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Abstract. Ensemble geophysical datasets are foundational for research to understand the Earth System in an uncertainty-aware 11 

context, and to drive applications that require quantification of uncertainties, such as probabilistic hydro-meteorological 12 

estimation or prediction. Yet ensemble estimation is more challenging than single-value spatial interpolation, and open-access 13 

routines and tools are limited in this area, hindering the generation and application of ensemble geophysical datasets. A notable 14 

exception in the last decade has been the Gridded Meteorological Ensemble Tool (GMET), which is implemented in 15 

FORTRAN and has typically been configured for ensemble estimation of precipitation, mean air temperature, and daily 16 

temperature range, based on station observations. GMET has been used to generate a variety of local, regional, national, and 17 

global meteorological datasets, which in turn have driven multiple retrospective and real-time hydrological applications. 18 

Motivated by an interest in expanding GMET flexibility, application scope, and range of methods, we have developed a 19 

Python-based Geospatial Probabilistic Estimation Package (GPEP) that offers GMET functionality along with additional 20 

methodological and usability improvements, including variable independence and flexibility, an efficient alternative cross-21 

validation strategy, internal parallelization, and the availability of the scikit-learn machine learning library for both local and 22 

global regression. This paper describes GPEP and illustrates some of its capabilities using several demonstration experiments, 23 

including the estimation of precipitation, temperature, and snow water equivalent ensemble analyses on various scales.  24 
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1 Introduction 25 

Meteorological datasets are essential for hydrometeorological and climate analysis and a wide range of related applications, 26 

from hydrometeorological forecasting to century-scale water security studies. Numerous gridded meteorological datasets exist 27 

based on a variety of estimation approaches, including the spatial interpolation of ground stations (Daly et al., 1994; Harris et 28 

al., 2020; Livneh et al., 2015; Maurer et al., 2002), remote sensing measurements from satellite sensors and weather radars 29 

(Huffman et al., 2007; Joyce et al., 2004; Shen et al., 2018; Zhang et al., 2016), and atmospheric and Earth System modeling 30 

(Gelaro et al., 2017; Hersbach et al., 2020; Kobayashi et al., 2015; Muñoz-Sabater et al., 2021). Among these datasets, those 31 

based on ground station observations offer the most accurate meteorological records and are thus often used in the production 32 

of high-quality regional, national, and global gridded datasets. Station observations may be the sole input to the datasets, along 33 

with geophysical features that aid in a ‘smart interpolation’ to account for terrain and other influences or they may be used for 34 

bias correction of remote sensing and model estimates, or as the calibration reference for multi-source merging (Baez-35 

Villanueva et al., 2020; Beck et al., 2019; Sun et al., 2018).  36 

Methods for the spatial interpolation of station observations range in complexity from simpler strategies such as Thiessen 37 

polygons, distance-based weighting, linear interpolation, and nearest neighbour selection, to more complex procedures such 38 

as Kriging interpolation, geographically-weighted regression (GWR), and machine learning techniques. Many widely used 39 

deterministic meteorological datasets are produced using these methods or their variants, such as the Global Precipitation 40 

Climatology Centre (GPCC) dataset (Schamm et al., 2014) and the Climatic Research Unit gridded Time Series (CRU TS) 41 

dataset (Harris et al., 2020). Yet spatial interpolation is an imperfect process that leads to ubiquitous uncertainties in gridded 42 

meteorological datasets. Few meteorological datasets provide explicit analytical uncertainty estimates, and even fewer provide 43 

probabilistic or ensemble estimates, members of which can be advantageous in quantifying uncertainties and characterizing 44 

extreme events (Tang et al., 2023). To address this problem, several recent studies have developed station-based ensemble 45 

meteorological datasets, including the Hadley Centre/Climate Research Unit Temperature version 4 (HadCRUT4) global 46 

temperature dataset (Morice et al., 2012), the Spatially COherent Probabilistic Extended Climate dataset (SCOPE Climate) in 47 

France (Caillouet et al., 2019), the ensemble precipitation and temperature datasets in the United States and parts of Canada 48 

(Newman et al., 2015, 2019, 2020), the Ensemble Meteorological Dataset for North America (EMDNA; Tang et al., 2021), 49 

and the Ensemble Meteorological Dataset for Planet Earth (EM-Earth; Tang et al., 2022). Several deterministic datasets such 50 

as the Europe-wide E-OBS (Haylock et al., 2008; Cornes et al., 2018) and Canadian Precipitation Analysis (CaPA; Mahfouf 51 

et al., 2007; Fortin et al., 2015; Khedhaouiria et al., 2020) also offer probabilistic realizations. In addition to these station-52 

based datasets, there are also reanalysis ensembles such as ERA5 Ensemble of Data Assimilations (Hersbach et al., 2020) and 53 

satellite-based ensemble generation methods such as the satellite rainfall error model (Hossain & Anagnostou, 2006; Hartke 54 

et al., 2022) which are beyond the scope of this study. 55 
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However, the rise of ensemble meteorological datasets also brings new challenges or amplifies existing ones. First, like many 56 

other historical datasets, ensemble datasets are often built on open-access station collections, with fixed periods and resolutions 57 

and limited variables, which may not be updated routinely once the production is finished. Second, ensemble datasets often 58 

have large data sizes increasing with the number of members, posing challenges in downloading, storage, and processing. 59 

Third, ensemble estimation methods generally have much higher complexity compared to single-value spatial interpolation 60 

methods, making it difficult for researchers and practitioners to produce their datasets following dataset and method description 61 

publications. Therefore, open-access tools for creating ensemble meteorological datasets are equally important and sometimes 62 

more useful to the community compared to public datasets. Several such spatial interpolation tools are available in various 63 

stages of development, such as the Topographically InformEd Regression (TIER; Newman & Clark, 2020), GStatSim (MacKie 64 

et al., 2022), TFInterpy (Chen & Zhong, 2022), multiscale GWR (MGWR; Oshan et al., 2019), but well-tested tools for 65 

meteorological ensemble estimation remain rare. A notable exception is the Gridded Meteorological Ensemble Tool (GMET: 66 

https://github.com/NCAR/GMET) which can be used to generate ensemble meteorological analyses (i.e., gridded surface 67 

forcings) using the locally-weighted spatial regression method outlined in Clark & Slater (2006). After an initial FORTRAN 68 

development effort (Newman et al., 2015), GMET has been further refined and expanded in the course of sequential application 69 

projects, producing a number of regional to continental datasets (Bunn et al., 2022; Liu et al., 2022; Longman et al., 2019; 70 

