
Referee Comment 1 (RC1) by Anonymous Referee #1 

Specific Comments  

Lines 473-475. Section 4.2. Figure 5. Yes, for the 183 GHz water vapor absorption band, the three 
curves in Fig. 5 appear flipped with respect to those in Fig. 4. However, for the 50-70 and 118 GHz 
O2 absorption bands, only the red curve (surface emissivity = 0.9) in Fig. 5 appears flipped; the 
green and blue curves (surface emissivity = 0.45) in Fig. 5 do not. It would be helpful if the authors 
provide an explanation of this feature. Another interesting feature shown in Fig. 5 is that in the 50-
70, 118, and 183 GHz gas absorption spectral regions, all the three curves in Fig. 5 are close to each 
other. It would be wonderful if the authors can also provide an explanation of the insensitivity of 
simulated upwelling TB to surface emissivity and sensor viewing angle in these spectral regions.  

We thank the reviewer for this comment. Indeed, a deeper explanation was needed for Figure 5. 
Following the reviewer’s comment, we modified the text as follows: 

“The graphic output is reported in Figure 5, where the impact of pointing angle and surface 
emissivity is shown by varying their values. In particular, 90° pointing angle indicates nadir 
observations, while 37° indicates typical observing angle of MW imagers (53° from nadir), while 
0.9 and 0.45 represent typical high and low emissivity values in the MW spectral region. Figure 5 
shows that if the emissivity is relatively high (e.g., 0.9), the spectrum resembles that of a warm 
black-body emission at ~270 K (except where strong atmospheric absorption occurs, e.g., 60, 118, 
and 183 GHz). Conversely, if the emissivity is relatively low (e.g., 0.45), the background is 
relatively cold and the atmospheric emission features stick out, similarly to Figure 4. However, near 
the center of strong emission features (e.g., 60, 118, and 183 GHz) TB appears flipped with respect 
to Figure 4, indicating gas absorption that removes radiation from the emission coming from the 
relatively warm background. It is notable that in those regions TB nearly overlap for the three 
emissivity and angle conditions; this is because the atmospheric opacity is so high to make TB 
saturate within a short distance, thus becoming insensitive to surface emission and observing angle 
(i.e., path length).” 

Lines 497-498. Section 4.3. Figure 6. The legend of Fig. 6b is not very clear. What does “𝜏	
(wet+dry)” stand for? It would be better to introduce this notation in the figure caption. In addition, 
the authors present the gases that account for the absorption bands in the spectral range between 20 
and 201 GHz shown in Figs. 4 and 5. The readers may also be interested in the gases that cause the 
absorption bands between 118 and 874 GHz shown in Fig. 6.  

With “𝜏	(wet+dry)” we intend the total opacity (𝜏) arising from water vapour (wet) and the “dry” air 
(i.e., the two highest-concentration gases N2 and O2). But we agree this is unclear. So, we modified 
the figure legend and caption as follows: 

Legend: 
– Atmospheric opacity due to H2O, O2, and N2 above aircraft altitude (5 km) 
– Atmospheric opacity due to H2O, O2, and N2 below aircraft altitude (5 km) 

Figure 6. Top: downwelling and upwelling TB simulating aircraft observations at respectively 
zenith and nadir from 5 km altitude (gas absorption model: R22; surface emissivity equal to 1). 
Bottom: Atmospheric opacity (𝜏) corresponding to dominant gases (H2O, O2, and N2) computed for 
the uplooking and downlooking views. All the features correspond to H2O absorption but the 
following, due to O2: 118, 368, 424, 487, 715, 773, 834 GHz. Input profile from the radiosonde 



launched from Camborne (UK) on 22 July 2021 at 12:00 UTC and retrieved from the Wyoming 
Upper Air Archive. Vertical black lines indicate the ISMAR channel frequencies. 

Lines 597-604. Figure 11 is a good example, but does it have something to do with the uncertainty 
covariance matrix estimation approach said to be incorporated into the PyRTLib?  

