The purple ellipses denote the child nodes where the model 

evaluates input features and make decisions to split the data. The green rectangles depict the leaf nodes and refer to the 

prediction results. The vertical rectangles abstract the internal splitting processes of the trees, indicating decision-

making not explicitly detailed in the diagram. 

XGBoost trains 𝐺(𝐗) in Eq. (5) by continuously fitting the residual error until the following objective function is 

minimized:  

𝑂𝑏𝑗(𝑡) = ∑ (𝐫𝑖 − (𝐫̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝐗𝑖)))
2

𝑛
𝑖=1 + ∑ 𝛺(𝑓𝑖)

𝑡
𝑖=1  ,          (6) 

where 𝑡 represents the training of the 𝑡-th tree and 𝛺(𝑓𝑖) is the regularization term, given by: 

𝛺(𝑓) = 𝛶𝑀 +
1

2
𝜆 ∑ 𝜔𝑗

2𝑀
𝑗=1  ,                (7) 

where 𝑀 is the number of leaf nodes, 𝜔𝑗 is the leaf node weight for the 𝑗-th leaf node, and 𝛶, 𝜆 are penalty coefficients. 

The minimization of Eq. (6) provides a parametric model 𝐺(𝐗) that maps the feature ensemble 𝐗 extracted from 𝛍𝑝 to 

the source location 𝐫.” 

 

(3) Dispersion model error considerations: 

We agree with your point regarding the impact of dispersion model errors. To address this issue, we have explored 

the sensitivity of the reconstruction to meteorological errors, which are an important source of uncertainties in 

atmospheric dispersion modeling. To simulate such uncertainties, a stochastic perturbation of ±10% is introduced to the 

observed wind speeds in the x and y components, and a ±1 stability class perturbation is applied to the stability parameters 

(e.g., from C to B or D). For both days, 50 meteorological groups are generated based on these random perturbations. 

For each group, the source location was estimated 50 times with randomly initialized hyperparameters. The results 

demonstrate that the source location estimates of Oct. 3 exhibit a low error level (generally below 10%), and the 50th 

error level is even lower than the error of the unperturbed results. In comparison, source location estimates of Oct. 4 are 

slightly more sensitive to the meteorological errors, which exhibit errors of around 10%–20%. The difference between 

the two days may results from the layout of the observation sites, suggesting that low error levels can be achieved with 

an appropriate site layout, even under certain meteorological errors. Previous studies have indicated that dispersion errors 



such as wet deposition parameterization (Zhuang et al., 2023) may influence the dispersion simulation result; However, 

these errors are not dominant in the SCK-CEN 41Ar and ETEX-1 field experiments. The handling of such dispersion 

model errors will be investigated in our future work, based on radionuclide leakage scenarios such as the 2017 106Ru 

event (Saunier et al., 2019). Detailed descriptions have been added in the revised manuscript. 

► Lines 21-22 of section “Abstract”: 

“With an appropriate site layout, low error levels can be achieved from only a single observation site or under 

meteorological errors.” 

► Lines 94-96 of section “1. Introduction”: 

“The sensitivity of the source location estimation to the spatial search range, size of the sliding window, feature type, 

and number and combination of sites, and meteorological errors is also investigated for the SCK-CEN 41Ar experiment.” 

► Lines 287-291 of section “2.7 Sensitivity study”: 

“(5) Meteorological errors 

Meteorological errors are important uncertainties in source reconstruction, especially the random errors in the wind 

field (Mekhaimr and Abdel Wahab, 2019). To simulate such uncertainties, a stochastic perturbation of ±10% is 

introduced to the observed wind speeds in the x and y components, and a ±1 stability class perturbation is applied to the 

stability parameters (e.g., from C to B or D). For both days, 50 meteorological groups are generated based on these 

random perturbations.” 

► Lines 550-567 of section “3.4 Sensitivity analysis results”: 

“3.4.5 Sensitivity to the meteorological errors 

Figure 14 illustrates the distribution of mean relative source location errors (averaged across 50 groups of 

hyperparameters) retrieved with 50 perturbed meteorological inputs. For Oct. 3, the estimates generally present a low 

error level (generally below 10%), and the 50th error level is lower than the error of the unperturbed results (4.68%). 

In comparison, for Oct. 4, most perturbed results exhibit larger errors (primarily 10%–20%) than the unperturbed result 

(4.71%), indicating that models for Oct. 4 are more sensitive to the meteorological errors. This sensitivity difference 

results from the layout of the observation sites (Fig. 2a). The sites on Oct. 3 were almost perpendicular to the prevailing 

wind direction, capturing the plume under a large range of wind directions. In contrast, the sites on Oct. 4 were basically 

parallel to the wind direction, capturing the plume only for a very limited range of wind directions. This result indicates 

the importance of site layout for robust reconstruction in the presence of meteorological errors.  Feature selection slightly 

changes the mean relative error distribution and its percentiles for both days, indicating that meteorological errors may 

alter the importance of each feature and reduce the effectiveness of feature selection. In addition to meteorological errors, 

dispersion errors such as wet deposition parameterization (Zhuang et al., 2023) may influence the result, but these errors 

are not dominant in the two field experiments. The handling of such dispersion errors will be investigated in future work. 



 

Figure 14. Sensitivity to the meteorological errors. The violin plots illustrate the kernel density estimation of errors 

under different meteorological groups for XGBoost models before and after feature selection. The vertical black lines 

inside the violins depict the interquartile range, capturing the 25th, 50th (red dots), and 75th percentiles of mean relative 

errors. The blue dots denote the mean relative source location errors for models without meteorological perturbation, 

as listed in Table 4.” 

 

(4) The testing of the method: 

To address your concern, we have added another validation based on the first release of the European Tracer 

Experiment (ETEX-1) (Nodop et al., 1998), which is continental scale. During ETEX-1, a total of 340 kg of 

perfluoromethylcyclohexane (PMCH) was released continuously into the atmosphere from 23 October 1994 at 16:00:00 

UTC and 24 October at 1994 03:50:00 UTC. Assuming the release could have occurred between 23 October at 1994 

00:00:00 UTC and 28 October 1994 at 00:00:00 UTC, it is viewed as a temporally-varying release, with a release rate 

of zero outside the actual release window. A total of 3104 available observations (3-h-averaged concentrations) were 

collected at 168 ground sites. As shown in Fig. 2b, we choose two groups of observation sites: the first comprises four 

sites (i.e. B05, D10, D16, F02) randomly selected from the sites within the sample zone (Group1, with a total of 92 

available observations), and the second involves four sites (i.e. CR02, D15, DK08, S09) randomly selected from the sites 

beyond the sample zone boundaries (Group2, with a total of 90 available observations).  

For the continental-scale ETEX-1 experiment, the proposed method still achieves the lowest source location errors 

among all methods, which are 5.19 km for Group 1 (a relative error of 0.20%) and 17.65 km for Group 2 (a relative error 

of 0.70%). Regarding the results of the uncertainty analysis, the mean relative source location errors are 2.42% and 4.97% 

for Group 1 and Group 2, respectively, lower than the correlation-based and Bayesian methods. The proposed method 

provides highly accurate mean estimates of release rate for both groups after feature selection, although with a large 

uncertainty range. These results demonstrate that spatiotemporally separated source reconstruction is feasible and 

achieves satisfactory accuracy in multi-scale release scenarios, thereby providing a promising framework for 

reconstructing atmospheric radionuclide releases. 

We have provided an overview of the ETEX-1 experiment and source reconstruction results below. Detailed results 



and discussions have been included in the revised manuscript. 

► Lines 15-20 of section “Abstract”: 

“This method is validated against the local-scale SCK-CEN 41Ar field experiment and the first release of the continental-

scale European Tracer Experiment, for which the lowest relative source location errors are 0.60% and 0.20%, 

respectively. This presents higher accuracy and a smaller uncertainty range than the correlation-based and Bayesian 

methods in estimating the source location. The temporal variations in release rates are accurately reconstructed, and 

the mean relative errors of the total release are 65.09% and 72.14% lower than the Bayesian method for the SCK-CEN 

experiment and European Tracer Experiment, respectively.” 

► Lines 90-92 of section “1. Introduction”: 

“The proposed method is validated using the data from multi-scales field experiments, namely the local-scale SCK-CEN 

41Ar experiment  (Rojas-Palma et al., 2004), and the first release of the continental scale European Tracer Experiment 

(ETEX-1) (Nodop et al., 1998), which traced emissions of Perfluoro-Methyl-Cyclo-Hexane (PMCH).” 

► Line 218 of section “2.6.1 Field experiments”: 

“The proposed methodology was validated against the observations of the SCK-CEN 41Ar and ETEX-1 field experiments.” 

► Lines 229-246 of section “2.6.1 Field experiments”: 

“The ETEX-1 experiment took place at Monterfil in Brittany, France, on 23 October 1994 (Nodop et al., 1998). During 

ETEX-1, a total of 340 kg of PMCH was released into the atmosphere on 23 October 1994 at 16:00:00 UTC and 24 

October 1994 at 03:50:00 UTC. As illustrated in Fig. 2(b), the source coordinates were (-2.0083°E, 48.058°N). A total 

of 3104 available observations (3-h-averaged concentrations) were collected at 168 ground sites. ETEX-1 has been 

widely used as a validation scenario for reconstructing atmospheric radionuclide releases (Ulimoen and Klein, 2023; 

Tomas et al., 2021). The candidate source locations are uniformly sampled from the green shaded zone. We choose two 

groups of observation sites: the first comprises four sites (i.e. B05, D10, D16, F02) randomly selected from the sites 

within the sample zone (Group 1, with a total of 92 available observations), and the second involves four sites (i.e. CR02, 

D15, DK08, S09) randomly selected from the sites beyond the sample zone boundaries (Group 2, with a total of 90 

available observations). Compared with the SCK-CEN 41Ar experiment, the ETEX-1 observations exhibit temporal 

sparsity, lower temporal resolution, and increased complexity in meteorological conditions. 



 

Figure 2. Release location and observation sites of two field experiments. (a) SCK-CEN 41Ar experiment. The map was 

created based on the relative positions of the release source and observation sites (Drews et al., 2002). The coordinates 

of the sample border are (500 m, −200 m) and (1180 m, 580 m) on Oct. 3, and (450 m, 10 m) and (850 m, 450 m) on Oct. 

4. This figure was plotted using MATLAB 2016b, rather than created by a map provider; (b) ETEX-1 experiment. The 

map was created based on the real longitudes and latitudes of the release source and observation sites (Nodop et al., 

1998). The coordinates of the sample border are (10°W, 40°N) and (10°E, 60°N). This figure was plotted using the 

cartopy function of Python, rather than created by a map provider.” 

► Lines 260-268 of section “2.6.2 Simulation settings of atmospheric dispersion model”: 

“For the ETEX-1 experiment, the FLEXible PARTicle (FLEXPART) model (version 10.4) was applied to simulate the 

dispersion of PMCH (Pisso et al., 2019). The meteorological data were obtained from the United States National Centers 

of Environmental Prediction Climate Forecast System Reanalysis, and have a spatial resolution of 0.5°×0.5° and time 

resolution of 6 h. To rapidly establish the relationship between the varying source locations and the observations, 182 



backward simulations were performed using FLEXPART with a time interval of 3 h, grid size of 0.25°×0.25°, and 8 

vertical levels (from 100–50000 m). Only the lowest model output layer was used for source reconstruction. Candidate 

source locations were uniformly sampled from the shaded zone in Fig. 2(b), resulting in a total of 6561 source locations. 

As described in Sect. 2.5.1, 2624 candidate source locations were preserved following the pre-screening step. The 

constant factors mentioned in Sect. 2.5.2 are 5.60×1012 and 2.86×1013 for Group 1 and Group 2, respectively.” 

► Lines 297-298 of section “2.8.1 Observation filtering”: 

“The feasibility of decoupling is demonstrated using both the synthetic and real observations of the SCK-CEN 41Ar 

experiment and the real observations of the ETEX-1 experiment.” 

► Lines 300-302 of section “2.8.1 Observation filtering”: 

“Because several temporal observations are missing at some observation sites, we only choose observations sampled 

between 24 October 1994 09:00:00 UTC and 26 October 1994 03:00:00 UTC for the source location estimation.” 

► Lines 323-324 of section “2.8.4 Comparison with the Bayesian method”: 

“The proposed method is compared with the popular Bayesian method based on the SCK-CEN 41Ar and ETEX-1 

experiments, with the same search range used for locating the source in both methods (Fig. 2).” 

► Lines 341-342 of section “3.1 Filtering performance”: 

“After filtering, the dots are more concentrated towards the 1:1 line for both the SCK-CEN 41Ar and ETEX-1 experiments.” 

► Figure 3 of section “3.1 Filtering performance” (Lines 344-347): 



 

Figure 3. Scatter plots of the original (yellow squares) and filtered (green squares) observations versus the constant-

release simulation results. SCK-CEN 41Ar experiment: (a) Oct. 3 (synthetic observations); (b) Oct. 4 (synthetic 

observations); (c) Oct. 3 (real observations); (d) Oct. 4 (real observations); ETEX-1 experiment: (e) Group 1 (real 

observations); (f) Group 2 (real observations).   

► Lines 352-353 of section “3.1 Filtering performance”: 

“The filtering process produces a better effect with the SCK-CEN 41Ar experiment than with the ETEX-1 experiment, 

owing to the sparser observations in the ETEX-1 experiment (Fig. S3).” 

 

 



► Table 3 of section “3.1 Filtering performance” (Line 354): 

“Table 3. Quantitative metrics for the filtering validation. 

Experiment Case NMSE PCC FAC2 FAC5 

SCK-CEN 41Ar 

Oct. 3 (synthetic observations) 

Before filtering 0.6970 0.5315 0.7647 0.8235 

After filtering 0.0239 0.9514 1 1 

Oct. 4 (synthetic observations) 

Before filtering 0.9290 -0.0267 0.7292 0.7292 

After filtering 0.0956 0.6179 0.9412 0.9779 

Oct. 3 (real observations) 

Before filtering 1.4437 0.3572 0.3824 0.5147 

After filtering 0.2730 0.6976 0.7273 0.8864 

Oct. 4 (real observations) 

Before filtering 1.9290 -0.2099 0.3073 0.4948 

After filtering 0.3668 0.2802 0.6552 0.9310 

ETEX-1 

Group 1 (real observations) 

Before filtering 10.9936 0.3414 0.1000 0.2167 

After filtering 6.6769 0.5145 0.2500 0.3667 

Group 2 (real observations) 

Before filtering 5.8705 -0.2824 0.0667 0.1167 

After filtering 4.9799 -0.2695 0.1167 0.2500 

” 

► Lines 358-361 of section “3.2.1 Hyperparameters”: 

“Tables S2–S5 includes all the optimal hyperparameters used in the 50 runs of the SCK-CEN 41Ar and ETEX-1 

experiments. The optimal GCs of the SCK-CEN 41Ar experiment are smaller than those of the ETEX-1 experiment, 

indicating better fitting performance. This is because the sparse observations of the ETEX-1 experiment (Fig. S3) are 

more sensitive to the added Gaussian noise (see Sect. 2.5.2).” 

► Lines 375-379 of section “3.2.2 Feature selection”: 

“For the ETEX-1 experiment, Fig. 4c and d shows that the features of Group1 and Group2 are largely preserved after 

the feature selection process (only one feature is removed for each case), indicating less redundancy than that in the 

SCK-CEN 41Ar experiment. The time-domain features are dominant, but the frequency-domain features at some sites (e.g. 

D16 and S09) also play important roles. The MCVs of the ETEX-1 experiment have similar variation trends as those for 

the SCK-CEN 41Ar experiment (Fig. S4c and S4d).” 

