
Review of "GHOSH v1.0.0: a novel Gauss-Hermite High-Order
Sampling Hybrid filter for computationally efficient data
assimilation in geosciences"

Reply on Reviewer comment RC1

Summary: The paper present an interesting idea of using high-order sampling to improve the
accuracy of higher statistical moments of the ensemble, therefore achieving better skill in
ensemble prediction. I was expecting to learn some details about the new approach, but to
my disappointment I am still quite confused after reading the paper. In my opinion, the paper
tries to achieve too many things at once: introduce the method mathematically and show
experiment results in two different models. No wonder that you don't have enough room to
provide the details. In the methodology, many steps in the formula are stated as "can be
proven" but with no guidance for readers to actually understand the logic (skipping too many
steps in a proof). Ideally, when introducing a new method, I would expect a paper focused on
the theory and illustrations using simple models; then followed by other paper(s) utilizing the
method in bigger models describing how you solved any additional issues in implementation.
The current paper did the introduction poorly, I suggest the authors to give it a thorough
revision, at least address the following major issues.

As previously done in the short reply, we thank the Reviewer for the comments and
suggestions, which highlight the need to state more clearly the goal and novelty of
our manuscript, and of improving its readability. Hereafter, our point-by-point
responses to the Reviewer’s comments are provided in bold green.

We will surely keep this in consideration in the revised version of the manuscript.
Firstly, we would like to clarify the main objective of the work, since it appears this
was not clear enough. We are introducing a new method (GHOSH filter) that is
focused on the use of a higher order of approximation to evaluate the ensemble mean
in data assimilation applications. We are not evaluating standard deviation, skewness,
kurtosis and higher statistical moments of the ensemble in the present work.

On the other hand, it is true that the equality of the statistical moments up to order h
implies an approximation of the mean up to order h, as demonstrated in Appendix A
and discussed later in the reply to the Reviewer’s comment 2.

Secondly, as highlighted also by the Reviewer #3, we recognize that we have a lot of
material, and possibly too much for a single paper. We received a positive answer by
the Topic Editor about a request we sent in the past weeks on the possibility to split
the manuscript in two parts, and we will prepare a revised version of the manuscript
divided in two parts.
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Major Issues:

1. It's unclear what is the actual size of the state vector now you are employing a weighted
ensemble approach. When you state that you use 2r members to achieve 3rd-order
sampling, such as the Wan & van der Merwe 2000 paper, the members are paired with
mean +- r perturbations, does it mean you only need to store r+1 numbers?

If the state vector has dimension N, then an ensemble method with ensemble size m
must store m state vectors, for a total of m times N numbers. If the ensemble is
weighted, also the weights must be considered, so the total becomes mN + m, as in
the particle filter (PF) case. Differently from PF, the GHOSH weights are constant in
time, thus the degrees of freedom are mN. In Wan & van der Merwe 2000, they use an
ensemble size of m=2r+1 in the attempt of achieving a 3rd-order samping. In
comparison, ETKF and SEIK use m=r+1 ensemble members for their 2nd-order
sampling. The GHOSH novel strategy tries to exploit the best of the two approaches:
it uses only m=r+1 members (as the 2nd-order methods), but those members are
chosen in such a way that in the principal components the order of the sampling is
higher than 2. The simplest example of the last statement in the case of a
2-dimensional standard normal error is the following 2nd-order sampling, achieving
3rd-order in the x direction:

,𝑃1: (𝑥1, 𝑦1) = (0, 2)

,𝑃2: (𝑥2, 𝑦2) = ( 3/2, − 2/2)

.𝑃3: (𝑥3, 𝑦3) = (− 3/2, − 2/2)