Correct. The grey shadings correspond to (respectively darker to lighter) 3-sigma, 2-sigma, 1-sigma 
uncertainty obtained by propagating the spectroscopic parameter uncertainty covariance matrix 
through the radiative transfer Jacobians (i.e., sensitivity of TB to spectroscopic parameter). We 
modified the text as follows to make it clearer: 

“One example is shown in Figure 11. It shows ground-based zenith radiometric measurements from 
the MWRP with its typical calibration uncertainty (Cadeddu & Liljegren, 2018) compared with 
zenith downwelling TB computed processing one radiosonde from the TCAP dataset, together with 
the associated uncertainty estimate σ(TB). σ(TB) is computed within PyRTLib by propagating the 
spectroscopic parameter uncertainty through the radiative transfer. Calling 𝑪𝒐𝒗(𝑝) the parameter 
uncertainty covariance matrix (as in Cimini et al., 2018), 𝑲𝒑 the sensitivity of TB to spectroscopic 
parameter (Jacobian), σ(TB) is computed as 

𝜎"(𝑇#) = 𝑑𝑖𝑎𝑔0𝑪𝒐𝒗(𝑇#)1 = 𝑑𝑖𝑎𝑔(𝑲𝒑 ∙ 𝑪𝒐𝒗(𝑝) ∙ 𝑲𝒑
$) 

where T indicates the matrix transpose.”  

Technical Corrections  

Line 252. The integral in Eq. (5) is from si-1 to si, not from si to si+1. The RHS should be… 

Correct. Eq. (5) has been modified accordingly. Thanks for spotting the typo. 

Line 359. Change “Ccenter” to “Center”. 
Line 466. “elevation angle” or “elevation angles”?  
Line 482. “emissivity at” or “emissivity values of”?  
Line 485. “elevation angle” or “elevation angles”? “emissivity at” or “emissivity values of”?  
Line 544. “Figure” of “Figures”?  
 
Agreed. Thanks for spotting the typos. 

Line 519. What are “wave” water vapor lines?  

The hyphen was missing, sorry. Corrected with “submillimeter-wave”. Thanks for spotting the typo. 

Lines 541 and 548 and 552. Line 541 says 149 match-ups while lines 548 and 552 both say 153 
match-ups.  

After both screenings, 149 matchups are left. Thanks for spotting the inconsistency. 

Not sure if other users also meet the problem, but I could not succeed in running the RT package the 
authors developed on my machine. After the package was installed, I failed in executing the 
examples provided by the authors with the same following error message:  

ModuleNotFoundError: No module named 'pyrtlib' 



Under the virtual environment where the package was installed, I tried installing the package again 
using the command: pip install pyrtlib but did not change anything. The following message helped 
me gain some confidence that the package was successfully installed:  

Requirement already satisfied: pyrtlib in xxx 

Thanks for spotting this issue. The “ModuleNotFoundError” could be due to different python 
installation on the machine. Maybe multiple python versions coexist on the same machine? PyRTlib 
must be ran through the same python version it was used for its installation. Also, Python v3.7 or 
higher is required to work with PyRTlib.  

Nonetheless, we have now released an upgrade (PyRTlib v1.0.3) which may be installed via the pip 
install pyrtlib -U command. Please have a look. 

 

Referee Comment 2 (RC2) by Anonymous Referee #2  

This manuscript introduces a new microwave forward model implemented in Python, PyRTlib. The tool 
has a relatively narrow scope compared to some existing radiative transfer programs and is brought 
forward as an educational tool. On the other hand, it has some unique features that are of scientific 
interest. 

As a start, I would suggest putting less emphasis on “educational” (is an educational tool even inside the 
scope of GMD?). If having education as the main aim, it should be shown that the tool has pedagogical 
advantages, i.e. how it facilitates learning compared to what can be achieved with other software. As far 
as I can see, educational is here more or less equal to the second aim of being user-friendly (page 7). 

There are two possible target audiences: the students and younger scientists, the “newbies” expected to 
be the users of PyRTlib, or the teachers and advisers of those users (and there could even be old 
scientists that master Python and would use PyRTlib in their work!). The manuscript in its present form 
seems to have both audiences in mind but is not meeting the full expectations of any of them. It could be 
possible to handle both audiences in parallel, but it is probably best to target one of them. The most 
reasonable choice seems to prioritise teachers, advisers and scientific use. Targeting newbies would 
likely result in a too low scientific level for a journal article, and they will primarily look for 
information in the user guide. However, I fully understand that it is not possible, or even preferred, to 
have a strict separation between “science” and documentation. Here, a pragmatic approach must be 
allowed. To be useful, the journal article must contain aspects of documentation, but it should be on a 
relatively high level, such as the general principles of the software’s design. 

