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Abstract. Probability density functions (PDFs) comprise basic
::::::
provide information about the variability of observed or simulated

variables within a system of interest
:::::::::
probability

::
of

::
a

::::::
random

:::::::
variable

:::::
taking

:::
on

:
a
:::::::
specific

::::
value. In geoscience

:
, data distributions

are often expressed by a parametric estimation of their PDF, such as e.g. a Gaussian distribution. At present there is a growing

attention towards the analysis of non-parametric estimation of PDFs, where no prior assumptions about the type of PDF are

required. A common tool for such non-parametric estimation is a kernel density estimator (KDE). Existing KDEs are valuable5

but incomplete,
::::::::::
problematic because of the difficulty of

:::::::::
objectively

:
specifying optimal bandwidths for the individual kernels.

A diffusion-based KDE provides a useful approach to mitigate the difficulty in identifying bandwidths that resolve desired

details of multi-modal data while being insensitive to noise. Therefore
::
In

:::
this

:::::
study,

:
we designed and developed a new imple-

mentation of a diffusion-based KDE as an open source Python tool . We tested our implementation on artificial and
::
to

:::::
make

::::::::::::
diffusion-based

:::::
KDE

:::::::::
accessible

:::
for

:::::::
general

:::
use.

::::
Our

::::
new

:::::::::::::
diffusion-based

:::::
KDE

::::::::
provides

:::
(1)

::::::::::
consistency

::
at

:::
the

::::::::::
boundaries,10

::
(2)

:::::
better

:::::::::
resolution

::
of

::::::::::
multimodal

:::::
data,

:::
(3)

:::
and

:
a
::::::

family
:::
of

:::::
KDEs

::::
with

::::::::
different

:::::::::
smoothing

:::::::::
intensities.

:::
We

::::::::::
demonstrate

::::
our

:::
tool

:::
on

:::::::
artificial

::::
data

::::
with

:::::::
multiple

::::
and

::::::::
boundary

::::
close

::::::
modes

::::
and

::
on

:
real marine biogeochemical dataindividually and ,

::::
and

:::::::
compare

:::
our

::::::
results

:
against other popular KDEs.

::::
KDE

::::::::
methods.

:::
We

::::
also

::::::
provide

:::
an

:::::::
example

:::
for

::::
how

::::
our

::::::::
approach

:::
can

:::
be

::::::::
efficiently

:::::::
utilized

:::
for

:::
the

::::::::
derivation

:::
of

:::::::
plankton

::::
size

::::::
spectra

:::
in

:::::::::
ecological

:::::::
research.

:
Our estimator is able to detect relevant

multiple modes and resolve boundary close data while suppressing details induced by noise and individual
:
it

:::::::
resolves

::::::
modes15

:::
that

:::
are

::::::
located

:::::::
closely

::
to

:
a
::::::::
boundary

::
of

:::
the

::::::::
observed

::::
data

:::::::
interval.

:::::::::::
Furthermore,

:::
our

::::::::
approach

::::::::
produces

::
a

::::::
smooth

:::::
graph

::::
that

:
is
::::::

robust
::
to

:::::
noise

::::
and outliers. The convergence rate is comparable to the Gaussian estimator, but with a generally smaller

error, most notably
:
.
::::
This

::
is

::::
most

:::::::
notable for small data sets with up to around 5000 data points. We exemplify and discuss

the general applicability
:::
and

:::::::::
advantages

:
of such KDEs for data-model comparison in geoscience, in particular for sparse data.

We also provide an example for how our approach can be efficiently utilized for the derivation of plankton size spectra in20

ecological research.
:
.

1 Introduction

In geoscience
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::
In

::::::::::
geoscience, the application of Earth system models (ESMs)

::::::::
numerical

::::::
models

:
has become an integral part of climate

research(IPCC, 2022)
:::::::
research. Given the complexity of ESMs and the associated manifold of model solutions

::::
some

:::::::
models,25

::::
such

::
as

:::::
Earth

::::::
system

:::::::
models

::::
with

::::
their

:::::::::::
descriptions

::
of

:::::::
detailed

::::::::
processes

:::
in

:::
the

:::::
ocean,

:::::::::::
atmosphere,

:::
and

:::::
land,

::
a

::::::
number

:::
of

:::::::
plausible

::::::
model

::::::::
solutions

::::
may

::::
exist.

:::::::::::
Accordingly, there is a

:
strong demand for assessing the agreement of simulation results

with
::
the

:::::::
analysis

::
of

::::::
model

::::::::::
simulations

::
on

::::::
various

::::::::
temporal

:::
and

::::::
spatial

:::::
scales

:::
and

::
to

:::::::
evaluate

:::::
these

:::::
results

:::::::
against observational

data. In fact, such necessity is not only restricted to simulations with ESM but is transferable to other model applications as well,

like in social science, in financial- or ecological research. A viable evaluation procedure is to compare
::::::::::::
nonparametric

:
proba-30

bility density functions (PDFs) of the data with their simulated counterparts, which may also be quantified
:
.
:::
By

::::::::::::
nonparametric

:::::
PDFs,

::
it

::
is

:::::
meant

::::
that

:::
no

:::::::::::
assumptions

:::
are

:::::
made

::::::::
regarding

::::
any

::::::::
particular

:::::::::::
(parametric)

:::::::::
probability

:::::::::::
distribution,

::::
such

:::
as

:::
the

::::::
normal

::::::::::
distribution.

:::::
Some

::::::
studies

::::
have

::::::
already

:::::::::::
documented

:::
the

::::::::
advantage

:::
of

::::::::
analyzing

:::::::
changes

::
in

::::::
PDFs,

:::
for

:::::::
example,

:::::
when

::::::
results

::
of

:::::::
climate

::::::
models

:::
are

::::::::
evaluated

:::
on

::::::::
regional

::::
scale

::::
and

::::
their

:::::::::::
sensitivities

::
to

:::::::::::
uncertainties

::
in
::::::

model
:::::::::::::::
parameterizations

::::
and

::::::
forcing

::::
are35

::::::::
examined

::::::::::::::::::::::::::::::::::::
(e.g. Dessai et al., 2005; Perkins et al., 2007)

:
.
::::::::
Likewise,

:::::::::
problems

::
of

::::::
model

:::::::::::::::
parameterizations

:::
can

:::
be

::::::::::
approached

::
in

:
a
:::::::::

stochastic
::::::
rather

::::
than

:::::::::::
deterministic

::::::::::
framework,

::::::
which

:::::::
requires

::
a
:::::::::
simulated

:::::::::
probability

::::::::::
distribution

:::
to

:::::::
compare

:::::
well

::::
with

:::
the

:::::::::
probability

::::::::::
distribution

::
of

::::
truth

:::::::::::::
(Palmer, 2012).

::::::::::::::::::
Perkins et al. (2007)

::::::
stressed

::::
that

:::
the

::::::::
credibility

:::
of

::::::::
projecting

::::::
future

::::::::::
distributions

::
of

::::::::::
temperature

:::
and

:::::::::::
precipitation

:
is
:::::
more

:::::
likely

::
to

::
be

::::
good

::
in
:::::
cases

:::::
when

:::
the

::::
PDFs

::
of

:::::::
hindcast

:::::::::
simulation

::::::
results

:::
are

::::::
similar

::
to

::
the

:::::
PDFs

::
of
:::
the

:::::::::::
observations.

::
A
::::::
critical

:::::
point

::
is

:::
the

:::::::::::
quantification

::
of

:::
the

::::::::
similarity

:::::::
between

:::::::::
respective

::::::::::::
nonparametric40

:::::
PDFs,

::::::::
typically

::::::::
expressed

:
by some distance measure or divergence between respective PDFs (Thorarinsdottir et al., 2013).

Along with the
::
or

:::::::::
divergence

::::::::
measure,

::
as

::::::::
analyzed

:::
and

::::::::
discussed

::
in
:::::::::::::::::::::::
Thorarinsdottir et al. (2013)

:
.

:::
The examination of the suitability of specific

:::::
certain divergence functions for data-model assessment as done by Thorarinsdottir et al. (2013)

, a necessary prerequisite is the approximation of PDFs based on available data and model results
:
is

::::
only

::::
one

::::::
aspect.

:::::::
Another

:
is
:::
the

::::::
quality

:::
or

:::::::::::::::
representativeness

::
of

:::
the

::::::::
estimated

:::::
PDFs.

:::::
Well

:::::::::::
approximated

:::::
PDFs

::::
have

:::::
been

::::
used

::
to

::::::
benefit

::::
data

:::::::
analysis

::
in45

::::::::::
geosciences

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. O’Brien et al., 2019; Teshome and Zhang, 2019; Ongoma et al., 2017)

:
.
::::::::
Obtaining

::::
high

::::::
quality

:::::::::::::
approximations

::
of

::::::::::::
nonparametric

:::::
PDFs

:
is
::::::::
certainly

:::
not

::::::
limited

::
to

::::::::::
applications

::
in

:::
the

::::::::::
geosciences

:::
but

::
is

:::::
likely

::::::::
desirable

::
in

::::
other

::::::::
scientific

:::::
fields

::
as

::::
well.

::
In

::::::
aquatic

:::::::::
ecological

:::::::
research,

:::
for

::::::::
example,

:::::::::
continuous

:::::::
plankton

::::
size

::::::
spectra

:::
can

:::
be

:::
well

:::::::
derived

::::
from

:::::
PDFs

::
of

:::
cell

::::
size

:::::::::::
measurements

::::::
sorted

::
by

:::::::::
individual

::::::
species

::
or

:::::::
plankton

::::::
groups

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Quintana et al., 2008; Schartau et al., 2010; Lampe et al., 2021)

:
.
:::
The

:::::::::::
identification

::
of
:::::::::

structural
:::::
details

::
in
:::

the
::::

size
:::::::
spectra,

::::
such

::
as

:::::::
distinct

::::::::
elevations

:::::::
(modes)

::::
and

::::::
troughs

::::::
within

::::::
certain

::::
size50

::::::
ranges,

::
is

::::::
useful,

::::
since

::::
they

::::
can

:::::
reveal

:::::
some

::
of

:::
the

:::::::::
underlying

::::::::
structure

::
of

:::
the

::::::::
plankton

::::::::
foodweb.

::
A

::::::
typical

::::::::
limitation

:::
of

:::
the

:::::::
approach

::::::::
described

::
in
:::::::::::::::::::
Schartau et al. (2010)

::
and

:::::::::::::::::
Lampe et al. (2021)

::
is

::
the

:::::::::::
specification

::
of

::
an

::::::::
estimator

:::
for

:::
the

:::::::::
continuous

::::
size

::::::
spectra,

::::
such

::::
that

::
all

:::::::::
significant

::::::
details

:::
are

::::
well

:::::::
resolved.

Mathematically formulated, PDFs are integrable non-negative functions f :A→ [0,∞] from a probability space (Ω,A,P )

::::::::::::
f : Ω→ [0,∞)

:::::
from

:
a
::::::
sample

:::::
space

::::::
Ω⊆ R

:
into the non-negative real numbers . By definition, they allow to directly read the55

probability
::::
with

:::::::::::::::

∫∞
−∞ f (x)dx= 1.

:::::
PDFs

::::::::::
correspond

::
to

:::
the

::::::::::
probability

::
P of the occurrence of a data value X ∈ R within a
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specific range [a,b]⊆ R via the relationship

P (a <X < b) =

b∫
a

f (x)dx for all a < b ∈ R. (1)

The application of kernel density estimators (KDEs) has become a common approach for approximating PDFs in a non-parametric
::::::::::::
nonparametric

way (Parzen, 1962), which means that no probability parameters (like
:::
e.g.

:
expectation or variance) of the data and no

:::
the type60

of the underlying probability distribution (as, e.g., normal or log-normal) are prescribed or assumed
:::
not

::::::::
prescribed. The general

concept of KDEs takes into account information of every single data point and treats all of them equally. Consequently, every

point’s information weighs the same in the resulting estimate , without introducing additional assumptions.

A KDE is based on a kernel function and a smoothing parameter. The kernel function is ideally chosen to be a PDF itself.

It is ,
:
usually unimodal and centered around zero (Sheather, 2004). In the estimation process ,

:::
The

:::::::::
estimation

:::::::
process

:::::
sums65

::
up

:
the kernel function is sequentially centered around each data point. The sum of these individual kernels is standardized

by the number of data points. This ensures that the final estimate is again a PDF by inheriting all properties of its kernels.

The smoothing parameter, referred to as bandwidth, determines the smoothness of the estimate. If it is chosen to be small,

more details of the underlying data structure become visible. If it is larger, more structure becomes smoothed out (Jones

et al., 1996), and information from single data points might
::
can

:
get lost. Hence, it is crucial to determine some kind of an70

optimal size of the bandwidth parameter to represent a suitable signal-to-noise ratio that allows a separation of significant

distinctive features from ambiguous details. The question of optimal bandwidth selection is widely discussed in the literature

(e.g., Sheather and Jones, 1991; Jones et al., 1996; Heidenreich et al., 2013)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Sheather and Jones, 1991; Jones et al., 1996; Heidenreich et al., 2013; Chacón and Duong, 2018; Gramacki, 2018)

. It also takes into account that there might not be one single "optimal" choice for such bandwidth (Abramson, 1982; Terrell and

Scott, 1992; Chaudhuri and Marron, 2000; Scott, 2012),
::
to
::::
use

:::::::
adaptive

:::::::::
bandwidth

:::::::::
approaches

:::::::::::::::::::::::::
(Davies and Baddeley, 2017)75

::
or

::
to

:::::::
optimize

:::
the

::::::
kernel

:::::::
function

:::::
shape

::::::
instead

::
of

:::
the

:::::::::
bandwidth

:::::::::::::::::::::::::::
(Bernacchia and Pigolotti, 2011).

The reformulation of the most common Gaussian KDEs (Sheather, 2004) into a diffusion equation provides a different view

on KDE (Chaudhuri and Marron, 2000). This
:::::::
different

::::::::
approach

::::::
comes

::::
with

:::::
three

::::
main

::::::::::
advantages:

:::
(1)

::::::::::
consistency

:::
at

:::
the

:::::::::
boundaries

:::
(2)

:::::
better

::::::::
resolution

::
of

::::::::::
multimodal

::::
data

:::
(3)

:
a
::::::
family

::
of

:::::
KDEs

::::
with

::::::::
different

:::::::::
smoothing

::::::::
intensities

:::
can

:::
be

::::::::
produced

::
as

:
a
:::::::::
by-product

::
of

:::
the

:::::::::
numerical

:::::::
solution.

::::
This

:
perspective change is possible , because the Gaussian kernel function solves the80

partial differential equation describing the diffusion heat process as the Green function. The time parameter of this differential

equation corresponds to the smoothness of the estimate, and thus becomes tantamount to the estimate’s bandwidth parameter

(Chaudhuri and Marron, 2000). The initial value is typically set to include the δ-distribution of the input data. ,
::::::

which
::::
will

:::::::
formally

::
be

:::::::
defined

::
in

::::
Sec.

::
3.