► Figure 4 of section “3.2.2 Feature selection” (Lines 380-382): 



“  



 

Figure 4. Feature importance of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 experiment: (c) Group 

1; (d) Group 2.” 

► Lines 398-412 of section “3.3.1 Source locations”: 

“For the ETEX-1 experiment, the pre-screening zone also covers the true source location for Group 1 and Group 2. The 

source locations estimated by the correlation-based method are 411.85 km and 486.41 km away from the ground truth 

for Group 1 and Group 2, respectively. The location error of the Bayesian method estimates is only 30.50 km for Group 

1, but increases to 520.77 km for Group 2, indicating the sensitivity of this method to the observations. In contrast, the 

proposed method achieves much lower source location errors of 5.19 km for Group 1 (a relative error of 0.20%) and 

17.65 km for Group 2 (a relative error of 0.70%). Group1 exhibits a lower source location error than Group 2, because 

the observation sites of Group 1 are closer to the sampled source locations than those of Group 2 and better characterize 

the plume. Feature selection did not remove many features (Fig. 4c and 4d), so the estimated source locations with and 

without feature selection basically overlap for both groups. 



 

Figure 5. Source location estimation results of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 experiment: 

(c) Group 1; (d) Group 2. A detailed enlargement of the region around (2.5°W, 47.5°N) to (1.5°W, 48.5°N) is shown in 

the bottom right corner in (c) and (d) to highlight the source location estimation results of the proposed method. The 

yellow dots denote the maximum correlation points, which are the results of the correlation-based method. The green 

and red stars represent the results based on XGBoost before and after feature selection, respectively. The cyan diamonds 

represent the results based on the Bayesian method.” 

► Lines 422-431 of section “3.3.2 Release rates”: 

“For the ETEX-1 experiment (Fig. 6c and 6d), the Bayesian estimates exhibit notable fluctuations, leading to 

underestimations of 58.11% for Group1 and 51.44% for Group 2. Furthermore, the temporal profile of the Bayesian 



estimates for Group 2 falls completely outside the true release window. In contrast, most releases using the PAMILT 

estimates are within the true release time window, especially for Group 2, despite the overestimations reaching 52.38% 

for Group 1 and 57.65% for Group 2, after the feature selection process. Compared with the SCK-CEN 41Ar experiment, 

the increased deviation in the ETEX-1 experiment is caused by the sparsity of observations at the four sites (Fig. S3). 

 

Figure 6. Release rate estimation results with different location estimates of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) 

Oct. 4; and ETEX-1 experiment: (c) Group 1; (d) Group 2. The release rates labelled XGBoost or XGBoost+feature 

selection are estimated using the PAMILT method.” 

► Lines 443-454 of section “3.3.3 Uncertainty range”: 

“For the ETEX-1 experiment, the estimates of the correlation-based method are quite dispersed, whereas those of the 

Bayesian method are more concentrated. The Bayesian estimates are close to the truth for Group 1, but deviate noticeably 

for Group 2. This phenomenon indicates that the Bayesian method is sensitive to the observations, especially when the 

observations are sparse. Figure S5(c) and S5(d) reveals that the Bayesian-estimated posterior distribution is multimodal 

for both ETEX-1 groups; this can be avoided by using additional observations (Fig. S5e). In contrast, the proposed 

method provides estimates that are concentrated around the truth for both Group 1 and Group 2, indicating its efficiency 

in the case of sparse observations. Due to the shorter distance between observation sites and the sampled source 

locations, the uncertainty range of source location for Group 1 is narrower than that for Group 2. 



 

Figure 7. Spatial distribution of 50 source location estimates of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and 

ETEX-1 experiment: (c) Group 1; (d) Group 2. Each circle denotes an individual estimate as detailed in Sect. 2.8.5, with 

colour variations indicating the respective method employed. Histograms along the axes represent the frequency 

distribution of the estimates along the respective axis.” 

► Lines 468-483 of section “3.3.3 Uncertainty range”: 

“Figure 9 compares the uncertainty ranges of the release rate estimates for the two ETEX-1 groups. For both groups, 

the Bayesian estimates exhibit noticeable underestimations (including the mean estimate) and small uncertainty ranges 

(Fig. 9a and 9c). The Bayesian estimates fall completely outside the true release window for Group 2 (Fig. 9c). The 

mean PAMILT estimates are more accurate than the mean Bayesian estimates, with most releases within the true release 

window (Fig. 9b and 9d). However, the PAMILT estimates have a large uncertainty range for the ETEX-I experiment 

than for the SCK-CEN 41Ar experiment, implying that the source–receptor matrices of the ETEX-1 experiment are more 

sensitive to errors in source location than those of the SCK-CEN 41Ar experiment. This greater sensitivity originates 

from the complex meteorology in the ETEX-1 experiment. As for the mean total releases, the Bayesian method produces 



underestimations of 70.93% for Group1 and 74.15% for Group2. In comparison, the proposed method gives deviations 

of only 0.71% for Group 1 and 0.09% for Group 2, after feature selection. 

 

Figure 9. Release rate estimates over 50 calculations of ETEX-1 experiment. (a) Group 1-Bayesian method; (b) Group 

1-PAMILT method; (c) Group 2-Bayesian method; (d) Group 2-PAMILT method. 

Table 4 lists the mean and standard deviation of the relative errors for the 50 estimates given by different methods. 

The correlation-based method produces the largest mean relative error and standard deviation for source location 

estimation, except for Group 2 of ETEX-I.” 

► Lines 490-495 of section “3.3.3 Uncertainty range”: 

“For the ETEX-1 experiment, the Bayesian method exhibits case-sensitive performances with respect to the mean relative 

error of source location estimation, whereas the proposed method gives the most accurate source locations with small 

uncertainties for both groups. As for the total release, the proposed method gives smaller mean relative errors than the 

Bayesian methods, but the Bayesian method has a smaller standard deviation. Feature selection significantly reduces 

the mean relative error for the two groups. The mean relative error of the total release averaged over the two groups is 

72.14% lower than that of the Bayesian method.” 

 

 

 

 

 

 

 

 

 

 

 

 



► Table 4 of section “3.3.3 Uncertainty range” (Lines 496-497): 

“Table 4. Relative errors of source reconstruction. 𝛿𝒓 represents the relative error of source location, which is positive 

and 𝛿𝑄 denotes the relative error of total release, where a positive value indicates overestimation and a negative value 

denotes underestimation. 

Experiment Case 

Statistical 

parameters 

(Relative error) 

Correlation-

based method 

Bayesian 

method 

The proposed method 

XGBoost 
XGBoost+ 

feature selection 

SCK-CEN 41Ar 

Oct. 3 

𝛿𝐫 

Mean 14.10% 11.88% 5.18% 4.68% 

Std 11.37% 7.53% 1.79% 2.05% 

𝛿𝑄 

Mean - 153.61% -16.93% -18.30% 

Std - 189.76% 9.45% 8.01% 

Oct. 4 

𝛿𝐫 

Mean 14.30% 12.83% 6.83% 4.71% 

Std 9.60% 1.68% 1.76% 1.53% 

𝛿𝑄 

Mean - 42.29% -54.12% -47.42% 

Std - 15.05% 6.47% 5.85% 

ETEX-I 

Group 1 

𝛿𝐫 

Mean 16.95% 3.22% 2.32% 2.42% 

Std 7.46% 2.75% 1.43% 1.43% 

𝛿𝑄 

Mean - -70.93% 18.12% -0.71% 

Std - 17.87% 99.85% 102.01% 

Group 2 

𝛿𝐫 
Mean 21.9% 23.97% 5.21% 4.97% 

Std 5.05% 1.97% 2.42% 2.35% 

𝛿𝑄 
Mean - -74.15% 16.67% 0.09% 

Std - 11.68% 93.50% 109.56% 

” 

► Lines 579-582 of section “4. Conclusions”: 

“Validation was performed against the two-day SCK-CEN 41Ar field experimental data and two groups of ETEX-1 data. 

The results demonstrate that the proposed method successfully removes the influence of temporal variations in release 

rates across observations and accurately reconstructs both the spatial location and temporal variations of the source.” 

► Lines 588-591 of section “4. Conclusions”: 

“For the continental-scale ETEX-1 experiment, the lowest relative source location errors were 0.20% and 0.70% for 

Group 1 and Group 2, respectively, which were again lower than for the correlation-based and Bayesian methods. The 

proposed method provides highly accurate mean estimates of the release rate for both groups, although with a large 

uncertainty range.” 

► Figure S3 of Supplementary Material (Lines 33-35): 



“  

Figure S3. Observations before and after filtering at observation sites. SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; 

ETEX-1 experiment: (c) Group 1; (d) Group 2.” 

► Figure S4 of Supplementary Material file (Lines 36-39): 



“  

Figure S4. Results of feature selection in x (longitude) and y (latitude) directions. SCK-CEN 41Ar experiment: (a) Oct. 

3; (b) Oct. 4; ETEX-1 experiment: (c) Group 1; (d) Group 2. The black stars denote the optimal number of features. The 

table inserted in each subgraph lists the selected features for each observation site.” 



► Figure S5 of Supplementary Material (Lines 40-43): 

“  

Figure S5. Posterior distributions of source location parameters. SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; ETEX-

1 experiment: (c) Group1; (d) Group2; (e) ETEX-1 (all observations in ETEX-1 are used). The black solid lines denote 

the true location parameters and the dashed lines denote the mean estimates of all posterior samples.” 

► Table S1 of Supplementary Material (Lines 45-49): 

“Table S1. Hyperparameter optimization results. max_depth-maximum depth of a decision tree; learning_rate-step size 

at each iteration while moving toward a minimum of the loss function; n_estimators-number of decision trees; 

min_child_weight-minimum sum of sample weight of a child node; subsample-subsample ratio of the training samples; 

colsample_bytree-subsample ratio of columns when constructing a tree; reg_lambda-L2 regularization term on weights; 

and gamma-minimum loss reduction required to split the tree. 

Optimization results 

SCK-CEN 41Ar experiment ETEX-1 experiment 

Oct. 3 Oct. 4 Group 1 Group 2 

Hyperparameters 

max_depth ([3,8]) 8 7 3 7 

learning_rate ([0.05,0.3]) 0.07057 0.14413 0.06860 0.07619 

n_estimators ([50,300]) 283 185 93 234 

min_child_weight ([2,10]) 4 10 8 6 

subsample ([0.5,1]) 0.62353 0.52721 0.66447 0.62146 

colsample_bytree ([0.01,1]) 0.39145 0.57415 0.33031 0.77954 

reg_lambda ([0.01,5]) 0.71074 2.30624 3.95098 4.62217 

gamma ([0.01,1]) 0.47779 0.51660 0.67626 0.85628 

Optimal GC 0.01230 0.03700 0.88040 0.44510 



” 

► Tables S4-S5 of Supplementary Material (Lines 54-57): 

“Table S4. Hyperparameter optimization results of all 50 runs in Group 1 of ETEX-1 experiment. 

Run 

Hyperparameters 

max_depth learning_rate n_estimators min_child_weight subsample colsample_bytree reg_lambda gamma 

1 3 0.07742 63 9 0.55953 0.44389 0.35824 0.81392 

2 4 0.05011 142 3 0.70683 0.23027 4.89201 0.98193 

3 3 0.06110 99 2 0.93364 0.37012 2.20274 0.76370 

4 7 0.06117 64 10 0.55117 0.24878 2.34822 0.07471 

5 3 0.07906 76 9 0.71631 0.38280 1.84573 0.22755 

6 3 0.05067 116 4 0.70755 0.37613 1.50917 0.85795 

7 3 0.06296 86 9 0.76834 0.34797 1.04674 0.44097 

8 3 0.05342 106 5 0.53520 0.18199 4.18213 0.89476 

9 3 0.07584 76 4 0.95540 0.53685 1.30937 0.49309 

10 3 0.07213 84 5 0.98527 0.41048 2.61014 0.06896 

11 3 0.05907 115 6 0.74495 0.37051 1.96059 0.27702 

12 3 0.09471 76 3 0.91290 0.51041 0.38558 0.05232 

13 3 0.07018 103 3 0.87242 0.35732 2.77176 0.16073 

14 3 0.07072 95 10 0.98317 0.34966 4.67025 0.95006 

15 3 0.08357 66 2 0.80913 0.37858 2.74202 0.05494 

16 3 0.05001 121 3 0.52214 0.27101 4.30584 0.30632 

17 3 0.09354 50 6 0.64736 0.62473 2.55863 0.35745 

18 3 0.05486 134 8 0.66206 0.71278 0.80280 0.97413 

19 3 0.07556 102 5 0.70927 0.34789 3.12167 0.99997 

20 3 0.07479 52 9 0.79240 0.56720 1.02323 0.32951 

21 3 0.05518 78 10 0.66309 0.99871 3.14571 0.84078 

22 3 0.05139 111 6 0.73839 0.42603 2.49218 0.87318 

23 3 0.10952 50 5 0.97390 0.22350 0.88047 0.35097 



24 3 0.06860 93 8 0.66447 0.33031 3.95098 0.67626 

25 3 0.08670 54 5 0.79857 0.39303 3.19098 0.54197 

26 3 0.08125 67 8 0.94963 0.33151 4.40350 0.06507 

27 3 0.08396 50 2 0.93428 0.37792 3.77359 0.13881 

28 3 0.05418 95 9 0.99598 0.25227 1.60204 0.38791 

29 3 0.06935 89 8 0.90482 0.35876 4.15848 0.85423 

30 3 0.06319 76 2 0.91583 0.43665 3.35600 0.88327 

31 3 0.09009 50 4 0.94183 0.48645 4.03998 0.17582 

32 3 0.06213 148 8 0.69235 0.34063 1.38470 0.71691 

33 3 0.05735 74 10 0.83704 0.36175 2.28311 0.93893 

34 3 0.06437 72 3 0.98748 0.31363 1.63480 0.22685 

35 3 0.06022 60 6 0.66204 0.69317 1.21692 0.30900 

36 3 0.09555 53 5 0.80980 0.46487 1.90000 0.60232 

37 3 0.08434 50 8 0.52774 0.26641 0.48391 0.31574 

38 3 0.07105 51 5 0.96131 0.63725 2.01205 0.60509 

39 4 0.05005 62 10 0.77964 0.22026 3.55884 0.74839 

40 4 0.07553 74 2 0.99323 0.36292 2.61782 0.17595 

41 3 0.05239 77 7 0.50028 0.95751 2.41469 0.72211 

42 3 0.08421 51 5 0.99977 0.45864 2.15063 0.54258 

43 3 0.05414 82 8 0.62226 0.76122 2.83002 0.53414 

44 3 0.05259 111 4 0.93432 0.32197 2.04760 0.44156 

45 3 0.09454 60 4 0.72047 0.23879 4.65624 0.75740 

46 3 0.05013 93 4 0.58250 0.40493 2.11383 0.47864 

47 3 0.11330 50 2 0.71413 0.69524 3.50503 0.16269 

48 3 0.08314 50 10 0.96691 0.50529 2.97909 0.95771 

49 6 0.05978 107 7 0.63666 0.20488 0.61715 0.79254 

50 3 0.07770 71 3 0.98943 0.58108 1.17867 0.22360 

Table S5. Hyperparameter optimization results of all 50 runs in Group 2 of ETEX-1 experiment. 