We thank the reviewer for raising these thoughts. We agree that with “educational” we meant to 
highlight PyRTlib is "user-friendly" and thus it can be used by students and teacher/advisers with a 
relatively modest learning curve. We use “educational” also to indicate that several examples are 
provided with documentation to get the user quickly started. This is not unique of PyRTlib, as it is also 
true for some of the other available RT codes, though not all. In any case, the purpose of PyRTlib is not 
to compete with other available RT codes, but to provide a user-friendly alternative with somewhat 
different, although much narrower, features, i.e.: Python native, quick get started, online absorption 
model comparison, and spectroscopic uncertainty enabled. The intent is to reach and guide new users 
(either students or teacher/advisers) to engage with RT modeling, not excluding the scientific 
community that is active in developing atmospheric microwave absorption models. 



The choice of units is an example of general principles. The only way to determine the chosen units is if 
the example codes clarify them. Please add a table or explain if they are found in the user guide. If the 
units are selected according to some guidelines (using the ones typically found in atmospheric models?), 
that would be helpful to know. Further, is there a strategy when importing data? Are the units kept from 
the original data source or converted to standard units? Taking the function IGRAUpperAir as an 
example, where do I find out what variables it returns and their unit? The example codes show that the 
user must employ unit conversions. This is error-prone, and I question whether this aligns with a user-
friendly tool. 

We thank the reviewer for pointing this out. Indeed, units are a very important aspect for the example 
codes. Although we had defined the units within the source code, we missed to report into the 
documentation of the module that retrieves public datasets. Units are kept the same as in the original 
datasets, although conversion is applied to use the dataset as input and to perform the model in the main 
function. The units needed of input parameters are shown in the function documentation 
(https://satclop.github.io/pyrtlib/en/main/generated/pyrtlib.tb_spectrum.TbCloudRTE.__init__.html). 

For the public datasets available within PyRTlib (IGRA2, Wyoming, ERA5), the units have been added 
to the documentation, e.g:   

Wyoming: 
https://satclop.github.io/pyrtlib/en/main/generated/pyrtlib.apiwebservices.WyomingUpperAir.request_d
ata.html  

IGRA2: 
https://satclop.github.io/pyrtlib/en/main/generated/pyrtlib.apiwebservices.IGRAUpperAir.request_data.
html  

ERA5: 
https://satclop.github.io/pyrtlib/en/main/generated/pyrtlib.apiwebservices.ERA5Reanalysis.read_data.ht
ml  

It would be helpful to explain the organisation of the documentation. Where do I look for different types 
of documentation? The existence of a user guide should be mentioned in the introduction and referred to 
in the text. 

Section 6 “Code and data availability” introduces source code and available documentation. Links to the 
documentation and to the versioning of source code from GitHub repository are indicated. Currently, 
documentation is available only for the latest PyRTlib version, but a developer and a version tag 
documentation are planned for the next release of PyRTlib.  

Another missing piece of information is how altitude and observation angle are specified. Please note 
that it needed to specify an altitude for satellite observations if Eq. 7 is applied. It is the radius of the 
instrument that sets the constant. 

Agreed. We modified the text in Section 2.3 as follows: 

“This approximation only requires the elevation angle 𝜃 and the profile of the atmospheric 
thermodynamical status (pressure, temperature, relative humidity, cloud water content) as function of 
altitude over the Earth surface (h), and it is the default option in PyRTlib. A one-dimension spherical 
atmosphere can also be considered, which assumes the atmosphere as uniform concentric layers around 
a smooth spherical Earth. Following Schroeder and Westwater (1991), the ray path for a spherically 
stratified atmosphere is modelled through the Snell's law for polar coordinates: 
 



𝑛	𝑟	𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡           (14) 
 
where n is the atmospheric refractive index and r is the radial distance from the center of the Earth to a 
point on the ray path. All these qualities depend only on height above the surface. The radiance distance 
r is assumed as the Earth geoid radius (RE) plus the altitude over the Earth surface. Note that the 
constant in Eq. (14) must be set in one point of the ray path. This is currently set at the lowest available 
atmospheric level, which imposes the limitation that PyRTlib version 1.0 cannot simulate limb sounding 
observations.” 

I suggest using some tables for better clarity. It is mentioned that “intermediate RT variables” can be 
accessed, but the exact set is unclear. This information would be suitable for a table, then including units 
of these variables. A table would also help get a quick overview of the absorption models. Here, I 
recommend including the reference matching the implementation to avoid confusion. 