Newman et al., 2015, 2019, 2020; Wood et al., 2021).  71 

Successful GMET applications to date motivated interest in enhancements to allow for a broader range of uses and available 72 

methods. GMET’s Fortran basis enables it to be computationally efficient and fast but is more cumbersome for adding or 73 

linking to new methodological modules than the widely used scripting and programming language Python, for which many 74 

relevant method libraries exist, particularly including machine learning (ML) techniques. In addition, GMET’s development 75 

to date has only afforded a subset of the potential user control over implementation choices, and some settings that would be 76 

required for more flexible implementation are currently hardwired. For instance, the most common application is to generate 77 

ensembles of precipitation, mean air temperature, and air temperature range, and certain assumptions, functions, and settings 78 

specific to precipitation and temperature must be changed in the code if other variables are of interest. Future development to 79 

enhance the FORTRAN GMET toward greater flexibility and user control is a viable option, but we view Python as providing 80 

a more convenient and extensible development environment and one that can engage a potentially larger community of 81 

contributors. The major downside of pursuing future development in Python relative to FORTRAN is its relatively slower 82 

computational speed of Python, a tradeoff that we view as being acceptable given the benefits.  83 

We have thus developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). GPEP includes and expands 84 

upon most of the current functionalities of FORTRAN GMET, bringing new methodological and usability enhancements. 85 

These include (1) a flexible and configurable user control for input/output variables, run parameters, predictors, and weight 86 
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functions; (2) options for using basic ML techniques for local and global regression; (3) an alternative, efficient approach for 87 

cross-validation; and (4) more flexible input formatting, especially for dynamic gridded predictor inputs. GPEP draws from 88 

and formalizes some functions that were previously applied in the production of the continental EMDNA (Tang et al., 2021) 89 

and the global EM-Earth (Tang et al., 2022) datasets, while mimicking GMET functionality (such as cross-validation and 90 

usage of both static and time-variant predictor information) from Bunn et al. (2022).  91 

GPEP is a powerful tool for both research and applications of deterministic and ensemble distributed geophysical analysis 92 

estimation, including the production of meteorological datasets to support retrospective and real-time modeling on various 93 

scales. This paper summarizes the GMET methodology and GPEP enhancements and illustrates some of its capabilities using 94 

several experimental applications. 95 

2 Probabilistic estimation methodology 96 

2.1 The theory of GMET 97 

The core GMET methodology for probabilistic meteorological ensemble analyses assumes that the estimate of a 98 

meteorological variable at a specific time and location can be described by a parametric probability distribution. For mean air 99 

temperature and daily temperature range (i.e., the difference between maximum and minimum daily temperature), the normal 100 

distribution is used by GMET in the form of 𝑋	~	𝑁(𝜇, 𝜎!)  where 𝜇  and 𝜎  are the mean value and standard deviation, 101 

respectively. 𝜇  represents the deterministic estimation of a variable, and 𝜎  represents the uncertainty of 𝜇  estimation. 102 

Ensemble estimates can be obtained by sampling from the normal distribution. For variables such as precipitation with skewed 103 

distributions, transformation methods such as Box-Cox are applied to convert variables into Normal space. Although the 104 

GMET methodology was originally developed for precipitation and temperature estimation, it can also be applied to any 105 

variable that can be described using the normal distribution, either directly or through transformation.  106 

2.2 Deterministic estimation 107 

The premise of probabilistic estimation is obtaining 𝜇 and 𝜎 parameters. GMET adopts the locally weighted linear regression 108 

(LWLR) to obtain deterministic gridded estimates of 𝜇. Let 𝑥" be the raw or transformed station observation, the LWLR 109 

estimate 𝑥+ for the target point and time step is obtained as below: 110 

𝑥" = 𝑥+ + 𝜀 = 𝛽# +0 𝐴$𝛽$
%

$&'
+ 𝜀																																																																																																																																																												(1)	111 

where 𝐴$  is the ith predictor, 𝛽#  and 𝛽$  are regression coefficients, and 𝜀  is the residual (or error term). The initial 112 

implementation uses static terrain-related predictors such as latitude, longitude, elevation, topographic slope, and aspect (as in 113 
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Clark & Slater, 2006 and Newman et al, 2015). GMET version 2.0 added the ability to use time-varying dynamic predictors 114 

such as precipitation and temperature from atmospheric models to further improve the accuracy of gridded estimates (Bunn et 115 

al., 2022).  116 

To estimate 𝜎, GMET version 2.0 also implemented k-fold cross-validation (including leave-one-out, LOO, as a particular 117 

case), which enables the use of predictive rather than calibration uncertainty in ensemble generation, and provides an invaluable 118 

method for predictor screening and selection. 𝜎 is the uncertainty of gridded regression estimates 𝜇 based either on the standard 119 

error of the regression or the prediction error (e.g., root mean squared error from cross-validation).  120 

In addition to	𝜇 and 𝜎, for intermittent variables like precipitation, the probability of an event is required to determine whether 121 

an event occurs or not. GMET uses a locally-weighted logistic regression to estimate the probability of precipitation (POP) to 122 

enable its probabilistic estimation: i.e., the binary probability of the event (0 or 1) is regressed against the static and/or dynamic 123 

predictors (Equation (2)), which are also used in a precipitation amount regression. This method can be applied to other 124 

intermittent geospatial variables.  125 

POP =
1

1 + exp(−𝛽# +∑ 𝐴$𝛽$%
$&' )																																																																																																																																																													(2) 126 

While GMET employs locally weighted linear/logistic regression for its deterministic estimation, this component within the 127 

probabilistic estimation framework is method-agnostic. It is designed to be compatible with a variety of geospatial estimation 128 

methods, a versatility that has been realized in GPEP.  129 

2.3 Probabilistic estimation 130 

GMET generates distributed, spatiotemporally correlated random fields (SCRFs) that are used to sample the distributed 131 

regression models, generating ensembles that each maintain the spatial and temporal correlation structures of the input 132 

variables (Newman et al., 2015). For SCRF, the spatial correlation length (𝐶()%) is used to represent the spatial correlation 133 

structure over the entire domain: 134 

𝑐$,+ = exp	(−
𝑑$,+
𝐶()%

)																																																																																																																																																																																										(3) 135 

where 𝑑$,+ is the distance between grids i and j, and 𝐶()% is the spatial correlation length determined for each variable using 136 

station data. The random number for a given target grid point is conditioned based on previously generated points, utilizing a 137 

nested simulation strategy to enhance calculation efficiency. Please refer to Clark and Slater (2006) for more details.   138 
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The temporal correlation structure is represented using the lag-1 auto-correlation of a variable to link the SCRF at two 139 

consecutive time steps. In addition, if a variable shows a dependent relation with another variable, the cross-correlation 140 

between the two variables can be used to correlate their SCRFs. For GMET, the lag-1 auto-correlation of temperature and the 141 