Run 

Hyperparameters 

max_depth learning_rate n_estimators min_child_weight subsample colsample_bytree reg_lambda gamma 

1 8 0.17252 127 7 0.58651 0.60647 4.02984 0.60724 

2 8 0.22988 68 9 0.54811 0.91321 2.29180 0.12852 

3 8 0.10002 213 10 0.75238 0.64053 4.99653 0.10778 

4 4 0.12366 147 5 0.87463 0.83119 0.63085 0.26995 

5 5 0.23441 297 7 0.97266 0.36675 0.34489 0.99034 

6 4 0.20533 155 4 0.63974 0.56526 2.63317 0.38177 

7 5 0.10641 151 3 0.76094 0.79390 0.98025 0.96160 

8 4 0.17290 222 4 0.55589 0.76284 1.62191 0.47379 

9 4 0.05855 160 3 0.88818 0.79781 4.98019 0.84983 

10 4 0.11741 184 5 0.79714 0.83203 4.43324 0.62777 

11 4 0.16266 136 2 0.75690 0.93818 3.30854 0.55481 

12 5 0.23134 144 2 0.58373 0.60423 2.76711 0.16986 

13 8 0.27891 193 7 0.64977 0.89059 3.88204 0.23152 

14 7 0.18603 245 8 0.77290 0.78709 3.45149 0.01806 

15 5 0.16915 268 10 0.62385 0.49651 2.30355 0.27120 

16 4 0.20217 64 2 0.92784 0.78470 0.94699 0.93657 

17 5 0.10871 181 9 0.70489 0.84917 4.43678 0.07228 

18 5 0.07394 297 8 0.87839 0.62200 3.24008 0.11160 

19 6 0.20293 216 9 0.66381 0.89210 4.08151 0.60613 

20 7 0.20570 158 4 0.50653 0.86393 3.36667 0.79227 

21 5 0.20083 88 7 0.57460 0.62410 1.26707 0.17321 

22 4 0.27072 50 4 0.85604 0.86560 0.16264 0.44052 

23 8 0.15380 86 5 0.67811 0.74505 4.54334 0.93377 

24 4 0.16205 183 6 0.59364 0.93969 1.05664 0.40669 

25 6 0.14171 288 6 0.75389 0.85527 4.65363 0.50557 

26 7 0.21287 253 9 0.59311 0.65113 2.79234 0.83703 



27 4 0.15371 247 5 0.77890 0.52357 4.81584 0.67752 

28 5 0.11665 135 5 0.79729 0.86017 4.26743 0.12912 

29 4 0.08378 192 4 0.52749 0.79980 2.64816 0.57092 

30 6 0.13030 210 3 0.50209 0.61548 3.80894 0.64347 

31 7 0.24148 173 10 0.64711 0.79358 2.66441 0.23023 

32 6 0.09301 204 8 0.69879 0.97301 4.67770 0.36945 

33 5 0.12318 283 6 0.93580 0.70267 2.23369 0.17565 

34 4 0.23289 227 7 0.60924 0.76662 2.97809 0.22066 

35 6 0.21219 162 3 0.54969 0.50796 4.01790 0.10632 

36 5 0.10657 148 3 0.77407 0.84022 4.19435 0.53237 

37 4 0.14220 169 4 0.69411 0.90516 2.46148 0.83182 

38 6 0.11224 239 4 0.64335 0.91879 1.53421 0.43750 

39 5 0.08990 98 5 0.83843 0.99546 3.80815 0.86071 

40 6 0.19006 130 4 0.95749 0.88483 3.68950 0.17261 

41 5 0.21434 93 6 0.80593 0.97025 2.23769 0.40479 

42 7 0.07619 234 6 0.62146 0.77954 4.62217 0.85628 

43 4 0.17377 273 6 0.85218 0.79578 3.43808 0.62076 

44 4 0.18522 135 4 0.82615 0.63563 4.24215 0.56409 

45 4 0.14993 152 8 0.60441 0.80580 2.50467 0.09351 

46 5 0.15229 164 7 0.94667 0.83661 3.59476 0.15891 

47 5 0.15393 116 9 0.90651 0.85377 4.60433 0.89894 

48 5 0.22272 290 9 0.86799 0.85502 4.52637 0.79836 

49 5 0.11275 91 4 0.72730 0.75528 3.72672 0.17298 

50 4 0.13702 299 7 0.95702 0.91622 2.93120 0.22371 

” 

Major points 

Comment#1: 

Title: Both “Generalized” and “Spatiotemporally-decoupled” are not accurately reflecting the current two-step method. 



The word “non-constant” in the title does not sound appropriate either. In reality, there are rarely constant releases. The 

author should reconsider the title. 

Response to comment#1:  

Thank you very much for the comment on the title. We have deleted the "non-constant" and “Generalized” in the 

title and have replaced the term “Spatiotemporally-decoupled” with “Spatiotemporally separated”, to more accurately 

reflect the essence of the two-step method described in the manuscript. The revised title now reads: “A spatiotemporally 

separated framework for reconstructing the source of atmospheric radionuclide releases.” 

 

Comment#2: 

Abstract, lines 12-14: This statement is not accurate. The temporal variation of the release rates may be reflected on the 

plume shape, not only on the temporal variations of the observations. In theory, some problems cannot be decoupled. So 

the proposed method cannot be a real general framework. The limitation of the method has to be pointed out in the paper. 

Response to comment#2:  

(1) Regarding the influence of the temporal variation of the release rates: 

We agree that the temporal variation of release rates influence the plume shape. This influence may be difficult to 

capture using only a limited number of observation sites, which is the case of SCK-CEN 41Ar experiment. For this reason, 

we focus on reducing the influence of temporal variations in the release rate on the observations, whereas the influence 

on the plume shape is not directly considered. However, our future efforts will be directed towards integrating spatial 

features to further enhance the method. The limitation and the future efforts have been pointed out in the section “4. 

Conclusions”. 

► Lines 598-599 of section“4. Conclusions”: 

“However, the proposed method does not consider the influence of temporal variations in the release rate on the plume 

shape. Our future efforts will be directed towards integrating spatial features to further enhance the method.” 

  

(2) Concerning whether the proposed method is truly a general framework: 

You raised an essential point about theoretical constraints where some problems cannot be decoupled. For these 

problems, our goal is to minimize the influence of temporal variations in the release rate on the observations, so that we 

can achieve spatiotemporally separated reconstruction. To eliminate ambiguity, we have restated the characteristics of 

the proposed method, using the term “spatiotemporally separated” rather than “spatiotemporally-decoupled” in the 

revised manuscript. The terms “decoupled” and “decoupling” in some sentences have been replaced by “filtered” and 

“filtering”, respectively. Furthermore, to verify the applicability of the proposed method, we have also validated it using 

another field experiment at a different spatial scale, which have been presented in the responses to the General 

comments. This will help readers better understand the limitations and superiority of the proposed method and encourage 

further researches to overcome the constraints. Followed by comment#1 and comment#2, we have revised the abstract 

to ensure that it accurately reflects the updated focus of our study. Additionally, several relevant titles and sentences have 

been updated to ensure consistency with these modifications. 

► Lines 8-13 of section “Abstract”: 

“Determining the source location and release rate are critical tasks in assessing the environmental consequences of 

atmospheric radionuclide releases, but remain challenging because of the huge multi-dimensional solution space. We 

propose a spatiotemporally separated two-step framework that reduces the dimension of the solution space in each step 

and improves the source reconstruction accuracy. The separation process applies a temporal sliding-window average 



filter to the observations, thereby reducing the influence of temporal variations in the release rate on the observations 

and ensuring that the features of the filtered data are dominated by the source location.” 

► Title of section 2.2 in line 109: 

“2.2 Observation filtering for spatiotemporally separated reconstruction” 

► Line 128 of section “2.2 Observation filtering for spatiotemporally separated reconstruction”: 

“where 𝛍𝑝 refers to the filtered observations.” 

► Lines 132-133 of section “2.2 Observation filtering for spatiotemporally separated reconstruction”: 

“Although a sliding-window average filter is used in this study, Eq. (3) is compatible with more advanced processing 

methods, thereby providing a general framework for the spatiotemporal decoupling of 𝛍.” 

► Lines 214-215 of section “2.5.3 Automatic optimization of XGBoost model”: 

“The overall flowchart of the proposed spatiotemporally separated source reconstruction model is shown in Fig. S1.” 

► Lines 277-278 of section “2.7 Sensitivity study”: 

“With these filtered data, the XGBoost model is trained using the same pattern for the source location estimation.” 

► Title of section 2.8.1 in line 296: 

“2.8.1 Observation filtering” 

► Lines 297-298 of section “2.8.1 Observation filtering”: 

“The feasibility of filtering is demonstrated using both the synthetic and real observations of the SCK-CEN 41Ar 

experiment and the real observations of the ETEX-1 experiment.” 

► Lines 303-304 of section “2.8.1 Observation filtering”: 

“The filtering performance is evaluated by comparing the simulation–observation differences before and after the 

filtering step.” 

► Title of section 3.1 in line 335: 

“3.1 Filtering performance” 

► Lines 337-343 of section “3.1 Filtering performance”: 

“Figure 3 compares the filtering performance for both the synthetic and real observations, where the constant-release 

simulations are plotted against the observations before and after filtering. For the synthetic observations, the filtered data 

are more concentrated along the 1:1 line for both days, and all filtered data fall within the 2-fold lines for Oct. 3. For the 

real observations, the dots before filtering in Fig. 3 have a dispersed distribution for both Oct. 3 and Oct. 4, indicating 

limited correlations with the simulations. After filtering, the dots are more concentrated towards the 1:1 line for both the 

SCK-CEN 41Ar and ETEX-1 experiments. These phenomena indicate a noticeably increased agreement between the 

filtered observations and the constant-release simulations.” 

► Lines 348-353 of section “3.1 Filtering performance”: 

“Table 3 quantitatively compares the results presented in Fig. 3. For each case, all metrics are greatly improved after 

filtering, confirming the better agreement between the filtered observations and the constant-release simulations. The 

improved agreement indicates that the filtering step significantly reduces the influence of temporal variations in release 

rates across the observations. The filtering performs better with the synthetic observations than with the real observations, 

because the synthetic observations are free of measurement errors. The filtering process produces a better effect with the 

SCK-CEN 41Ar experiment than with the ETEX-1 experiment, owing to the sparser observations in the ETEX-1 

experiment (Fig. S3).” 

► Lines 515-517 of section “3.4.2 Sensitivity to the size of the sliding window”: 

“This is because a large window size increases the strength of the filtering and removes the temporal variations in the 



release rates more completely.” 

► Lines 571-573 of section “4. Conclusions”: 

“Based on this, a more general spatiotemporally separated source reconstruction method was developed to estimate non-

constant releases. The separation process was achieved by applying a temporal sliding-window average filter to the 

observations.” 

 

Comment#3: 

Abstract, line 15: Locating a source location is not “localization”. This needs to be corrected throughout the paper. 

Response to comment#3:  

We appreciate your comment on the use of the term “localization”. We have replaced the relevant descriptions with 

“source location estimation” or “locating the source”, which may precisely describe the process in our research. 

Accordingly, we have diligently revised the term throughout the paper to ensure accuracy and consistency.  

► Lines 13-14 of section “Abstract”: 

“A machine learning model is trained to link these features to the source location, enabling independent source location 

estimations.” 

► Lines 85-86 of section “1. Introduction”: 

“Using this optimized model, the source location is estimated based on the filtered observations.” 

► Lines 92-96 of section “1. Introduction”: 

“The performance of the proposed method is compared with the correlation-based method in terms of source location 

estimation and the Bayesian method in terms of spatiotemporal accuracy. The sensitivity of the source location estimation 

to the spatial search range, size of the sliding window, feature type, and number and combination of sites is also 

investigated for SCK-CEN 41Ar experiment.” 

► Lines 123-125 of section “2.2 Observation filtering for spatiotemporally separated reconstruction”: 

“By reducing the influence of the release rate, the constant-release case can be approximated and the sensitivity of the 

observations to the source location can be improved, enabling separate source location and release rate estimations and 

reducing the solution space at each step.” 

► Title of section 2.3 in line 134: 

“2.3 Source location estimation without knowing the exact release rates” 

► Lines 137-141 of section “2.3 Source location estimation without knowing the exact release rates”: 

“The meteorology is known, so it becomes possible to locate the source using the filtered observations. Nevertheless, 

the specificity of source location estimation methods that rely on direct observation–simulation comparisons may be 

substantially compromised because the peak amplitude is reduced. A better choice for locating the source would be to 

use the response features of the filtered observations, which preserve most of the location information.” 

► Lines 185-186 of section “2.5.1 Pre-screening of potential source locations”: 

“Source locations corresponding to the highest 40% of correlation coefficients are selected as the search range of the 

subsequent refined source location estimation using XGBoost.” 

► Lines 196-197 of section “2.5.3 Automatic optimization of XGBoost model”: 

“The XGBoost model for source location estimation is automatically optimized with respect to the hyperparameters and 

feature selection.” 

► Lines 276-278 of section “2.7 Sensitivity study”: 

“Temporal filtering with different sliding-window sizes is applied to separate the source location estimation from the 



release rate estimation. In this study, the size of the sliding window ranges from 3–10. With these filtered data, the 

XGBoost model is trained using the same pattern for the source location estimation.” 

► Lines 280-281 of section “2.7 Sensitivity study”: 

“The XGBoost model is trained using only time-domain features and only frequency-domain features to investigate the 

influence of these features on the source location estimation.” 

► Lines 284-285 of section “2.7 Sensitivity study”: 

“The XGBoost model is trained and applied to the source location estimation with different numbers of observation sites, 

namely a single site, two sites, and three sites.” 

► Lines 293-294 of section “2.7 Sensitivity study”: 

“The performance of source location estimation is compared quantitatively using the metrics specified in Sect. 2.8.3.” 

► Line 314 of section “2.8.3 source reconstruction”: 

“The relative errors in the source location (𝛿𝐫) and total release (𝛿𝑄) are calculated to evaluate the source reconstruction 

accuracy:” 

► Lines 323-324 of section “2.8.4 Comparison with the Bayesian method”: 

“The proposed method is compared with the popular Bayesian method based on the SCK-CEN 41Ar and ETEX-1 

experiments, with the same search range used for locating the source in both methods (Fig. 2).” 

► Line 357 of section “3.2.1 Hyperparameters”: 

“Table S1 summarizes the optimal hyperparameters and corresponding GCs used for source location estimation in this 

study;” 

► Title of section 3.3.1 in line 384: 

“3.3.1 Source locations” 

► Lines 408-410 of section “3.3.1 Source locations”: 

“Figure 5. Source location estimation results of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 

experiment: (c) Group 1; (d) Group 2. A detailed enlargement of the region around (2.5°W, 47.5°N) to (1.5°W, 48.5°N) 

is shown in the bottom right corner in (c) and (d) to highlight the source location estimation results of the proposed 

method.” 

► Lines 414-415 of section “3.3.2 Release rates”: 

“Figure 6 displays the release rates estimated by the Bayesian and PAMILT methods based on the source location 

estimates in Fig. 5.” 

► Lines 458-460 of section “3.3.3 Uncertainty range”: 

“Feature selection improves the mean estimate and reduces the uncertainty range of PAMILT because it improves the 

source location estimation, thus reducing the deviation in the inverse model of the release rate.” 

► Line 500 of section “3.4.1 Sensitivity to the search range”: 

“Figure 10 displays the source location errors obtained using different pre-screening thresholds to determine the search 

range.” 

► Line 512 of section “3.4.2 Sensitivity to the size of the sliding window”: 

“Figure 11 shows the source location errors obtained with different sliding-window sizes.” 

► Line 524 of section “3.4.3 Sensitivity to the feature type”: 

“For Oct. 3, the source location errors are quite low when using only the time-domain features for the reconstruction;” 

► Lines 527-530 of section “3.4.3 Sensitivity to the feature type”: 

“For Oct. 4, the mean source location errors are similar when using either the time- or frequency-domain features, but 



the error range is higher when the frequency-domain features are used. In addition, the errors of both single-domain-

feature results are higher than those of the all-feature results, indicating that both feature types should be included to 

ensure accurate and robust source location estimation.” 