In fact:

the 1st moment associated to x (i.e., the mean along x) is:
,(𝑥1 + 𝑥2 + 𝑥3)/3 = (0 + 3/2 + (− 3/2))/3 = 0

the 1st moment associated to y (i.e., the mean along y) is:
,(𝑦1 + 𝑦2 + 𝑦3)/3 = ( 2 + (− 2/2) + (− 2/2))/3 = 0

the 2nd moment associated to x^2 (i.e., the variance of x) is:
,(𝑥12 + 𝑥22 + 𝑥32)/3 = (0 + 3/2 + 3/2)/3 = 1

the 2nd moment associated to y^2 (i.e., the variance of y) is:
,(𝑦12 + 𝑦22 + 𝑦32)/3 = (2 + 1/2 + 1/2)/3 = 1

the 2nd moment associated to xy (i.e., the covariance between x and y) is:
(𝑥1 · 𝑦1 + 𝑥2 · 𝑦2 + 𝑥3 · 𝑦3)/3 = (0 · 2 + 3/2 · (− 2/2) + (− 3/2) · (− 2/2))/3 = 0
,

the 3rd moment associated to x^3 is:

.(𝑥13 + 𝑥23 + 𝑥33)/3 = (0 + 3/2
3

+ (− 3/2 )
3
)/3 = 0
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Thus, the ensemble P1, P2, P3 is compliant with the statistical moments of a standard
normal distribution up to order 2, and also have the same 0-skewness along the
x-axis.

In the manuscript, we will include a new Appendix C to guide the reader through some
simple examples (as the one before) in order to improve the manuscript readability
also for people without a strong mathematical background (see also answers to the
Reviewer’s next comment).

The weights are computed according to A3 which is a nonlinear system itself. What is the
computational complexity of this step? You claimed that the GHOSH filter is no more costly
than the 2nd-order EnKFs with same ensemble size, but can you provide some complexity
arguments for each step in your filter? For example, given ensemble size m, obs count p and
model state size n, the ETKF has complexity m^2 p + m^3 + m^3 n, according to Tippett
2003 (doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2). Although with fixed
ensemble size, the filter is doing additional steps (e.g. the weight computation). I'm not
convinced that they are comparable.

The fact that GHOSH is no more costly than the 2nd-order EnKFs takes into account
that the nonlinear system where weights are computed needs to be solved only once.
Its computational cost depends on the chosen nonlinear solver. It should also be
noted that, when available, analytical solutions should be preferred. During the
initialization of the GHOSH filter, the provided python code uses an analytical
constructive method to solve the system up to order 5 in O(m^2) operations.

The GHOSH computational complexity is the same as ETKF, i.e., O(m^2 p + m^3 +
m^2 n), since the GHOSH filter requires a few more operations per step (e.g.,
resampling and eigenvalue decomposition) that are O(m^3 + m^2 n) and do not add to
the computational complexity. This means that, even if the GHOSH filter needs a little
more computational time, it scales as the ETKF, the SEIK, or similar EnKF. Further, in
realistic applications, the EnKF computational cost is usually widely dominated by the
model integration cost (and, secondly, by I/O), while forecast and analysis do not
represent a concern at all.

In the manuscript, we will follow the Reviewer suggestion of evaluating explicitly the
computational complexity. In addition, we will also discuss timings for the two filters
in the Lorenz twin experiment (according also to the Reviewer#3 comments). In
particular, we will modify L. 514 as follows:

“From the computational point of view, the whole experiment set needed around $9$
computational hours. SEIK and GHOSH schemes used 12% and 16% of the total time
respectively, while the rest was committed to model integration. The GHOSH filter
executes more operations than SEIK (e.g., an eigenvalue decomposition) resulting in
more computational time even if the asymptotic computational complexity of the two
methods is the same. However, even in the case of a relatively simple model like the
Lorenz96, the time to solution is dominated by the model integration and the
difference between GHOSH and SEIK only accounts for 4% of the total time.
Unexpectedly, the model integration time (averaged every 100 twin experiments) when
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applying the SEIK filter sometimes is longer than the GHOSH filter case, up to twice
the time, depending on some settings and random factors.”

2. Fig. 1 provides some visual guide to understand the statement about "m sample points
are required to represent a hth-order approximation of an error distribution in r-dimensional
space". I can see that in 3D you need 4 points to span a volume (the covariance), and I can
see that you need 4 degrees of freedom to provide a unique 3x3 covariance matrix. But from
this point onward, I don't understand anymore.