:
This differentiates the initial value problem from classical problems, since the δ-distribution is

not a proper function itself. In specific applications this diffusion approach delivered convincing results (e.g., Botev et al., 2010;85

Deniz et al., 2011; Qin and Xiao, 2018).
:
,
::::::::
especially

:::
for

:::
the

::::::::
resolution

::
of

:::::::
multiple

::::::
modes

::::::::::::::::::::::::::::::
(e.g. Majdara and Nooshabadi, 2020)

:
.

:::
The

::::::::
improved

::::::::
structure

::::::::
resolution

:::
has

:::
for

:::::::
example

:::::::
already

:::::
shown

::::::
useful

::
for

:::
the

:::::::::::
optimization

::
of

::::::::::
photovoltaic

::::::
power

:::::::::
generation

::::::::::::
(Li et al., 2019)

:
,
:::::::
analysis

::
of

:::::
flood

::::::::::
frequencies

:::::::::::::::::::::::::
(Santhosh and Srinivas, 2013)

:
or

:::
the

:::::::::
prediction

::
of

::::
wind

::::::
speed

:::::::::::::
(Xu et al., 2015)

:
.

However, it tends to resolve too many details or overfit the data in others (e.g., Ma et al., 2019; Chaudhuri and Marron, 2000;

3



Farmer and Jacobs, 2022). One main benefit of the diffusion KDE is that it provides a series of PDF estimates for a sequence90

of bandwidths by default (Chaudhuri and Marron, 2000). As a consequence, it offers the chance to choose between different

grades
::::::
varying

:::::
levels of smoothness by design.

In this study, we present a new, modified diffusion-based KDE , for which we provide a Python implementation
:::
with

:::
an

::::::::::::
accompanying

::::::
Python

::::::::
package,

:::::::
diffKDE

::::::::::::::::::::
(Pelz and Slawig, 2023). Our aim is to retain the original idea of diffusion-based

KDEs by Chaudhuri and Marron (2000) and Botev et al. (2010), but to avoid the complex fixed-point iteration by Botev95

et al. (2010). The main objective of our refined approach is to achieve high performance for analyses of high variance and

multimodal data sets. Our diffusion-based KDE is based on an iterative approximation that differs from others, using a default

optimal bandwidth and two preliminary , so-called pilot estimates. This way the KDE can provide a family of estimates

at different bandwidths to choose from in addition to a default solution optimally designed for data from geoscience and

ecological research. Thus,
:::
This

::::::
allows

:::
for an interactive investigation option of these different estimates becomes possible in100

an easy way
:
of

:::::::::
estimated

:::::::
densities

::
at

:::::::
different

:::::::::
smoothing

:::::::::
intensities.

This paper is structured as follows: At first, we will briefly recall the general concept of KDEs. Afterwards, our specific

KDE approach will be introduced and described, as developed and implemented in a
:::
our software package. We explain the

two pilot estimation steps and the selection of the smoothing parameters. Then the performance of our refined estimator will

be compared with other state-of-the-art KDEs, while considering known distributions and real marine biogeochemical data.105

The real test data include carbon isotope ratios of particulate organic matter (δ13CPOC) and plankton size data. Our analyses

presented here involve investigations of KDE error, runtime, the sensitivity to data noise and the characteristics of convergence

w.r.t. increasing sample size.

2 Theory and methods
:::
The

:::::::
general

::::::
kernel

::::::
density

:::::::::
estimator

2.1 Kernel density estimation110

A kernel density estimator (KDE) is a non-parametric statistical tool for the estimation of probability density functions

(PDFs)
::::
PDFs. In practice, diverse specifications of KDEs exist that may improve the performance with respect to individ-

ual needs. Before we explain our specifications of the diffusion-based KDE, we will provide basic background information

about KDEs.

For all following let Ω⊆ R be a domain, Xj ∈ Ω, j ∈ {1, ...,N}, be N ∈ N independent
:::::::::
identically

:::::::::
distributed real random115

variables.

2.0.1 The general kernel density estimator

The most general form of a KDE approximates the true density f of the input data (Xj)
N
j=1 by

f̂ : R×R>0→ R≥0,(x;h) 7→ 1

nh
=

1

N h
:::::

∑
j=1

nN
:
K

(
x−Xj

h

)
, where x ∈ R,h ∈ R>0 and
:::::::::::::::::::::::

f̂

(
x;h
:::

)
R≥0
:::

. (2)

4



In this formula the
:::
The

:::
sets

:::::
R>0 :::

and
::::
R≥0::::::

denote
:::
the

:::::::
positive

::::
real

:::::::
numbers

::::
and

:::
the

:::::::::::
non-negative

:::
real

::::::::
numbers,

:::::::::::
respectively.120

:::
The

:
kernel function K : R→ R>0 has to satisfy

:::::::::
K : R→ R

:::::::
satisfies the following conditions (Parzen, 1962):

sup
y∈R
|K(y)|<∞,

∫
R

|K(y)|dy <∞, lim
y→∞

|yK(y)|= 0,

∫
R

K(y)dy = 1.1,
:

(3)

:::::::
meaning

:::
that

:::
K

::
is

::::::::
bounded,

:::::::::
integrable,

:::
and

:::
for

:::
the

::::
limit

:::::::
y→∞

::::::::
decreases

:::::
faster

::
to

::::
zero

::::
than

::
y

:::::::::
approaches

:::::::
infinity.

::::
The

::::
final

::::::::
condition

:::::
means

::::
that

::
K

::::::::
integrates

:::
to

:
1
::::
over

:::
the

::::::
whole

:::
real

:::::::
domain,

::::::
which

::::::
implies

::::
that

::::
also

:::
the

::::
KDE

::
f̂

::::::::
integrates

::
to
::
1
::
as

::
it

::
is

::::::::
necessary

:::
for

:
a
:::::
PDF.125

The parameter h determines the smoothness of the estimate calculated by Eq. 2 and is called the bandwidth parameter

(Silverman, 1986). In the following we will exclusively deal with the squared bandwidth (h2) and therefore adapt a notation

where some t is defined as h2 =: t ∈ R. An optimal choice for the bandwidth parameter is regarded as the minimizer of the

asymptotic mean
::::::::
integrated squared error between the true density of (Xj)

N
j=1 and their KDE (Sheather and Jones, 1991). The

mean integrated squared error
:
(
:::::
MISE

:
) is defined as130

MISE
(
f̂
)

: R>0→ R, t 7→
(
h
:

)
=
:

E

∫
R

(
f̂
(
x; th

:

)
− f (x)

)2

dx

dx, where h ∈ R>0
:::::::::::::::

(4)

for all PDFs f and respective KDEs f̂ (Scott, 1992).
::
In

:::
the

::::::::
following,

:::
we

::::
will

:::::
work

::::
with

:::
the

::::::::::
asymptotic

:::::
MISE

::::::
denoted

:::
as

:::::::
AMISE,

:::::
which

::::::::
describes

:::
the

:::::::::
asymptotic

::::::::
behavior

::
of

:::
the

:::::
MISE

::
for

:::
the

:::::::::
bandwidth

::::::::
parameter

:::::::::::
approaching

:::
zero

::::::
h→ 0,

::::::::
meaning

lim
h→0

MISE
(
f̂
)

(h)

AMISE
(
f̂
)

(h)
= 1.

::::::::::::::::::::::

(5)135

If now f̂ is a KDE and there exists a t∗ ∈ R>0 with
:::::::
h∗ ∈ R>0:::::

with

AMISE
(
f̂
)(

th
:

∗
)

= min t∈R>0h∈R>0
::::

AMISE
(
f̂
)(

th
:

)
, (6)

we call t∗
::
h∗

:
the optimal bandwidth of f̂ by (Xj)

N
j=1 (Scott, 1992).

::
A

:::::
kernel

:::::::
function

:::
K

:::
that

:::::::
suffices

::
the

:::::::::
additional

:::::::::
conditions

∫
R

yK (y)dy = 0,

∫
R

y2|K (y) |dy <∞,
∫
R

y2K (y)dy = k2 ∈ R \ {0},

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(7)140

:
is
::

a
::::::
second

:::::
order

::::::
kernel

::
as

:::
its

::::::
second

::::::::
moment

::::::::::::

∫
R y

2K (y)dy
::
is

::
its

::::
first

::::::::
non-zero

::::::::
moment.

:::::
Those

:::::::
kernels

:::
are

:::::::
positive

::::
and

:::::::
together

::::
with

:::
the

::::
final

::::::::
condition

:::::
from

:::
Eq.

:
3
::::

they
:::

are
:::::

PDFs
::::::::::

themselves.
:

For the general KDE from , this
::
Eq.

::
2
::::
with

::
a

::::::
second

::::
order

::::::
kernel,

:::
the

:::::::
optimal

:::::::::
bandwidth can be calculated according to Parzen (1962) as

:
as
:

th
:

∗ =

f (x)
∫
K2 (y)dy

N4‖f2‖2
‖K‖2L2

Nk2
2‖f

′′‖2L2
::::::::::

 2
5

1
5
:
. (8)
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::::
This

::::
result

::::
was

::::::
lready

:::::::
obtained

::
by

:::::::::::::
Parzen (1962)

:::
and

:
is
::
in
:::::
more

:::::
detail

::::::::
discussed

::
in

:::::
App.

::
A.

:
145

As we see from Eq. 13
::
In

:::
Eq.

::
8, the true density f is involved in the calculation of the optimal bandwidth t∗

::
h∗, which is

in turn needed for the approximation of f by a KDE. Thus, ,
::::
and

::::
thus

:::::::
prevents a direct derivation of an optimal bandwidthis

precluded. One possibility of how this implicit relation can be solved is the calculation of pilot estimation steps. Our specific

approach to this is shown in Sec. 3.1 and Sec. 3.2.

There exists a variety of available choices for the type of kernel function K, which all have their individual benefits and150

shortcomings. Amongst them arefor example ,
:::
for

::::::::
example, the uniform, triangle, or the Epanechnikov kernel (Scott, 1992):

KE : R→ R≥0,
(
w 7→

)
=
:

3

4

(
1−w2

)
, where w ∈ R and KE
::::::::::::::::::

(
w
:

)
∈ R≥0
:::::

. (9)

A common choice for K is the Gaussian kernel (Sheather, 2004):

Φ: R→ R≥0,
(
w 7→

)
=
:

1√
2π
e−

1
2w

2

, where w ∈ R and Φ
:::::::::::::::::

(
w
:

)
∈ R≥0
:::::

. (10)

The standard KDE from Eq. 2 – despite being widely applied and investigated – comes with several disadvantages in practical155

applications (Khorramdel et al., 2018). For example, severe boundary bias can occur when applied on a compact interval

(Marron and Ruppert, 1994). It means that a kernel function with a specified bandwidth, attributed to a single point nearby the

boundary, may actually exceed the boundary. Furthermore, it can lack a proper response to variations in the magnitude of the

true density f (Breiman et al., 1977). The introduction of a parameter that depends on the respective data region can address

the latter (Breiman et al., 1977). Unfortunately, no true independent local bandwidth strategy exists (Terrell and Scott, 1992),160

meaning that in all local approaches there is still an influence of neighboring data points on each locally chosen bandwidth.

2.0.1 The diffusion-based kernel density estimator

3
:::
The

::::::::::::::
diffusion-based

::::::
kernel

::::::
density

:::::::::
estimator

The diffusion-based KDE provides a different approach to Eq. 2 . It solves
::
by

:::::::
solving

:
a
::::::
partial

:::::::::
differential

:::::::
equation

:::::::
instead

::
of

::
the

::::::::::
summation

::
of

::::::
kernel

::::::::
functions.

::::
This

::::::::
different

:::::::::
calculation

:::::
offers

:::::
three

:::::
main

::::::::::
advantages:

::
(1)

::::::::::
consistency

::
at
:::
the

::::::::::
boundaries165

:::
can

::
be

:::::::
ensured

:::
by

::::::
adding

:::::::::
Neumann

::::::::
boundary

::::::::::
conditions,

:::
(2)

:::::
better

:::::::::
resolution

::
of

::::::::::
multimodal

::::
data

:::
can

:::
be

::::::::
achieved

:::
by

:::
the

:::::::
inclusion

:::
of

:
a
:::::::
suitable

::::::::
parameter

::::::::
function

::
in

:::
the

:::::::::
differential

::::::::
equation

::::::
leading

::
to

:::::::
adaptive

::::::::::
smoothing

:::::::
intensity,

:::
(3)

::
a
:::::
family

:::
of

:::::
KDEs

::::
with

::::::::
different

:::::::::
bandwidths

::
is
::::::::
produced

:::
as

:
a
::::::::::
by-product

::
of

:::
the

::::::::
numerical

::::::::
solution

::
of

:::
the

::::::
partial

:::::::::
differential

::::::::
equation

::
in

::::::::
individual

::::
time

:::::
steps.

:

::::
This

::::
KDE

::::::
solves

:::
Eq.

:::
11, the partial differential equation describing the diffusion heat process, starting from an initial value170

based on the input data (Xj)
N
j=1 , that progresses up to an estimate at a final

:::
and

:::::::::
progresses

:::::::
forward

::
in

::::
time

::
to

::
a
::::
final

:::::::
solution

:
at
::
a
::::
fixed

::::
time

:::::::::
T ∈ R>0.

∂

∂t
u(x; t) =

1

2

d2

dx2
u(x; t) ,x ∈ Ω, t ∈ R>0

::::::::::::::::::::::::::::::::::

(11)

:::
The

:::::
input

::::
data

::
are

::::::
treated

::
as
:::
the

::::::
initial

::::
value

:::::::
u(x,0)

::
at

::
the

::::::
initial

::::
time

:::::
t0 = 0

::::
and

:::::::
generally

:::
set

::
to

::::::::
infinitely

::::
high

:::::
peaks

::
at

:::::
every

:::
data

:::::
point

::::::::::::::::
Xj , j ∈ {1, ...,N}. :::

The
::::
time

:::::::::::
propagation

::
in

::::::
solving

:::
Eq.

:::
11

:::::::
smooths

:::
the

::::::
initial

:::::
shape

::
of

::
u

:::::::
meaning

::::
that

:
u
::::::::

contains175
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:::
less

::::::
details

::
of

:::
the

::::
input

::::
data

::::::::
(Xj)

N
j=1 ::

for
:::::::::
increasing

::::::
values

::
in

::::
time

:::::::
t ∈ R>0.

::
If

:::
we

:::::::
observe

::
the

:::::::
solution

::
u
::
of

:::
Eq.

:::
11

::
at

:
a
:::::::
specific

::::
fixed

::::
final

:::::::
iteration

:
time T ∈ R>0:

,
::::
this

::::::::
parameter

::::::::::
determines

:::
the

::::::::::
smoothness

::
of

:::
the

:::::::
function

::
u
:::
and

::::
how

::::::
many

:::::
details

:::
of

:::
the

::::
input

::::
data

:::
are

::::::::
resolved.

::::
This

::
is

::
an

:::::::::
equivalent

::::::::::
dependency

::
as

::::::
already

::::
seen

:::
for

:::
the

:::::
KDE

::
as

:::
the

:::::::
solution

::
of

:::
Eq.