► Lines 534-535 of section “3.4.4 Sensitivity to the number and combination of observation sites”: 

“The results indicate that the source location error may be more sensitive to the position of the observation site than to 

the number of sites included.” 

► Lines 576-578 of section “4. Conclusions”: 

“The XGBoost algorithm was used to train a machine learning model that links the source location to the feature vector, 

enabling independent source location estimation without knowing the release rate.” 

 

Comment#4: 

Abstract, line 18: A relative error of about 50% for the Oct. 4 total release is probably not deemed “accurate”. It is better 

to present the results more objectively with the actual number listed in Table 3. 

Response to comment#4:  

Thank you for your valuable feedback. In light of your suggestion, we have modified the abstract to more 

objectively reflect the results. In the revised abstract, the presented results are the averages of the two days for the SCK-

CEN 41Ar experiment and the two groups for the ETEX-1 experiment, respectively. 

► Lines 15-20 of section “Abstract”: 

“This method is validated against the local-scale SCK-CEN 41Ar field experiment and the first release of the continental-

scale European Tracer Experiment, for which the lowest relative source location errors are 0.60% and 0.20%, 

respectively. This presents higher accuracy and a smaller uncertainty range than the correlation-based and Bayesian 

methods in estimating the source location. The temporal variations in release rates are accurately reconstructed, and 

the mean relative errors of the total release are 65.09% and 72.14% lower than the Bayesian method for the SCK-CEN 

experiment and European Tracer Experiment, respectively.” 

 

Comment#5: 

Line 94: The authors seem to suggest that the correlation-based method only applies when constant-release assumption 

is made. This is not accurate. Constant release is only one assumption that reduces the complexity of the problem. If the 

release starting time or duration is not known. Such assumption may not be enough to guarantee a unique solution of the 

source location. On the other hand, if a source is not constant, but the release time period and temporal profile are known, 

it is probably easy to get the source location even without the constant-release assumption. 

Response to comment#5:  

We agree with you that constant release is only one assumption that reduces the complexity of the problem and our 

descriptions need to be improved. To avoid confusion, we have deleted the term “(constant-release assumption)” in the 

revised manuscript. In the introduction section, we have emphasized that: the constant-release assumption may lead to 

inaccurate source location estimation, such as the case of the correlation-based method, because the constant-release 

assumption ignores the interaction between the time-varying release characteristics and non-stationary meteorological 

fields. We also agree that the source location can easily be estimated, if the release time period and temporal profile are 

known, even without the constant-release assumption. We did not mention this scenario, because this is not the focus of 

our study. Instead, we mainly consider atmospheric radionuclide releases where both the release time period and the 

temporal profile are unknown, which presents a more complex challenge for source location estimation. 



► Lines 64-82 of section “1. Introduction”: 

“Assumptions on the release characteristics aim to reduce the dimension of the solution space to 4 or 5, namely the two 

source location coordinates, the total release, and the release time (or the release start and end time), i.e. an 

instantaneous release at one time or constant release over a period (Kovalets et al., 2020, 2018; Efthimiou et al., 2018, 

2017; Tomas et al., 2021; Andronopoulos and Kovalets, 2021; Ma et al., 2018). Under these assumptions, the 

correlation-based method exhibits high accuracy for ideal cases under stationary meteorological conditions, such as 

synthetic simulation experiments (Ma et al., 2018) and wind tunnel experiments (Kovalets et al., 2018; Efthimiou et al., 

2017). However, previous studies have also demonstrated that real-world applications may be much more challenging, 

(Kovalets et al., 2020; Tomas et al., 2021; Andronopoulos and Kovalets, 2021; Becker et al., 2007) because the release 

usually exhibits temporal variations and may experience non-stationary meteorological fields. The interaction between 

the time-varying release characteristics and non-stationary meteorological fields is neglected in the instantaneous-

release and constant-release assumptions, leading to inaccurate reconstruction. 

Given the assumption-related reconstruction deviations in complex scenarios, we propose a spatiotemporally 

separated source reconstruction method that is less dependent on such assumptions. Our approach reduces the 

complexity of the source reconstruction using the simple fact that the source location is fixed during the atmospheric 

radionuclide release process. In this case, the spatiotemporal variations of observations are influenced by the time-

varying release rate, source location, and meteorology, of which the last variable is generally known. The proposed 

method reduces the influence of the release rate through a temporal sliding-window average filter, making the filtered 

observations more sensitive to the source location than to the release rate. After filtering, existing methods based on 

direct observation–simulation comparisons may be unable to locate the source.” 

► Line 92-94 of section “1. Introduction”: 

“The performance of the proposed method is compared with the correlation-based method (constant-release assumption) 

in terms of source location estimation and the Bayesian method (statistical assumption) in terms of spatiotemporal 

accuracy.” 

 

Comment#6: 

Line 108: It is wrong to assume a square matrix. The dimensions of the observation and source vectors are independent 

and rarely the same. 

Response to comment#6:  

Thank you for pointing the error of the matrix. As you mentioned, the matrix A(r) is not a square matrix in general. 

We have modified the dimension of the matrix: 𝐀(𝐫) = [𝐴1(𝐫),  𝐴2(𝐫),⋯ , 𝐴𝑁(𝐫)]𝑇 ∈ ℝ𝑁×𝑆, where 𝑁 is the number of 

sequential time steps and 𝑆 is the length of release rate vector 𝐪.  

► Lines 99-108 of section “2.1 Source reconstruction models”: 

“For an atmospheric radionuclide release, Eq. (1) relates the observations at each observation site to the source 

parameters:                            

𝛍 = 𝐅(𝐫, 𝐪) + 𝛆 ,                    (1) 

where 𝛍 = [𝜇1, 𝜇2,⋯ , 𝜇𝑁]𝑇 ∈ ℝ𝑁  is an observation vector composed of observations at 𝑁  sequential time steps, the 

function 𝐅 maps the source parameters to the observations, i.e. an atmospheric dispersion model, 𝐫 refers to the source 

location, 𝒒 ∈ ℝ𝑆 is the temporally varying release rate, and 𝛆 ∈ ℝ𝑁 is a vector containing both model and measurement 

errors. 

In most source reconstruction models, 𝐅 is simplified to the product of 𝐪 and a source–receptor matrix 𝐀 that depends 



on the source location: 

𝛍 = 𝐀(𝐫)𝐪 + 𝛆 ,                    (2) 

where 𝑨(𝒓) = [𝐴1(𝒓),  𝐴2(𝒓),⋯ , 𝐴𝑁(𝒓)]𝑇 ∈ ℝ𝑁×𝑆  and each row describes the sensitivity of an observation to the 

release rate 𝐪 given the source location 𝐫.” 

 

Comment#7: 

Lines 122-124: The statement is not correct. The emissions combined with the meteorological conditions together 

determine the concentrations at any given measurement site, including the peak values and its timing. 

Response to comment#7:  

We agree that the emission and the meteorological jointly influence the peak values and its timing. Our work aims 

to smooth out the peak observations that is primarily shaped by the temporal release profile. We have restated our method 

based on this effect.  

► Lines 121-125 of section “2.2 Observation filtering for spatiotemporally separated reconstruction”: 

“With a fixed source location, the release rate and meteorology jointly determine the temporal variations of the 

observations (Li et al., 2019). The influence of meteorology can be pre-calculated as the source–receptor sensitivities 

and subsequently stored in matrix 𝑨(𝒓). By reducing the influence of the release rate, the constant-release case can be 

approximated and the sensitivity of the observations to the source location can be improved, enabling separate source 

location and release rate estimations and reducing the solution space at each step.” 

► Line 135 of section “2.3 Source location estimation without knowing the exact release rates”: 

“After applying the filter in Eq. (4), the peak observations, primarily shaped by the temporal release profile, are 

smoothed out.” 

 

Comment#8: 

Line 228: It is very confusing to use “sample” for the different candidate source locations. 

Response to comment#8:  

We apologize for any confusion caused by the term “sample”. This term refers to an individual simulation using 

one of the candidate source locations. Therefore, each “sample” represents a simulated dispersion scenario with a 

different candidate source location. To clarify this point, we have replaced the word “sample” with “simulation” in the 

revised manuscript. 

► Lines 253-257 of section “2.6.2 Simulation settings of atmospheric dispersion model”: 

“To establish the datasets for the XGBoost model, 2000 simulations and 1000 simulations with different source locations 

were performed by RIMPUFF for the experiments on Oct. 3 and Oct. 4, respectively. Candidate source locations were 

randomly sampled from the shaded zones in Fig. 2(a), which were determined according to the positions of the 

observation sites and the upwind direction. Each simulation, along with its corresponding source location, forms one 

sample.” 

 

Comment#9 

Lines 287-288: The hyper-parameters used in the 50 runs should be given in the supplementary document. 

Response to comment#9:  

We appreciate your suggestion regarding the inclusion of hyperparameters. We have provided all hyperparameters 

of the 50 runs in the revised version of the supplementary document. 

► Tables S2-S3 of Supplementary Material (Lines 50-53): 



“Table S2. Hyperparameter optimization results of all 50 runs in Oct 3 of SCK-CEN 41Ar experiment. 

Run 

Hyperparameters 

max_depth learning_rate n_estimators min_child_weight subsample colsample_bytree reg_lambda gamma 

1 8 0.06963 257 2 0.58442 0.99833 0.56084 0.03347 

2 8 0.05003 261 3 0.65774 0.76821 3.67031 0.40337 

3 7 0.08651 246 4 0.76497 0.86844 1.82068 0.02107 

4 3 0.10114 240 3 0.72483 0.99964 1.90473 0.40321 

5 4 0.09505 299 4 0.86627 0.91229 2.72513 0.73273 

6 6 0.12811 198 4 0.86151 0.91167 2.01739 0.64585 

7 8 0.12143 160 5 0.76193 0.87631 1.32947 0.10111 

8 4 0.10118 149 2 0.75307 0.47997 1.42352 0.32648 

9 6 0.08344 203 2 0.73900 0.58051 4.27579 0.36316 

10 6 0.08371 293 4 0.70524 0.50305 1.58921 0.90349 

11 6 0.08044 203 7 0.74233 0.83712 1.87067 0.66921 

12 8 0.08750 298 5 0.73452 0.95439 3.24463 0.23793 

13 8 0.12917 218 5 0.64402 0.57828 0.79801 0.43434 

14 5 0.09389 279 2 0.97316 0.80680 1.61133 0.05062 

15 8 0.14586 255 9 0.54883 0.74530 3.62691 0.21478 

16 8 0.09194 160 3 0.59974 0.83406 0.33249 0.18032 

17 4 0.08920 257 2 0.67346 0.99730 0.98970 0.17230 

18 4 0.09419 294 4 0.79714 0.87812 3.77772 0.88406 

19 5 0.07604 299 3 0.79858 0.83297 0.36589 0.27070 

20 6 0.08451 231 3 0.76571 0.89974 2.67871 0.31997 

21 5 0.15257 203 3 0.83687 0.94582 1.67365 0.06759 

22 4 0.14711 180 3 0.82554 0.79287 1.10286 0.31295 

23 5 0.08729 285 2 0.67684 0.91908 0.81695 0.76090 

24 8 0.09440 235 2 0.66775 0.88929 4.40930 0.04806 

25 7 0.10085 216 3 0.58725 0.68488 1.70407 0.25164 



26 8 0.09937 200 3 0.83402 0.78555 3.59830 0.55999 

27 3 0.12772 189 6 0.75408 0.99256 1.67164 0.24484 

28 8 0.10973 183 2 0.50393 0.53818 0.67395 0.18678 

29 6 0.09468 185 2 0.59535 0.75381 2.10634 0.48731 

30 6 0.09652 247 3 0.69860 0.95369 0.05146 0.48637 

31 7 0.06846 185 5 0.52549 0.61305 0.97320 0.17339 

32 8 0.09323 215 4 0.74269 0.98432 4.30255 0.28215 

33 7 0.09339 299 6 0.61681 0.49190 2.27687 0.96352 

34 7 0.11693 234 3 0.74464 0.54387 1.02597 0.63504 

35 4 0.06858 277 2 0.74264 0.92278 1.30424 0.81347 

36 5 0.08068 246 5 0.73714 0.99006 1.39783 0.27963 

37 8 0.08645 274 4 0.82352 0.99618 3.59875 0.82528 

38 7 0.18011 226 8 0.66425 0.81094 0.98036 0.11274 

39 5 0.08397 212 3 0.62934 0.45110 1.94896 0.64913 

40 5 0.07800 228 2 0.66806 0.91700 0.32409 0.53206 

41 6 0.07905 231 4 0.63064 0.93657 0.01082 0.03863 

42 3 0.09277 261 3 0.72093 0.96486 1.73917 0.39009 

43 5 0.08732 217 2 0.81405 0.78575 1.71376 0.85775 

44 5 0.08417 225 3 0.61443 0.61703 2.06192 0.93001 

45 8 0.14916 188 4 0.71686 0.87552 0.21908 0.58120 

46 6 0.10745 179 3 0.82311 0.92434 3.99176 0.29124 

47 4 0.13632 252 4 0.83077 0.92543 3.17264 0.31258 

48 8 0.12402 176 4 0.70048 0.75866 3.18949 0.92647 

49 8 0.07057 283 4 0.62353 0.39145 0.71074 0.47779 

50 5 0.11104 197 3 0.79114 0.86436 3.16004 0.19049 

 

Table S3. Hyperparameter optimization results of all 50 runs in Oct 4 of SCK-CEN 41Ar experiment. 