We thank the reviewer for this suggestion. We added tables in Section 4 to summarize output and all the 
intermediate variables as follows: 

Table 4.1: Output variables from PyRTlib. 
Variable Description Units 

tbtotal brightness temperature includes cosmic background K 

tbatm atmospheric brightness temperature, no cosmic K 

tmr mean radiating temperature of the atmosphere K 

tmrcld mean radiating temperature of the lowest cloud layer K 

taudry dry air absorption integrated over each ray path Np 

tauwet water vapor absorption integrated over each ray path Np 

tauliq cloud liquid absorption integrated over each ray path Np 

tauice cloud ice absorption integrated over each ray path Np 

 
Table 4.2: List of all the intermediate variables accessible from PyRTlib. 

Variable Description Units 

taulaydry dry air absorption integrated over each ray path Np 

taulaywet water vapor absorption integrated over each ray path Np 

taulayliq cloud liquid absorption integrated over each ray path Np 

taulayice cloud ice absorption integrated over each ray path Np 

srho water vapor density integrated along each ray path cm 

swet wet refractivity integrated along each ray path cm 

sdry dry refractivity integrated along each ray path cm 

sliq cloud ice density integrated along each ray cm 

sice cloud liquid density integrated along each ray cm 

 

Also, the PyRTlib documentation, introduced in Section 6, provides info on all the intermediate output 
variables at the following link: 
https://satclop.github.io/pyrtlib/en/main/generated/pyrtlib.tb_spectrum.TbCloudRTE.execute.html  

The results in Figure 7 give confidence in PyRTlib, at least for the two absorption models used. Has 
there been any comparison between PyRTlib and other forward models? Or internally, comparing the 
different absorption models? This provides no validation against reality but is the fastest way to detect 
possible bugs. 



It’s true that Figure 7 gives confidence in PyRTlib, although the purpose was to show that PyRTlib can 
be used to monitor MWR observations and to evaluate different absorption models. Several tests have 
been performed before releasing the software using the available absorption models in PyRTlib. Most of 
the tests were performed against the original code from NOAA (in Fortran) and later translations (in 
Matlab). One test was also performed against the results from ARTS using the same absorption model 
(Rosenkranz, 2021), as shown in the following figure (courtesy of Stuart Fox, extracted from final 
report of EUMETSAT ISMAR study). The absorption differences between the two implementations are 
quite small (less than 0.05%) and are attributed to different assumptions in the radiative transfer 
regarding the variation of absorption coefficient across an atmospheric layer.  

We added the following text to Section 4.3: “Atmospheric absorption spectra from PyRTLib were 
compared with the equivalent computed from ARTS using the same absorption model, resulting in 
differences within 0.05% (Fox et al., 2023), which are attributed to different assumptions in the 
variation of absorption coefficient across an atmospheric layer.” 

 
Figure 49 (from final report of EUMETSAT ISMAR study): Comparison of absorption coefficients at 3 atmospheric 
levels from ARTS and CNR using PWR21 spectroscopy. The left-hand column shows the absorption coefficients for 
each species, and the right-hand column shows the percentage difference between the ARTS and CNR values.  
 



Section 5 outlines extensions. This brings up the issue of the software version. The manuscript must be 
linked to a specific version. This likely requires a plan to “versionify” the software and document 
changes between each version. 

Correct, we missed version number in Section 5, although it was reported in introduction (Line 200). 
Thanks for spotting it, we modified the text as follows: 

“This paper presents PyRTlib version 1.0, a Python library…” 

As mentioned above, PyRTlib source code is stored on a GitHub repository, a version control system 
tool that keeps track of all the code changes. Furthermore, the PyRTlib repository applies several actions 
every time the code is modified to test the quality of the code and the installation process and to ensure 
that PyRTlib is working properly. 

 

Exploring the modelling uncertainty is novel and highly useful and should be better covered by the 
manuscript.  

Agreed. The following information, as well as additional text to better cover the uncertainty modelling, 
was added to the revised manuscript, referring to the original papers for further details. 

Some open questions here: 

• Is there an uncertainty estimate for exactly all parameters affecting absorption cross-sections? If 
not, what parameters are covered? 

The absorption model uncertainty is based on Cimini et al, 2018 (https://doi.org/10.5194/acp-
18-15231-2018), where a sensitivity test to parameter uncertainty was performed to identify a 
reduced set of dominant contributions. This lead to a reduced set of 111 parameters.  