First, the error distribution depicted is symmetric, meaning there is only the mean and
identity covariance, there is not even correlation between variables in different dimensions,
how can I visualize the higher-order moments (skewness)?Therefore, I don't see how the 4
points are giving accurate 3rd moment in 2D, there is no skewness anyway in the picture.

Considering this and the previous Reviewer’s comments and comments from
Reviewer #3, we propose to describe Fig. 1 in more detail in a novel appendix
(Appendix C) adding the description (including equations and calculations) of the
concepts summarised in Fig. 1 panels (e.g., computation of the moments). Indeed,
this part of the manuscript is too concise and a reader could really benefit from
additional details.

Appendix C will show all the detailed computations needed to ensure that a reader
could follow each step. For example, talking of 4 points (P1, P2, P3 and P4) giving
accurate 3rd moments in 2D, the reader will be guided as follows:

,𝑃1: (𝑥1, 𝑦1) = ( 2, 0)

,𝑃2: (𝑥2, 𝑦2) = (0, 2)

,𝑃3: (𝑥3, 𝑦3) = (− 2, 0)

.𝑃4: (𝑥4, 𝑦4) = (0, − 2)

The 1st moment associated to x (i.e., the mean along x) is:
,(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)/4 = ( 2 + 0 + (− 2) + 0)/4 = 0

the 1st moment associated to y (i.e., the mean along y) is:
,(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)/4 = (0 + 2 + 0 + (− 2))/4 = 0

the 2nd moment associated to x^2 (i.e., the variance of x) is:
,(𝑥12 +... + 𝑥42)/4 = (2 + 0 + 2 + 0)/4 = 1

the 2nd moment associated to y^2 (i.e., the variance of y) is:
,(𝑦12 +... + 𝑦42)/4 = (0 + 2 + 0 + 2)/4 = 1
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the 2nd moment associated to xy (i.e., the covariance between x and y) is:
,(𝑥1 · 𝑦1 +... + 𝑥4 · 𝑦4)/4 = ( 2 · 0 + 0 · 2 + 2 · 0 + 0 · 2)/4 = 0

the 3rd moment associated to x^3 is:

,(𝑥13 +... + 𝑥43)/4 = ( 2
3

+ 0 + (− 2 )
3

+ 0)/4 = 0

the 3rd moment associated to x^2 y is:
,(𝑥12 · 𝑦1 +... + 𝑥42 · 𝑦4)/4 = (2 · 0 + 0 · 2 + 2 · 0 + 0 · 2)/4 = 0

the 3rd moment associated to x y^2 is:
,(𝑥1· 𝑦12 +... + 𝑥4 · 𝑦42)/4 = ( 2 · 0 + 0 · 2 + 2 · 0 + 0 · 2)/4 = 0

the 3rd moment associated to y^3 is:

.(𝑦13 +... + 𝑦43)/4 = (0 + 2
3

+ 0 + (− 2 )
3
)/4 = 0

Thus, the ensemble P1, P2, P3, P4 is compliant with the statistical moments of a
standard normal distribution up to order 3.

Second, why does projection from high-dimensional to low-dimensional space relate to a
higher-order sampling in the low-dimensional space? Somehow these 2 members project to
the same member in lower dimension, which means they are paired in a way that projection
will cancel out the perturbations and only leave the mean? But why is that equivalent to a
weighted member, what is the weight in this 3-point case anyway? Linking back to the 4
points in 3D, are the positioning only allowed to be squares with no rotation? In the 3D case
the tetrahedron is allowed to rotate arbitrarily. Here in 2D if the square is rotated they project
to 4 points in 1D.

We totally agree with the Reviewer, each tetrahedron rotation implies a different
shadow (i.e., projection). Only a few possible rotations of the tetrahedron project a
perfect square in the xy plane, and even fewer rotations project a square that further
projects into 3 points (instead of 4) in the x axis. The strength of GHOSH is exactly
this: being able to catch the right rotation to achieve the best possible projections. Or,
equivalently, the GHOSH sampling chooses ensemble members matching high order
moments of the error distribution along some chosen directions (i.e., the principal
components of the error), obtaining a better approximation of the mean along those
directions.