Run 

Hyperparameters 

max_depth learning_rate n_estimators min_child_weight subsample colsample_bytree reg_lambda gamma 



1 5 0.07095 242 10 0.53823 0.98511 3.43106 0.47567 

2 6 0.13148 121 10 0.52493 0.91239 4.40584 0.19543 

3 7 0.15575 102 9 0.50009 0.80159 1.43484 0.98014 

4 7 0.10178 245 9 0.50621 0.55022 2.84160 0.78872 

5 6 0.15994 88 9 0.54667 0.93870 0.68681 0.82277 

6 6 0.07483 221 7 0.50084 0.97352 3.24507 0.65469 

7 7 0.08191 179 8 0.50132 0.99302 4.00168 0.63458 

8 5 0.05154 256 10 0.50279 0.97827 1.93594 0.01850 

9 8 0.05644 294 10 0.56394 0.84780 2.05943 0.27115 

10 4 0.07670 281 10 0.53927 0.97848 4.82450 0.27244 

11 6 0.13550 112 10 0.53406 0.53254 2.40913 0.53195 

12 6 0.08587 203 10 0.63046 0.84871 4.82865 0.96621 

13 7 0.09585 288 10 0.50229 0.99575 4.49999 0.55975 

14 7 0.08191 245 10 0.54189 0.87572 3.95663 0.85872 

15 7 0.07474 174 7 0.51174 0.96561 2.97146 0.92806 

16 5 0.08019 212 9 0.50228 0.98434 4.45686 0.41716 

17 8 0.07642 205 9 0.52041 0.84692 4.46048 0.41196 

18 8 0.08315 218 10 0.56530 0.92783 4.49138 0.69385 

19 7 0.09760 171 10 0.57999 0.74319 0.76715 0.72171 

20 5 0.10593 142 9 0.52512 0.99411 0.89520 0.27131 

21 8 0.07079 185 9 0.50469 0.87378 1.08559 0.25444 

22 6 0.11366 183 9 0.57435 0.77739 3.16044 0.93374 

23 6 0.11157 254 9 0.52017 0.97489 1.90816 0.79666 

24 7 0.11255 188 8 0.50796 0.74881 1.66455 0.77696 

25 7 0.18193 79 10 0.68663 0.99816 2.79139 0.92738 

26 5 0.20795 137 10 0.60099 0.37442 4.72568 0.01013 

27 5 0.08039 208 10 0.55245 0.85163 2.68594 0.57202 

28 4 0.13824 232 9 0.53167 0.97794 4.99790 0.72989 



29 5 0.11709 264 10 0.50079 0.65333 4.99177 0.01211 

30 7 0.08384 183 9 0.54315 0.85012 2.95216 0.68107 

31 7 0.07624 243 10 0.51390 0.68864 2.39622 0.79548 

32 8 0.12670 219 9 0.51735 0.51438 4.86510 0.39015 

33 7 0.17030 133 8 0.50620 0.74374 4.58307 0.02592 

34 6 0.17322 101 7 0.54173 0.74255 4.24794 0.97291 

35 4 0.09476 222 10 0.50025 0.77689 4.46467 0.83712 

36 7 0.10917 175 9 0.52491 0.91604 2.16957 0.73717 

37 7 0.08104 168 10 0.50263 0.50745 3.81626 0.69286 

38 5 0.13034 245 10 0.50188 0.76513 2.11312 0.03408 

39 8 0.08419 196 10 0.55446 0.85748 4.85152 0.63630 

40 8 0.08592 205 10 0.52833 0.88829 2.58534 0.47814 

41 6 0.16963 80 8 0.56274 0.94076 3.32882 0.66880 

42 7 0.14335 123 8 0.56362 0.91686 4.92034 0.02893 

43 8 0.12178 183 10 0.58719 0.86078 3.42019 0.41184 

44 7 0.14413 185 10 0.52721 0.57415 2.30624 0.51660 

45 6 0.08748 221 10 0.50936 0.70774 2.06636 0.28648 

46 7 0.08946 176 10 0.55001 0.92642 3.51959 0.19652 

47 7 0.09190 157 8 0.63144 0.74802 0.11220 0.61326 

48 5 0.13140 200 10 0.51145 0.69994 3.88528 0.53884 

49 5 0.12585 187 10 0.50120 0.93257 2.44567 0.98524 

50 6 0.07366 250 9 0.53270 0.95103 1.97326 0.23232 

” 

 

Comment#10: 

Figure S3: What is the sliding window applied here? It does seem to be a sided window rather than centered one. Please 

explain this in the paper. 

Response to comment#10:  

We apologize for the lack of clarity regarding the sliding window used in Figure S3. As outlined in Eq. (4), a one-

sided window is employed. This one-sided temporal sliding-window average filter involves the current and previous 

observations in the window, acknowledging that future observations are not available for filtering in practice. Compared 



to the centered window, the one-sided window excels in real-time data processing and rapid response to changes in the 

observations, making it more suitable for real applications. Relevant descriptions of the sliding window have been 

modified in the revised manuscript for clarity. 

► Line 128-133 of section “2.2 Observation filtering for spatiotemporally separated reconstruction”: 

“In this study, the following operator matrix is constructed to impose a one-sided temporal sliding-window average filter 

(Eamonn Keogh, Selina Chu, 2004): 

𝐏 =
1

𝑇

[
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1 1

⋮
1 1 ⋯ 1
1 1 ⋯ 1 1

1 1 ⋯ 1 1
1 1 ⋯ 1 1
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1 1 ⋯ 1 1

1 1 1 1 1 ]
 
 
 
 
 
 
 
 
 

 ,            (4) 

where T is the size of the sliding window. This one-sided filter involves the current and previous observations in the 

window, acknowledging that future observations are not available for filtering in practice. Although a sliding-window 

average filter is used in this study, Eq. (3) is compatible with more advanced processing methods.” 

 

Minor points 

Comment#1: 

Line 46, T3-10: Please explain what T3-10 distributions are. 

Response to comment#1:  

The notation T3-10 denotes a Student’s t-distribution with degrees of freedom ranging from 3 to 10, as referenced 

in (Wang et al., 2017). The t-distribution (also known as tv) is applicable for estimating the mean of a normally distributed 

population, when the sample size is small and the population standard deviation is unknown. In this distribution, the 

parameter 𝜈 represents the degrees of freedom and determines the distribution’s shape. As 𝜈 increases, the t-distribution 

approaches the normal distribution. To eliminate the ambiguity, we have replaced “T3-10” with “t-distribution (with 

degrees of freedom ranging from 3–10)”. 

► Lines 48-51 of section “1. Introduction”: 

“Other candidates include the t-distribution (with degrees of freedom ranging from 3–10), Cauchy distribution, and log-

Cauchy distribution, all of which were compared against the normal and log-normal distributions in terms of 

reconstructing the source parameters of the Prairie Grass field experiment (Wang et al., 2017).” 

 

Comment#2: 

Line 60: What does “deterministic assumption” mean? It is quite confusing. 

Response to comment#2:  

We apologize for any confusion caused by the term “deterministic assumption”. Deterministic assumptions aim to 

define the physical feature of source parameters. A typical one is the constant-release assumption, which assumes that 

the substances are released at a constant rate during the release period (Kovalets et al., 2020, 2018; Efthimiou et al., 

2018, 2017; Tomas et al., 2021; Andronopoulos and Kovalets, 2021; Ma et al., 2018). To avoid confusion, we have 



replaced the terms “Statistical assumption” and “Deterministic assumption” with “Assumptions on the model–

observation discrepancies” and “Assumptions on the release characteristics”, respectively, in the introduction section in 

the revised manuscript. 

► Lines 41-44 of section “1. Introduction”: 

“To reduce the problem of ill-posedness, most previous studies have attempted to constrain the reconstruction by 

imposing assumptions on the model–observation discrepancies or release characteristics. Assumptions on model–

observation discrepancies are widely used in Bayesian methods to simultaneously reconstruct the posterior distributions 

of spatiotemporal source parameters (De Meutter et al., 2021; Meutter and Hoffman, 2020; Xue et al., 2017).” 

► Lines 64-74 of section “1. Introduction”: 

“Assumptions on the release characteristics aim to reduce the dimension of the solution space to 4 or 5, namely the 

two source location coordinates, the total release, and the release time (or the release start and end time), i.e. an 

instantaneous release at one time or constant release over a period (Kovalets et al., 2020, 2018; Efthimiou et al., 2018, 

2017; Tomas et al., 2021; Andronopoulos and Kovalets, 2021; Ma et al., 2018). Under these assumptions, the 

correlation-based method exhibits high accuracy for ideal cases under stationary meteorological conditions, such as 

synthetic simulation experiments (Ma et al., 2018) and wind tunnel experiments (Kovalets et al., 2018; Efthimiou et al., 

2017). However, previous studies have also demonstrated that real-world applications may be much more challenging, 

(Kovalets et al., 2020; Tomas et al., 2021; Andronopoulos and Kovalets, 2021; Becker et al., 2007) because the release 

usually exhibits temporal variations and may experience non-stationary meteorological fields. The interaction between 

the time-varying release characteristics and non-stationary meteorological fields is neglected in the instantaneous-

release and constant-release assumptions, leading to inaccurate reconstruction.”  

 

Comment#3: 

Figure 1: What do the different shapes and colors in the diagram mean? 

Response to comment#3:  

We apologize for not providing detailed explanations for the shapes and colors in Figure 1. We have added 

descriptions to the figure caption of the Fig. 1 and relabeled the root nodes using yellow squares in Fig. 1, providing a 

more accurate and detailed introduction to the decision tree model.  

► Line 152-156 of section “2.3 Source location estimation without knowing the exact release rates”:  

“
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Figure 1. Flowchart of XGBoost for predicting 𝐫̂𝑖  based on decision tree model. The yellow squares are the root nodes 

within each tree, representing the input features in this paper. The purple ellipses denote the child nodes where the model 

evaluates input features and make decisions to split the data. The green rectangles depict the leaf nodes and refer to the 

prediction results. The vertical rectangles abstract the internal splitting processes of the trees, indicating decision-

making not explicitly detailed in the diagram.” 

 

Comment#4: 

Equation (7): Please explain all the parameters here. 

Response to comment#4:  

We appreciate your attention to Equation (7). To avoid confusion, we have replaced the symbol “T” with “M” in 

Eq. (7) and have provided additional descriptions for all the parameters. 

► Lines 149-151 of section “2.3 Source location estimation without knowing the exact release rates”: 

“where 𝐾 is the number of trees, 𝓕 = {𝑓(𝑥) = 𝛚𝑄(𝑥)}(𝑄: ℝ𝑝 → 𝑀,𝛚 ∈ ℝ𝑀) is the space of the decision trees, and 𝑄 

represents the structure of each tree, mapping the feature vector to 𝑀 leaf nodes. Each 𝑓𝑘 corresponds to an independent 

tree structure 𝑄 with leaf node weights 𝛚 = (𝜔1, 𝜔2,⋯ ,𝜔𝑀).” 

► Lines 159-163 of section “2.3 Source location estimation without knowing the exact release rates”: 

“where 𝑡 represents the training of the 𝑡-th tree and 𝛺(𝑓𝑖) is the regularization term, given by: 

𝛺(𝑓) = 𝛶𝑀 +
1

2
𝜆 ∑ 𝜔𝑗

2𝑀
𝑗=1  ,                (7) 

where 𝑀 is the number of leaf nodes, 𝜔𝑗 is the leaf node weight for the 𝑗-th leaf node, and 𝛶, 𝜆 are penalty coefficients. 

The minimization of Eq. (6) provides a parametric model 𝐺(𝐗) that maps the feature ensemble 𝐗 extracted from 𝛍𝑝 to 

the source location 𝐫.” 

 

Comment#5: 

Line 160: Why is the amplitude quantity called “wave rate”? 

Response to comment#5:  

We apologize for the unclear definition. We aim to define the “wave_rate” as a statistical measure that quantifies 

the fluctuations of 𝛍𝑝 over time. To reduce the impact of extreme values, the “wave rate” is calculated as the difference 

between the 90th and 10th quantiles of the normalized observation series. To avoid any ambiguity, we have removed the 

term “amplitude” from the revised manuscript and clarified the definition of “wave_rate” to ensure it accurately reflects 

the intended concept.   

► Lines 165-167 of section “2.3 Source location estimation without knowing the exact release rates”: 

“Among the time-domain features, the wave rate quantifies the fluctuations of 𝝁𝑝 over time,  while the temporal mean 

and median values are measures of the central tendency of 𝝁𝑝 (Witte and Witte, 2017).” 

 

Comment#6: 

Lines 160-161: The median value is not a central moment. 

Response to comment#6:  

We appreciate your observation regarding the classification of median value. Upon reviewing relevant literature 

(Witte and Witte, 2017), the temporal mean and median values are indeed recognized measures of central tendency in 

statistical analysis. We have made revisions in the manuscript to clarify this point.  



► Lines 165-167 of section “2.3 Source location estimation without knowing the exact release rates”: 

“Among the time-domain features, the wave rate quantifies the fluctuations of 𝝁𝑝 over time, while the temporal mean 

and median values are measures of the central tendency of 𝝁𝑝 (Witte and Witte, 2017).” 

 

Comment#7: 

Line 232: If it is 40th percentile, the number of samples for Oct.3 and Oct. 4 should be 1200 and 600. 

Response to comment#7:  

We appreciate your careful review and for identifying this discrepancy. Indeed, we intended to reference the 60th 

percentile, not the 40th. To clarify this point, we have revised our descriptions and instead specified that source locations 

corresponding to the highest 40% of correlation coefficients are selected for further analysis. 

► Lines 185-186 of section “2.5.1 Pre-screening of potential source locations”: 

“Source locations corresponding to the highest 40% of correlation coefficients are selected as the search range of the 

subsequent refined source location estimation using XGBoost.” 

► Lines 257-258 of section “2.6.2 Simulation settings of atmospheric dispersion model”: 

“As described in Sect. 2.5.1, we calculated the correlation coefficient for each sample and preserved the 40% of samples 

with the highest 40% of correlation coefficients (i.e. 800 samples for Oct. 3 and 400 samples for Oct. 4).” 

 

Comment#8: 

Line 237: The authors probably mean 80th, 60th, 50th, 40th, 20th, and 0th. 

Response to comment#8:  

We appreciate your attention to this detail. You are correct. In line with the response to comment#7, we have revised 

the relevant descriptions to accurately reflect the search range. 

► Lines 271-274 of section “2.7 Sensitivity study”: 

“The search range is controlled by the pre-screening threshold, which is the top proportion of the correlation coefficients 

in the pre-screening step. Specifically, we use source locations corresponding to the highest 20%, 40%, 50%, 60%, 80%, 

and 100% of correlation coefficients to define the search ranges, with a lower proportion indicating a narrower and 

more focused search area.” 

 

Comment#9: 

Line 238: “A lower percentile” should be “a higher percentile”. 

Response to comment#9:  

We appreciate your attention in identifying this discrepancy. We have corrected this error in the revised manuscript, 

which is consistent with the revisions discussed in comment#7 and comment#8. 

► Lines 272-274 of section “2.7 Sensitivity study”: 

“Specifically, we use source locations corresponding to the highest 20%, 40%, 50%, 60%, 80%, and 100% of correlation 

coefficients to define the search ranges, with a lower proportion indicating a narrower and more focused search area.” 

 

Comment#10: 

Figure 8: No shade appears for the Bayesian inversion results in the lower left panel. 

Response to comment#10:  

Thank you for pointing out the visualization issue regarding Fig. 8. To resolve this problem, we have enlarged the 



shading in this area for better visualization. Additionally, we have adjusted the shading range from [minimum, maximum] 

to [lower quartile, upper quartile] to better represent the results.  

► Figure 8 of section “3.3.3 Uncertainty range” (Lines 463-467): 

 

“Figure 8. Release rate estimates over 50 calculations of SCK-CEN 41Ar experiment. (a) Oct. 3-Bayesian method; (b) 

Oct. 3-PAMILT method; (c) Oct. 4-Bayesian method; (d) Oct. 4-PAMILT method. The shadow represents the uncertainty 

range between the lower quartile and the upper quartile. The shadow of each figure is amplified by an enlarged subgraph. 

The legends in each figure provide the mean estimates for the total release.” 

 

Comment#11: 

Line 416:  What do the various pre-screening ranges refer to? 

Response to comment#11:  

We apologize for any confusion caused by the term “pre-screening ranges”. These pre-screening ranges, as detailed 

in Sect. 2.5.1, refer to the specific subsets of source locations selected based on their correlation coefficients (i.e. search 

range). The pre-screening process is designed to reduce computational costs and eliminate low-quality samples by 

focusing on the most promising source locations for further analysis. To eliminate the ambiguity, we have replaced the 

“pre-screening ranges” with “search ranges”. 

► Line 501 of section “3.4.1 Sensitivity to the search range”: 

“The error is smaller with a lower threshold, implying that a small search range helps reduce the mean and median 

errors.” 

► Lines 512-514 of section “3.4.2 Sensitivity to the size of the sliding window”: 

“The mean/median error is less than 8% for Oct. 3 and less than 11% for Oct. 4, both of which are smaller than for the 

various search ranges in Fig. 9. This indicates that the proposed method is more robust to this parameter than to the 

search range.” 

 



Comment#12: 

Figure S1: Should it be 20% instead of 10% for the five-fold cross-validation? 

Response to comment#12:  

We appreciate your attention to detail in Figure S1. You are correct about the discrepancy in the percentage for the 

five-fold cross-validation; it should be 20% instead of 10%. We have made this correction in the revised figure. 

► Figure S1 of Supplementary Material (Lines 29-30): 

“  

Figure S1. Flowchart of the proposed spatiotemporally separated source reconstruction method.” 

 

Comment#13: 

Table S1: Brief descriptions of the hyperparameters should be provided. 