• Is it possible to extract these uncertainties and their covariance? 

Yes, the 111x111 uncertainty covariance matrix from Cimini et al, 2018 is accessible through 
the PyRTlib code (as well as supplement files of the original paper: https://doi.org/10.5194/acp-
18-15231-2018). 

• How are the parameter uncertainties mapped to Tb uncertainty? Just perturbations or a more 
advanced approach? Can the full covariance matrix of Tb uncertainty (the information required 
for OEM retrievals) be obtained? 

Yes, the full covariance matrix of Tb uncertainty is provided in output (e.g., Figure 9 of Cimini 
et al. 2018). This is obtained by propagating the 111x111 uncertainty covariance matrix through 
the RT Jacobians (computed by brute force).  

 

I have not tried to install and run PyRTlib. Neither have I cared about minor language issues in detail. 

Various comments: 

• Why is radiative transfer written with capital R and T in the title? Even if alluding to PyRTlib, 
this causes more confusion than help. 



Agreed. We used capital letters to recall those in PyRTlib name, but we concur it could be 
confusing. Capital letters have been changed to lowercase. 

• The review of forward models is nice but makes the Introduction long. Place in an appendix? 

We see the point, but prefer to leave the review of forward models in the introduction to 
introduce all the features that PyRTlib provides and does not provide. Hope this is OK. 

• Line 152: AMSUTRAN is only used for the microwave region, not all fast parameterisations. 

Correct. Thanks for spotting this out. We change the text as follows (underlined text is newly 
added/changed): 

“The core of RTTOV is a fast parameterisation of layer optical depths due to gas and liquid 
water absorption. Profiles of layer-to-space transmittances computed by the line-by-line code 
AMSUTRAN (Turner et al., 2019) are the basis for the training of the fast parameterisation in 
the microwave region.” 

• Line 156: Geer et al (2017) not the best reference here; better is 
gmd.copernicus.org/articles/14/7497/2021/gmd-14-7497-2021.html 

Thanks for this suggestion. Citation has been modified accordingly. 

• Line 194: Not all observation geometries are handled by a plane-parallel model; limb sounding 
can not be represented. 

Correct. We added the following to the end of Line 194 (underlined text is newly 
added/changed): 

“(zenith, nadir, slant), except for limb sounding geometry (not currently implemented in 
PyRTlib);” 

• Line 231: As Eq 2 is written, s is the distance from the observation point, not the propagation 
distance. 

Agreed. Text modified as to: “s indicates the distance from the observations point along the 
line-of-sight” 

• Eq 4: Not correct to use = here. Consider this also for Eq 5. 

Agreed. Eq. 4 has been modified accordingly. For Eq. 5 we added: 

𝐵%(𝑇&') =
∫ B%0𝑇(𝑠)1	𝛼%(𝑠)	𝑒()!(+,-)𝑑𝑠
/
0

𝑒()!(+,1):1 − 𝑒()!(1,2)=
 

• Line 268: The value 99% is irrelevant (with this thinking, nitrogen should be the dominating 
absorber). 

Of course, gas concentration itself does not explain its absorption. In fact, we also specify that 
“account for most of the gas absorption in the MW spectrum.” So, we prefer to keep it 
unchanged to make it clear that no relevant gas (in terms of concentration and absorption) is 
neglected.  



• Line 291: It is not very clear what has actually been implemented. 

Three models for liquid water absorption are implemented and can be chosen alternatively by 
the user: one is from Liebe et al. (1993), which updates earlier versions (Liebe et al. 1991), and 
the other from Rosenkranz (2015). We clarified this in the revised manuscript as described in the 
next answer below.  

• Lines 291-292: Why is this model optional? This implies that the other models are mandatory. Is 
this model just applied at freezing temperatures? 

The model from Rosenkranz (2015) is optional in the sense that it can be chosen alternatively to 
the default one (Liebe et al. 1993). It is applied to any temperature as it was developed to be 
applicable up to 60°C, but specifically recommended for low temperatures. We rephrased the 
manuscript as follows for the sake of clarity:  

“Another model, as in Rosenkranz (2015), is also implemented for the liquid cloud absorption. 
This model was developed to be applicable up to 60°C, but it is specifically recommended for 
temperatures as low as -25°C for modeling the absorption of supercooled liquid water particles. 
Therefore, currently three models for liquid cloud absorption are available within PyRTlib and 
can be alternatively selected by the user.” 