cross-correlation between precipitation and daily temperature range are used to represent the temporal correlation structure 142 

and intervariable relationship (Equation (4)).  143 

?
𝑅,,- = 𝜌(./0'𝑅,0',- +B1 − 𝜌(./0'! 𝑅,0',-

𝑅,,1 = 𝜌23"44𝑅,,-5 +C1 − 𝜌23"44! 𝑅,0',1				
																																																																																																																																												(4) 144 

where t and t-1 are the current and previous time steps, respectively. 𝑅-, 𝑅-5, and 𝑅1 are 2-dimensional SCRFs of mean air 145 

temperature, and precipitation, respectively. 𝜌(./0' is the lag-1 auto-correlation of temperature.𝜌23"44 is the cross-correlation 146 

between precipitation and daily temperature range. For t=0, the SCRF is generated for each variable based only on the spatial 147 

correlation structure. The spatial correlation length, 𝜌(./0', and 𝜌23"44 can be estimated from station observations. 148 

After obtaining 𝜇, 𝜎, the POP, and SCRF, GMET can generate any number of ensemble members. Let 𝑅 be the random number 149 

from the SCRF for a specific location and time step, the probabilistic estimate (𝑥-) for temperature variables can be obtained 150 

using the temperature uncertainty 𝜎- to perturb the deterministic temperature estimation 𝜇- (Equation (5)). The number of R 151 

or SCRFs is the number of ensemble members. 152 

𝑥- = 𝜇- + 𝑅 ∙ 𝜎-																																																																																																																																																																																													(5)       153 

For precipitation, non-zero values are generated in proportion to the POP. Let 𝐹6(𝑦) be the cumulative density function (CDF) 154 

of the standard normal distribution and 𝐹6(𝑅) is the cumulative probability corresponding to the random number 𝑅. Note that 155 

y is precipitation undergoing the Box-Cox transformation (Section 2.1). Let 𝑝# be the POP for a specific location and time 156 

step, for an ensemble member, a precipitation event occurs only when 𝐹6(𝑅) is larger than 𝑝#. If an event occurs, we need to 157 

calculate the scaled cumulative probability of precipitation (𝑝24): 158 

𝑝24 =
7!(5)0:"
'0:"

																																																																																																																																																																																																	(6)  159 

The probabilistic estimate of precipitation is expressed similarly to Equation (5) using the precipitation uncertainty 𝜎1  to 160 

perturb the deterministic precipitation estimation 𝜇1: 161 

𝑦 = K
0			𝑖𝑓									𝐹6(𝑅) ≤ 𝑝#																																									
𝜇1 + 𝐹60'(𝑝24) ∙ 𝜎1								𝑖𝑓									𝐹6(𝑅) > 𝑝#				

																																																																																																																																(7) 162 
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where y is the precipitation in the Normal space and 𝐹60'(𝑝24) is the random value corresponding to 𝑝24. 𝑦	is back-transformed 163 

to obtain the final precipitation values (𝑥1).  164 

Details of the GMET methodology are introduced in previous development and dataset studies (e.g., Clark & Slater, 2006; 165 

Newman et al., 2015; Tang et al., 2021; Bunn et al., 2022). Although Equations (5)-(7) are implemented for precipitation and 166 

temperature in GMET, the probabilistic estimation theory is generic and applicable to other variables. 167 

3 GPEP 168 

GPEP offers both methodological (Table 1) and usability (Table 2) features that expand on GMET, and these are described in 169 

Sections 3.1 and 3.2, respectively. Like many software tools, GMET was first written for a specific application, and a key 170 

motivation for GPEP was to generalize a number of the hard-coded options to enable broader usage. Figure 1 shows the 171 

schematic of GPEP. A GPEP case is controlled by configuration files, with several templates available in the package. Once 172 

set up, GPEP engages in two key processes: (1) probabilistic estimation model fitting, corresponding to outputs from Section 173 

2.2, and (2) ensemble generation, corresponding to outputs form Section 2.3. 174 

 175 

Figure 1: The schematic of GPEP. To set up a GPEP case, users first need to prepare configuration files based on the 176 

templates provided in the package. The GPEP will then implement (1) probabilistic estimation model fitting, which can 177 

also output deterministic geospatial estimates, and (2) ensemble generation of any number of members.   178 
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3.1 Methodological improvements 179 

Here we introduce some major methodological improvements of GPEP compared to GMET. These changes enhance GPEP's 180 

flexibility as a tool not only for dataset production but also for scientific research aimed at achieving higher estimation accuracy 181 

or comparing the performance of different methodological strategies. 182 

Variable selection flexibility: The original GMET code was implemented to estimate precipitation, mean daily air temperature 183 

(Tmean), and daily temperature range (Trange), although it has also been used to estimate only precipitation. The spatial 184 

regression method and design, however, are applicable to arbitrary spatio-temporal variables, thus GPEP brings the variable 185 

selection and associated details into the user control (‘configuration’) file. This versatility enables GPEP to generate ensemble 186 

analyses for other variables; in the Earth Science or geophysical context these might include other meteorological variables 187 

such as radiation, wind speed, humidity, and air pressure, which are commonly required for hydrological models, or even 188 

hydrological variables for which observations or other analyses exist, such as snow water equivalent (SWE).  189 

Spatial interpolation: GMET supports only locally weighted linear and logistic regression, whereas GPEP expands the 190 

options beyond these two basic capabilities to also support any supervised learning method from the scikit-learn package 191 

(Pedregosa et al., 2011) that can use the fit function to train the model and use the predict/predict_proba to predict the output. 192 

Such techniques include ridge regression and classification, BayesianRidge regression, Lasso regression, ElasticNet 193 

regression, among others, for locally weighted regression, and regressors and classifiers of random forest (RF), multi-layer 194 

perceptron, support vector machine, among others, for global regression. Global regression builds one model for the entire 195 

study domain at every time step, which is far more efficient than the local regression methods, whereas users need to caution 196 

that global regression may have degraded accuracy compared to local regression which needs in-depth investigation for case 197 

studies. Users can define the method for continuous and classification regression and define model parameters following scikit-198 

learn formats in the configuration file.  199 

Uncertainty estimation: GMET has the option to use a standard k-fold cross-validation to obtain the uncertainty of each grid 200 

cell specific regression estimate, where the number of folds is specified by the user. The use of k-fold cross-validation increases 201 

the computational demand in proportion to the number of folds, which was feasible in GMET but is not in GPEP, due to its 202 

slower speed and relatively costlier operation. Consequently, GPEP adopts an alternative cross-validated uncertainty 203 

estimation strategy: (1) obtaining regression estimates at all station points, using leave-one-out validation for local regression 204 