Concerning the other Reviewer’s comments about projections, please read the next
response.

Finally, why does three weighted samples in 1D give a 5th order approximation? I don't see
any moments in the sample distribution higher than the 2nd.

At this point, I would rather you don't show this figure at all, but replace Lines 89-108 with a
more step-by-step reasoning, or formal proof, of the statement such as "2r samples give a
3rd-order approximation of r-dimensional space".

R1.5



As proposed above, the addition of the Appendix C will provide a step-by-step
reasoning that will help the reader to understand the issues raised by the Reviewer.
The detailed description of Appendix C will provide an explanation of what is shown
in Fig. 1, including a practical example of a 5th order weighted ensemble in 1D
composed by 3 points P1, P2 and P3, i.e.:

,𝑃1: 𝑥1 = 3;  𝑤1 = 1/6

,𝑃2: 𝑥2 =− 3;  𝑤2 = 1/6

.𝑃3: 𝑥3 = 0;  𝑤3 = 2/3

The first moment (mean) is:
,𝑤1 · 𝑥1 + 𝑤2 · 𝑥2 + 𝑤3 · 𝑥3 = 1/6 · 3 + 1/6 · (− 3) + 2/3 · 0 = 0

the second moment (variance) is:
,𝑤1 · 𝑥12 + 𝑤2 · 𝑥22 + 𝑤3 · 𝑥32 = 1/6 · 3 + 1/6 · 3 + 2/3 · 0 = 1

the third moment (skewness) is:

,𝑤1 · 𝑥13 + 𝑤2 · 𝑥23 + 𝑤3 · 𝑥33 = 1/6 · 3
3

+ 1/6 · (− 3)
3
 + 2/3 · 0 = 0

the fourth moment (kurtosis) is:
,𝑤1 · 𝑥14 + 𝑤2 · 𝑥24 + 𝑤3 · 𝑥34 = 1/6 · 9 + 1/6 · 9 + 2/3 · 0 = 3

the fifth moment is:

.𝑤1 · 𝑥15 + 𝑤2 · 𝑥25 + 𝑤3 · 𝑥35 = 1/6 · 3
5

+ 1/6 · (− 3)
5

+ 2/3 · 0 = 0

Thus, the ensemble P1, P2, P3 is compliant with the statistical moments of a standard
normal distribution up to order 5.

The property of this 1-dimensional 5th-order sampling, can be extended to a
2-dimensional ensemble, aimed to keep order 5 along the x-axis while achieving order
3 in the xy plane. Such 4-members ensemble is:

,𝑃1: 𝑥1, 𝑦1( ) = 3, 0( );  𝑤1 = 1/6

,𝑃2: 𝑥2, 𝑦2( ) = − 3, 0( );  𝑤2 = 1/6

,𝑃3: 𝑥3, 𝑦3( ) = 0, 3/2( );  𝑤3 = 1/3

.𝑃3: 𝑥4, 𝑦4( ) = 0, − 3/2( );  𝑤4 = 1/3

Note that all the moments along the x-axis are already computed above up to order 5,
since this ensemble and the previous one are indistinguishable looking only at the
x-coordinate. In fact, considering the projection on the x-axis, P3 and P4 behave as a
unique member with weight w3+w4 because they have the same x-coordinate x3=x4. It
remains to be checked if the moments involving y match the moments of standard
normal distribution up to order 3, i.e.:
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the 1st moment associated to y (i.e., the mean along y) is:

𝑤1 · 𝑦1 + 𝑤2 · 𝑦2 + 𝑤3 · 𝑦3 + 𝑤4 · 𝑦4 =

,= 1/6 · 0 + 1/6 · 0 + 1/3 · 3/2 + 1/3 · − 3/2( ) = 0

the 2nd moment associated to y^2 (i.e., the variance of y) is:

,𝑤1 · 𝑦12 +  ...  + 𝑤4 · 𝑦42 = 1/6 · 0 + 1/6 · 0 + 1/3 · 3/2 + 1/3 · 3/2 = 1

the 2nd moment associated to xy (i.e., the covariance between x and y) is:

𝑤1 · 𝑥1 · 𝑦1 +... + 𝑤4 · 𝑥4 · 𝑦4 =

,= 1/6 · 3 · 0 + 1/6 · − 3( ) · 0 + 1/3 · 0 · 3/2 + 1/3 · 0 · − 3/2( ) = 0

the 3rd moment associated to x^2 y is:

𝑤1 · 𝑥12 · 𝑦1 +... + 𝑤4 · 𝑥42 · 𝑦4 =

,= 1/6 · 3 · 0 + 1/6 · 3 · 0 + 1/3 · 0 · 3/2 + 1/3 · 0 · − 3/2( ) = 0

the 3rd moment associated to x y^2 is:

𝑤1 · 𝑥1 · 𝑦12 +... + 𝑤4 · 𝑥4 · 𝑦42 =

,= 1/6 · 3 · 0 + 1/6 · − 3( ) · 0 + 1/3 · 0 · 3/2 + 1/3 · 0 · 3/2 = 0

the 3rd moment associated to y^3 is:

.𝑤1 · 𝑦13 +  ...  + 𝑤4 · 𝑦43 = 1/6 · 0 + 1/6 · 0 + 1/3 · 3/2
3

+ 1/3 · − 3/2( )3
= 0

The dimensions can be increased once more by building in a similar way a
3-dimensional ensemble, as shown in Fig. 1. This ensemble will be indistinguishable
from the previous one in the xy plane projection and capable of achieving 2nd order
on the xyz space. Such ensemble is:

,𝑃1: 𝑥1, 𝑦1,  𝑧1( ) = 3, 0, − 2( );  𝑤1 = 1/6

,𝑃2: 𝑥2, 𝑦2,  𝑧2( ) = − 3, 0, − 2( );  𝑤2 = 1/6

,𝑃3: 𝑥3, 𝑦3,  𝑧3( ) = 0, 3/2, 2/2( );  𝑤3 = 1/3

.𝑃3: 𝑥4, 𝑦4,  𝑧4( ) = 0, − 3/2, 2/2( );  𝑤4 = 1/3

All the moments involving x and y are already checked in the previous calculation up
to order 5 along x and up to order 3 in the xy plane. It remains to be checked if the
moments involving z match the moments of standard normal distribution up to order
2, i.e.:

the 1st moment associated to z (i.e., the mean along z) is:
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𝑤1 · 𝑧1 + 𝑤2 · 𝑧2 + 𝑤3 · 𝑧3 + 𝑤4 · 𝑧4 =

,= 1/6 · − 2( ) + 1/6 · − 2( ) + 1/3 · 2/2 + 1/3 · 2/2 = 0

the 2nd moment associated to z^2 (i.e., the variance of z) is:

,𝑤1 · 𝑧12 +  ...  + 𝑤4 · 𝑧42 = 1/6 · 2 + 1/6 · 2 + 1/3 · 1/2 + 1/3 · 1/2 = 1

the 2nd moment associated to xz (i.e., the covariance between x and z) is:

𝑤1 · 𝑥1 · 𝑧1 +... + 𝑤4 · 𝑥4 · 𝑧4 =

,= 1/6 · 3 · − 2( ) + 1/6 · − 3( ) · − 2( ) + 1/3 · 0 · 2/2 + 1/3 · 0 · 2/2 = 0

the 2nd moment associated to yz (i.e., the covariance between y and z) is:

𝑤1 · 𝑦1 · 𝑧1 +... + 𝑤4 · 𝑦4 · 𝑧4 =

.= 1/6 · 0 · − 2( ) + 1/6 · 0 · − 2( ) + 1/3 · 3/2 · 2/2 + 1/3 · − 3/2( ) · 2/2 = 0

All the above proves that the weighted ensemble P1, P2, P3, P4 is a second-order
ensemble achieving order 3 in the subspace of the x and y directions and order 5
along the x direction.