• Eq. 7: Does including refraction for a plane-parallel model make sense? Is it not more important 
to include the Earth’s curvature than refraction? Is including Eq. 7 actually an improvement 
when applied in a plane-parallel model? 

The plane-parallel approximation is the default option in PyRTlib. However, when the refraction 
is optionally activated, the ray path is modelled assuming a spherically stratified atmosphere 
(i.e., 1D atmosphere), as specified in the original manuscript (line 324), which does consider the 
Earth’s curvature. We added text to clarify this aspect in Section 2.3 of the revised manuscript. 

• Eqs 8-12: Why this level of detail here? Sticks out compared to other parts. And refraction is of 
relatively minor concern for the model. 

We concur Eqs. 8-12 are detailed. As mentioned in the acknowledgements, the development of 
PyRTlib was partially supported by ESA through a project focusing on atmospheric propagation. 
In this context, the definition of dry and wet refractivity terms may be ambiguous, and thus we 
prefer to state explicitly the equations implemented as default option. 

• Sec 3.1: Are there any issues with quality and missing data when reading from the Wyoming 
archive? 

For all public datasets available in PyRTlib, we added a simple quality check to control whether 
the profile is suitable to be used into the radiative transfer equation (e.g., monotonic pressure 
decrease). Currently this is handled by issuing a warning to the user, although we plan to 
improve the quality check and error handling in future releases. 

• Around here, it becomes clear that the radiative transfer part takes RH as input. Is this a good 
choice? For freezing temperatures, RH can also be defined with respect to ice. There is a lack of 
agreement between parameterisations of RH with respect to liquid for freezing temperatures. A 
user can think that if she/he imports data in RH all is fine, but there is an uncertainty in the 
mapping from RH to absolute humidity due to two points raised above. 



Correct. RH was chosen as the code was originally developed to process radiosonde data, which 
only provides RH. The user can choose whether to use RH defined with respect to ice or liquid 
at freezing temperatures through the “Tconvert” argument (see documentation 
https://satclop.github.io/pyrtlib/en/main/generated/pyrtlib.utils.mr2rh.html). Whether input, 
“Tconvert” is used as threshold temperature below which saturation water pressure is calculated 
over ice instead of liquid water.  

• Example codes: One or two example codes are motivated to exemplify how the program is used 
in practice. The extra examples contribute relatively little (basic things such as the import of 
packages and plotting get repeated, taking unnecessary space). For the rest, refer to the user 
documentation. 

We thank the reviewer for this comment. The repeated packages import has been removed and 
we also removed unnecessary code from listing examples, while maintaining the original 
objective of making the code reproducible and obtaining the same results reported in the figures. 

• Line 556: “Nicely” is vague, and not really true (there are apparent deviations from the 1-1 line). 

Agreed. We modified the sentence as follows: “Figure 7 shows that RT simulations with both 
absorption models tend to align with observed TB over the whole range of variations for all 
MWRP channels,...” 

• Fig. 7: PyRTlib does not apply any bandpass. Can this not be relevant for this comparison? 

Correct, PyRTlib does not apply bandpass. This is on our list for future improvements. Although 
monochromatic vs band-averaged simulations may differ appreciably, especially along the sharp 
wing of the O2 complex, we believe bandpass is not the cause of the features in Figure 7. 
Indeed, similar differences were already noted between bandpass simulations with Rosenkranz 
1998 and ground-based MWR observations at 51-54 GHz from independent instruments in 
different environments (De Angelis et al, 2017; https://doi.org/10.5194/amt-10-3947-2017). This 
is briefly discussed at lines 556-563 of the original manuscript (now at lines 752-759).  

 

The manuscript is relevant for GMD but requires revision before publication. The text needs better to 
introduce the actual forward model and its documentation. On the other hand, the background and 
overall motivation for developing PyRTlib could be shortened (not to extend the length of the 
manuscript). Some of my comments question design choices. Take these comments as input for 
discussion and reflection, and not as a demand for making changes to the code at this point. 

All the comments were well received, and we believe they improved the manuscript overall. We thank 
the reviewer for the useful tips and the valuable time dedicated to it. 