::
2
:::::::::
depending

::
on

::
a

::::::::
bandwidth

:::::::::
parameter

:::::::
h ∈ R>0.

An advantageous connection to Eq. 2 is that the widely applied Gaussian kernel is a fundamental solution of this differential180

equation. Precisely, the Gaussian kernel from Eq. 10 as applied in the construction of a Gaussian KDE depends on the location

x ∈ R and the smoothing parameter h ∈ R>0 and has the form (x; t) 7→ 1√
2π
e
− 1

2

(
x−Xj√

t

)2

for any j ∈ {1, ...,N}.

Φ(x; t) =
1√
2π
e
− 1

2

(
x−Xj√

t

)2

, where x ∈ R, t ∈ R>0 and Φ(x; t) ∈ R≥0.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(12)

This function solves

∂

∂t
u(x; t) =

1

2

d2

dx2
u(x; t) ,x ∈ Ω, t ∈ R>0185

:::
Eq.

::
11

:
as the Green’s function, where the time parameter t ∈ R>0 equals the squared bandwidth parameter h2 (Chaudhuri and

Marron, 2000).
:::::::::::
Consequently,

:::
we

:::
can

:::
use

:::
the

:::::
result

::
of

:::
the

:::::::
optimal

:::::::::
bandwidth

::::
from

:::
Eq.

::
8,
:::::
only

::
as

:::
the

::::::
squared

:::::
result

::
as
:

T =

(
‖K‖2L2

Nk2
2‖f

′′‖2L2

) 2
5

,

:::::::::::::::::::

(13)

:::::
where

:::
we

:::::
denote

:::
the

:::::::
optimal

:::::::::
bandwidth

::::
now

::::
with

:::::::
T ∈ R>0:::

as
:::
this

::
is

:::
the

::::
final

:::::::
iteration

::::
time

::
in

:::
the

:::::::
solution

::
of

:::
Eq.

:::
11. This idea

to use the diffusion heat equation to calculate a KDE was first proposed by Chaudhuri and Marron (2000) . Its
:::
and

::
its

:
benefits190

were widely explored in Botev et al. (2010).

Our implementation of the diffusion KDE is based on Chaudhuri and Marron (2000)and is
:
,
::::::
which

::
we

:
extended by some

advancements proposed by Botev et al. (2010): We included a parameter function p ∈ C2 (Ω,R>0) with ‖p′′‖∞ <∞ into Eq.

11, acting inversely to a diffusion quotient.
::::
This

:::::::::
parameter

:::::::
function

::::::
allows

::
to

::::::::
influence

:::
the

:::::::
intensity

::
of

:::
the

::::::::
diffusion

:::::::
applied

::::::::
adaptively

:::::::::
depending

:::
on

:::
the

:::::::
location

::::::
x ∈ R.

::
Its

::::
role

:::
and

:::::::
specific

::::::
choice

::
is

::::::::
discussed

::
in

:::::
detail

::
in

::::
Sec.

::
4.
:
Boundary conditions195

are set to be Neumann and the initial value being a normalized sum of the δ-distributions centered around the input data points.

In the following, we call a function u ∈ C2,1 (Ω×R>0,R≥0) the diffusion kernel density estimator (diffKDE) , if it solves the

diffusion partial differential equation

∂

∂t
u(x; t) =

1

2

d2

dx2

(
u(x; t)

p(x)

)
, x ∈ Ω, t ∈ R>0, (14)

∂

∂x

(
u(x; t)

p(x)

)
= 0, x ∈ ∂Ω, t ∈ R>0, (15)200

u(x;0) =
1

N

N∑
j=1

δ (x−Xj) , x ∈ Ω. (16)

:::
The

::::
final

:::::::
iteration

:::::
time

:::::::
T ∈ R>0:::

of
:::
the

:::::::
solution

::::::
process

::
of

::::
Eq.

::
14

::
is

:::::
called

:::
the

:::::::
squared

:::::::::
bandwidth

:
of

:::
the

::::::::
diffKDE.

:
In Eq. 16,

the data are incorporated as initial values via the Dirac δ-distribution, i.e., a generalized function which takes the value infinity
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at its argument and zero anywhere else. Regarded as PDF, it puts all probability in
:
In

:::::::
general,

::
δ

::
is

::::::
defined

::
by

::::::::
δ (x) = 0

:::
for

:::
all

:::::::::
x ∈ R \ {0}

::::
and

:::::::::::::

∫∞
−∞xδ (x) = 1

:::::::::::
(Dirac, 1927)

:
.
:::::
When

:::::::
regarded

:::
as

:
a
:::::
PDE,

:::
the

:::::
Dirac

:::::::::::
δ-distribution

::::
puts

::
all

::
of

:::
the

::::::::::
probability

::
as205

the corresponding data point. The δ-distribution can be defined exactly as a limit of functions, the so-called Dirac sequence. In

actual implementations, it has to be approximated, see Sec. 5.3.

The final iteration time T ∈ R>0 of the solution process of Eq. 14 is called the squared bandwidth of the diffKDE.

This specific type of KDE has several advantages. First of all, it naturally provides a sequence of estimates for different

smoothing parameters (Chaudhuri and Marron, 2000). This obliterates identifying
:::::
makes

:::
the

:::::::::::
identification

:::
of one single opti-210

mal bandwidth whose existence is questioned
::::::::::
unnecessary,

:::::
which

::
is

::::
ideal

:::::::
because

:::
the

:::::::
optimal

::::
value

::::
can

::
be

::::::
specific

::
to
::
a
::::::
certain

:::::::::
application

:::
and

::
is
:::::
often

:::::::
debated (e.g., Abramson, 1982; Terrell and Scott, 1992; Chaudhuri and Marron, 2000; Scott, 2012).

Even more
:::::::::
Aditionally, such a sequence allows a specification of the estimate’s smoothness that is most appropriate for the

analysis. The parameter function p introduces adaptive smoothing properties (Botev et al., 2010). Thus, setting
:::::::
choosing

:
p

properly
::
to

::
be

::
a

:::::::
function

:::::
allows

:::
for

::
a

:::::::
spatially

:::::::::
dependent

:::::::
influence

:::
on

:::
the

:::::::::
smoothing

:::::::
intensity,

::::::
which solves the prior problem215

of having to locally adjust the bandwidth to the respective region to prevent oversmoothing of local data structure (Breiman

et al., 1977; Terrell and Scott, 1992; Pedretti and Fernàndez-Garcia, 2013). In contrast to local bandwidth adjustments, local

variations of the smoothing intensity can be applied to resolve multimodal data as well as values close to the boundary.

3.0.1 Bandwidth selection

3.1
:::::::::

Bandwidth
::::::::
selection220

According
:::
We

::::
now

:::::
focus

::
on

:::
the

::::::::
selection

:::
of

:::
the

::::::
optimal

:::::::
squared

:::::::::
bandwidth

::::::::
T ∈ R>0:::::::::

according to the relationship T = h2

between final iteration time T of the diffKDE and bandwidth parameter h (Chaudhuri and Marron, 2000),we from now on

focus on the selection of the optimal squared bandwidth T ∈ R>0 and .
:::
In

:::
the

::::::::
folowing

:::
we refer to this as the bandwidth

selection for simplicity.

In
:::
We

::::::
stressed

::
in
:
Eq. 13 we stressed that the optimal choice of the bandwidth parameter depends on the true density f . In our225

setup of the diffKDE, the analytical solution for T of Eq. 6 depends not only on the true density f , but also on the parameter

function p. It can be calculated as

T ∗ =

 E
(√

p(X)
)

2N
√
π

∥∥∥∥( fp)′′∥∥∥∥2

L2


2
5

, (17)

(Botev et al., 2010). The
:::::
where

:::::
‖ · ‖L2

::
is
:::
the

::::::::
L2-norm

:::
and

::::
E(·)

:::
the

::::::::
expected

:::::
value.

::::
The

::::
proof

:::
of

:::
this

:::::::
equation

::
is

::
in

:::::
detail

:::::
given

::
in

:::::::::::::::
Botev et al. (2010)

:
.
:::
The

:
role of the parameter function p is in detail described in Sec. 3.2.230

In the simplified setup with p= 1 as in Eq. 11, the analytical optimal solution of Eq. 13 becomes

T ∗(p=1) =

(
1

2N
√
π‖f ′′‖2L2

) 2
5

. (18)
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Still, the smoothing parameter depends on the unknown density function f and its derivatives. So we will need to find a suitable

approximation of f , which might again be dependent of f and so on . Botev et al. (2010) use
::
p.

::::
This

::::::
implicit

::::::::::
dependency

::::
can

::
be

::::::
solved

::
by

::::::::
so-called

::::
pilot

:::::::::
estimation

:::::
steps.

::::
Pilot

::::::::
estimates

:::
are

::::::::
generally

::::::
rough

::::::::
estimates

::
of

:
f
:::::::::

calculated
::
in

:::
an

:::::
initial

::::
step

::
to235

:::
use

::::
them

:::
for

::
an

::::::::::::
approximation

::
of

::::
Eq.

::
17

:::
and

:::
18,

::::::
which

::::
later

::
on

:::::
serve

::
to

:::::::
calculate

::
a

::::
more

::::::
precise

:::::::
estimate

::
of

:::
f .

:
A
:::::
more

:::::::
detailed

::::::::::
introduction

:::
into

:::::
pilot

::::::::
estimation

::::
and

::
its

:::::::
specific

::::::
benefit

:::
for

::::::::::::
diffusion-based

::::::
KDEs

::
is

::::::::
presented

::
in

::::
Sec.

:::
3.2.

:

:::::::::::::::
Botev et al. (2010)

::::
used

:
an iterative scheme to solve this implicit dependency

:::
the

:::::::
implicit

::::::::::
dependency

::
of

::::
the

:::::::::
bandwidth

::::::::
parameter

:::
on

:::
the

::::
true

:::::::::
distribution

::
f . This additional effort is avoided in our approach .

::
by

:::::::
directly

::::::::::::
approximating

::
f

::::
with

::
a

:::::
simple

:::::::::
data-based

:::::::::
bandwidth

::::::::::::
approximation

::::::
based

::
on

::::
two

::::
pilot

:::::::::
estimation

::::
steps

::
in

:::::
detail

::::::::
described

::
in

::::
Sec.

::
4.

:
240

The prior claimed possibility of no existence of
:::::::
possible

:::::::::
difficulties

::
in

::::::
finding one single optimal bandwidth for complicated

densities (e.g. Scott, 2012) is, by default, no problem for the diffKDE. A solution to this problem is to create
:::::::::::::::
(e.g. Scott, 2012)

::
do

:::
not

:::::
arise

::
in

:::
the

:::::::::
calculation

::
of

:::
the

::::::::
diffKDE

:::
by

::::::
default.

::::
This

::::::::
problem

::
is

:::::
solved

:::
by

:::::::
creating

:
a family of estimates from dif-

ferent bandwidth parameters (Breiman et al., 1977), ranging from oversmoothed estimates to those with beginning oscillations

(Sheather, 2004). For the diffKDE,
:
the progression of the time t up to a final iteration time T is equivalent to the creation of245

such a family of estimates. For the diffKDE we
:::
We

:
thus only need to find a suitable optimal final iteration time T ∗. Then ,

the temporal solution of Eq. 14 provides solutions for the diffKDE for the whole sequence of the temporal discretization time

steps smaller than T ∗, which we can then use as the requested family of estimates.

3.1.1 Pilot estimation

3.2
::::

Pilot
::::::::::

estimation250

A crude first estimate of the true density f can serve as a pilot estimation step for several purposes (Abramson, 1982; Sheather,

2004). The most obvious in our case is to obtain an estimate of f for the calculations of the optimal bandwidth in Eq. 17. The

second purpose is its usage for the definition of the parameter function p in Eq. 14. Setting this as an estimate of the true density

itself introduces locally adaptive smoothing properties (Botev et al., 2010). Since p appears in the denominator in the diffusion

equation, it operates conversely to a classical diffusion coefficient. Choosing p to be a function allows for a spatially dependent255

influence on the smoothing intensity : at
:
as
::::::::

follows.
::
At

:
points where the function p is small, the smoothing becomes more

pronounced, whereas .
::::::::
Whereas if p is larger, the smoothing is less intense. This resolves the expected structure in data dense

areas , but expands in sparsely sampled areas
::::
Low

:::::::::
smoothing

:::::::
resolves

:::::
more

:::::::::
variability

:::::
within

:::::
areas

::::
with

:::::
many

::::::
similar

::::::
values

::::
(high

::::::::
density),

:::::
while

:::
the

:::::::
intensity

:::
of

:::::::::
smoothing

::
is

::::::::
increased

:::::
where

::::
data

::::::
values

:::
are

:::::
more

::::::::
dispersed. Eventually, we calculate

two pilot estimates – one for p and one for f – to support the calculation of the diffKDE. We set both pilot estimates to be the260

solution of Eq. 11 with an optimal smoothing parameter approximating Eq. 18. This approach combines Gaussian
::::
KDE

:
and

diffKDE interchangeably to make best use of both of their benefits (Chung et al., 2018).
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3.3 Discretization of diffusion kernel density estimator

4
:::
The

::::
new

::::::::::
bandwidth

:::::::::::::
approximation

::::
and

::::
pilot

::::::::::
estimation

::::::::
approach

::
of

::::
the

:::::::
diffKDE

:::
Our

::::
new

::::::::
approach

::::::
solves

:::
the

::::::::
diffusion

::::::::
equation

::
in

:::::
three

::::::
stages,

::::::
where

:::
the

::::
first

:::
two

:::::::
provide

:::::
pilot

:::::::::
estimation

::::
steps

::::
for

:::
the265

:::::::
diffKDE.

::::
The

::::
three

::::::
chosen

::::::::::
bandwidths

:::::::
increase

::
in

:::::::::
complexity

:::
and

::::::::
accuracy

::::
over

:::
this

:::::::
iteration.

::::
This

:::::::::
algorithm

:::
was

:::::::::::
implemented

::
in

::::::
Python

::
3.

:::
For

:::
the

:::::::
optimal

::::
final

:::::::
iteration

::::
time

:::
T ∗

:::::
from

:::
Eq.

::::
17,

:::
we

::::
need

:::
the

:::::::::
parameter

:::::::
function

::
p
::
as

::::
well

:::
as

:::
the

::::
true

::::::
density

::
f .

::::
We

::::::::::
approximate

::::
them

:::::
both

::
by

:
a
::::::
simple

:::::
KDE,

::::
each

:::
as

::::
pilot

:::::::::
estimation

:::::
steps.

:::
We

:::
use

:::
for

::::
both

::::
cases

:::
the

:::::::::
simplified

:::::::
diffKDE

:::::::
defined

::
in

:::
Eq.

:::
11,

::::::
without

:::::::::
additional

::::::::
parameter

:::::::::
functions.