Response to comment#13:  

We appreciate your suggestion regarding Table S1. Brief descriptions of the hyperparameters have been included 

in the caption of Table S1 for clarity: 

► Lines 45-48 of Supplementary Material: 

“Table S1. Hyperparameter optimization results. max_depth-maximum depth of a decision tree; learning_rate-step size 

shrinkage when updating; n_estimators-number of decision trees; min_child_weight-minimum sum of sample weight of 

a child node; subsample-subsample ratio of the training samples; colsample_bytree-subsample ratio of columns when 

constructing a decision tree; reg_lambda-L2 regularization term on weights; and gamma-minimum loss reduction 

required to split the decision tree.” 

 

Thanks again for such a thorough review! 
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Referee #2 

General comments 

This study proposes a novel approach to the source reconstruction of atmospheric radionuclide emissions in non-

stationary emission scenarios. By moving away from the unrealistic assumption of constant emissions and developing a 

method for spatiotemporally decoupled source reconstruction, it effectively leverages the fact that variations in emission 

rates significantly impact observations. The methodology involves training machine learning models with the XGBoost 

algorithm and determining detailed temporal variations in emission rates using the PAMILT algorithm. The paper makes 

a significant contribution to the field of atmospheric radionuclide emission source reconstruction. The proposed 

methodology offers an effective means for accurately localizing sources and estimating emission rates in non-stationary 

scenarios, presenting a promising framework for future research and applications. 

[1] The utilization of a temporal sliding-window average filter is commendable. However, elucidating the criteria for 

feature selection and the impact of varying combinations of observation sites on source estimation would enhance the 

paper. 

[2] Validating the proposed method against the SCK-CEN 41Ar field experiment data underscores its efficacy and 

applicability. Nonetheless, conducting further validation studies under diverse scenarios and conditions would enrich 

our understanding of the method's applicability and limitations. It is recommended to include additional case studies 

involving different types of releases and weather conditions to assess the method's efficiency and adaptability more 

comprehensively. 

 

Response to general comments: 

Thank you for your valuable feedback and suggestive comments on our manuscript, which not only recognizes the 

innovation and contribution of our approach but also highlights areas for further enhancement of our work. Below are 

our responses to your main points: 

 

(1) The criteria for feature selection and the impact of varying combinations of observation sites 

(1.1) The criteria for feature selection  

The mean cross-validation score (MCV) is used as the criterion for feature selection, and the optimal feature subset 

is selected as the one that achieves the highest MCV. This selection is implemented by recursively removing the feature 

with the least importance, and assessing the MCV based on cross validation (Akhtar et al., 2019). It starts with training 

a XGBoost model with all features, and assessing the importance of each feature based on its contribution to the accuracy 

of the XGBoost model. Then, the feature with the least importance is removed and the XGBoost model is retrained using 

the remaining features. The feature importance and MCV are updated accordingly for the removal of another feature. 

This iteration continues until the optimal number of features is identified, corresponding to the highest MCV achieved 

during the process. 

Using this criterion, unimportant features can be removed to improve the XGBoost model’s prediction accuracy, 

while simultaneously reducing the risk of overfitting and computational costs.  

 

To clearly reflect the criteria of feature selection, we have added some descriptions in relevant section. 



► Lines 208-215 of section “2.5.3 Automatic optimization of XGBoost model”: 

“The initial input features (Table 1) are optimized through a feature selection step, where MCV serves as the selection 

criterion. The selection is implemented by recursively removing the feature with the least importance, and reassessing 

the MCV based on cross-validation (Akhtar et al., 2019). Initially, an XGBoost model is trained with all features, and 

the importance of each feature is assessed based on its contribution to the model accuracy. The feature with the least 

importance is removed and the XGBoost model is retrained using the remaining features. The feature importance and 

MCV are updated accordingly and another feature is removed. This iterative process continues until the optimal number 

of features is identified, corresponding to the highest MCV achieved during the process.  The overall flowchart of the 

proposed spatiotemporally separated source reconstruction model is shown in Fig. S1.” 

 

(1.2) Impact of varying combinations of observation sites 

We agree that it is important to discuss the impact of varying combinations of observation sites. Briefly speaking, 

the selection of representative sites is more important for model performance than increasing the number of sites. In this 

study, we have demonstrated this impact through sensitivity studies with respect to both the number and combination of 

observation sites.  

1) The number of observation sites 

Additional observation sites can better capture environmental variability and impose stronger constraints on the 

estimation, leading to more robust results. However, the usage of all observation sites may cause overfitting of the 

XGBoost model and reduce the prediction accuracy of the trained model. Our sensitivity study (Fig. 12) also reveals that 

locating the source using all observation sites does not achieve the lowest error level, though the error level remains low.  

2) The position of observation sites 

Observation sites located at appropriate position can capture environmental variability and provide adequate 

information for locating the source. Utilizing only these representative sites can alleviate overfitting and enhance the 

prediction accuracy of the XGBoost model. The sensitivity study demonstrates that the lowest error levels are achieved 

by a subset of sites, i.e. Site ABD on Oct. 3 and Site BD on Oct. 4. For Oct.3, multi-site estimations with Site B always 

produce lower error levels, and single-site estimation using Site B also achieves high accuracy. For Oct.4, multi-site 

estimations with Site BD always achieve relatively low error levels. These results prove the importance of representative 

sites in source location estimation. In addition, the representative sites (Site B for Oct. 3 and Site BD for Oct. 4) are 

consistent with the feature selection results in Fig. 4, preliminarily indicating the potential of feature selection to identify 

representative sites. 

 

To highlight the impact of varying combinations of observation sites, we have added some descriptions in relevant 

section. 

► Lines 534-546 of section “3.4.4 Sensitivity to the number and combination of observation sites”: 

“Figure 13 compares the results obtained with different numbers and combinations of observation sites. The results 

indicate that the source location error may be more sensitive to the position of the observation site than to the number of 

sites included. The error level of all-site estimations is relatively low for both days, indicating that increasing the number 

of observation sites better constrains the solution and help improve the robustness of the model. However, the lowest 

error levels are achieved by a subset of sites, i.e. Site ABD on Oct. 3 and Site BD on Oct. 4. This is possibly because 

including all observation sites may cause overfitting and reduce the prediction accuracy. This overfitting can be 

alleviated by using only representative sites at appropriate position, which capture the environmental variability and 



provide clear information for locating the source. For Oct.3, multi-site estimations with Site B always produce low error 

levels, and single-site estimation using Site B also achieves high accuracy. For Oct.4, multi-site estimations with Site 

BD always achieve relatively low error levels. These results demonstrate the importance of using representative sites for 

source location estimation. The representative sites (Site B for Oct. 3 and Site BD for Oct. 4) are consistent with the 

importance calculated in the feature selection step (Fig. 4), preliminarily indicating the potential for feature selection to 

identify representative sites. In addition, feature selection reduces the mean error level in most cases.” 

 

(2) More validation of the method:  

We acknowledge the importance of validating our method against diverse scenarios and weather conditions to assess 

its robustness and practical applicability.  

To address your concern, we have incorporated an additional validation case based on the first release of the 

European Tracer Experiment (ETEX-1) (Nodop et al., 1998), involving a different type of releases (continental-scale) 

and more complex meteorological conditions (temporally and spatially varying), to thoroughly assess the method's 

efficiency and adaptability. During ETEX-1, a total of 340 kg of perfluoromethylcyclohexane (PMCH) was released 

continuously into the atmosphere from 23 October 1994 at 16:00:00 UTC and 24 October at 1994 03:50:00 UTC. 

Assuming the release could have occurred between 23 October at 1994 00:00:00 UTC and 28 October 1994 at 00:00:00 

UTC, it is viewed as a temporally-varying release, with a release rate of zero outside the actual release window. A total 

of 3104 available observations (3-h-averaged concentrations) were collected at 168 ground sites. As shown in Fig. 2b, 

we choose two groups of observation sites: the first comprises four sites (i.e. B05, D10, D16, F02) randomly selected 

from the sites within the sample zone (Group1, with a total of 92 available observations), and the second involves four 

sites (i.e. CR02, D15, DK08, S09) randomly selected from the sites beyond the sample zone boundaries (Group2, with 

a total of 90 available observations). 

For the continental-scale ETEX-1 experiment, the proposed method still achieves the lowest source location errors 

among all methods, which are below 10 km and 20 km (less than the grid size of 0.25°0.25°) for Group1 and Group2, 

respectively. Regarding the results of the uncertainty analysis, the mean relative source location errors are 2.42% and 

4.97% for Group 1 and Group 2, respectively, lower than the correlation-based and Bayesian methods. The proposed 

method provides highly accurate mean estimates of release rate for both groups after feature selection, although with a 

large uncertainty range. These results demonstrate that spatiotemporally separated source reconstruction is feasible and 

achieves satisfactory accuracy in multi-scale release scenarios, thereby providing a promising framework for 

reconstructing atmospheric radionuclide releases. 

An overview of the ETEX-1 experiment and corresponding source reconstruction results are provided below. 

Detailed results and discussions have been included in the revised manuscript.  

► Lines 15-20 of section “Abstract”: 

“This method is validated against the local-scale SCK-CEN 41Ar field experiment and the first release of the continental-

scale European Tracer Experiment, for which the lowest relative source location errors are 0.60% and 0.20%, 

respectively. This presents higher accuracy and a smaller uncertainty range than the correlation-based and Bayesian 

methods in estimating the source location. The temporal variations in release rates are accurately reconstructed, and 

the mean relative errors of the total release are 65.09% and 72.14% lower than the Bayesian method for the SCK-CEN 

experiment and European Tracer Experiment, respectively.” 

► Lines 90-92 of section “1. Introduction”: 

“The proposed method is validated using the data from multi-scales field experiments, namely the local-scale SCK-CEN 



41Ar experiment  (Rojas-Palma et al., 2004), and the first release of the continental scale European Tracer Experiment 

(ETEX-1) (Nodop et al., 1998), which traced emissions of Perfluoro-Methyl-Cyclo-Hexane (PMCH).” 

► Line 218 of section “2.6.1 Field experiments”: 

“The proposed methodology was validated against the observations of the SCK-CEN 41Ar and ETEX-1 field experiments.” 

► Lines 229-246 of section “2.6.1 Field experiments”: 

“The ETEX-1 experiment took place at Monterfil in Brittany, France, on 23 October 1994 (Nodop et al., 1998). During 

ETEX-1, a total of 340 kg of PMCH was released into the atmosphere on 23 October 1994 at 16:00:00 UTC and 24 

October 1994 at 03:50:00 UTC. As illustrated in Fig. 2(b), the source coordinates were (-2.0083°E, 48.058°N). A total 

of 3104 available observations (3-h-averaged concentrations) were collected at 168 ground sites. ETEX-1 has been 

widely used as a validation scenario for reconstructing atmospheric radionuclide releases (Ulimoen and Klein, 2023; 

Tomas et al., 2021). The candidate source locations are uniformly sampled from the green shaded zone. We choose two 

groups of observation sites: the first comprises four sites (i.e. B05, D10, D16, F02) randomly selected from the sites 

within the sample zone (Group 1, with a total of 92 available observations), and the second involves four sites (i.e. CR02, 

D15, DK08, S09) randomly selected from the sites beyond the sample zone boundaries (Group 2, with a total of 90 

available observations). Compared with the SCK-CEN 41Ar experiment, the ETEX-1 observations exhibit temporal 

sparsity, lower temporal resolution, and increased complexity in meteorological conditions. 

 

Figure 2. Release location and observation sites of two field experiments. (a) SCK-CEN 41Ar experiment. The map was 



created based on the relative positions of the release source and observation sites (Drews et al., 2002). The coordinates 

of the sample border are (500 m, −200 m) and (1180 m, 580 m) on Oct. 3, and (450 m, 10 m) and (850 m, 450 m) on Oct. 

4. This figure was plotted using MATLAB 2016b, rather than created by a map provider; (b) ETEX-1 experiment. The 

map was created based on the real longitudes and latitudes of the release source and observation sites (Nodop et al., 

1998). The coordinates of the sample border are (10°W, 40°N) and (10°E, 60°N). This figure was plotted using the 

cartopy function of Python, rather than created by a map provider.” 

► Lines 260-268 of section “2.6.2 Simulation settings of atmospheric dispersion model”: 

“For the ETEX-1 experiment, the FLEXible PARTicle (FLEXPART) model (version 10.4) was applied to simulate the 

dispersion of PMCH (Pisso et al., 2019). The meteorological data were obtained from the United States National Centers 

of Environmental Prediction Climate Forecast System Reanalysis, and have a spatial resolution of 0.5°×0.5° and time 

resolution of 6 h. To rapidly establish the relationship between the varying source locations and the observations, 182 

backward simulations were performed using FLEXPART with a time interval of 3 h, grid size of 0.25°×0.25°, and 8 

vertical levels (from 100–50000 m). Only the lowest model output layer was used for source reconstruction. Candidate 

source locations were uniformly sampled from the shaded zone in Fig. 2(b), resulting in a total of 6561 source locations. 

As described in Sect. 2.5.1, 2624 candidate source locations were preserved following the pre-screening step. The 

constant factors mentioned in Sect. 2.5.2 are 5.60×1012 and 2.86×1013 for Group 1 and Group 2, respectively.” 

► Lines 297-298 of section “2.8.1 Observation filtering”: 

“The feasibility of decoupling is demonstrated using both the synthetic and real observations of the SCK-CEN 41Ar 

experiment and the real observations of the ETEX-1 experiment.” 

► Lines 300-302 of section “2.8.1 Observation filtering”: 

“Because several temporal observations are missing at some observation sites, we only choose observations sampled 

between 24 October 1994 09:00:00 UTC and 26 October 1994 03:00:00 UTC for the source location estimation.” 

► Lines 323-324 of section “2.8.4 Comparison with the Bayesian method”: 

“The proposed method is compared with the popular Bayesian method based on the SCK-CEN 41Ar and ETEX-1 

experiments, with the same search range used for locating the source in both methods (Fig. 2).” 

► Lines 341-342 of section “3.1 Filtering performance”: 

“After filtering, the dots are more concentrated towards the 1:1 line for both the SCK-CEN 41Ar and ETEX-1 experiments.” 

► Figure 3 of section “3.1 Filtering performance” (Lines 344-347): 



 

Figure 3. Scatter plots of the original (yellow squares) and filtered (green squares) observations versus the constant-

release simulation results. SCK-CEN 41Ar experiment: (a) Oct. 3 (synthetic observations); (b) Oct. 4 (synthetic 

observations); (c) Oct. 3 (real observations); (d) Oct. 4 (real observations); ETEX-1 experiment: (e) Group 1 (real 

observations); (f) Group 2 (real observations).   

► Lines 352-353 of section “3.1 Filtering performance”: 

“The filtering process produces a better effect with the SCK-CEN 41Ar experiment than with the ETEX-1 experiment, 

owing to the sparser observations in the ETEX-1 experiment (Fig. S3).” 

 

 



► Table 3 of section “3.1 Filtering performance” (Line 354): 

“Table 3. Quantitative metrics for the filtering validation. 