We are confident that these step-by-step calculations will help the Reader in following
the manuscript arguments.

3. In your Lorenz96 experiments (Fig. 3), based on the ensemble spread compared to the
error, the SEIK filter has basically diverged at around t=5. The climatological error is about 4
for the Lorenz96 system and you can see that after t=5 the SEIK filter solution is as bad as
random draw from climatology. I would argue that you need to have a more stable setting for
both SEIK and GHOSH here to establish a comparison, especially when we know that SEIK
should work for the Lorenz96 system. For some cases when the SEIK is stable, can you still
show that the new GHOSH filter will achieve higher accuracy or at least perform as well as
the SEIK?

We thank the Reviewer for pointing out that the example in Fig. 3 is poorly chosen,
since it shows a situation where SEIK does not improve with respect to climatology.
Thanks to that, Figure 3 will be changed in order to represent a better example, as the
one represented in Fig. R1. However, single tests can have high variability, and a more
reliable and statistically accurate view can be offered by a RMSE computed in a larger
set of experiments (as in Fig. R2). Since SEIK and GHOSH present different
behaviours depending on other parameters (e.g., ensemble size, observation
frequency, forgetting factor), Fig. 4 resumes the whole set of 56000 Lorenz-96
experiments that have been carried out by averaging blocks of 400 experiments with
similar setup (but different random parameters, e.g. observations). Moreover, Fig. 4
shows that SEIK was tested also in stable and convergent conditions, i.e., green
squares in the two top panels in Fig. 4. In addition, it is worth noting that the
comparison between SEIK and GHOSH has also been tested considering the best
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tuning in terms of inflation for both filters (“best” line in each panel of Fig. 4) always
resulting in GHOSH working as good as SEIK or better.

Fig. R1. RMSE of SEIK and GHOSH by time based on all variables, results from one
twin experiment example: time between observation is 0.15, forgetting factor is 0.6,
ensemble size is 31.
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Fig. R2. RMSE of SEIK and GHOSH by time based on all variables of 100 twin
experiments with the following settings: time between observation is 0.15, forgetting
factor is 0.6, ensemble size is 31.

4. In the verification of filter performance for both models, I mainly see the use of RMSE and
ensemble spread as error metrics. This means you are still evaluating the first two moments
of error distributions. However, the GHOSH filter is motivated by its capability of capturing
higher moments in error. Why didn't you show any proof that it is behaving as expected? For
example, in the Lorenz96 case you can compute the skewness and kurtosis of the error
distribution and compare the two filters. This will truly be a proof of concept, rather than
implying the skill from the forecast error in ensemble mean (1st moment).

As discussed above, the main goal of the GHOSH filter is to achieve higher
approximation order on the ensemble mean without focus on higher order moments.
Thus, we think that RMSE is a sound metric to compare the GHOSH performances
with respect to SEIK.

Minor Issues:

The use of nested parentheses in citation is a bit confusing. Try use (author year; author
year)? Or is there a prefered format for GMD?

We thank the Reviewer for the suggestion. The GMD format does not require nested
parentheses, and we will update all the citations accordingly.

Line 42: "Monte Carlo"?

Thanks, we will correct the typo.

Line 51: Is there a reference for this? Why is closer together samples more suitable for
accuracy using second-order approximation?

The sentence is related to the fact that the nonlinear effects are smaller if the
perturbation of the ensemble members is small and hence the second-order
approximation holds better. In other words, if the true uncertainty is small, then a
second order approximation is affected by a smaller error. According also to Reviewer
#2 and #3 comments, we propose to modify the sentence focusing on uncertainty
instead of ensemble spread:

“Furthermore, the second order approximation is more effective the closer the
ensemble members are to each other (i.e., small uncertainty), thus the higher the
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uncertainty the worse will be the approximation error in the mean computation. Since
the state estimation is often affected by a relatively high uncertainty in data
assimilation geoscience applications, this approximation error may be not negligible.