:::
We

:::::
denote

:::
the

::::
final

:::::::
iteration

:::::
times

:::
for

:
p
::::
and

:
f
::
as
::::::::::::
Tp,Tf ∈ R>0,

:::::::::::
respectively.270

:::
We

:::
use

:
a
::::::
simple

:::::::::
bandwidth

::
as

:::::::
variants

::
of

:::
the

::::
rule

::
of

:::::
thumb

::
by

:::::::::::::::
Silverman (1986)

:
to
::::::::
calculate

::::
both

::
of

:::::
them.

:

:::
We

:::::
begin

::
to

:::::::
estimate

::::
Tp,

:::::
which

::
is
:::
the

:::::
final

:::::::
iteration

::::
time

:::
for

:::
the

:::::
KDE

::::
that

::::::
serves

::
as

::
p.

::
It
:::::
shall

::
be

:::
the

:::::::::
smoothest

:::
of

:::
the

::::
three

:::::::::
estimates,

::::
since

::
p
:::::
limits

:::
the

:::::::::
resolution

:::::::
fineness

::
of

:::
the

::::::::
diffKDE

::
as

:
a
::::::

lower
::::::::
boundary.

::::
This

::::::
occurs

:::::::
because

:::
the

::::::::
diffKDE

::::::::
converges

::
to

:::
this

:::::::::
parameter

:::::::
function

:::
and

::::::
hence

::::
never

::::::::
resolves

:::
less

::::::
details

::::
than

:
p
:::::
itself

::::::::::::::::
(Botev et al., 2010).

:

::
As

::::
seen

::
in

:::
Eq.

:::
18,

:::
the

:::::::
optimal

:::::::::
bandwidth

::
for

:::
the

::::::::::::
approximation

::
of

::
p

::
is

::::::::
depending

:::
on

:::
the

::::::
second

::::::::
derivative

::
of

::
f .

:::
We

::::::::
therefore275

::::
need

::
to

:::::
make

:::::
some

:::::
initial

:::::::::
assumption

:::::
about

:::
f .

:::
For

:
a
::::

first
::::::::::::
simplification,

:::
we

:::::::
assume

:::
that

::
f

:::::::
belongs

::
to

:::
the

::::::
normal

::::::::::
distribution

::::::
family.

::::
Then

:::
the

:::::::
variance

:::
can

:::
be

::::::::
estimated

::
by

:::
the

::::::::
standard

:::::::
deviation

:::
of

::
the

:::::
data.

::::
This

::::
leads

:::
us

::
to

:::
the

:::::::::
parametric

::::::::::::
approximation

::
of

:::
the

:::::::::
bandwidth

:::
TP :::::::::::::::

(Silverman, 1986)

Tp =

(
1

2N
√
π‖f ′′‖2L2

) 2
5

=

(
1

2N
√
πσ−5 ‖Φ′′‖2L2

) 2
5

=

(
1

2N
√
πσ−5 3

8
1√
π

) 2
5

= σ2

(
4

3
N

)− 2
5

,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(19)

:::::
whose

:::::::
estimate

::
is

::::::
known

::
to

::
be

::::::
overly

::::::
smooth

:::
on

::::::::::
multimodal

:::::::::::
distributions.280

::
To

::::::::
calculate

:::
the

::::
final

:::::::
iteration

::::
time

:::
Tf :::

for
:::
the

::::::::::::
approximation

::
of

::
f

::
in

:::
Eq.

:::
17

:
,
:::
we

::::::
choose

:
a
::::::
refined

:::::::::::::
approximation

::
of

:::
Eq.

:::
18

:::
that

:::
has

::::
been

::::::::
proposed

:::
by

:::::::::::::::
Silverman (1986)

:
as

:

Tf =

(
0.9min

(
σ,
iqr (data)

1.34

))2

N−
2
5 .

:::::::::::::::::::::::::::::::::

(20)

:::
The

:::
iqr

::
is

:::
the

::::::::::
interquartile

:::::
range

::::::
defined

:::
as

::::::::::::::::::::::::::
iqr (data) = q (0.75)− q (0.25).

::::
The

::::
value

:::::::
q (0.25)

:::::::
denotes

:::
the

:::::
lower

::::::
quartile

::::
and

:::::::
describes

::::
the

::::
value

:::
in

:::::
data,

::
at

:::::
which

:::
25

::
%

:::
of

:::
the

:::::::
elements

:::
in

::::
data

::::
have

::
a
:::::
value

::::::
smaller

:::::
than

:::::::
q (0.25).

:::::::
q (0.75)

:::::::
denotes

:::
the285

:::::
upper

::::::
quartile

::::
and

:::::::
describes

:::
the

::::::::
analogue

:::::
value

:::
for

::
75

::
%

:::::::::::::::::::
(Dekking et al., 2005).

:

:::
We

::::::::::
approximate

:::::::
optimal

::::
final

:::::::
iteration

::::
time

:::
T ∗

::::
from

::::
Eq.

::
17

:::
by

:::::::::
calculating

::
p

:::
and

::
f

::
by

::::
Eq.

:::
11,

:::::
based

::
on

:::
Eq.

::::
19,

:::
and

:::
Eq.

:::
20

::::::::::
respectively,

:::
on

::
an

:::::::::
equidistant

::::::
spatial

::::
grid

:::::::::::
(xi)

n
i=0 ⊆ Ω̄

::
of

:::
the

::::::
spatial

::::::
domain

:::::::
Ω⊆ R.

::::
The

::::::::
nominator

::
is
::::::::::::

approximated
:::
by

:::
the

:::::::
unbiased

::::::::
estimator

:::
and

:::::::
denoted

::
as

:::::::
Eσ ∈ R

:::::::::::::::::
(Botev et al., 2010)

E(p(X))≈ 1

n+ 1

n+1∑
i=0

√
p(xi) = Eσ

::::::::::::::::::::::::::::::

(21)290
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:::
and

:::
the

::::::
second

::::::::
derivative

::
in

:::
the

::::::::::
denominator

::
by

:::::
finite

:::::::::
differences

:::::::::::::::::::::
(McSwiggan et al., 2016)

:::
and

:::
set

::
to

:::::
qi ∈ R

:::
for

:::
all

::::::::::
i ∈ {1, ...,n}

(
f

p

)′′
(xi)≈

1

h2

(
f

p
(xi+1)− 2

f

p
(xi) +

f

p
(xi−1)

)
= qi.

:::::::::::::::::::::::::::::::::::::::::::::::

(22)

:::
For

:::
the

::::::::
boundary

:::::
values

:::
we

:::
set

:::
the

::::::
second

::::::::
derivative

::
at

:::
the

:::::
lower

::::::::
boundary

::
to

::::::
q0 ∈ R

:(
f

p

)′′
(x0)≈ 1

h2

(
2
f

p
(x1)− 2

f

p
(x0)

)
= q0

:::::::::::::::::::::::::::::::::::::

(23)295

:::
and

:::
the

::::::
second

::::::::
derivative

::
at

:::
the

:::::
upper

::::::::
boundary

::
to

::::::::
qn+1 ∈ R

:(
f

p

)′′
(xn+1)≈ 1

h2

(
2
f

p
(xn−1)− 2

f

p
(xn)

)
= qn+1.

::::::::::::::::::::::::::::::::::::::::::::

(24)

:::
We

::
set

:::
the

:::::
finite

:::::::::
differences

::::::::::::
approximation

::::
from

:::
Eq.

:::
22,

:::
Eq.

:::
23

:::
and

:::
Eq.

:::
24

::
as

:
a
:::::::
discrete

:::::::
function

::::
with

:::::
image

::::::::::::::::
q := (q0, ..., qn+1).

::
In

:::
this

::::
way

:::
we

:::::::
derived

:::
an

::::::
already

:::::::
discrete

:::::::
formula

:::
for

:::::::::::::
approximation

::
of

:::
the

:::::::
optimal

:::::::
squared

:::::::::
bandwidth

:::::::::
T ∗ ∈ R>0:::

of
:::
the

:::::::
diffKDE

::
on

:::
the

::::::::::::
discretization

::::::
(xi)

n
i=0::

of
::
Ω
::
as
:

300

T ∗ =

(
Eσ

2N
√
π‖q‖2L2

) 2
5

.

:::::::::::::::::::::

(25)

:::
The

::::::::
L2-norm

::
is

::::::::
calculated

:::
on

::
the

::::::::::
discretized

:::::::
versions

::
of

:
f
::::
and

:
p
:::
by

::::
array

::::::::::
operations.

:::
The

:::::::::
integration

::
is

:::::::::
performed

::
by

:::
the

:::::
trapz

:::::::
function

::
of

:::
the

:::::
SciPy

:::::::
integrate

:::::::
package

:::::::::::::::::::
(Gommers et al., 2022),

:::
the

::::::
square

:::
root

::
is
::::
part

::
of

:::
the

::::
math

:::::::
package

:::::::::::::::::
(Van Rossum, 2020)

:
.

5
::::::::::::
Discretization

::::
and

::::::::::::::
implementation

::
of

:::
the

::::::::
diffKDE305

Equation 14 is solved numerically , using a spatial and temporal discretization. The discretization is based on finite differences

and sparse matrices in Python. A similar approach can be found in a diffusion-based kernel density estimator for linear networks

implemented in R by McSwiggan et al. (2016).

5.0.1 Spatial discretization

5.1
::::::

Spatial
::::::::::::
discretization310

We start with the description of the discretization of the spatial domain Ω⊆ R. This will reduce the partial differential equation

in Eq. 14 into a system of linear ordinary differential equations.

Let n ∈ N and (xi)
n
i=0 ⊆ Ω̄, an equidistant discretization of Ω with xi−1 < xi and R>0 3 h := xi−xi−1 :::::

spatial
:::::::::::
discretization

:::
step

::::
size

:::::::::::::::::
R>0 3 h= xi−xi−1:

for all i ∈ {1, . . . ,n}. For the following calculations, we set x−1 := x0−h ∈ R and xn+1 := xn +h ∈ R
:::::::::::::::
x−1 = x0−h ∈ R

11



:::
and

::::::::::::::::
xn+1 = xn +h ∈ R. Let u be the solution of the diffKDE and p its parameter function, both as defined in Sec. 3. We assume315

that u and p are both defined on x−1 and xn+1 and we set ui = u(xi) and pi = p(xi) for all i ∈ {−1, . . . ,n+ 1}.
Let t ∈ R>0. We approximate Eq. 15 at x= x0 by applying a first order central difference quotient as

0 =
∂

∂x

(
u(x0; t)

p(x0)

)
=≈

:

1

2h

(
u1 (t)

p1
− u−1 (t)

p−1

)
.

This implies

u−1 (t)

p−1
=
u1 (t)

p1
.320

We approximate Eq. 14 at x= x0 by applying a second order central difference quotient

u′0 (t)=≈
:

1

2

1

h2

(
u1 (t)

p1
− 2

u0 (t)

p0
+
u−1 (t)

p−1

)
=

1

2

1

h2

(
2
u1 (t)

p1
− 2

u0 (t)

p0

)
. (26)

Analogously, we approximate Eq. 15 and Eq. 14 at x= xn again by first and second order central difference quotients,

respectively. This gives

u′n (t)=≈
:

1

2

1

h2

(
un+1 (t)

pn+1
− 2

un (t)

pn
+
un−1 (t)

pn−1

)
=

1

2

1

h2

(
2
un−1 (t)

pn−1
− 2

un (t)

pn

)
. (27)325

Finally, we derive from Eq. 14 by applying a second order central difference quotient for all i ∈ {1, . . . ,n− 1}:

u′i (t)=≈
:

1

2

1

h2

(
ui+1 (t)

pi+1
− 2

ui (t)

pi
+
ui−1 (t)

pi−1

)
. (28)

Now, we identify p := (p0, . . . ,pn) ∈ Rn+1, u′ (t) := (u′0 (t) , . . . ,u′n (t)) ∈ Rn+1 and u(t) := (u0 (t) , . . . ,un (t)) ∈ Rn+1

with their spatial discretizations. Furthermore, we define vupper := (2,1, ...,1) ∈ Rn, vmain := (−2, ...,−2) ∈ Rn+1 and vlower :=

(1, ...,1,2) ∈ Rn to be the upper, main and lower diagonal of the tridiagonal matrix V ∈ R(n+1)×(n+1). Now, we set330

1

2

1

h2
V

1

p
= :A ∈ R(n+1)×(n+1), (29)

where
:::::::::::::::
A ∈ R(n+1)×(n+1)

::::::
means

::::
that

::
A

:::
has

::::
real

::::::
entries

:::
and

:::::
n+ 1

:::::
rows

:::
and

:::::
n+ 1

::::::::
columns,

:
the division by p is meant to be

::::::
applied column-wise. Then, Eq. 26, Eq. 27 and Eq. 28 can be summarized as a linear system of ordinary differential equations:

u′ (t)=≈
:

1

2

1

h2
V
u(t)

p
= Auu(t) . (30)335

By these calculations the
:::::::
solution

::
of

:::
the

:
partial differential equation from Eq. 14 becomes a

:::
can

::::
also

::
be

::::::::::::
approximated

:::
by

::::::
solving

:::
the system of ordinary differential equations:

u′ (t) = Au(t) , t ∈ R>0. (31)

12



5.1.1 Temporal discretization

5.2
::::::::

Temporal
::::::::::::
discretization340

The time-stepping applied to solve the ordinary differential equation from Eq. 31 and Eq. 16 is again built on equidis-

tant steps forward in time. Let ∆ ∈ R>0 small and set t0 := 0 and tk := tk−1 + ∆
:::::
t0 = 0

::::
and

::::::::::::
tk = tk−1 + ∆

:
for all k ∈ N.

Set uk,i := u(xi, tk) ∈ R
:::::::::::::::::
uk,i = u(xi, tk) ∈ R

:
for all i ∈ {0, . . . ,n+ 1} and k ∈ N0 and identify uk := (uk,i)

n
i=0 ∈ Rn+1

:::::::::::::::::::
uk = (uk,i)

n
i=0 ∈ Rn+1

:
for all k ∈ N0 with their discretizations.

We use an implicit Euler method to approximate Eq. 31 for all k ∈ N0345

uk+1 = ∆Auk+1 +uk (32)

from which we obtain

uk = (In+1−∆A)uk+1 for all k ∈ N0. (33)

Together
:::
The

::::::
implicit

:::::
Euler

:::::::
method

::
is

::::::
chosen

::
at

:::
this

:::::
place,

:::::
since

:
it
::
is
:::::::
A-stable

::::
and

::
by

::::
this

::::::
ensures

:::::::::::
convergence

::
of

:::
the

::::::
solver.

:::
Eq.

::
33

::::::::
together with the initial value Eq. 16 this describes an implementation-ready time stepping procedure. The linear350

equation for uk+1 will be solved in every time step k ∈ N0.