and N-fold cross-validation for global regression; and (2) interpolating the resulting root mean square error from the station 205 

points to each grid cell using a distance weighted (i.e., locally weighted) averaging. The GPEP method achieves generally 206 

similar uncertainties with the standard method at less computational cost. The similarity of the two error estimation outcomes, 207 

however, will depend on the nature of the station and grid datasets being used.  208 
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Spatial correlation length: This parameter is critical for generating SCRFs for ensemble member generation. GMET requires 209 

prescribed length values, whereas GPEP supports either user-specified correlation lengths or a data-driven option, in which 210 

the length is inferred from raw station inputs. Users can also set various thresholds for the correlation calculation. For example, 211 

a positive threshold such as 10 mm/d can be used to focus only on heavy precipitation. With the data-driven option, users need 212 

to ensure that the input data length is enough for robust estimation of the correlation; the prescribed option is useful for smaller 213 

datasets (such as an operational forecast application) that are inadequate to define such correlation lengths. 214 

Static and dynamic predictors: GMET uses a fixed grid for both the static and dynamic predictors, has a hard-coded default 215 

list of static predictors, and uses the same predictors for all target variables (with a minor exception of dropping slope from 216 

low-relief prediction situations, the threshold for which is also hard-coded). In contrast, GPEP allows users to define the static 217 

and dynamic predictors used for different target variables. GPEP supports the regridding and transformation of dynamic input 218 

data as well.  219 

Distance-based weight: GMET v2.0 calculates local weights for the regression using a hard-coded exponential function based 220 

on the distance between two points, or allows for unweighted regression, and these choices can have a strong influence on 221 

regression estimation. GPEP more generally supports any user-defined distance functions based on the two parameters: dist 222 

(distance between points) and maxdist (max distance in weight calculation). This feature facilitates research on the impact of 223 

weight functions on regression and ensemble generation performance. 224 

Table 1. Comparison of GPEP and GMET methodological features 225 

 GMET v2.0 GPEP 

Variable 
Fixed: precipitation, air temperature, and 
temperature range User defined 

Spatial interpolation 

- Locally weighted regression 

- Linear regression 

- Logistic regression 

Local regression 

- Linear regression 

- Logistic regression 

- Scikit-learn methods 

Global regression 

- Scikit-learn methods including 
machine learning methods such 
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as random forest and multi-layer 
perceptron 

Prediction uncertainty 
estimation 

- K-fold sample cross-validation (including 
leave-one-out) for each target grid point 

- Cross-validation at station points only, with 
interpolation to grid points 

- Leave-one-out for local regression 

- K-fold cross-validation for global 
regression 

Spatial correlation 
length 

- User defined 
- User defined; or 

- Direct estimation from station data 

Static predictors Fixed: latitude, longitude, elevation, North-
South gradient, West-East gradient User defined 

Dynamic predictors - Same fixed spatial/temporal format for all 
dynamic variables  

- Independent settings for different variables 

- Flexible spatial/temporal formats 

- Allow spatial interpolation and 
transformation for any variable 

Distance-based weights Fixed formulation with empirical weight 
function or unweighted option 

User defined formulation 

 226 

3.2 New technical and usability features in GPEP  227 

GPEP has a different code design compared to GMET, leveraging features of Python to facilitate its implementation, 228 

debugging, and future improvement. A key consideration in the design of GPEP was providing backward compatibility with 229 

most input and run mode configuration features of GMET, to ease user transition and facilitate intercomparison.  230 

Environment: The Fortran-based GMET has certain prerequisites in terms of computational environment, such as the 231 

availability of a Fortran compiler and libraries to support NetCDF file standards and linear algebra libraries (e.g., OpenBLAS). 232 

GPEP relies on the installation of at least Python 3, along with Python packages including scikit-learn, scipy, xarray, and dask. 233 

Whether GMET or GPEP is more accessible for a user will depend on the user’s familiarity and facility with Fortran-related 234 

or Python-related computational dependencies. In general, both GMET and GPEP are designed with the use of common and/or 235 

open-source dependencies. Given the increasing prevalence of Python usage in the Earth Science community, however, we 236 
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believe that shifting future GMET development to a Python foundation will foster broader engagement by users and developers 237 

from more varied computational backgrounds.  238 

User control: As is common with all models and software, GMET has a mixture of hard-coded settings or parameters and 239 

those that are exposed in configuration files to give the user control over the GMET application. As it has developed, more 240 

parameters have been exposed to increase GMET flexibility, and with GPEP we accelerate this trend, either through bringing 241 

parameters of interest into the user control file or providing more methodological options. Examples include the spatial 242 

correlation length for Tmean and Trange, or Box-cox transformation exponent. The GPEP user can specify (in the 243 

configuration file) previously fixed implementation details such as the names of the input dataset dimensions and static 244 

predictor variable names (e.g., ‘elevation’). Although not strictly necessary for GMET and GPEP operation, these settings 245 

allow the user to avoid pre-processing inputs to exacting formats and may enhance the tool’s usability.  246 

Input station data file format: GMET was coded to read station data timeseries dataset from individual files, along with a 247 

single CSV metadata file; whereas GPEP can either use this input file organization, or a single netCDF file that combines all 248 

stations and their metadata attributes. The latter approach may be more convenient for users who prefer to bundle the station 249 

timeseries into a single file, and the single self-documenting file is faster to read than individual files. It may be less convenient 250 

if the station dataset changes frequently (either in the number of stations or length). If used with individual station data files, 251 

GPEP will write a merged NetCDF station file to provide the user with both options on subsequent runs.  252 

Input and output variable specifications: GMET is currently coded for its most common application -- i.e., reading 253 

precipitation and temperature extrema (minimum and maximum) and writing precipitation and temperature mean and range 254 

(over the timestep), which are estimated as the mean and difference of the extrema respectively. For many daily meteorological 255 

applications, these are the most widely available and used variables. For ensemble member generation, the SCRFs of 256 

precipitation and temperature are explicitly linked (via cross-correlation). One of the most important new features of GPEP is 257 

to generalize GMET to allow the user to specify arbitrary input and output variables and linkages and transformations between 258 

them. In the configuration file, arithmetic expressions can be used to convert input variables to output variables, and the concept 259 

of POP is generalized to ‘probability of event’ (POE), which can be estimated for any variable and can also use a user-defined 260 

event threshold. Users can also define the interdependence of variables in the ensemble generation step directly in the 261 

configuration file. 262 

Neighbouring stations: GMET allows users to define a fixed number of neighbouring stations used in local regression, while 263 