 

Referee Comment 3 (RC3) by Anonymous Referee #3 

This paper documents a new, Python-based radiative transfer model. This is a welcome addition to the 
radiation modelling toolkit that is indispensable for weather/climate modelling and remote sensing 
applications. I would recommend the authors address the following issues, mostly minor, in revision.  

A main comment is that as the model is advertised for education, the model package and the paper can 
be configured to present more diverse and illuminating examples. Currently it’s focused/limited to 



radiance (brightness temperature). Instead of (or in addition to) the input processing, which the paper 
has talked much about, it would be of more pedagogic value to have examples of computation and 
diagnosis of different quantities, such as Jacobians, optical depth, weighting function, etc. One heuristic 
case to showcase the ability of the model may be the logarithmic dependence of monochromatic 
radiance (Huang & Bani, https://doi.org/10.1002/2014JD022466), which would involve radiance 
simulation and differencing to verify the phenomenon (log dependence) and involve optical depth and 
weighting function to understand/explain the phenomenon. 

We thank the reviewer for this comment. It's true that the examples in Section 4 present brightness 
temperatures calculations, so to show the ability to provide the simulations to compare with 
observations from ground (Section 4.1), satellite (4.2), and airplane (4.3). However, Section 4.3 also 
shows the computed atmospheric opacity for both uplooking and downlooking views from 5km altitude 
(Figure 6). Other examples focus on absorption model analysis (4.4), and the sensitivity to spectroscopic 
parameters and the associated uncertainty (4.5). In addition, Section 6 draws the reader/user to the 
official documentation, where more examples are given 
(https://satclop.github.io/pyrtlib/en/main/examples/index.html). To acknowledge the reviewer’s 
suggestion, we added one example to the library, where the logarithmic dependence of monochromatic 
radiance indicated by Huang & Bani (2014) is reported for 183 GHz. The calculation of weighting 
functions is not currently available, but it is planned among the future developments and thus was added 
to the end of Section 5.  

Eq 2-5: better to formulate and explain the equations for a slant path, to disclose more fully the 
parameters that need to be set for the model to run. It would also be better to include necessary 
description for limb view cases, which the model is said to handle too. 

Eqs 2-5 are general, as s indicates the position along the propagation direction, which may be vertical as 
well as slant. However, we modified the section to clarify the simulation geometry. Note that the current 
implementation does not handle limb view. In the original manuscript, limb view was only mentioned 
when describing ARTS. We now specify this clearly in the introduction of the revised manuscript. 

Eq. 6: this concerns the treatment of path inhomogeneity, which is a very general problem in radiative 
modelling. Better to have some reference and discussion of the rationale of the weighting choice made, 
i.e., based on transmission, optical depth, or mass. 

Agreed. We added two more equations and the following discussion to the revised manuscript: 

“Note that introducing the layer transmittance 𝕋 = 𝑒!"!($"#$,$") in Eq.(7), it becomes 𝐵'(𝑇()) ≃
*!(+($"#$)),*!(+($"))𝕋

.,𝕋
. Thus, 𝐵'(𝑇()) is the average brightness temperatures at the layer boundaries, 

weighted by the layer transmittance, going from 𝐵'(𝑇(𝑠/!.)) to *!(+($"#$)),*!(+($"))
0

 as the layer gets from 

totally opaque (𝕋 = 0) to totally transparent (𝕋 = 1). Other weighting options, such as the so-called 

linear-in-tau, are used elsewhere (Saunders et al., 2018).” 

 

Line 277: parameterization of absorption is core to any radiation model, which is probably covered too 
briefly here. For education in particular, such essence as state (temperature, pressure, etc.) dependences 
of line strength and broadening should be reviewed for the concepts as well as for related computing 
modules. 



We opted for high level description of the atmospheric absorption, as this is continuously evolving in 
the open literature. Several options are implemented in PyRTlib and referenced in Section 4, but we feel 
the details are beyond the scope of the manuscript. Following the reviewer’s suggestion, we included 
essential information in the revised manuscript. 

Line 286: this is another place where I find the information is too brief. It would also be good to outline 
plans for cloud property parameterization and multiple scattering radiative transfer solver. 

As above, essential information have been included in the revised manuscript. Plans for PyRTlib 
development are outlined in Section 5, but the implementation of a multiple scattering solver is not 
planned for the near future.    

The paper can use some editing assistance for English, e.g., Line 56: “allow to” => allows consideration 
of …; “dishomogeneity” => inhomogeneity 
 
Agreed. Thanks for spotting the typos. 