5.2.1 Initial value

5.3
:::::

Initial
:::::
value

The initial value in Eq. 16 depends on the δ-distribution (Dirac, 1927). The δ-distribution is not a proper function, but can be

calculated as a limit of a suitable function sequence. A common approximation for the δ-distribution is to use a Dirac sequence355

(Hirsch and Lacombe, 1999). Such is a sequence (Φn)n∈N of integrable functions that are non-negative and satisfy∫
Φn (x)dx= 1 for all n ∈ N (34)

and

lim
n→∞

∫
R\Bρ(0)

Φndx= 0 for all ρ ∈ R>0., (35)

:::::
where

:::::::::::::::::::::::::::::::::
Bρ (0) = {x ∈ R; |x− 0|< ρ}= (−ρ,ρ)

::
is

:::
the

::::
open

::::::
subset

::
of

::
R

:::::::
centered

::::::
around

::
R

::::
with

::::::
radius

::
ρ. For our implementa-360

tion we define a Dirac sequence (Φh)h∈R>0
depending on the spatial discretization fineness

:::
step

::::
size h ∈ R>0 as an approx-

imation of δ in Eq. 16. The relationship |Ω|n = h
:::::
spatial

:::::::::::
discretization

::::
step

::::
size

:::::::
h ∈ R>0::::::

equals
:::
the

::::::
length

::
of

:::
the

:::::::
domain

:::
|Ω|

::::::
divided

::
by

:::
the

:::::::
number

::
of

::::::
spatial

:::::::::::
discretization

::::::
points

::
n,

::::::
namely

::::::::
h= |Ω|

n .
::::
This

::::::::::
relationship provides the dependency of Φh on

n ∈ N and the equivalence of the limits n→∞ and h→ 0 in this framework. In the following we give the specific definition

of our function sequence of choice and proof that this indeed defines a proper Dirac sequence.365
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Figure 1.
::::
Dirac

:::::::
sequence

:::::::::
(Φh)h∈R>0 ::

for
:::

the
:::::::::::
approximation

::
of
:::

the
:::::::::::
δ-distribution

::
in

::
the

:::::
initial

:::::
value

::
in

:::
Eq.

::
16.

::::
The

::::::
function

:::
Φh:::::::

depends

::
on

:::
the

:::::
spatial

::::::::::
discretization

:::::::
fineness

:
h
:::
and

::::::::
converges

::
to

::
δ

::
for

::::::
h→ 0.

:::
The

:::::::
function

:::
Φh::

is
:::::::
piecewise

:::::
linear

::::
with

:
a
::::
peak

::
at

::::
each

:::
data

:::::
point

:::::::::::::
Xj , j ∈ {1, ...,N}:::::::::

integrating
:
to
::
1.

We assume 0 ∈ Ω. Then there exists an i ∈ {0, . . . ,n}with 0 ∈ [xi−1,xi). If not readily defined, we set xi−2 := xi−1−h ∈ R

and xi+1 := xi +h ∈ R
:::::::::::::::::
xi−2 = xi−1−h ∈ R

::::
and

:::::::::::::::
xi+1 = xi +h ∈ R. We define (see also Fig. 1)

Φh: Ω→ R,
(
x 7→
)

=
:



xi
h3x+ xi|xi−2|

h3 , x ∈ [xi−2,xi−1)

xi+xi−1

h3 x+xi
xi+xi−1

h3 − xi−1

h2 , x ∈ [xi−1,xi)

xi−1

h3 x+ xi+1|xi−1|
h3 , x ∈ [xi,xi+1]

0 else.

, where x,Φh
:::::::::::

(
x
:

)
∈ R
:::

(36)

Dirac sequence (Φh)h∈R>0
for the approximation of the δ-distribution in the initial value in Eq. 16. The function Φh is

depending on the spatial discretization fineness h and converges to δ for h→ 0. The function Φh is piecewise linear with a370

peak at each data point Xj , j ∈ {1, ...,N} integrating to 1.

Then Φh ∈ L1 (R)
::::
Then

:::
Φh is non-negative for all h ∈ R>0 and

::
as

:
a
:::::::::::

composition
::
of

:::::::::
integrable

::::::::
functions

:::::::::
integrable

::::
with∫

Φh (x)dx= 1 (see Appendix)
::::
App.

:::
B)

:::
and

::::::::::::::::::::::::::::::::::::::::::::::::::::
Φh ∈ L1 (R) = {f : R→ R;f integrable and

∫
|f (x) |dx <∞}.

Now, let ρ ∈ R>0 and set h= ρ
2 ∈ R>0. Then we have by Eq. 36

∫
R\Bρ(0)

Φhdx=

ρ∫
−∞

Φhdx+

∞∫
ρ

Φhdx=

ρ∫
−∞

0dx+

∞∫
ρ

0dx= 0,375

and it follows

lim
h→0

∫
R\Bρ(0)

Φhdx= 0 for all ρ ∈ R>0. (37)
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Hence Eq. 36 defines a Dirac sequence. We use Φh for the approximation of the δ-distribution in our implementation of

Equation 16.

The concept of the Dirac sequence also provides the justification to generally rely on the δ-distribution in the construction380

of the initial value of the diffKDE. The Gaussian kernel defined in Eq. 10 that solves the diffusion equation as a fundamental

solution is again a Dirac-sequence (Boccara, 1990). This link connects the diffKDE directly back to the δ-distribution.

5.4 Implementation of the diffusion kernel density estimator
:::
The

::::::::
diffKDE

:::::::::
algorithm

:::::::::
realization

:::
in

::::::
Python

The selected implementation is a straight forward approach using equidistant finite differences in space and time and a direct

solution of the diffusion equation by an implicit Euler. It is build on the three times sequent solution of the diffusion equation,385

providing two pilot estimates for the calculation of the final diffKDE. The three chosen bandwidths increase in complexity and

accuracy over this iteration. The implementation is realized in Python 3.

5.4.1 Selection of pilot function and optimal bandwidth

For the optimal bandwidth T ∗ from Eq. 17 we need the parameter function p as well as the true density f . We approximate

them both by a simple KDE, each as pilot estimation steps. We use for both cases the simplified diffKDE defined in Eq. 11,390

without additional parameter functions. We denote the bandwidths for p and f as Tp,Tf ∈ R>0, respectively. We use a simple

bandwidth as variants of the rule of thumb by Silverman (1986) for both of them.

We begin to estimate Tp, which is the bandwidth for the KDE that serves as p. It shall be the smoothest of the three

estimates, since p limits the resolution fineness of the diffKDE as a lower boundary. This is, because the diffKDE converges to

this parameter function and hence never resolves less details than p itself (Botev et al., 2010).395

As seen in Eq. 18, the optimal bandwidth for the approximation of p is depending on the second derivative of f . We therefore

need to make some initial assumption about f . For a first simplification, we assume that f belongs to the normal distribution

family. Then the variance can be estimated by the standard deviation of the data. This leads us to the parametric approximation

of the bandwidth TP (Silverman, 1986)

Tp =

(
1

2N
√
π‖f ′′‖2L2

) 2
5

=

(
1

2N
√
πσ−5 ‖Φ′′‖2L2

) 2
5

=

(
1

2N
√
πσ−5 3

8
1√
π

) 2
5

= σ2

(
4

3
N

)− 2
5

,400

whose estimate is known to be overly smooth on multimodal distributions.

To calculate the bandwidth Tf for the approximation of f in Eq. 17 we choose a refined approximation of Eq. 18, which has

been proposed by Silverman (1986) as

Tf =

(
0.9min

(
σ,
iqr (data)

1.34

))2

N−
2
5 .
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We approximate optimal bandwidth T ∗ from Eq. 17 by calculating p and f by Eq. 11, based on Eq. 19, and Eq. 20405

respectively. The nominator is approximated by the unbiased estimator (Botev et al., 2010)

E(p(X)) =
1

n+ 1

n+1∑
i=0

√
p(xi) =: Eσ

and the second derivative in the denominator by finite differences (McSwiggan et al., 2016)(
f

p

)′′
(xi) =

1

h2

(
f

p
(xi+1)− 2

f

p
(xi) +

f

p
(xi−1)

)
=: qi

for all i ∈ {1, ...,n}. For the boundary values we set410 (
f

p

)′′
(x0) =

1

h2

(
2
f

p
(x1)− 2

f

p
(x0)

)
=: q0

and(
f

p

)′′
(xn+1) =

1

h2

(
2
f

p
(xn−1)− 2

f

p
(xn)

)
=: qn+1.

We set the finite differences approximation from Eq. 22, Eq. 23 and Eq. 24 as a discrete function with image q := (q0, ..., qn+1).

In this way we derived an already discrete formula for approximation of the optimal squared bandwidth T ∗ ∈ R>0 of the415

diffKDE on the discretization Ω as

T ∗ =

(
Eσ

2N
√
π‖q‖2L2

) 2
5

.

The L2-norm is calculated on the discretized versions of f and p by array operations. The integration is performed by the trapz

function of the SciPy integrate package (Gommers et al., 2022), the square root is part of the math package (Van Rossum, 2020)

.420

5.4.1 The diffKDE algorithm with optimized bandwidth

The implementation is realized
::::::::::::
implementation

::::
was

:::::::::
conducted

:
in Python and its concept shown in Alg. 1. We use

::::
used the

Python libraries Numpy (Harris et al., 2020) and SciPy (Virtanen et al., 2020; Gommers et al., 2022) and the Python Math

module (Van Rossum, 2020) for data preprocessing, calculation of the bandwidths, setup of the differential equations and their

solution. The algorithm iteratively calculates three KDEs: first the two for the approximations of p and f as the pilot estimation425

steps described in Sec. 4 and the last one being u the solution of the diffKDE built on the two prior. All three KDEs are

calculated by solving the diffusion equation up to the respective final iteration time. The solution is realized in while-loops

solving Eq. 33. The two pilot estimation steps can be calculated simultaneoulsy, since they are independent of each other and

only differ in their final iteration times Tp and Tf . All input variables are displayed in Tab. 1 the return values listed in Tab. 2.
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Algorithm 1 Finite differences based algorithm for the implementation of the diffusion KDE.

Note: the routine solve(M,b) means that the system Mx = b is solved.

Require: X ∈ RN , n ∈ N, timesteps ∈ N, xmin ∈ R, xmax ∈ R

1: h← (xmax−xmin)/(n− 4)

2: Ω← (xmin− 2h,xmin−h, ...,xmax +h,xmax + 2h) ∈ Rn+1

3: p,f ,u← Φh

4: Tp← σ2
(

4
3
N
)− 2

5

5: Tf ←
(

0.9min
(
σ, iqr(data)

1.34

))2

N−
2
5

6: t← 0, ∆p← Tp/timesteps, ∆f ← Tf/timesteps

7: while t < Tp do

8: p← solve(In+1−∆pApilot,p)

9: f ← solve(In+1−∆fApilot,f)

10: t← t+ ∆p

11: end while

12: q←
√∫

Ω

((
f
p

)′′)2

dh

13: Eσ← 1
n+1

∑n+1
i=0

√
p(xi)

14: T ←
(

Eσ
2N
√
πq2

) 2
5

15: t← 0, ∆← T/timesteps

16: while t < T do

17: u← solve(In+1−∆A,u)

18: t← t+ ∆

19: end while

20: return u,Ω,Φh,p,stages,times

The spatial grid
:::::::::
discretizing

:
Ω is setup according to the description in Sec. 5.1 in lines 1 and 2 of Alg. 1. It consists430

of n ∈ N intervals, where n can be set by the user. The boundary values are xmin := minX ∈ R and xmax := maxX ∈ R

::::::::::::::::
xmin = minX ∈ R

:::
and

:::::::::::::::::
xmax = maxX ∈ R by default, but can also be chosen individually. Setting the boundary values to an

individually chosen interval in the function call results in a clipping of the used data to this smaller one before KDE calculation.

Outside the interval boundaries, the diffKDE adds two additional discretization points to make it applicable for the case of a

data point Xi, i ∈ {0, ...,n+ 1}
:::
Xj , ::::::::::::

j ∈ {1, ...,N} being directly located at one of the boundaries. This way it is possible435

to construct the initial value defined in Eq. 36, which takes into account the two neighbouring discretization points in each

direction. This leads to a full set of n+ 1 equidistant discretization points saved in the variable Ω.
::::::
(xi)

n
i=0:::::

saved
:::

in
:
a
::::::
vector

::::::
variable

:::::::
denoted

::
in

::::
Alg.

::
1

::
as

::
Ω.

:
The spatial discretization Ω

::::::
(xi)

n
i=0:

includes an inner discretization between the handed in (or

default set) interval endpoints xmin and xmax of n− 4 equally sized inner discretization intervals.

The Dirac sequence Φh for the implementation of the initial value is defined in Eq. 36 and we use the same for initialization440

of all three approximations of the the PDF (p,f,u) in line 3 of Alg. 1. In its calculation, the algorithm searches for each
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Table 1. Input variables: The only required input variable for the calculation of the diffKDE is a one dimensional data set as an array like

type. All other variables are optional, with some prescribed defaults. On demand the user can set individual lower and upper bounds for their

data evaluation under the diffKDE as well as the number of used spatial and temporal discretization intervals. The individual selection of the

final iteration time provides the opportunity to choose the specific smoothing grade on demand.

index name type default description

0 data array like required input data X ∈ R

1 xmin float minX lower data boundary for KDE calculation

2 xmax float maxX upper boundary for KDE calculation

3 n integer 1004 number of spatial discretization intervals in Ω

4 timesteps integer 20 number of temporal discretization intervals

5 T float T ∗ final iteration time for diffKDE

j ∈ {1, ...,N} for the i ∈ {1, ...,n+ 1} with xi being the closest right neighbour of Xj . Then the initial value is constructed

by assigning the values 1
h
xi−Xj
xi−xi−1

and 1
h
Xj−xi−1

xi−xi−1
at grid point xi and xi−1, respectively, and zero elsewhere. These values are

corresponding to the weighed heightsHi andHi−1 displayed in Fig. 1. The final initial value is the normalized sum of all these

individual approximations of the δ-distribution. All three used KDEs (p,f,u) are initialized with this initial value.445

In the pilot estimation steps, we calculate the KDEs for p and for f required for the set up of the bandwidth
:::
final

::::::::
iteration

::::
time T ∗ for the diffKDE. The bandwidths

::::
final

:::::::
iteration

:::::
times Tp and Tf for p and f , respectively, are calculated based on the

input data X in lines 4 and 5 of Alg. 1 as described in Sec. 4. Then , the KDEs are calculated by solving a linear ordinary

differential equation by an implicit Euler in the first while-loop in lines 7 to 9 of Alg. 1. For the pilot estimation steps calculating

p and f the matrix A defined in Eq. 29 does not incorporate a parameter function and reduces to
:
a
::::::
matrix

:::::::
denoted

::
as

:::::
Apilot:450

1

2

1

h2
V = :Apilot ∈ R(n+1)×(n+1)., (38)

:::::
where

:::::::::::::::::::
Apilot ∈ R(n+1)×(n+1)

::::::
means

::::
that

:::::
Apilot::::

has
::::
real

::::::
entries

:::
and

::::::
n+ 1

::::
rows

::::
and

:::::
n+ 1

::::::::
columns.