Line 54: It's a bit not clear what you mean by "higher order of approximation" here. I think
you refer to the higher moments of the distribution that the samples will exactly reproduce
after model integration. If I'm not completely missing the point, this can be stated more
clearly to help the readers follow.

Thanks to this Reviewer comment and to issues raised by Reviewer #3,, we will state
more clearly the definition of order of approximation:

L. 43: “The number of ensemble members can be reduced by adopting deterministic
sampling methods (as opposed to stochastic EnKF methods, see e.g. Carrassi et al.,
2018). Examples of deterministic EnKF using second-order sampling methods are
SEIK (Pham (2001)) and ETKF (Bishop et al. (2001)). Extending the definition of
second-order exact methods in Pham (2001), with the term “order” we refer to the
polynomial order of approximation of the filter or of its sampling method. Namely, in
case of hth-order, the ensemble has the property of providing a forecast mean with
no error as long as the evolution function used for forecasting (i.e., the model) is a
polynomial of order h. As proven in Appendix A, this is equivalent to sampling an
ensemble that preserves (before applying the model) the first h statistical moments.”

Line 57: I can understand why you need r+1 samples to give mean and covariance (2nd
order approximation), but it's a bit hard to see why 2r for 3rd order approximation. You say it
can be proven, could you give a reference, or include a proof in appendix?

The details that will be provided in Appendix C will clarify the need of 2r samples for
3rd order approximation.

Line 59: apart from the unscented Kalman filter, other methods that preserve the 3rd
moment of posterior pdf, such as the one by Hodyss 2011 (DOI: 10.1175/2011MWR3558.1),
is also worth mentioning here.

Since the main aim of the GHOSH filter is a higher order of approximation of the mean
and not to provide higher-than-second moments, we think that the citation is not
useful in the sentence at L. 59. However, it is perfectly suited for discussing the
applicability of the GHOSH sampling to non-Gaussian priors and it will be added to
Section 6 of the manuscript in a new dedicated paragraph. We kindly thank the
Reviewer for the suggested high-quality reference.

Line 95: Pham 1996 is the introduction paper for SEIK, are you sure this is the right citation
for the second-order exact sampling?
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Indeed, the second order exact sampling is the sampling method used in the SEIK
filter, as explained in the Appendix of the cited paper. However, as noted also by
Reviewer 3, this citation can be improved to a more recent one (Pham, 2001).

Line 105-108: this paragraph is very vague, we achieve a fifth order approximation when the
variance is "bigger" on x than y, can you be more precise exactly when do we achieve fifth
order?

We thank the Reviewer for this comment, that will make the manuscript clearer. The
sampling is of order 5 in x, and if the variance on the x coordinate is bigger than on
the other coordinates, then the best order of approximation is achieved along the
direction that is affected by the largest error (as explained in comment to line 51). The
sentence will be modified to be more clear:

“This means that, if the z component of the distribution was less relevant than the x
and y components (e.g., a non-standard normal distribution with smaller variance on
the z coordinate), then our third order approximation mitigates the approximation
error in the x and y dimensions where the spread is higher. And, if the variance is
bigger on x than y, then the achieved fifth order approximation reduces the error more
efficiently where the spread is maximum (x coordinate)”

Line 112: h-order, shouldn't it be hth-order?

Thank you for the suggestion. We will use hth-order.

Line 128: putting index as superscripts are very confusing, like for this equation, is v_m
^{2-xi} raised to 2-xi power or just indexed by 2-xi? Either put a parenthesis around them if
they are indices, or just put the index as subscripts. It's also confusing to see a tuple
j1,...,j_xi ending up being a single index from 1 to s. Please provide more contex in (1) about
other equations, I guess the other equations in the set are matching a different moment
indexed by j1,...,j_xi? How many equations are there in total?

According to the Reviewer comment, all the indexes will be subscripted. Moreover,
according to comments provided also by Reviewer 3, the whole system (1) and the
following paragraph will be improved. More equations in (1) will be explicitly written to
help the manuscript readability and the text will guide the reader to understand
equation (1).