Experiment Case NMSE PCC FAC2 FAC5 

SCK-CEN 41Ar 

Oct. 3 (synthetic observations) 

Before filtering 0.6970 0.5315 0.7647 0.8235 

After filtering 0.0239 0.9514 1 1 

Oct. 4 (synthetic observations) 

Before filtering 0.9290 -0.0267 0.7292 0.7292 

After filtering 0.0956 0.6179 0.9412 0.9779 

Oct. 3 (real observations) 

Before filtering 1.4437 0.3572 0.3824 0.5147 

After filtering 0.2730 0.6976 0.7273 0.8864 

Oct. 4 (real observations) 

Before filtering 1.9290 -0.2099 0.3073 0.4948 

After filtering 0.3668 0.2802 0.6552 0.9310 

ETEX-1 

Group 1 (real observations) 

Before filtering 10.9936 0.3414 0.1000 0.2167 

After filtering 6.6769 0.5145 0.2500 0.3667 

Group 2 (real observations) 

Before filtering 5.8705 -0.2824 0.0667 0.1167 

After filtering 4.9799 -0.2695 0.1167 0.2500 

” 

► Lines 358-361 of section “3.2.1 Hyperparameters”: 

“Tables S2–S5 includes all the optimal hyperparameters used in the 50 runs of the SCK-CEN 41Ar and ETEX-1 

experiments. The optimal GCs of the SCK-CEN 41Ar experiment are smaller than those of the ETEX-1 experiment, 

indicating better fitting performance. This is because the sparse observations of the ETEX-1 experiment (Fig. S3) are 

more sensitive to the added Gaussian noise (see Sect. 2.5.2).” 

► Lines 375-379 of section “3.2.2 Feature selection”: 

“For the ETEX-1 experiment, Fig. 4c and d shows that the features of Group1 and Group2 are largely preserved after 

the feature selection process (only one feature is removed for each case), indicating less redundancy than that in the 

SCK-CEN 41Ar experiment. The time-domain features are dominant, but the frequency-domain features at some sites (e.g. 

D16 and S09) also play important roles. The MCVs of the ETEX-1 experiment have similar variation trends as those for 

the SCK-CEN 41Ar experiment (Fig. S4c and S4d).” 

► Figure 4 of section “3.2.2 Feature selection” (Lines 380-382): 



“  



 

Figure 4. Feature importance of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 experiment: (c) Group 

1; (d) Group 2.” 

► Lines 398-412 of section “3.3.1 Source locations”: 

“For the ETEX-1 experiment, the pre-screening zone also covers the true source location for Group 1 and Group 2. The 

source locations estimated by the correlation-based method are 411.85 km and 486.41 km away from the ground truth 

for Group 1 and Group 2, respectively. The location error of the Bayesian method estimates is only 30.50 km for Group 

1, but increases to 520.77 km for Group 2, indicating the sensitivity of this method to the observations. In contrast, the 

proposed method achieves much lower source location errors of 5.19 km for Group 1 (a relative error of 0.20%) and 

17.65 km for Group 2 (a relative error of 0.70%). Group1 exhibits a lower source location error than Group 2, because 

the observation sites of Group 1 are closer to the sampled source locations than those of Group 2 and better characterize 

the plume. Feature selection did not remove many features (Fig. 4c and 4d), so the estimated source locations with and 

without feature selection basically overlap for both groups. 



 

Figure 5. Source location estimation results of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 experiment: 

(c) Group 1; (d) Group 2. A detailed enlargement of the region around (2.5°W, 47.5°N) to (1.5°W, 48.5°N) is shown in 

the bottom right corner in (c) and (d) to highlight the source location estimation results of the proposed method. The 

yellow dots denote the maximum correlation points, which are the results of the correlation-based method. The green 

and red stars represent the results based on XGBoost before and after feature selection, respectively. The cyan diamonds 

represent the results based on the Bayesian method.” 

► Lines 422-431 of section “3.3.2 Release rates”: 

“For the ETEX-1 experiment (Fig. 6c and 6d), the Bayesian estimates exhibit notable fluctuations, leading to 

underestimations of 58.11% for Group1 and 51.44% for Group 2. Furthermore, the temporal profile of the Bayesian 



estimates for Group 2 falls completely outside the true release window. In contrast, most releases using the PAMILT 

estimates are within the true release time window, especially for Group 2, despite the overestimations reaching 52.38% 

for Group 1 and 57.65% for Group 2, after the feature selection process. Compared with the SCK-CEN 41Ar experiment, 

the increased deviation in the ETEX-1 experiment is caused by the sparsity of observations at the four sites (Fig. S3).

 

Figure 6. Release rate estimation results with different location estimates of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) 

Oct. 4; and ETEX-1 experiment: (c) Group 1; (d) Group 2. The release rates labelled XGBoost or XGBoost+feature 

selection are estimated using the PAMILT method.” 

► Lines 443-454 of section “3.3.3 Uncertainty range”: 

“For the ETEX-1 experiment, the estimates of the correlation-based method are quite dispersed, whereas those of the 

Bayesian method are more concentrated. The Bayesian estimates are close to the truth for Group 1, but deviate noticeably 

for Group 2. This phenomenon indicates that the Bayesian method is sensitive to the observations, especially when the 

observations are sparse. Figure S5(c) and S5(d) reveals that the Bayesian-estimated posterior distribution is multimodal 

for both ETEX-1 groups; this can be avoided by using additional observations (Fig. S5e). In contrast, the proposed 

method provides estimates that are concentrated around the truth for both Group 1 and Group 2, indicating its efficiency 

in the case of sparse observations. Due to the shorter distance between observation sites and the sampled source 

locations, the uncertainty range of source location for Group 1 is narrower than that for Group 2. 



 

Figure 7. Spatial distribution of 50 source location estimates of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and 

ETEX-1 experiment: (c) Group 1; (d) Group 2. Each circle denotes an individual estimate as detailed in Sect. 2.8.5, with 

colour variations indicating the respective method employed. Histograms along the axes represent the frequency 

distribution of the estimates along the respective axis.” 

► Lines 468-483 of section “3.3.3 Uncertainty range”: 

“Figure 9 compares the uncertainty ranges of the release rate estimates for the two ETEX-1 groups. For both groups, 

the Bayesian estimates exhibit noticeable underestimations (including the mean estimate) and small uncertainty ranges 

(Fig. 9a and 9c). The Bayesian estimates fall completely outside the true release window for Group 2 (Fig. 9c). The 

mean PAMILT estimates are more accurate than the mean Bayesian estimates, with most releases within the true release 

window (Fig. 9b and 9d). However, the PAMILT estimates have a large uncertainty range for the ETEX-I experiment 

than for the SCK-CEN 41Ar experiment, implying that the source–receptor matrices of the ETEX-1 experiment are more 

sensitive to errors in source location than those of the SCK-CEN 41Ar experiment. This greater sensitivity originates 

from the complex meteorology in the ETEX-1 experiment. As for the mean total releases, the Bayesian method produces 



underestimations of 70.93% for Group1 and 74.15% for Group2. In comparison, the proposed method gives deviations 

of only 0.71% for Group 1 and 0.09% for Group 2, after feature selection. 

 

Figure 9. Release rate estimates over 50 calculations of ETEX-1 experiment. (a) Group 1-Bayesian method; (b) Group 

1-PAMILT method; (c) Group 2-Bayesian method; (d) Group 2-PAMILT method. 

Table 4 lists the mean and standard deviation of the relative errors for the 50 estimates given by different methods. 

The correlation-based method produces the largest mean relative error and standard deviation for source location 

estimation, except for Group 2 of ETEX-I.” 

► Lines 490-495 of section “3.3.3 Uncertainty range”: 

“For the ETEX-1 experiment, the Bayesian method exhibits case-sensitive performances with respect to the mean relative 

error of source location estimation, whereas the proposed method gives the most accurate source locations with small 

uncertainties for both groups. As for the total release, the proposed method gives smaller mean relative errors than the 

Bayesian methods, but the Bayesian method has a smaller standard deviation. Feature selection significantly reduces 

the mean relative error for the two groups. The mean relative error of the total release averaged over the two groups is 

72.14% lower than that of the Bayesian method.” 

 

 

 

 

 

 

 

 

 

 

 

 



► Table 4 of section “3.3.3 Uncertainty range” (Lines 496-497): 

“Table 4. Relative errors of source reconstruction. 𝛿𝒓 represents the relative error of source location, which is positive 

and 𝛿𝑄 denotes the relative error of total release, where a positive value indicates overestimation and a negative value 

denotes underestimation. 

Experiment Case 

Statistical 

parameters 

(Relative error) 

Correlation-

based method 

Bayesian 

method 

The proposed method 

XGBoost 
XGBoost+ 

feature selection 

SCK-CEN 41Ar 

Oct. 3 

𝛿𝐫 

Mean 14.10% 11.88% 5.18% 4.68% 

Std 11.37% 7.53% 1.79% 2.05% 

𝛿𝑄 

Mean - 153.61% -16.93% -18.30% 

Std - 189.76% 9.45% 8.01% 

Oct. 4 

𝛿𝐫 

Mean 14.30% 12.83% 6.83% 4.71% 

Std 9.60% 1.68% 1.76% 1.53% 

𝛿𝑄 

Mean - 42.29% -54.12% -47.42% 

Std - 15.05% 6.47% 5.85% 

ETEX-I 

Group 1 

𝛿𝐫 

Mean 16.95% 3.22% 2.32% 2.42% 

Std 7.46% 2.75% 1.43% 1.43% 

𝛿𝑄 

Mean - -70.93% 18.12% -0.71% 

Std - 17.87% 99.85% 102.01% 

Group 2 

𝛿𝐫 
Mean 21.9% 23.97% 5.21% 4.97% 

Std 5.05% 1.97% 2.42% 2.35% 

𝛿𝑄 
Mean - -74.15% 16.67% 0.09% 

Std - 11.68% 93.50% 109.56% 

” 

► Lines 579-582 of section “4. Conclusions”: 

“Validation was performed against the two-day SCK-CEN 41Ar field experimental data and two groups of ETEX-1 data. 

The results demonstrate that the proposed method successfully removes the influence of temporal variations in release 

rates across observations and accurately reconstructs both the spatial location and temporal variations of the source.” 

► Lines 588-591 of section “4. Conclusions”: 

“For the continental-scale ETEX-1 experiment, the lowest relative source location errors were 0.20% and 0.70% for 

Group 1 and Group 2, respectively, which were again lower than for the correlation-based and Bayesian methods. The 

proposed method provides highly accurate mean estimates of the release rate for both groups, although with a large 

uncertainty range.” 

► Figure S3 of Supplementary Material (Lines 33-35): 



“  

Figure S3. Observations before and after filtering at observation sites. SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; 

ETEX-1 experiment: (c) Group 1; (d) Group 2.” 

► Figure S4 of Supplementary Material file (Lines 36-39): 



“  

Figure S4. Results of feature selection in x (longitude) and y (latitude) directions. SCK-CEN 41Ar experiment: (a) Oct. 

3; (b) Oct. 4; ETEX-1 experiment: (c) Group 1; (d) Group 2. The black stars denote the optimal number of features. The 

table inserted in each subgraph lists the selected features for each observation site.” 



► Figure S5 of Supplementary Material (Lines 40-43): 

“  

Figure S5. Posterior distributions of source location parameters. SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; ETEX-

1 experiment: (c) Group1; (d) Group2; (e) ETEX-1 (all observations in ETEX-1 are used). The black solid lines denote 

the true location parameters and the dashed lines denote the mean estimates of all posterior samples.” 

► Table S1 of Supplementary Material (Lines 45-49): 

“Table S1. Hyperparameter optimization results. max_depth-maximum depth of a decision tree; learning_rate-step size 

at each iteration while moving toward a minimum of the loss function; n_estimators-number of decision trees; 

min_child_weight-minimum sum of sample weight of a child node; subsample-subsample ratio of the training samples; 

colsample_bytree-subsample ratio of columns when constructing a tree; reg_lambda-L2 regularization term on weights; 

and gamma-minimum loss reduction required to split the tree. 

Optimization results 

SCK-CEN 41Ar experiment ETEX-1 experiment 

Oct. 3 Oct. 4 Group 1 Group 2 

Hyperparameters 

max_depth ([3,8]) 8 7 3 7 

learning_rate ([0.05,0.3]) 0.07057 0.14413 0.06860 0.07619 

n_estimators ([50,300]) 283 185 93 234 

min_child_weight ([2,10]) 4 10 8 6 

subsample ([0.5,1]) 0.62353 0.52721 0.66447 0.62146 

colsample_bytree ([0.01,1]) 0.39145 0.57415 0.33031 0.77954 

reg_lambda ([0.01,5]) 0.71074 2.30624 3.95098 4.62217 

gamma ([0.01,1]) 0.47779 0.51660 0.67626 0.85628 

Optimal GC 0.01230 0.03700 0.88040 0.44510 



” 

► Tables S4-S5 of Supplementary Material (Lines 54-57): 

“Table S4. Hyperparameter optimization results of all 50 runs in Group 1 of ETEX-1 experiment. 

Run 

Hyperparameters 

max_depth learning_rate n_estimators min_child_weight subsample colsample_bytree reg_lambda gamma 

1 3 0.07742 63 9 0.55953 0.44389 0.35824 0.81392 

2 4 0.05011 142 3 0.70683 0.23027 4.89201 0.98193 

3 3 0.06110 99 2 0.93364 0.37012 2.20274 0.76370 

4 7 0.06117 64 10 0.55117 0.24878 2.34822 0.07471 

5 3 0.07906 76 9 0.71631 0.38280 1.84573 0.22755 

6 3 0.05067 116 4 0.70755 0.37613 1.50917 0.85795 

7 3 0.06296 86 9 0.76834 0.34797 1.04674 0.44097 

8 3 0.05342 106 5 0.53520 0.18199 4.18213 0.89476 

9 3 0.07584 76 4 0.95540 0.53685 1.30937 0.49309 

10 3 0.07213 84 5 0.98527 0.41048 2.61014 0.06896 

11 3 0.05907 115 6 0.74495 0.37051 1.96059 0.27702 

12 3 0.09471 76 3 0.91290 0.51041 0.38558 0.05232 

13 3 0.07018 103 3 0.87242 0.35732 2.77176 0.16073 

14 3 0.07072 95 10 0.98317 0.34966 4.67025 0.95006 

15 3 0.08357 66 2 0.80913 0.37858 2.74202 0.05494 

16 3 0.05001 121 3 0.52214 0.27101 4.30584 0.30632 

17 3 0.09354 50 6 0.64736 0.62473 2.55863 0.35745 

18 3 0.05486 134 8 0.66206 0.71278 0.80280 0.97413 

19 3 0.07556 102 5 0.70927 0.34789 3.12167 0.99997 

20 3 0.07479 52 9 0.79240 0.56720 1.02323 0.32951 

21 3 0.05518 78 10 0.66309 0.99871 3.14571 0.84078 

22 3 0.05139 111 6 0.73839 0.42603 2.49218 0.87318 

23 3 0.10952 50 5 0.97390 0.22350 0.88047 0.35097 



24 3 0.06860 93 8 0.66447 0.33031 3.95098 0.67626 

25 3 0.08670 54 5 0.79857 0.39303 3.19098 0.54197 

26 3 0.08125 67 8 0.94963 0.33151 4.40350 0.06507 

27 3 0.08396 50 2 0.93428 0.37792 3.77359 0.13881 

28 3 0.05418 95 9 0.99598 0.25227 1.60204 0.38791 

29 3 0.06935 89 8 0.90482 0.35876 4.15848 0.85423 

30 3 0.06319 76 2 0.91583 0.43665 3.35600 0.88327 

31 3 0.09009 50 4 0.94183 0.48645 4.03998 0.17582 

32 3 0.06213 148 8 0.69235 0.34063 1.38470 0.71691 

33 3 0.05735 74 10 0.83704 0.36175 2.28311 0.93893 

34 3 0.06437 72 3 0.98748 0.31363 1.63480 0.22685 

35 3 0.06022 60 6 0.66204 0.69317 1.21692 0.30900 

36 3 0.09555 53 5 0.80980 0.46487 1.90000 0.60232 

37 3 0.08434 50 8 0.52774 0.26641 0.48391 0.31574 

38 3 0.07105 51 5 0.96131 0.63725 2.01205 0.60509 

39 4 0.05005 62 10 0.77964 0.22026 3.55884 0.74839 

40 4 0.07553 74 2 0.99323 0.36292 2.61782 0.17595 

41 3 0.05239 77 7 0.50028 0.95751 2.41469 0.72211 

42 3 0.08421 51 5 0.99977 0.45864 2.15063 0.54258 

43 3 0.05414 82 8 0.62226 0.76122 2.83002 0.53414 

44 3 0.05259 111 4 0.93432 0.32197 2.04760 0.44156 

45 3 0.09454 60 4 0.72047 0.23879 4.65624 0.75740 

46 3 0.05013 93 4 0.58250 0.40493 2.11383 0.47864 

47 3 0.11330 50 2 0.71413 0.69524 3.50503 0.16269 

48 3 0.08314 50 10 0.96691 0.50529 2.97909 0.95771 

49 6 0.05978 107 7 0.63666 0.20488 0.61715 0.79254 

50 3 0.07770 71 3 0.98943 0.58108 1.17867 0.22360 

Table S5. Hyperparameter optimization results of all 50 runs in Group 2 of ETEX-1 experiment. 