:
Apart from this, the

solutions for the pilot KDEs are the same as for the final diffKDE. The two pilot KDEs can be solved simultaneously, since

they share their matrix Apilot and have independent pre-computed bandwidths
:::
final

::::::::
iteration

:::::
times. The difference in their

bandwidths is implemented in different time step sizes ∆p and ∆f for p and f , respectively, which are initialized in line 6455

of Alg. 1 directly before this first while-loop. The time forward is
:::::::
temporal

::::::::
solutions

:::
are

:
calculated timesteps ∈ N times in

equidistant
:::::::::::
equidistantly

:::::::::
increasing time steps until each individual final iteration timederived by the respective bandwidths.

Since we solve implicitly, there is no restriction to the time step size. But a larger timesteps parameter reduces the numerical

error proportional to the step size parameters ∆p and ∆f . In this temporal solution we rely on the fact that the involved matrices

are sparsely covered. The applied solver is part of the SciPy Python library and designed for efficient solution of linear systems460

including sparse matrices (Virtanen et al., 2020; Gommers et al., 2022).
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Table 2. Return values of the diffKDE: The return variable of the diffKDE is a vector. Its first entry is the diffKDE evaluated on the spatial

grid. Its second entry is the spatial grid Ω.

index name type size description

0 u Numpy array n+ 1 diffKDE values on Ω

1 Ω Numpy array n+ 1 spatial discretization

The final bandwidth
::::::
iteration

:::::
time T for the diffKDE solution u is calculated after the calculations of p and f , using them

both as described in Sec. 4 in lines 12 to 14 of Alg. 1. For the diffKDE u
:
, the differential equation is given in Eq. 31 and the

solution approach by
::::
uses the implicit Euler

:::::::
approach in Eq. 33. This is implemented in a second while-loop described in lines

16 to 18 in Alg. 1and apart
:
,
:::::
which

::
is

::::::::
separated

:
from the final iteration time T ∗ and the matrix A identical to the calculations465

in the pilot step.

The return value is a vector providing the user the diffKDE, along with some main parameters and the opportunity to also

evaluate different approximation stages. It provides in the first and second entry
::
of the diffKDE and the spatial discretization

Ω. The third entry is the initial value Φδ and the fourth pilot estimate p that influences the adaptive smoothing. The last return

values two vectors are handed back:
:::::
values

::
to

:::::
return

:::
are

:::
the

::::
two

::::::
vectors

:
stages and times. These include the approximation470

stages of the diffKDE and the respective times exceeding the default optimal solution stored in the diffKDEand providing

also some oversmoothed solution ,
:::::::::
providing

:::::
some

:::::::::::
oversmoothed

::::::::
solutions

:
for individual evaluations. The times are the 20

timesteps used for the calculation of u and 10 additional with doubled stepsize reaching
::
as

::::::
defined

::
in
::::

Tab.
::

1
::::::::
followed

:::
by

::::::::
additional

::
10

:
up to the doubled approximated optimal final iteration time 2T ∗.

:::
The

::::
time

::::
step

:::
size

:::
for

:::
the

::::::::
solutions

:::::::
between

:::
T ∗

:::
and

:::
T ∗

:::
are

:::::::
doubled

:::::::
because

::
of

:::
the

::::::
smaller

:::::::
changes

::
in

:::
the

:::::::
solution

:::
for

:::::
larger

:::::
times

::
as

:::
for

:::::::
example

::::::
visible

::
in

::::
Fig.

::
5.475

Possible problems are caught in assert and if clauses. First of all
::::::
Initially, the data is reshaped to a Numpy array for the

case of a list handed in and it is made sure that this is non-empty. For the case of numerical issues leading to a pilot estimate

including zero values, the whole pilot is set back equal to 1 to ensure numerical convergence. Similar is done
::::::::::
Accordingly for

the case of NaN value being delivered for the optimal bandwidth for the diffKDE, in which case this is also set to the bandwidth

chosen for f in Eq. 20.480

5.5 Pre-implemented
::::::::
functions

:::
for visual outputs

Besides the standard use to calculate a diffKDE at an approximated optimal final iteration time for direct usage, we also

included three possibilities to generate a direct visual output, one of them being interactive. Matplotlib (Hunter, 2007) provides

the software measures for creating the plots. Most methods are part of the submodule Pyplot,
:::::::
whereas

:
the interactive plot is

based on the submodule Slider.485
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The function call evol_plot opens a plot showing the time evolution of the diffKDE .
::::
(e.g.,

:::
see

:::
Fig.

::
2

::
for

::::::::
example

::::::
output).

:
The

plot includes drawings of the data points on the x-axis. In the background the initial values are drawn, but .
::::
The

:::::
y-axis

:::::
range

::
is

cut off at 20 % above the global maximum of the diffKDE to preserve focus of the graphic on the diffKDE and evolution. The

evolution is presented by drawings of the individual time evolution stages using the sequential color map Viridis. In the front

the
:::
The

:
diffKDE is drawn

:
in

::
a
::::
bold

::::
blue

::::
line. This visualization of the evolution provides the user

::::
with

:
insight into the data490

distribution and their respective influence on the final form of the diffKDE.

The function call pilot_plot opens that shows the diffKDE together with its pilot estimate p, showing the intensity of local

smoothing .
::::
(e.g.,

:::
see

::::
Fig.

::
3

:::
for

:::::::
example

:::::::
output). With this the user has the possibility to gain insight to the influence of this

pilot estimator on the performance of the diffKDE. This plot also includes the data points on the x-axis.

The function call custom_plot opens an interactive plot, allowing the user to slide through different approximation stages495

of the diffKDE .
::::
(e.g.,

:::
see

::::
Fig.

:
4
:::
for

::::::::
example

::::::
output).

:
This feature is based on the Slider module from the Matplotlib library

(Hunter, 2007) and opens a plot showing the diffKDE. On
::
At

:
the bottom of this plot is a scale that shows the time, initially

being set to the optimal iteration time derived from Eq. 17 in the middle of the scale. By clicking to the scale, the user can

display the evolution stages at the respective (closest) iteration time. This reaches down to the initial value and up to the doubled

optimal iteration time. This interactive tool provides the user a simple tool to follow the estimate at different bandwidths, the500

intensity of smoothing at different localizations. With the help of such plot it is possible to decide on whether the diffKDE is

desired to be applied with a final iteration time that is different from the default.

6 Results and Discussion
:::
on

:::::::
artificial

:::::
data

In the following we document the performance of the diffKDE on artificial and real marine biogeochemical data. Different data

sources are chosen to best show possibilities and performance of the diffKDE. Additionally, snapshots of the pre-implemented505

plot routines are given as examples. Whenever not stated otherwise, we used the default values of the input variables stated in

Tab. 2 in the calculation of the diffKDE.

For testing our implementation against a known true PDF,
:
we first constructed a three-modal distribution. The objective is

to assess the diffKDE’s resolution and to exemplify the pre-implemented plot routines. The distribution was constructed from

three Gaussian kernels centered around µ1 = 3, µ2 = 6.5 and µ3 = 9 and with variances σ2
1 = 1, σ2

2 = 0.72 and σ2
3 = 0.52,510

each of them with a relative contribution of 30 %, 60 % and 10 %, respectively:

f (x) = 0.3
1√
2π
e−

1
2 (x−3)2 + 0.6

1

0.7
√

2π
e−

1
2 ( x−6.5

0.7 )
2

+ 0.1
1

0.5
√

2π
e−

1
2 ( x−9

0.5 )
2

. (39)

The performance of the diffKDE is then illustrated with real data of a) measurements of carbon isotopes (Verwega et al., 2021; Verwega et al., 2021)

and b) of plankton size (equivalent spherical diameter) (Lampe et al., 2021). We chose these data because we propose to

apply the diffKDE for the analysis of field data for assessment and optimization of marine biogeochemical- as well as515

size-based ecosystem models. The carbon isotope data have been collected to constrain model parameter values of a marine

biogeochemical model that incorporates this tracer as a prognostic variable (Schmittner and Somes, 2016).
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Figure 2. Pre-implemented direct visual output of the evolution process of the diffKDE. The input data are 100 samples randomly collected

from Eq. 39. The individual data points are drawn on the x-axis. The y-axis represents the estimated probability density. The light yellow

vertical lines in the background are the initial value of the the diffKDE. The temporal evolution of the solution of Eq. 33 is visualized by the

sequent color scheme from light yellow over green to the bold blue graph in the front. The final diffKDE at the approximated optimal final

iteration time represents as this graph the end of the time evolution.

6.1 Pre-implemented outputs

As described in Sec. 5.5, we included three plot functions in the diffKDE implementation. All of them open pre-implemented

plots, to give an impression of the special features that come with the diffKDE. An overview of the three possible direct visual520

outputs of the diffKDE software is described below.

First we outline the possibility
:::::::::
demonstrate

::::
how

:
to display the diffKDE’s evolution. By calling the evol_plot function, a plot

opens that shows all temporal evolution stages of the solution of Eq. 33. The temporal progress is visualized by a sequential

colorscheme progressing from light yellow over different shades of green to dark blue. On the x-axis, all used data points are

drawn and in the background a cut-off part of the initial value in light yellow as the beginning of the temporal evolution. The525

final diffKDE is plotted as a bold blue line in front of the evolution process. This gives the user an insight in the distribution of

the initial data and their influence on the shape of the estimate. As an example of the default setting, we created an evolution

plot from 100 random samples of Eq. 39 visualized in Fig. 2. The second example shows the possibility of displaying the

diffKDE together with the pilot estimate p by the function pilot_plot. This is the parameter function in Eq. 16 responsible for

the adaptive smoothing. Where this function is larger, the smoothing is less intense and allows more structure in the estimate530

of the diffKDE. Contrarily where it is smaller, the smoothing becomes more pronounced and data gaps are better smoothed

out. The result of the diffKDE is shown together with its parameter function p in figure Fig. 3 on the same random sample of

the distribution from Eq. 39 as before.
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Figure 3. The diffKDE and its pilot estimate p. The input data are 100 samples randomly collected from Eq. 39. The data points are drawn

on the x-axis. The y-axis represents the estimated density of the diffKDE in blue and the pilot estimate in red.

Lastly, we illustrate example snapshots of the interactive option to investigate different smoothing stages of the diffKDE by

the function. We chose simpler and smaller example data for this demonstration, because these are better suited for visualization535

of this tool’s possibilities. The function custom_plot opens an interactive graphic, starting with a plot of the approximated

optimal default solution of the diffKDE at T ∗. In this graphic the user is able to individually choose, by a slider, the iteration

time at which the desired approximation stage of the diffKDE can be seen. The time can be chosen from 0, where the initial

value is shown, up until the doubled approximated optimal time (2×T ∗). A reset button sets the graphic back to its initial stage

of the diffKDE at T ∗. Four snapshots of this interactive experience are drawn in Fig. 4.540

6.2 Performance analyses on known distributions and in comparison to other KDEs

In this section we present results obtained by random samples of the trimodal distribution from Eq. 39 and lognormal distri-

butions with differing parameters. Wherever suitable, the results are compared to other commonly used KDEs. These include

the most common Gaussian KDE with the kernel function from Eq. 10 (Gommers et al., 2022), the Epanechnikov KDE with

the kernel function from Eq. 9 (Pedregosa et al., 2012) and an improved implementation of the Gaussian KDE by Botev et al.545

(2010) in a Python implementation by Hennig (2021). We begin with an example of how the user may choose individually

different smoothing grades of the diffKDE, then compare the different KDEs with the true distribution, followed by investigat-

ing the influence of noise on different KDEs, and finally show the convergence of different KDEs to the true distribution with

increasing sample size.

We start with an individual selection of the approximation stages. This is one of the main benefits of the diffKDE compared550

to standard KDEs by providing naturally a family of approximations. This family can be observed by the function custom_plot.

Individual members can be produced by setting the bandwidth parameter T in the function call of the diffKDE. This gives the
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Snapshots of different approximation stages of the diffusion KDE

(a) Snapshot of first iteration step (b) Snapshot of small bandwidth

(c) Snapshot of optimal solution (d) Snapshot of large bandwidth

Figure 4. Different snapshots from the interactive visualization of the diffusion KDE generated from the artificial data set

(0.1,0.2,0.3,0.33,0.34,0.35,0.36,0.37,0.5,0.55,0.7,0.8). (a) shows the output at time= 0 and hence the initial value. (b) shows an

intermediate smoothing stage of the diffKDE. (c) shows the diffKDE of the input data at the approximated optimal iteration time T ∗. This

is the initial stage of the interactive graphic. By clicking the button on the lower right, the graphic can be reset to this stage. (d) shows an

oversmoothed version of the diffKDE at the doubled approximated optimal iteration time.

user the chance to choose among more and less smooth approximations. A selection of such approximations along with the

default solution are shown in Fig. 5 on a random sample of 50 data points from the trimodal distribution in Eq. 39. The plot

shows how smaller iteration times resolve more structure in the estimate, while a substantially larger iteration time has only555

little influence on the increased smoothing of the diffKDE.

From now on
:
In

::::
the

::::::::
following

:
we only work with the default solution of the diffKDE at T ∗. We start with comparisons

of the diffKDE and the three other popular KDEs directly to the underlying true distribution. The three other KDEs are the

Gaussian KDE in an implementation from SciPy (Gommers et al., 2022), the Epanechnikov KDE in an implementation from

Scikit-learn (Pedregosa et al., 2012) and an improved Gaussian KDE by Botev et al. (2010) in a Python implementation by560

Hennig (2021).

We use differently sized random samples of the known distribution from Eq. 39 and the standard lognormal distribution both

over [−1,12], for a direct comparison of the accuracy of the KDEs. The random samples are 50and ,
:
100

:::
and

:::::
1000 data points

of each distribution and all four KDEs are calculated and plotted together in Fig. 6. The underlying true distribution is plotted
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Figure 5. Family of diffKDEs evaluated at different bandwidths: A data set of 50 random samples drawn as grey circles on the x-axis serve

to show the possibility to investigate a whole family of estimates by the diffDKE. The bold blue line represents the default solution of the

diffKDE by solving the diffusion equation up to the approximated optimal final iteration time T ∗. The other colors depict more detailed prior

approximation stages with smaller bandwidth, i.e. earlier iteration times, and a smoother estimate with a far larger iteration time.

in the background to visually assess the approximation accuracy. In general, the diffKDE resolves more of the details of the565

structure of the true distribution, while not being too sensitive to patterns introduced by the selection of the random sample

and individual outliers. For the 50 random samples test of the trimodal distribution, all KDEs do not detect the third mode

and only the diffKDE and the Epanechnikov KDE detect the second. The magnitude of the main mode is also best resolved

by these two. In the 100 random samples test of the trimodal distribution, the diffKDE and the Botev KDE are able to detect

all three modes. The main mode is best resolved by the diffKDE, whereas the third mode best by the Botev KDE. In both test570

cases for the trimodal distribution, the Gaussian KDE is the smoothest and the Epanechnikov KDE provides the least smooth

graph. For 50 as well as for 100 random samples drawn from the lognormal distribution the magnitude and the
::
In

:::
the

:::::
1000

::::::
random

:::::::
samples

:::
test

:::
the

::::::::
diffKDE

::::
best

::::::
detects

:::
the

:::
left

:::::
mode

::::
and

:::
the

:::::
Botev

:::::
KDE

:::
the

:::
two

::::::
others

::::
best.