GPEP allows users to define the minimum and maximum numbers of neighbouring stations. This feature responds to the reality 264 

that for large domains, users may want to use different numbers of neighbouring stations for areas with different station 265 

densities. For example, it may be optimal to use fewer neighbouring stations in remote areas (e.g., northern Canada) to avoid 266 
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involving stations without notable correlation to the target point, while more neighbouring stations can be used in densely 267 

gauged areas (e.g., the eastern U.S.).  268 

Reproducibility and random field output: GMET by default uses a random seed when generating ensemble output, whereas 269 

GPEP gives users the option to fix (set) the seeds that control the random processes, such as SCRF generation and machine 270 

learning initial states. Fixing the random seeds will obtain the same ensemble outcomes from each GPEP run, enabling 271 

reproducibility that can be useful in debugging and development. GPEP also provides users with an option to output SCRF 272 

values, which may be of interest in development or for certain applications. 273 

Parallelization: Computational efficiency is critical for operational application. Python is inherently slower than Fortran for 274 

many operations, and GPEP’s production of ensemble analyses overall appears to be between 10 and 50 times slower than 275 

GMET, based on exploratory benchmarking. For instance, Python is around 10 times slower than Fortran for least-square 276 

linear regression functions. For complex computations and loops, the speed gap could be larger. Thus, we have parallelized 277 

GPEP's most time-consuming parts using the multiprocessing package to improve its speed (future versions may use other 278 

packages such as Dask). To demonstrate the parallel efficiency, we tested two locally weighted regression methods (LWR: 279 

LWR1 and LWR2) and a global regression method (i.e., RF) for the GMET version 2.0 test case of daily meteorological 280 

forcing generation for February 2017 in California, US (Bunn et al, 2022). Figure 2 shows that the default LWR1 functions 281 

are faster than LWR2, but both methods are slower than the global regression method RF. LWR2 is slower than LWR1 due to 282 

multiple factors, including the complexity and overhead of scikit-learn and the implementation difference (LWR1 is translated 283 

from Fortran codes using lower–upper decomposition). We observed a significant speedup for LWR1/LWR2 when CPUs 284 

increased from 1 to 25 and for RF when CPUs increased from 1 to 15. The speedup for RF diminishes because the compute 285 

time is relatively short for lower numbers of CPUs. The number of valid grids for this experiment is 12,419, based on which 286 

users may have a rough estimate of local regression time for their own LWR experiments. For generating ensemble members, 287 

parallel efficiency remains high with increasing CPU numbers up to 35, as different ensemble members can be generated 288 

simultaneously and can fully utilize the available CPUs. 289 

Table 2. Comparison of GPEP and GMET usability and technical features. 290 

 GMET GPEP 

Environment 
Requires a Fortran compiler and associated 
libraries (e.g., OpenBLAS), and uses 
standard Fortran compilation approaches.  

Requires a Python 3 environment and 
associated libraries (e.g., Xarray, Dask), and 
uses standard Python package installation 
approaches.  
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User settings 

- A small number of necessary run settings 
and parameters are set in the user control 
files 

- Fixed variable and dimension names for 
domain and attribute files (do not need to be 
set) 

- A larger number of run settings and 
parameters are set in the user control files 

- Variable and dimension names are defined 
in the configuration file (must be set) 

Input file format - Individual station data files and a metadata 
file 

- Individual station files and a metadata file; 
or  

- A combined station file including metadata 

Variable input and 
output control  

- Probability of precipitation  

- Fixed Prcp-Trange dependence 

- min/max temperature inputs to mean and 
range of temperature outputs 

- Probability of events for any variable  

- Any pair of variables can be linked 

- Arbitrary transformation from input 
variables to output variables 

Neighbouring stations Fixed number defined by users Min/Max number defined by users 

Relative speed Fast Slow 

Parallelization 
External (accomplished through time-space 
domain splitting) 

Internal (accomplished through multipool 
processing) 

 291 
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 292 

Figure 2: The CPU-scaling of the time cost (first row) and speed up (second row) of precipitation (prcp) regression 293 

(first column), the probability of event for precipitation (prcp_poe) regression (second column), and the generation of 294 

100 ensemble members (third column). LWR1 represents the default GMET method using locally weighted linear and 295 

logistic regression. LWR2 represents scikit-learn’s ridge regression and logistic regression, and RF represents the 296 

random forest regressor and classifier. Speedup is the ratio between compute time with 1 CPU versus with multiple 297 

CPUs.  298 

3.3 GPEP documentation and applicability 299 

GPEP comes with extensive documentation that is available on the GitHub repository and provides detailed information on 300 

how to set up the environment and prepare the configuration file and run GPEP. The documentation includes a comprehensive 301 

list of all the available parameters and options that can be used to customize the GPEP input and output (i.e., the 302 

./docs/How_to_create_config_files.md). A Jupyter Notebook is provided demonstrating the downloading and running of test 303 

cases (i.e., the ./docs/GPEP_demo.ipynb). The test cases are available at https://zenodo.org/record/8222852. 304 
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4 Demonstration Experiments 305 

We demonstrate a subset of GPEP capabilities through a small number of experiments described in this section. The first 306 

(section 4.1) compares GPEP outcomes to those of GMET for the primary GMET test case, a 1/16th degree resolution daily 307 

meteorological ensemble generation for California, that is included in the GMET version 2.0 repository (Bunn et al, 2021). 308 

The second demonstration (section 4.2) is for meteorological ensembles in a higher resolution (0.01 degree or approximately 309 

1 km) domain including the US Rocky Mountain headwaters of the Colorado headwaters, and the third (section 4.3) illustrates 310 

the use of GPEP to generate ensemble analyses of SWE for the same domain.   311 

4.1 GMET and GPEP comparison 312 

In this experiment, we compared the outputs of GPEP and GMET using the GMET version 2.0 test case in California, US. 313 

Figure 3 depicts the agreement between the GMET and GPEP regression model mean estimation of the four primary GMET 314 

output variables, focusing on the locally-weighted linear and logistic regression method based on static predictors only. For 315 

precipitation, Tmean, and Trange, the GPEP and GMET estimates are almost identical for all samples, with the data pairs for 316 

all time steps and grid cells in the domain mainly located along the 1-1 line. For Tmean and Trange, some subtle differences 317 

within ± 0.1°C are observed in the eastern parts of the domain. The minor discrepancies, especially in the probability of 318 

precipitation, come from slight numerical differences in data inputs, attributed to differences in double precision or single 319 

precision in GPEP and GMET codes. These minor variations can be magnified during iterative processes of logistic regression. 320 

GPEP tends to generate lower precipitation POE than GMET for low precipitation probability, while for high POE, GPEP 321 

generates higher probabilities. The positive and negative differences do not show observable spatial patterns. In general, 322 