Line 137: is there a formal relationship you can write down for r and s given h? First, you will
need r>s to establish the principle components, otherwise there is rank deficiency. But what
to expect given h? Previously you stated that for h=2 you need r>=s+1, and for h=3 you
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need r>=2s, in the 1D case you showed for h=5, you have r>=4s. I'm wildly guessing here
that "r>=(h-1)*s" might be what you imply?

Unfortunately, the general relation between r, h, and s is non-linear and we are not
aware of any closed form to state it. On the other hand, it is true that certain values
for r, h and s are valid if and only if system (1) admits a solution. The above relations
for h=2 and h=3 holds (changing r with r+1, since probably the Reviewer was referring
to the ensemble size). In the case h=5 we know that system (1) has a solution at least
for r>=2^(s+1) - 2. This comes from the analytical constructive solution to system (1)
implemented in the initialization of the GHOSH filter in the provided python code.

Line 179: why is the error covariance approximated not exactly given by the ensemble
perturbation matrix?

We thank the Reviewer for pointing out the ambiguity of this statement. The mean and
covariance of the analysis is an approximation, since they are derived by the forecast
mean and covariance, which are approximations affected by a sampling error. On the
other hand, analysis mean and covariance after sampling are exact in the sense that
the ensemble is chosen to match those quantities. In order to remove any
misunderstanding, we will change the superscripted “a” with “f” in equations (9)-(12).

Line 247: (26) is the same as (6), you can just remove (26) and say that C and Omega are
computed using x^a in (4)-(7). By the way, what is the computational cost for this step? You
have a eigenvalue decomposition here so at least O(r^3)?

Since the focus of the analysis is X^a, which is computed in (26), we prefer to keep
that equation, even if it could be a little redundant. Also considering Reviewer #3
comments, line 248 will be modified to make clear that (6) is not the only relevant
equation (also equations (4)-(7) play a relevant role). The computational cost of the
eigenvalue decomposition depends on the adopted algorithm but it is safe to consider
it O(r^3). The resampling step has a computational complexity of O(r^3 + N r^2),
where the last term comes from the matrix multiplication with L. The addition of
detailed consideration about the computational complexity will help the reader to
have an evaluation of the GHOSH costs (see major issue 1).

Line 296: what is l'?

In the manuscript we called N the state vector dimension, and n the dimension of the
observation vector. The localization process uses three operators. The first one
reduces the dimension of the state vector from N to l. The second one reduces the
dimension of the observation vector from n to l’. In general, l’ is not equal to l, as N is
not equal to n. The third one is the delocalization operator, used to build back a
N-dimensional state vector.
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Table 1 can be removed, your experiment name already encode the value of the parameters
as listed.

We prefer to keep Table 1, since some experiment names only appear in the table.
Moreover, Table 1 is useful for the reader to visualise all the configurations of the 3D
experiments.

Line 365: have you defined the "forgetting factor" anywhere yet? Is it the same one from
Pham 1996?

Yes, the forgetting factor is the same as Pham 1996, and it is defined at line 264. To
help the reader, we propose to change line 365 adding a reference to the relevant
equation: “Both filters have the same forgetting factor (equation (32))”

Line 469: what range of values have you tested and how many different experiments have
you run for the tuning process beyond the 18 you showed. This will provide an idea of the
cost for tuning as well.

As observed by the Reviewer, the tuning was not limited to the 18 experiments listed
in Table 1. However, some of the tuning simulations were very short or have been
focused on validating GHOSH effects on a subset of the variables in the
biogeochemical model. Moreover, tuning cost can depend on the typical
characteristics of the realistic application. Thus, we think that adding the number of
runs carried out for tuning the filter will not be very informative for the reader.

Line 479: Would it help to show the results for Lorenz96 immediately after the description of
its experiment design? You can have section 4 focused on the Lorenz results and section 5
on the BGC model results.

This issue will be solved by splitting the manuscript in two parts.
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