:::::::::
Generally,

:::::::
diffKDE

::::
and

:::::
Botev

::::
KDE

:::
are

:::::::
closely

::::::
aligned

::
in

:::
this

:::::
case.

::::
The

:::::::
Gaussian

::::
and

::::::::::::
Epanechnikov

:::::
KDEs

:::
are

::::
also

::::::
closely

:::::::
aligned,

:::
but

::::
with

:
a
::::::
worse

::
fit

::
of

:::
all

::::::::
structures

:::
of

:::
the

::::
true

::::::::::
distribution.

::::
The

:
steep decline to 0 is best reproduced by the diffKDE

:::::::::
particulary

::::
with

::::
low575

::::::
random

::::::
sample

:::::
sizes. The Gaussian KDE always performs the worst. The Botev KDE is generally also close to the diffKDE,

but resolves in the tail of the distribution too much influence of individual outliers.
::
In

:::
the

:::::
1000

::::::
random

:::::::
samples

::::
test

::::
with

:::
the

::::::::
lognormal

::::::::::
distribution

:::
are

:::::
again

::::::::
diffKDE

:::
and

:::::
Botev

:::::
KDE

::::::
closely

:::::::
aligned

::
as

::::
well

::
as

::::::::
Gaussian

::::
and

::::::::::::
Epanechnikov

:::::
KDE.

::::
The

:::
first

::::
two

:::
are

::::
very

:::::
close

::
to

:::
the

::::
true

::::::::::
distribution,

:::
but

::::::
resolve

::::
too

:::::
much

:::::::
structure

:::
of

:::
the

::::::
random

:::::::
sample.

::::
The

::::::::
diffKDE

:::::::
resolves

::::
more

::::::::
structure

::
in

:::
the

::::
area

::::
close

::
to
::
0
:::
and

::::::::
becomes

::::::::
smoother

:::::::
towards

:::
the

:::
tail

::
of

:::
the

::::::::::
distribution.

::::
The

:::::
Botev

:::::
KDE

::::::::
performs

:::
the580

::::
other

::::
way

::::::
around

::::
and

:::::::
provides

::
a

::::::::
smoother

:::::::
estimate

:::::
close

::
to

:
0
::::
and

::::
more

::::::::
structure

::
of

:::
the

:::::::
random

::::::
sample

:::::::
towards

::::::
higher

::::
data

::::::
values. An analysis of the the integral of the KDEs over the observed domain

:
is
:::::::::
presented

::
in

:::
Tab.

::
3

:::
and reveals that the diffKDE

is the only one that integrates to 1 in all test cases.
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Figure 6. Test cases with known distributions: The plots (a)and
:
,
:
(b)

:::
and

::
(c)

:
show KDEs of random samples of the trimodal distribution

defined in Eq. 39, (c
:
d)
:
,
::
(e)

:
and (df) the same for a lognormal distribution. The left figure column is constructed from 50 random samples,

the right
:::::

middle from 100
:::
and

:::
the

:::
right

::::
from

:::::
1000. In all plots the true distribution is drawn in grey in the background and the random data

sample as grey dots on the x-axis. Each subfigure shows four KDEs: the diffKDE, the Botev KDE, the Gaussian KDE and the Epanechnikov

KDE. In the labels of the KDEs are also the integrals over the interval [−1,12] given for each of the KDEs

Table 3.
:::::::
Integrals

::
of

::
the

:::::
KDEs

::::::::
displayed

:
in
::::
Fig.

:
6
:::
and

:::
Fig.

::
7.

::::::
Graphic

::::::
diffKDE

: ::::
Botev

:::::
KDE

:::::::
Gaussian

::::
KDE

::::::::::
Epanechnikov

:::::
KDE

Figure 6
::
(a)

:::
1.0

:::::::
0.999984

:::::::
0.999984

: :::::::
0.999998

Figure 6
::
(b)

:::
1.0

:::::::
0.999999

:::::::
0.999677

: :::
1.0

Figure 6
::
(c)

:::
1.0

:::
1.0

:::::::
0.999989

: :::
1.0

Figure 6
::
(d)

:::
1.0

:::::::
0.999955

:::::::
0.961448

: :::::::
0.999999

Figure 6
::
(e)

:::
1.0

:::
1.0

:::::::
0.987128

: :::::::
0.999998

Figure 6
:
(f)

: :::
1.0

:::::
0.996

:::::::
0.995571

: :::::::
0.996372

Figure 7
::
(a)

:::
1.0

:::::
0.9986

:::::
0.894

::::::
0.9163

Figure 7
::
(b)

:::
1.0

:::::
0.9094

:::::
0.802

::::::
0.8968

Figure 7
::
(c)

:::
1.0

:::::
0.9999

:::::
0.9986

: ::::::
0.9617

Figure 7
::
(d)

:::
1.0

:::
1.0

:::::
0.9983

: :::::
0.996

Figure 7
::
(e)

:::
1.0

:::::
0.7703

:::::
0.0914

: ::::::
0.6171

Figure 7
:
(f)

: :::
1.0

:::::
0.6825

:::::
0.0337

: ::::::
0.5718
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Figure 7. Lognormal test cases with different mean and variance parameters. Of each distribution 300 random samples were taken and the

diffKDE, the Botev KDE, the Gaussian KDE and the Epanechnikov KDE calculated and plotted together with the true distribution. The

random data sample is drawn as gray circles on the x-axis. (a) and (b) use σ = 1, (c) and (d) σ = 0.5 and (e) and (f) σ = 3 in their underlying

normal distributions. The means are in the left column µ= 0, the right column µ= 1 of the underlying normal distribution.

We refined the test cases from Fig. 6 by investigating a lognormal distribution with different parameters and a restriction to

the interval [0,12] in Fig. 7. We varied mean and variances of the normal distribution and used two different means and three585

different variances resulting in six test cases. All of them are run with 300 random samples and again with all four KDEs.

The larger the variance becomes, the more structure of individual data points is resolved by the Botev KDE. The Gaussian

KDE fails for increasing variance too, resulting in intense oversmoothing. The Epanechnikov KDE performs well for smaller

variances and larger means, but also oversmoothes in the other cases. The diffKDE is generally one of the closest to the true

distribution, while not resolving too much of the structure introduced by the choice of the random sample, especially for590

increased variances. But this too tends to resolve too much structure in the vicinity of the mode for smaller variances. The

integral of
:::::::
integrals

::
of

:::
the

:::::
KDEs

:::
are

::::
also

::::::::
presented

::
in

::::
Tab.

:
3
::::
and our implementation is again always exactly 1.

Now, we show the performance of the diffKDE on increasingly large data sets. We still use the trimodal distribution from Eq.

39. We start with four larger random data samples ranging from 100 to 10 million data points of the trimodal distribution and

then being restricted to our core area of interest [−1,12]. We calculate the diffKDE from all of them as well as the respective595

runtime on a consumer laptop from 2020. We compare the results again to the true distribution in Fig. 8. All of the estimates
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Figure 8. Test cases with different sample sizes: All four plots show the diffKDE of random samples of the known trimodal distribution

defined in Eq. 39. (a) is calculated from a subsample of 100 data points, (b) 100,000, (c) 1,000,000 and (d) 10,000,000, all cut to the

interval [−1,12] and hence lacking a few data points. The true numbers of incorporated data points in the four test cases are given in the

respective sub-headings. The measured computing time on a 2020 MacBook Air is also drawn in the respective label.

could be calculated in less than one minute. For 100 data points there is still an offset to the true distribution visible in the

estimate. For the larger data samples the estimate only shows some minor uneven areas, which smooth out until the largest test

case.

Furthermore, we investigated the convergence of the diffKDE to the true distribution, again in comparison to the three other600

KDEs. The error between the respective KDE and the true distribution is calculated by the Wasserstein distance (Panaretos and

Zemel, 2019) with p= 1 by a SciPy function .
:::
and

:::
the

::::::
MISE

::::::
defined

::
in

:::
Eq.

::
4.

::::
For

:::
the

::::::::::::
approximation

::
of

:::
the

::::::::
expected

:::::
value

::
in

:::
Eq.

::
4

:::
we

::::::
applied

:::
an

::::::::
averaging

::
of

:::
the

:::::::
integral

:::::
value

:::
for

::::
100

:::::::
different

:::::::
random

:::::::
samples

:::
for

::::
each

::::::::
observed

::::::
sample

::::
size.

:
We

used increasingly large random samples from the trimodal distribution starting with 10 and reaching up to 1 million. The errors

calculated for each of the KDEs on each of the random samples are listed in Tab. C1. The values from Tab. C1 are visualized in605

Fig. 9 on a log-scaleand with a linear regression for each KDE’s error values. The diffKDE, the Gaussian and the Botev show a

similar steep decline, while the Epanechnikov KDE far slower decreases its error with increased sample size. The diffKDE and

the Botev KDE generally show similar error values, the diffKDE relatively smaller ones on smaller data samples, the Botev

KDE relatively smaller ones on data samples larger than around 5000.

Error convergence sample size errordiffKDE errorBKDE errorGKDE errorEKDE 10 0.02354 0.03618 0.02662 0.0273610

50 0.01813 0.02484 0.02182 0.02017 100 0.00422 0.00724 0.01371 0.00702 150 0.00664 0.00937 0.01526 0.00933 200

0.00787 0.00894 0.01522 0.00967 300 0.0053 0.00621 0.01385 0.00849 400 0.00368 0.00484 0.01147 0.0081 500 0.0027

0.00324 0.01057 0.00761 750 0.00361 0.00343 0.00999 0.00807 1000 0.00321 0.00238 0.00933 0.00785 2000 0.00235
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Figure 9. The evolution of the errors of the diffKDE, the Gaussian KDE, the Epanechnikov KDE and the Botev KDE are drawn on log-

scale against the increasing sample size on the x-axis. The
::
(a)

:::::
shows

:::
the error has been calculated with the Wasserstein distance . A linear

regression line on
:::
and

::
(b)

::::
with the log-scale

:::::
MISE.

:::
The

:::::
MISE is constructed

:::::::
calculated

::::
after

::
Eq.

::
4 from the discrete values of the individual

errors for all four KDEs
:::
100

:::::::
different

::::::
random

::::::
samples.

0.00171 0.00743 0.00771 5000 0.00154 0.00187 0.00578 0.00802 10000 0.00199 0.00188 0.00437 0.00791 50000 0.00113

0.00093 0.00234 0.00811 100000 0.00074 0.00059 0.00181 0.00822 500000 0.00048 0.00038 0.00108 0.00835 1000000615

0.00046 0.00034 0.00084 0.00838

Finally, we investigated the noise sensitivity of the diffKDE compared to the three other KDEs on data containing artificially

introduced noise. We again used the trimodal distribution from Eq. 39 and 1000 random samples. From this, we created noised

data Xθ ∈ RN by

(Xθ)i = (X)i + (−1)
τ
rand10−2θσ for all i ∈ {1, ...,1000}, (40)620
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Figure 10. Noised data experiments: A random sample of 1000 data points of the trimodal distribution is artificially noised by differing

amounts of the standard deviation. (a) shows the resulting diffKDEs of the differently noised data, (b) the Gaussian KDE, (c) the Botev KDE

and (d) the Epanechnikov KDE. In all four panels the original true distribution is drawn in grey in the background. The values of the error

between the KDEs and the original true distribution are also part of the respective labels.

where θ ∈ {0,1,5,15,30} defines the percentage of noise with respect to the standard deviation σ ∈ R. τ ∈ {1,2} was chosen

randomly as well as rand ∈ [0,1]. The error is again expressed by the Wasserstein distance between the original probability

density and the respective KDE. The results are visualized in Fig. 10 with an individual panel for each KDE. The error of

the Epanechnikov KDE is overall the largest and also increases to the largest. The Gaussian KDE produces the second largest

error, but this even decreases with increased noise. The Botev KDE produces the smallest errors, but for increased noise this625

increases and approaches the magnitude of the one from the diffKDE. The error of the diffKDE only minimally responds to

increased noise in the data. Visually, all four KDEs follow a similar pattern of a shift to the left of the graph. The Botev KDE

additionally resolves more structure of the noised data as the noise increases.

6.3 Performance analyses on biogeochemical data

7
::::::
Results

:::
on

::::::
marine

::::::::::::::
biogeochemical

::::
data

::::
and

:::::::
outlook

::
to

::::::
model

::::::::::
calibration630

In this final part, we show the diffKDE ’s performance on real marine biogeochemical field data
:::
The

:::::::::::
performance

:::
of

:::
the

:::::::
diffKDE

::
is

:::
now

:::::::::
illustrated

::::
with

:::
real

::::
data

::
of

::
a)

::::::::::::
measurements

::
of

::::::
carbon

:::::::
isotopes

:::::::::::::::::::::::::::::::::::
(Verwega et al., 2021; Verwega et al., 2021)

:
,
::
b)

::
of

:::::::
plankton

::::
size

:::::::::
(equivalent

:::::::
spherical

::::::::
diameter)

::::::::::::::::::
(Lampe et al., 2021)

::
and

::
c)
::::::
remote

:::::::
sensing

:::
data

:::::::::::::::::::::::::::::
(Sathyendranath et al., 2019, 2021)

. We chose two example data : A set of δ13C in particulate organic carbon (POC) (Verwega et al., 2021) data and a set of

plankton size spectra data (Lampe et al., 2021).
::::
these

::::
data

:::::::
because

:::
we

:::::::
propose

::
to

:::::
apply

:::
the

:::::::
diffKDE

:::
for

:::
the

:::::::
analysis

:::
of

::::
field635

:::
data

:::
for

::::::::::
assessment

:::
and

:::::::::::
optimization

::
of

::::::
marine

::::::::::::::
biogeochemical-

::
as

::::
well

::
as

:::::::::
size-based

:::::::::
ecosystem

:::::::
models.

:::
The

::::::
carbon

:::::::
isotope
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:::
data

:::::
have

::::
been

::::::::
collected

::
to

::::::::
constrain

:::::
model

:::::::::
parameter

::::::
values

::
of

:
a
::::::
marine

::::::::::::::
biogeochemical

:::::
model

::::
that

::::::::::
incorporates

::::
this

:::::
tracer

::
as

:
a
:::::::::
prognostic

:::::::
variable

:::::::::::::::::::::::::
(Schmittner and Somes, 2016).

:

Both data sets were already analyzed using KDEs in their original publications (Verwega et al., 2021; Lampe et al., 2021).

Here we expand these analyses by a comparison of the KDEs used in the respective publications to the new implementation640

of the diffKDE. For the δ13CPOC data, the Gaussian KDE was the one used in the data description publication. Since we

have
::::::
already

:
done this in the previous chapter

::::
Sec.

:::
6.2, we furthermore added the Epanechnikov and the Botev KDE to these

graphics. For the plankton size spectra data, we only compared the diffKDE to the two Gaussian KDEs used in the respective

publication to preserve the clarity of the resulting figures.