GPEP's mean precipitation POE is slightly higher than that of GMET by 0.005 (~1%), which is negligible.  323 

These results demonstrate that GPEP can reproduce GMET's grid cell regression estimates with the most common 324 

configuration used in GMET applications to date. Note that we do not compare the ensemble member outputs here. The random 325 

fields generated by GMET are challenging to reproduce exactly in GPEP for a meaningful comparison, and the transformation 326 

of the regression models to ensemble members through the application of SCRFs is a straightforward arithmetic operation. 327 

Furthermore, the conclusions drawn by Henn et al. (2018), which evaluated the disparities between gridded precipitation 328 

datasets such as the GMET-based CONUS dataset (Newman et al., 2015) and Daymet (Thornton et al., 2021) in the western 329 

CONUS, are also pertinent to GPEP-based estimates employing the identical configuration. Consequently, we do not perform 330 

a comparison with other published datasets in this study.   331 
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 332 

Figure 3: The scatter density plots (first row) between GPEP and GMET estimates of precipitation (prcp) after Box-333 

cox transformation with a minimum value of -4, precipitation probability of the event (prcp_poe), mean air 334 

temperature (tmean) and daily temperature range (trange). Each point represents the estimate for a specific grid on a 335 

given day. The second and third rows show the histograms and spatial distributions of the difference between Python 336 

and Fortran outputs. The first and second rows are based on samples from all time steps and grid cells in the domain.  337 

4.2 High-resolution meteorological forcing ensemble generation 338 

4.2.1 Experimental design 339 

Previous GMET-based datasets were all created at mesoscale resolutions, such as 1/16th degree (~6 km) and 0.1° (~10 km). 340 

In this experiment, we demonstrate the production of higher resolution ensemble meteorological analyses of daily precipitation, 341 

Tmean, and Trange, using a resolution of 1 km in the US upper Colorado region, as shown in Figure 4. The baseline GMET 342 

dataset for this domain was developed as part of a number of water resources research projects supporting the US Bureau of 343 

Reclamation (e.g., Wood et al, 2021), one of which focuses on the Colorado Big Thompson Project and hydrologic modeling 344 

in the East and Taylor River basins. The elevation ranges between 1427 and 4241 m. The experiment was performed using 345 

meteorological data from 864 precipitation and/or temperature stations for the 2013 calendar year. The station observations 346 

were quality-controlled (using range and repeating values checks) and filled using a 4-pass iterative quantile mapping from 347 
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best-correlated nearby stations (Mendoza, et al, 2017; Wood et al, 2023; Liu et al, 2023). Locally weighted linear/logistic 348 

regression is used in spatial interpolation. The static predictors are latitude, longitude, elevation, and south–north and west–349 

east slopes. The slopes are based on smoothed topography (Figures 4c and 4d) to better characterize orographic precipitation 350 

on the windward and leeward sides (Newman et al., 2015).  In more recent work, the smoothing parameter (a 2-dimensional 351 

isotropic Gaussian filter with an effective radius of approximately 100 km) was heuristically selected to maximize the 352 

correlation between the slopes and precipitation gradients. In addition, we use the 2-m air temperature, 2-m dew-point 353 

temperature, and precipitation from the ERA5-Land reanalysis product (Muñoz-Sabater et al., 2021) as dynamic (time-varying) 354 

predictors because of their linkage with temperature, humidity, and precipitation. The static and dynamic predictor selection 355 

was for demonstration purposes and does not presume to offer optimal performance. In practice, users may choose to test 356 

different combinations to achieve the best accuracy, which can be determined through examining cross-validation results.  357 

The high-resolution experiment, having about 73% of the grid count of the North American Land Data Assimilation System 358 

(NLDAS), can also provide a benchmark for large-domain applications. Using 36 CPUs on the Casper High Performance 359 

Computer (HPC) at the National Center for Atmospheric Research, this experiment took 54.4 minutes to produce regression 360 

estimates and 37.3 minutes to generate 36 ensemble members for the year 2013. Note that this duration does not account for 361 

the one-time generation of prior files, such as indices for neighbouring stations and the spatial correlation structure. 362 
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 363 

Figure 4: (a) The location of the test case area in the upper Colorado region, US (red region). Blue lines outline the 364 

Hydrologic Unit Code (HUC) level-2 regions. (b) The digital elevation from the Shuttle Radar Topography Mission 365 

(SRTM) with an original resolution of 3 arc seconds. (c) and (d) are the south–north and west–east slopes, respectively, 366 

calculated based on smoothed elevation using a 2D Gaussian low-pass filter. 367 

4.2.2 Leave-one-out validation 368 

As introduced in Section 3, GPEP uses the leave-one-out strategy to estimate the uncertainty of local regression. GPEP also 369 

provides 16 evaluation metrics in the output file, facilitating the assessment of the quality of interpolation estimates. For 370 

example, Figure 5 displays three metrics, namely, the correlation coefficients (CC: 0 – 1), mean absolute error (MAE: 0 – ∞), 371 

and the modified Kling-Gupta efficiency (KGE": -∞ – 1). KGE" (Tang et al., 2021) uses the standard deviation instead of the 372 

mean value to normalize the bias term, making it suitable for temperature variables because it avoids the impact of units (e.g., 373 

Kelvin vs Celsius) and the amplified bias around zero temperature (when Celsius is used). Precipitation estimates show higher 374 
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accuracy in the relatively flat eastern areas, exhibiting high CC and KGE" and low MAE, while the vast western areas have 375 

lower accuracy due to the complex terrain and lower station density. Tmean and Trange exhibit different spatial patterns, with 376 

Tmean having much better MAE and KGE" than Trange. This indicates the difficulty in capturing diurnal fluctuations between 377 

the minimum and maximum temperature. 378 

We compared the performance of RF to locally weighted regression as shown in Figure 6. Here we only use the default settings 379 

of the scikit-learn package. The efficiency of RF is influenced by factors like hyperparameters and feature combinations, but 380 

a deep dive into these is beyond the scope of this paper. We used 10-fold cross-validation for RF and leave-one-out for locally 381 

weighted regression, making the station density about 10% lower for RF. Compared to locally weighted regression, RF has 382 

better CC for precipitation and Tmean but a higher MAE for all variables. For KGE", the difference between the two methods 383 

varies across stations but has a comparable overall performance. This experiment highlights the capability of GPEP to 384 

incorporate machine learning in spatial estimation, and refining precision in specific user applications will benefit from the 385 

user’s expertise. 386 
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 387 

Figure 5: The spatial distributions of CC (first row), MAE (second row), and KGE" (third row) for precipitation (first 388 

column), Tmean (second column), and Trange (third column) based on leave-one-out validation. 389 
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 390 