Run 

Hyperparameters 

max_depth learning_rate n_estimators min_child_weight subsample colsample_bytree reg_lambda gamma 

1 8 0.17252 127 7 0.58651 0.60647 4.02984 0.60724 

2 8 0.22988 68 9 0.54811 0.91321 2.29180 0.12852 

3 8 0.10002 213 10 0.75238 0.64053 4.99653 0.10778 

4 4 0.12366 147 5 0.87463 0.83119 0.63085 0.26995 

5 5 0.23441 297 7 0.97266 0.36675 0.34489 0.99034 

6 4 0.20533 155 4 0.63974 0.56526 2.63317 0.38177 

7 5 0.10641 151 3 0.76094 0.79390 0.98025 0.96160 

8 4 0.17290 222 4 0.55589 0.76284 1.62191 0.47379 

9 4 0.05855 160 3 0.88818 0.79781 4.98019 0.84983 

10 4 0.11741 184 5 0.79714 0.83203 4.43324 0.62777 

11 4 0.16266 136 2 0.75690 0.93818 3.30854 0.55481 

12 5 0.23134 144 2 0.58373 0.60423 2.76711 0.16986 

13 8 0.27891 193 7 0.64977 0.89059 3.88204 0.23152 

14 7 0.18603 245 8 0.77290 0.78709 3.45149 0.01806 

15 5 0.16915 268 10 0.62385 0.49651 2.30355 0.27120 

16 4 0.20217 64 2 0.92784 0.78470 0.94699 0.93657 

17 5 0.10871 181 9 0.70489 0.84917 4.43678 0.07228 

18 5 0.07394 297 8 0.87839 0.62200 3.24008 0.11160 

19 6 0.20293 216 9 0.66381 0.89210 4.08151 0.60613 

20 7 0.20570 158 4 0.50653 0.86393 3.36667 0.79227 

21 5 0.20083 88 7 0.57460 0.62410 1.26707 0.17321 

22 4 0.27072 50 4 0.85604 0.86560 0.16264 0.44052 

23 8 0.15380 86 5 0.67811 0.74505 4.54334 0.93377 

24 4 0.16205 183 6 0.59364 0.93969 1.05664 0.40669 

25 6 0.14171 288 6 0.75389 0.85527 4.65363 0.50557 

26 7 0.21287 253 9 0.59311 0.65113 2.79234 0.83703 



27 4 0.15371 247 5 0.77890 0.52357 4.81584 0.67752 

28 5 0.11665 135 5 0.79729 0.86017 4.26743 0.12912 

29 4 0.08378 192 4 0.52749 0.79980 2.64816 0.57092 

30 6 0.13030 210 3 0.50209 0.61548 3.80894 0.64347 

31 7 0.24148 173 10 0.64711 0.79358 2.66441 0.23023 

32 6 0.09301 204 8 0.69879 0.97301 4.67770 0.36945 

33 5 0.12318 283 6 0.93580 0.70267 2.23369 0.17565 

34 4 0.23289 227 7 0.60924 0.76662 2.97809 0.22066 

35 6 0.21219 162 3 0.54969 0.50796 4.01790 0.10632 

36 5 0.10657 148 3 0.77407 0.84022 4.19435 0.53237 

37 4 0.14220 169 4 0.69411 0.90516 2.46148 0.83182 

38 6 0.11224 239 4 0.64335 0.91879 1.53421 0.43750 

39 5 0.08990 98 5 0.83843 0.99546 3.80815 0.86071 

40 6 0.19006 130 4 0.95749 0.88483 3.68950 0.17261 

41 5 0.21434 93 6 0.80593 0.97025 2.23769 0.40479 

42 7 0.07619 234 6 0.62146 0.77954 4.62217 0.85628 

43 4 0.17377 273 6 0.85218 0.79578 3.43808 0.62076 

44 4 0.18522 135 4 0.82615 0.63563 4.24215 0.56409 

45 4 0.14993 152 8 0.60441 0.80580 2.50467 0.09351 

46 5 0.15229 164 7 0.94667 0.83661 3.59476 0.15891 

47 5 0.15393 116 9 0.90651 0.85377 4.60433 0.89894 

48 5 0.22272 290 9 0.86799 0.85502 4.52637 0.79836 

49 5 0.11275 91 4 0.72730 0.75528 3.72672 0.17298 

50 4 0.13702 299 7 0.95702 0.91622 2.93120 0.22371 

” 

Specific comments 

Comment#1: 

L215 - Figure 2: The axes represent distances and should therefore have identical scales for clarity and accuracy. 



Response to comment#1:  

We appreciate your attention on the different scales of axes on Figure 2. We have revised the figure to ensure that 

both axes represent distances with identical scales.  

► Figure 2 of section “2.6.1 Field experiments” (Lines 240-246): 

“  

Figure 2. Release location and observation sites of two field experiments. (a) SCK-CEN 41Ar experiment. The map was 

created based on the relative positions of the release source and observation sites (Drews et al., 2002). The coordinates 

of the sample border are (500 m, −200 m) and (1180 m, 580 m) on Oct. 3, and (450 m, 10 m) and (850 m, 450 m) on Oct. 

4. This figure was plotted using MATLAB 2016b, rather than created by a map provider; (b) ETEX-1 experiment. The 

map was created based on the real longitudes and latitudes of the release source and observation sites (Nodop et al., 



1998). The coordinates of the sample border are (10°W, 40°N) and (10°E, 60°N). This figure was plotted using the 

cartopy function of Python, rather than created by a map provider.” 

 

Comment#2: 

L222 - Consideration of vertical information could provide a more comprehensive understanding of the dispersion 

patterns. How does the model account for vertical dispersion? 

Response to comment#2:  

Thank you for your constructive comment. We agree that incorporating vertical information can aid in 

understanding the dispersion patterns. In the SCK-CEN 41Ar experiment, the 41Ar was emitted from a 60-m stack, while 

the ground-level fluence rates were collected by NaI (Tl) gamma detectors. Due to the lack of vertical observations in 

this experiment, the vertical dispersion has not been discussed in the manuscript.  

The RIMPUFF model is a gaussian puff model that uses the diffusion coefficient in vertical direction to describe 

the vertical dispersion of each puff. In this study, the Karlsruhe-Jülich diffusion coefficients were used to calculate the 

vertical dispersion, which has been validated for the SCK-CEN 41Ar experiment and has shown good accuracy (Li et al., 

2019).  

In the future, we will try to incorporate the vertical dispersion information into the source parameters.  

 

To ensure clarity, we have added some descriptions of vertical information in the revised manuscript. 

► Lines 224-225 of section “2.6.1 SCK-CEN 41Ar field experiment”: 

“The 60-s-average ground-level fluence rates were continuously collected by an array of NaI (Tl) gamma detectors, with 

different observation sites used on the two days.” 

► Line 251 of section “2.6.2 Simulation settings of atmospheric dispersion model”: 

“The release height of 41Ar was assumed to be 60 m.” 

The added ETEX-1 experiment also consider vertical information. 

► Lines 231-232 of section “2.6.1 Field experiments”: 

“A total of 3104 available observations (3-h-averaged concentrations) were collected at 168 ground sites.” 

► Lines 263-265 section “2.6.2 Simulation settings of atmospheric dispersion model”: 

“To rapidly establish the relationship between the varying source locations and the observations, 182 backward 

simulations were performed using FLEXPART with a time interval of 3 h, grid size of 0.25°×0.25°, and 8 vertical levels 

(from 100–50000 m). Only the lowest model output layer was used for source reconstruction.” 

 

Comment#3: 

L302 - Figure 3: To ensure clarity and accuracy in data representation, the scales on the vertical and horizontal axes must 

be consistent. 

Response to comment#3:  

We appreciate your attention on the different scales on axes on Figure 3. We have carefully adjusted Figure 3 so 

that the scales on both the vertical and horizontal axes are now consistent. 

► Figure 3 of section “3.1 Filtering performance” (Lines 344-347): 



“  

Figure 3. Scatter plots of the original (yellow squares) and filtered (green squares) observations versus the constant-

release simulation results. SCK-CEN 41Ar experiment: (a) Oct. 3 (synthetic observations); (b) Oct. 4 (synthetic 

observations); (c) Oct. 3 (real observations); (d) Oct. 4 (real observations); ETEX-1 experiment: (e) Group 1 (real 

observations); (f) Group 2 (real observations).” 

 

Comment#4: 

L340 - The capability to estimate with greater accuracy than the grid size warrants a discussion. What implications does 

this have for the model's precision and its practical significance? 

Response to comment#4:  



Thank you for your insightful query. The ability to estimate source locations with accuracy surpassing the grid size 

can be attributed to the strong fitting capability of the optimized XGBoost model (Chen and Guestrin, 2016; Grinsztajn 

et al., 2022), which excels in interpolating within the grid size and extrapolating beyond the source location samples. As 

discussed in our response to the General comments, ETEX-1 experiment also achieved source location accuracy beyond 

the grid size (Fig. 5c and 5d, the grid size is 0.25°0.25°), suggesting that the phenomenon is not merely coincidental. 

In addition, previous studies also achieved similar source location accuracy using traditional methods (Lucas et al., 2017; 

Tichý et al., 2017). However, this ability, although inherent, does not uniformly manifest across all optimized XGBoost 

models, as external factors like observation noises and meteorological data inaccuracies can also impact the accuracy of 

source location estimation. The uncertainty analysis in Sect. 3.3.3 has demonstrated that the source location estimates 

tend to cluster within several grids surrounding the true source, which is more reasonable and practical in real-world 

scenarios. Detailed discussions are as follows: 

(1) Enhanced accuracy through XGBoost: The high accuracy in locating the source is directly achieved by the 

XGBoost model, since it establishes the complex nonlinear relationships between the input features and the source 

location. Utilizing automatic optimization techniques (detailed in Sect. 2.5.3), 8 main hyperparameters of XGBoost 

and 24 observation series features are finely tuned to achieve an optimized model. This optimization not only 

mitigates the risk of overfitting but also enhances the model’s ability for interpolation within the grid size and 

extrapolation beyond the source location samples. 

(2) Validation on ETEX-1 experiment: The proposed method has been validated through ETEX-1 experiment, as 

discussed in our response to the General comments. Compared to SCK-CEN 41Ar experiment, ETEX-1 involves a 

different type of releases (continental-scale) and more complex meteorological conditions (temporally and spatially 

varying). As shown in Fig. 5(c) and 5(d), this experiment also achieved source location accuracy beyond the grid 

size (0.25°0.25°), suggesting that the phenomenon is not merely coincidental. Providing that the XGBoost model 

is effectively optimized and the observations are reliable, the model has ability to achieve high accuracy. 

 



 

Figure 5. Source location estimation results of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 experiment: 

(c) Group 1; (d) Group 2. A detailed enlargement of the region around (2.5°W, 47.5°N) to (1.5°W, 48.5°N) is shown in 

the bottom right corner in (c) and (d) to highlight the source location estimation results of the proposed method. The 

yellow dots denote the maximum correlation points, which are the results of the correlation-based method. The green 

and red stars represent the results based on XGBoost before and after feature selection, respectively. The cyan diamonds 

represent the results based on the Bayesian method. 

(3) Uncertainty analysis of XGBoost hyperparameters: An uncertainty analysis of the XGBoost hyperparameters (Fig. 

7) has revealed that not all source location estimates achieve greater accuracy than the grid size. Instead, source 

location estimates tend to cluster within several grids surrounding the true source. This phenomenon highlights the 



practical significance of the proposed method. 

 

Figure 7. Spatial distribution of 50 source location estimates of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and 

ETEX-1 experiment: (c) Group 1; (d) Group 2. Each circle denotes an individual estimate as detailed in Sect. 2.8.5, with 

colour variations indicating the respective method employed. Histograms along the axes represent the frequency 

distribution of the estimates along the respective axis. 

 

To avoid confusion, we have added some discussions in the revised manuscript to explain the greater accuracy than the 

grid size. The revised manuscript has also included the reconstruction results of ETEX-1 experiment (see our response 

to the General comments), which will further prove the model's ability. 

► Lines 391-397 of section “3.3.1 Source locations”: 

“The estimates without feature selection are only 10.65 m (Oct. 3) and 20.62 m (Oct. 4) away from the true locations. 

Feature selection further reduces these errors to 6.19 m (Oct. 3, a relative error of 0.60%) and 4.52 m (Oct. 4, a relative 

error of 0.80%), which are below the grid size (10 m×10 m) of the atmospheric dispersion simulation. The ability to 



estimate the source locations with accuracy surpassing the grid size can be attributed to the strong fitting capability of 

the optimized XGBoost model (Chen and Guestrin, 2016; Grinsztajn et al., 2022). However, this capability, although 

inherent, is not present across all optimized XGBoost models, as external factors such as observation noises and 

meteorological data inaccuracies can also impact the accuracy of source location estimation.” 

 

Comment#5: 

L346 - Figure 5: As these axes represent distances, maintaining identical scales on both axes is crucial for accurate data 

interpretation. 

Response to comment#5:  

Thank you for pointing out this issue. We have revised Figure 5 to ensure that both the horizontal and vertical axes 

have the same scale. 

► Figure 5 of section “3.3.1 Source locations” (Lines 407-412): 

“  

 



Figure 5. Source location estimation results of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and ETEX-1 experiment: 

(c) Group 1; (d) Group 2. A detailed enlargement of the region around (2.5°W, 47.5°N) to (1.5°W, 48.5°N) is shown in 

the bottom right corner in (c) and (d) to highlight the source location estimation results of the proposed method. The 

yellow dots denote the maximum correlation points, which are the results of the correlation-based method. The green 

and red stars represent the results based on XGBoost before and after feature selection, respectively. The cyan diamonds 

represent the results based on the Bayesian method.” 

 

Comment#6: 

L374 - Figure 7: Given that both axes represent distances, their scales should be identical. The complexity of the graphs 

necessitates a detailed explanation within the figure caption to aid in interpretation. 

Response to comment#6:  

Thank you for your constructive comment. We have revised Figure 7 to ensure that both axes are now on identical 

scales and expanded the figure caption to include a detailed explanation of the graph's components. 

► Figure 7 of section “3.3.3 Uncertainty range” (Lines 451-454): 

“  



Figure 7. Spatial distribution of 50 source location estimates of SCK-CEN 41Ar experiment: (a) Oct. 3; (b) Oct. 4; and 

ETEX-1 experiment: (c) Group 1; (d) Group 2. Each circle denotes an individual estimate as detailed in Sect. 2.8.5, with 

colour variations indicating the respective method employed. Histograms along the axes represent the frequency 

distribution of the estimates along the respective axis.” 

 

Thanks again for such a thorough review! 
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