 

Community Comment 1 (CC1) by Philipp Hochstaffl  

Thank you for considering Py4CAtS in the list of popular RT codes. 

Please note that the latest Py4CAtS version incorporates continuum-induced absorption and simple 
single scattering. It also models aerosol optical depth using simple power law (Angstrom coefficient) 
and Rayleigh extinction. 

Furthermore, the current version incorporates advanced line profiles which take into account effects 
such as the speed-dependence of pressure broadening, collisional narrowing as well as line mixing in the 
description of the spectral absorption. 

Please also consider to mention that Py4CAtS is available as a Python wheel file from its homepage 
which allows for an easy installation via the Python package installer pip. 

References:  

- https://doi.org/10.1016/j.jqsrt.2020.107385 (available at arxiv.org number 2010.09804) 

- https://doi.org/10.1016/j.jqsrt.2016.08.009 (available at elib.dlr.de number 106199) 

- see documentation in tarball file 

Thank you for this short comment. We added the following sentence and references to the revised 
manuscript to synthetize the new Py4CAtS features you mentioned: 

“More recent version of Py4CAtS incorporates continuum-induced absorption, simple single scattering, 
and modelling of aerosol optical depth, speed-dependence of pressure broadening, including line-mixing 
(Schreier, 2017; Schreier and Hochstaffl, 2021).” 
 
Reference added: 
 



Schreier, F., Computational aspects of speed-dependent Voigt profiles, Journal of Quantitative 
Spectroscopy and Radiative Transfer, 187, 44-53, https://doi.org/10.1016/j.jqsrt.2016.08.009, 2017 
 
Schreier, F., Hochstaffl, P., Computational aspects of speed-dependent Voigt and Rautian profiles, 
Journal of Quantitative Spectroscopy and Radiative Transfer, 258, 107385, 
https://doi.org/10.1016/j.jqsrt.2020.107385, 2021 
 

Community Comment 2 (CC2) by Mario Mech 

I thank the authors for including PAMTRA in the list of publically available models. However, I 
must comment on some points concerning the model's description.  

Thanks for your interest in our work. We addressed all the comments as specified below.  

PAMTRA includes a variety of gas absorption models where the default selection is the one of 
Rosenkranz (2015, https://doi.org/10.1109/TGRS.2014.2339015) with various corrections after 
Turner (2009, https://doi.org/10.1109/TGRS.2009.2022262) and not MPM as mentioned.  

We rephrased the sentence to the revised manuscript as follows:  

“The user can select several operational modes among scattering and absorption models, within a 
variety of spectroscopic parameters and databases. The Millimeter-wave Propagation Model 
(MPM93) developed by Liebe et al. (1993) is used to simulate atmospheric absorption , considering 
later modifications (e.g., Turner et al., 2009; Rosenkranz, 2015). ”  

line 115: please correct PAMTRAM to PAMTRA  

Thank you for spotting this typo. Amended accordingly.  

line 116-118: What is meant by “relative moments" in "regarding radar measurements instead, the 
active forward model yields Doppler spectra and relative moments, e.g. reflectivity, mean Doppler 
velocity, skewness, and kurtosis."?  

We agree that the sentence could be confusing as is. We modified it in the interest of clarity:  

“PAMTRA exploits the passive forward model to compute both upward and downward looking 
polarized brightness temperatures and radiances for the passive part. The active part can simulate 
the full radar Doppler spectrum and its higher moments (mean Doppler velocity, skewness, 
kurtosis).”  

line 121-122: Although PyRTlib focuses on non-scattering applications, we would appreciate it if 
the authors mention that PAMTRA implements the self-similar Rayleigh–Gans approximation 
(Hogan et al., 2018; https://doi.org/10.1002/qj.2968) for both active and passive applications, a 
unique feature to our knowledge.  

Agreed. We added the following text to the revised version.  

“Moreover, PAMTRA implements the self-similar Rayleigh–Gans approximation (SSRGA) for 
both active and passive applications (Hogan et al., 2017).”  



Reference added: 
Hogan, R. J., Honeyager, R., Tyynelä, J., and Kneifel, S.: Calculating the Millimetre-Wave 
Scattering Phase Function of Snowflakes Using the Self-Similar Rayleigh–Gans Approximation, Q. 
J. Roy. Meteor. Soc., 143, 834–844, https://doi.org/10.1002/qj.2968, 2017.  

 