Figure 6: As in Figure 5, but depicting the difference (random forest minus locally weighted regression) between the 391 

two estimation methods. Note the random forest output is just for demonstration purposes without substantial effort 392 

on parameter tuning and feature engineering. 393 

4.2.3 Ensemble estimation 394 

Figure 7 shows the spatial distributions of precipitation, Tmean, and Trange from three ensemble members during the period 395 

September 9 to 17, 2013, when heavy precipitation occurred with the accumulated amounts exceeding 500 mm at the 396 

precipitation center. The magnitude is generally comparable to other post-flood analyses (e.g., Gochis et al., 2015). The large 397 

differences between members at event centers originate from the interpolation uncertainties which are mainly caused by the 398 

degraded capability of the station network and interpolation method to capture extreme events. Tmean shows the lowest 399 
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ensemble spread among the three variables, and Trange shows the intermediate ensemble spread. The ensemble spread, 400 

calculated using weighted spatial averaging, shows smooth spatial distribution. The distribution of Tmean and Trange 401 

demonstrates a distinct patchy pattern, suggesting that the primary source of uncertainty originates from a few stations located 402 

in the southern region of the study area. 403 

Figure 8 shows the time series of ensemble outputs in September 2013 for Boulder County, Colorado, parts of which 404 

experienced significant extreme precipitation, causing devastating floods from September 11 to 15, 2013. The return periods 405 

of the floods were estimated to be 25 to 100 years. The GPEP ensemble precipitation indicates a major precipitation event 406 

(Figure 8a) with mean or median precipitation going beyond 60 mm/d and some members going beyond 100 mm/d around 407 

September 11. For precipitation estimation, it is possible that the use of a wind speed and direction dynamic predictor would 408 

also contribute to an upslope precipitation enhancement, leading to higher intensities at elevation in the Front Range basins 409 

that experienced flooding. The flooding period also suffers from the largest uncertainty in September with the 5%-95% bounds 410 

ranging between <10 mm/day and >150 mm/day. This illustration highlights the challenge of accurately capturing extreme 411 

events with deterministic precipitation estimation and the potential usefulness of ensemble estimation in representing 412 

uncertainty and triggering useful alerts for extreme events with their upper bounds. Additionally, Tmean displays a decreasing 413 

trend accompanied by continuous precipitation, while Trange shows an inverse trend to Tmean after September 8. 414 

We conducted an additional experiment for an independent evaluation of ensemble estimates. In this experiment, we utilized 415 

70% of the randomly selected stations to generate the gridded estimates and used the remaining 30% as a reference for 416 

evaluation. The number of ensemble members is 100. As depicted in the rank histogram (Figure 9), the probabilistic estimates 417 

for precipitation, Tmean, and Trange generally capture the range of station observations. Yet, precipitation probabilistic 418 

estimates appear to have a slight bias toward overestimation, as shown by the elevated sample number at the lowest rank 419 

compared to others, whereas Tmean probabilistic estimates lean towards underestimation. The results depart from uniform 420 

reliability across all predicted ranks, though not badly. These biases might stem from inaccuracies in spatial regression 421 

estimates and may be improved through a consideration of different predictors or methods available in GPEP. We reiterate 422 

that these results serve as a demonstration of the probabilistic evaluation methodology. Users should conduct evaluations 423 

tailored to their specific test cases to gauge actual performance. 424 
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 425 

Figure 7: The spatial distribution of total precipitation and mean Tmean/Trange (columns) from three ensemble 426 

members (the first three rows) and the ensemble spread (the fourth row) from September 9 to 17, 2013. 427 
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 428 

Figure 8: The time series of spatially averaged GPEP ensemble outputs in Boulder County, Colorado (39.91° to 40.26°N, 429 

-105.7° to -105.05°W). 430 
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 431 

Figure 9: The rank histogram of 100 ensemble members using 70% of the stations to generate the gridded estimates 432 

and the remaining 30% as the evaluation reference. 433 

4.3 Snow water equivalent (SWE) estimation 434 

GPEP can be applied to a wide range of geophysical variables beyond precipitation and temperature, which has been the 435 

common application of GMET. In this test case, snow water equivalent (SWE) is chosen as an example, as it was one of the 436 

first applications of the locally-weighted terrain regression and ensemble generation methodology that was later developed 437 
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into GMET (Slater & Clark, 2006). We use the same domain as in the previous test case, and a configuration sharing some 438 

details: the predictors are latitude, longitude, elevation, south–north and west–east slopes, the transformation method was Box-439 

cox, and the locally weighted linear/logistic regression is adopted. In practice, other predictors such as other topographic 440 

variables, vegetation types, and dynamic predictors such as radiation, temperature, and SWE from models can be explored for 441 

improved performance. We estimate SWE ensembles for the water year from October 2012 to September 2013. The station 442 

observations come from the SNOwpack TELemetry Network (SNOTEL) network. Only serially complete stations (71) in the 443 

study period are used, as we did not attempt to quality control and fill the station data for this demonstration.  444 

Figure 10 shows the LOO cross-validation results of SWE. According to station observations, the SWE peak occurs on April 445 

25, 2013, during the 2012–2013 water year. Overall, the spatial distributions of observed and estimated SWE are similar 446 

(Figures 10a,b). However, the estimated SWE is smoother in space, leading to large biases at a few points. For example, SWE 447 

is overestimated at two stations (~ 39.3°N / 106.6°W and ~ 40.2°N / 105.6°W) that show notably lower SWE than surrounding 448 

stations. For the mean annual SWE (Figure 10c), estimates agree well with observations (the relative mean error for the points 449 

shown is 2.94%), except for one outlier corresponding to the station at 40.35°N / 106.38°W. The station has an elevation of 450 

3340 m, where the estimated SWE is 375 mm but the observed SWE is 180 mm. It is possible that the predictors used in this 451 

demonstration do not represent the factors affecting SWE distribution well, leading to sub-optimal regression results. Figure 452 

10d shows that the seasonal performance of cross-validated GPEP SWE (averaged across the 71 points) in the upper Colorado 453 

region is well captured, except for the underestimation of SWE at the end of the melt period (June 2013). Optimizing this SWE 454 

analysis is beyond the purposes of this capability demonstration, and it is likely that different predictor or methodological 455 

choices would improve the results shown here.  456 

SWE and other hydrologic or land surface variables can be strongly auto-correlated, distinguishing their probabilistic 457 

estimation from most meteorological fields, e.g., precipitation or temperature. The lag-1 auto-correlation of SWE exceeds 0.99 458 

within the study area, implying that the random field in all time steps will be quite similar to that in the first time step (Equation 459 

(4)), and the ensemble spread may be underestimated. This example highlights the importance of generating a realistic initial 460 

spatial random field, which significantly depends on the spatial correlation length, for the perturbation of SWE, as well as 461 

predictors that represent factors leading to high-frequency space/time variability in SWE. For demonstration purposes, we 462 

have used a spatial correlation length of 10 km, but would encourage future studies to investigate optimal settings for this 463 

length. Figure 11 illustrates the 25-member SWE estimates. The uncertainty is lower during the accumulation stage and greater 464 

when SWE reaches its peak and melting begins (Figure 11a). Figures 11b and 11c display the ensemble mean and spread of 465 

SWE on April 25, 2013, respectively. Substantial SWE is observed in high-altitude areas, where the spread is also large. 466 

Probabilistic SWE estimates can support the uncertainty quantification of a variety of applications related to water resources 467 
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management such as forecasting streamflow, including seasonal runoff volumes for managing reservoirs and assessing flood 468 

risks. 469 

 470 

Figure 10: (a) SWE of station observations on April 25, 2013, when the mean SWE reaches the peak, (b) SWE of leave-471 

one-out interpolation estimates on April 25, 2013, (c) scatter plots between observed and estimated mean annual SWE 472 

with the colour representing KGE", and (d) the performance of daily domain-average SWE estimation for one water 473 

year (2013).  474 
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 475 

Figure 11: (a) Domain average daily SWE in the study area from 25 members. The dark blue line is the ensemble mean. 476 

(b) and (c) are the ensemble mean and ensemble spread of SWE on April 25, 2013, respectively. 477 

5 Discussion 478 

The experiments showcased in this study highlight the flexible use of GPEP for both deterministic and probabilistic geospatial 479 

estimation across various variables. We emphasize that GPEP is a tool with myriad configuration choices for estimation 480 

applications that may differ greatly from the case studies shown. The statistical accuracy of these experiments can be further 481 

improved with a deeper dive into predictors, parameters, and methodological alternatives. Users can also investigate the 482 

influence of various factors such as station density, topography, and climate on estimation accuracy within their specific 483 

applications.  484 

GPEP requires station records as inputs to implement geospatial estimation across temporal scales. For local regression 485 

configurations, it is advisable to either fill gaps in station records or utilize serially complete station datasets (e.g., Eischeid et 486 
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al., 2000; Tang et al., 2020, 2021), while for global regression, gaps in station records are permissible. Users also have the 487 

flexibility to restructure gridded datasets by considering each grid cell as a distinct station to achieve particular objectives such 488 

as downscaling. However, this approach might significantly impact computational efficiency due to the sheer number of points 489 

since GPEP is not initially designed to serve such applications.  490 

The initial implementation of GPEP has much room for improvement concerning both methodology and software engineering. 491 

A few key aspects are discussed below with the aim to attract a community of collaborators who will help to achieve some of 492 

these future developments: 493 

• The probabilistic estimation formulation used by GMET and GPEP is implemented to handle the intercorrelation 494 

relationship between two variables, while higher dimensional multi-variate formulations would likely be needed in certain 495 

applications of Earth system models. For example, precipitation, humidity, radiation, and temperature variables are 496 

correlated to each other in time and space. GPEP only allows the dependencies of one variable on the other one through 497 

Equation (4), although multiple pairs of dependencies can be defined in the configuration file. This formulation can be 498 

expanded through code revision to include multi-variate correlation and covariance structures, and alternative probabilistic 499 

estimation methods can be investigated, such as using Copula functions and reviewing correlation structures obtained 500 

from multi-site weather generators.  501 

• The flexibility of the methodological framework can be further enhanced by including more options. For example, myriad 502 

options exist for variable transformation (the current Box-Cox transformation may not be ideal) and can be added in the 503 

future to address the requirement of specific variables (Papalexiou, 2018). Similarly, the generation of spatiotemporally 504 

correlated multi-variable analyses can benefit from the addition of a variety of methods, including Papalexiou & Serinaldi 505 

(2020) technique to construct flexible spatiotemporal correlation structures by combining copulas and survival functions, 506 

and geostatistical tools such as the Python-based GSTools (Müller et al., 2022) that can be used to generate spatial random 507 

fields.  508 

• The current scikit-learn method libraries are just a starting point for expanding the options available for conditional 509 

estimation of geophysical fields, and we expect that future development may link to ML and deep learning packages such 510 

as PyTorch, TensorFlow, or Keras, as the field evolves. By incorporating these and other potential options, GPEP can 511 

become even more versatile in hydrometeorology and Earth Science studies.  512 

• A major drawback of the move from the Fortran-based GMET to GPEP is the significantly slower outcomes for current 513 

meteorological GMET applications (even considering the internal parallel capability of GPEP). Work to understand and 514 

optimize this aspect has only begun (e.g., Figure 2), so the computational demands may pose challenges for GPEP’s local 515 

regression configurations if applied for large-domain and/or near-real-time operational applications on small 516 

computational resources. We expect that this issue can be resolved through further algorithm optimization, hybrid 517 
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programming for the time-consuming parts of GPEP, additional parallel processing options, and even a shift toward GPU 518 

computing.  519 

6 Summary and discussion 520 

GPEP is a flexible Python-based software for ensemble, probabilistic estimation of any geophysical variable. It expands on 521 

the capabilities offered by the Fortran-based GMET software on which GPEP is based. GMET has been used for almost a 522 

decade in numerous hydrology and water resources applications, demonstrating its quality and value through the performance 523 

of GMET datasets relative to other widely used options. The central motivations for adapting GMET into a Python framework 524 

were to broaden the development community for the probabilistic estimation tool and to facilitate more rapid development 525 

with linkages to ML methods through the growing Python-based activities and resources in this area. 526 

GPEP supports various local and global regression methods including ML techniques for spatial interpolation and fusion of 527 

multi-sensor datasets, and can generate any number of ensemble members using the predictive uncertainty results obtained 528 

from cross-validation. Although GPEP operates more slowly than the original GMET, the tool's internal parallelization 529 

capability scales well to improve its computation efficiency, making it suitable for both research and operational applications.  530 

The experiments showcased in this study illustrate examples GPEP's capabilities without being tailored for optimal application-531 

quality performance. The template configurations available on the associated GitHub repository can emulate GMET 532 

configurations and generally deliver commendable results, and users are encouraged to view GPEP as a versatile geospatial 533 

estimation tool and extend their configurations beyond those provided in the templates. User expertise and domain knowledge 534 

are required for scientific explorations of various configurations (e.g., weight functions, neighbouring stations, static/dynamic 535 

predictor combinations, variable transformation, and regression method intercomparison) and diverse scenarios (e.g., station 536 

densities, topographic and climatic impacts, and variable choices).  537 
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