7.1
:::::::::::

Performance
:::::::
analyses

:::
on

:::::::
organic

:::::::::
carbon-13

::::::
isotope

:::::
data645

The δ13CPOC data (Verwega et al., 2021) was collected to serve for direct data analyses as well as for future model assessments

(Verwega et al., 2021). We show here the Gaussian KDE as it was used in the data publication in a direct comparison to the

diffKDE. Furthermore, we added the Epanechnikov and the Botev KDE. Since in this case no true known PDF is available,

we have to compare the four estimates and subjectively judge their usefulness. In Fig. 11 we show the KDEs on four different

subsets of the δ12CPOC data: a) the full data set, b) a restriction to the core data interval of [−35,−15], where 98.65 %650

of the data is located, and then even further restricted to c) the euphotic zone and d) only data sampled in the 1990s.
:::
The

:::::::
euphotic

::::
zone

:::::::::
describes

:::
the

:::::
upper

::::::
ocean

::::
layer

:::::
with

::::::::
sufficient

::::
light

:::
to

::::::
enable

::::::::::::
photosynthesis

::::
that

::::::::
produces

:::::::
organic

::::::
matter

::::::::::
(Kirk, 2011).

::::::
While

::
its

:::::
depth

::::
can

::::
vary

::
in

::::::
nature

:::::::::::::::::::
(Urtizberea et al., 2013)

:
,
::::
here

:::
we

:::::::::::
pragmatically

:::::::
selected

::::::::
included

::::
data

::
in

:::
the

:::::
upper

:::
130

:::
m

::::::::
consistent

:::::
with

:::
the

:::::::
analysis

::
in
::::

the
::::
data

:::
set

:::::::::
description

:::::::::
(Verwega

::
et

:::
al.

:::::
2021).

:
In all three cases that involve

deep ocean measurements, the Botev KDE produces strong oscillations while the Gaussian KDE strongly smoothes the dip655

between the modes at around δ13CPOC =−24 and δ13CPOC =−22 and mostly the one between around δ13CPOC =−28 and

δ13CPOC =−24. The Epanechnikov KDE resolves more structure than the Gaussian, but still less pronounced than the diffKDE.

Especially in the full data analysis, the diffKDE reveals the most structure while not resolving smaller data features of individual

data points. The KDEs from the euphotic zone data are all reasonably smooth. The Gaussian KDE is again the smoothest

and missing the mode at δ13CPOC =−22 completely. The other three KDEs resolve a similar amount of data structure. The660

Botev KDE reveals a better distinction between the modes at around δ13CPOC =−24 and δ12CPOC =−22 while the diffKDE

shows the first one more pronounced. These observations are consistent with those from the experiments from Fig. 7 and Fig.

Figure 10, where especially the Gaussian and the Botev KDE struggle with the resolution of data with increasing variances or

noise. From the four here observed δ12CPOC data sets the euphotic zone data shown in panel (c) in Fig. 11 has with 7.78 the

smallest standard deviation. The other shown data has variances 13.91, 10.96 and 9.61 for panels (a), (b) and (d), respectively.665

7.2
:::::::::::

Performance
:::::::
analyses

:::
on

::::::::
plankton

::::
size

::::::
spectra

:::::
data

Another example demonstrates the performance of the diffKDE if applied to plankton size data (Lampe et al., 2021). The data

of size, abundance of protist plankton was originally collected for resolving changes in plankton community size-structure,

providing complementary insight for investigations of plankton dynamics and organic matter flux (e.g., Nöthig et al., 2015).
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Figure 11. Comparison of KDE performance on marine biogeochemical field data: The δ13CPOC data (Verwega et al., 2021) is in detail

described in Verwega et al. (2021) and is covering all major world oceans, the 1960s to 2010s and reaches down into the deep ocean. In all

four panels the diffKDE is plotted together with the Gaussian, the Epanechnikov and the Botev KDE. (a) Shows KDEs from all available

data, (b) shows the KDEs of the data restricted to the core data values of [−35,−15], (c) shows the KDEs from only euphotic zone data with

values in [−35,−15] and (d) the KDEs from all 1990s data with values in [−35,−15].

In the study of Lampe et al. (2021) a KDE was applied for the derivation of continuous size spectra of phytoplankton and670

microzooplankton that can potentially be used for the calibration and assessment of size-based plankton ecosystem models. In

their study they used a Gaussian KDE, as proposed in Schartau et al. (2010), but with two different approaches for generating

plankton size spectra. Uncertainties, also with respect to optimal bandwidth selection, were accounted for in both approaches

by analyzing ensembles of pseudo-data resampled from original microscopic measurements. Smooth plankton spectra were

obtained using the combined approach, where all phytoplankton and all zooplankton data were lumped together respectively675

and single bandwidths were calculated for every ensemble member (set of resampled data). This procedure avoided over-

fitting but was also prone to over-smoothing. More structured
:
,
:::::
which

::::
can

::::
mask

:::::::
details,

::::
such

::
as

::::::
troughs

::
in

:::::::
specific

::::
size

::::::
ranges.

::::
More

::::::
details

::
in

:::
the size spectra were obtained with the

::::::
reolved

::::
with

:::
tan composite approach, where individual size spectrawere

:
,

calculated for each species or genusand then pieced together
:
,
::::
were

:::::::::
assembled. Since the variance within species or genus groups

is smaller than within the large groups ’phytoplankton’ or ’zooplankton’, resulting bandwidths
::
the

:::::::::
individual

::::::::::
bandwidths,

:
and680

therefore the degree of smoothing
:
, were considerably smaller than

:::::::
obtained

:
in the combined approach. This computationally

expensive method revealed many details in the spectra, but at the same time tended to resolve narrow peaks that were either

clearly insignificant or remained difficult to interpret (see supplemental material in Lampe et al. (2021)). The here proposed

diffKDE is tested with resampled data used for the simpler combined approach. The objective is to identify details in the size

spectra that remained previously unresolved while insignificant peaks, as found in the composite approach, become smoothed685
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(a) Phytoplankton (b) Zooplankton
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Figure 12. Comparison of KDE performance on (a) phytoplankton and (b) microzooplankton size spectra. The construction of composite

and combined size spectra is described in Lampe et al. (2021) and based on Gaussian KDEs.Smoother combined spectra are the result of one

KDE with a common bandwidth for all data. More structured composite spectra were assembled from taxon-specific spectra with individual,

hence smaller, bandwidths.

out. Figure 12 shows the performance of the diffKDE in comparison to the original combined and composite spectra that were

derived as ensemble means of estimates obtained with a Gaussian KDE. The spatial discretization of the diffKDE was set to

n= 600
::::::::
n= 1000

:
to be comparable to the other already published KDEs in this case. The diffKDE seems to meaningfully

combine the advantages of the two Gaussian KDE approaches in both spectra, of the phytoplankton and microzooplankton

respectively. With the diffKDE it is possible to generate estimates that display more detailed structure of the composite KDEfor690

cell sizes smaller than 10 .
::
In

:::::
some

:::
size

:::::::
ranges,

::::
such

::
as

:::::::
between

::
5

:::
and

::
50

:
µm, in particular in the microzooplankton spectrum.

Concurrently, detailed variations, as caused by overfitting in the composite spectra, become suppressed for cell sizes larger than

10 µm. Thus, with the diffKDE it is possible to generate a single robust estimate that otherwise is only achieved by analyzing

a series of
::::::::
composite

::
of

:
a
:::::
series

:::
of

::::::::
individual

:
estimates of a Gaussian KDE.

:::
The

::::::::::
application

::
of

:::
the

:::::::
diffKDE

:::
for

:::::::::
analysing

:::::
details

:::
in

:::::::
plankton

::::
size

:::::::
spectra,

::
or

::::::::
generally

::
in

:::::::
particle

:::
size

:::::::
spectra,

:::::::
reduces695

:::::::::::
computational

::::::
efforts

:::::::::::
considerably.

:

7.3 Future application to model calibration
:::::::::::
Performance

::::::::
analyses

::
on

:::::::
remote

:::::::
sensing

::::
data

The robustness of Earth system models is crucial for providing reliable climate projections for a sustainable development

into Earth’s future. Such models can assist the understanding of past and present and predict future conditions in the Earth

system. Earth system models simulate the ocean’s element cycling (e.g., Ilyina et al., 2013) and with this the ocean’s carbon700

uptake capacity (e.g., Frölicher et al., 2015). They serve to assess the current and future state of our climate system and provide

projections for different mitigation scenarios. This information can be used to support a sustainable development in our climate

system (IPCC, 2022). As a consequence, political decisions depend on reliable projections to construct a safe pathway into

Earth’s future.
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Calibration can increase the reliability of Earth system models (e.g., Oliver et al., 2022). For this purpose, a metric calculates705

the difference between simulated modeloutput and measured field data. This metric defines the target or cost function in an

optimization process, where unknown or uncertain model parameters are identified or estimated by numerical algorithms. This

process is sometimes also called "tuning" of the model.The result is usually a singleor multiple sets of "optimal" parameters.

They provide the
:::
Our

::::
last

:::::::
example

:::::
refers

:::
to

:::::
PDFs

::::
that

:::::
reflect

::::::::
temporal

:::::::
changes

::::::::
(monthly

:::::::
means)

::
of

::::::
surface

::::::::::::
chlorophyll-a
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Figure 13.
:::::::::
Comparison

::
of

::::
KDE

:::::::::
performance

:::::
using

::::::
monthly

:::::
means

::::::::
(February,

:::::
March,

:::
and

:::::
April)

::
of

::::::::::
chlorophyll-a

::::::::::
concentration

::::::
derived

::::
from

:::::
remote

::::::
sensing

:::
data

::
of
:::
the

::::
year

::::
2019.

:::
The

:::::
PDFs

:::::
(upper

:::::
panel)

:::::::
represent

:::
the

:::::::
temporal

:::::::::
development

::
of
::::::
spatial

:::::::
variability

::::
seen

::
in

:
a
::::::::
subregion

:
of
:::

the
:::::::::
Mauritanian

::::::::
upwelling

:::::
system

::::::
(lower

:::::
panel).

:::::::::::
concentration

::::::
within

::
an

::::::::
off-shore

::::::
ocean

:::::
region

:::::::::::::
(approximately

::::
350

:::
km

:::
×

:::
330

::::
km)

::::
that

:::::::
exhibits

:::::::::
substantial

:::::::::
mesoscale

::::
and710

::::::::::::
sub-mesoscale

:::::::::
variability.

::::
The

:::::::
selected

::::
area

::
is
::::

part
:::

of
:::
the

::
of

::::
the

::::::::::
Mauritanian

:::::::::
upwelling

:::::::
system,

::::::
located

:::
at

:::
the

:::::::::
Moroccan

::::
coast

::
of

:::::
North

:::::::
Africa.

::::
This

::::::
eastern

::::::::
boundary

::::::::
upwelling

::
is

::::::
known

:::
for

:::
the

::::::::
formation

:::
and

::::::
spread

::
of

:::::::::
filaments,

::::
with

::::
some

:::::::
distinct

:::::::::::
characteristics

::
in
:::::
terms

::
of

:::
the

::::::
spatial

::::::::
variability

::
in

::::::::::
temperature

:::
and

:::
the

::::::::::
distribution

::
of

:::::::
plankton

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Sylla et al., 2019; Romero et al., 2020; Versteegh et al., 2022)

:
.
:::
For

:::
this

:::::::
example

:::
we

::::
use

::::::
remote

::::::
sensing

::::::::
(satellite)

::::
data

::
of

::::::::
monthly

::::
mean

::::::::::::
chlorophyll-a

:::::::::::
concentration

:::::
from

:::
the

:::
year

::::::
2019,

::
as

::::::::
processed

:::
and

:::::
made

:::::::
available

:::::::
through

:::
the

::::::::::::
Ocean-Colour

::::::
Climate

:::::::
Change

:::::::
Initiative

:::::::::
(OC-CCI)

::::::::::::::::::::::::::::
(Sathyendranath et al., 2019, 2021)715

:
.
:::
We

::::::::::
deliberately

:::::
chose

:::::
three

:::::::
months

::
in

::::::
which

:::
an

::::::::
eddy-like

::::::::::
filamentous

::::::::
structure

::
of

::::::::
elevated

:::::::::::
chlorophyll-a

::::::::::::
concentration

::::::::
developed

::::
after

::::::::
February,

::::
and

::::
then

::::::
evolved

::::::
during

::
a

:::
two

::::::
months

::::::
period

::::::
(March

::::
and

::::::
April).

::::
Such

:::::::::::
development

::::::
reveals

:::::::
specific

:::::
spatial

::::::::
patterns,

::
of

::::
low

:::
and

:::::::::
increased

:::::::::::
chlorophyll-a,

::::::
which

:::::
leave

:
a
:::::

clear
:::::::
imprint

::
in

:::
the

::::::::::::
corresponding

::::::
PDFs,

::
as

:::::::
depicted

:::
in

Figure 13.
:::

In Figure 13
::
we

::::
find

:::::::
multiple

:::::::
modes,

::
as

::::
well

:::
as

:
a
::::
shift

:::::::
towards

::::
low

:::::::::::
chlorophyll-a

:::::::::::::
concentrations

:::
that

::::
are

:::::
much

:::::
better

:::::::
resolved

:::::
when

:::
the

:::::::
diffKDE

::
is
:::::::
applied.

:::::
Such

::::::
details

::::::
derived

::::
with

:::
the

::::::::
diffKDE

:::::
could

::
be

:::::::::
compared

::::
with

:::::::::::::
complementary720

:::::
PDFs,

:::
for

:::::::
example

::
as

::::::::
obtained

::::
from

::::::
remote

:::::::
sensing

:::
sea

::::::
surface

:::::::::::
temperature

:::
data

::::::
within

:::
the

:::::
same

::::
time

::::::
period,

::::
and

::
we

::::::
might
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:::
gain

::::::
further

::::::
insight

::::
into

:::
the

:::::::::
underlying

::::::::
processes

:::::::
involved

::
in
:::::::::
generating

:::::::::
distinctive

::::::
spatial

:::
and

::::::::
temporal

:::::::
patterns.

:::::
Also,

::
in

::::
case

::
of

:::::::::
simulations

:::
of

:::::::::
mesoscale

:::
and

::::::::::::
sub-mesoscale

:::::::::
processes,

:::
we

::::::
should

:::
not

::::::
expect

::
to

::::::
obtain

:
a
::::::
model

:::::::
solution

::::
with

::::::::::
filamentous

::::::::
structures

::
at

:::::::
identical

:::::
times

::
at

::
the

:::::
same

::::::
places.

::::
But,

::
we

::::
may

::::::
regard

:
a
:::::::
model’s

::::::::::
performance

::
as

:::::::
credible

::
if

:::
the modelconfiguration

with results closest to the incorporated field data.
::
’s

:::::::
solution

:::::
yields

::::::
similar

::::::
spatial

::::::::
structures

:::::::
visually

::::::
within

:::
the

:::::
same

::::::
region,725

::::::
perhaps

::
at
:::::
some

::::::::
different

::::
time,

::::
and

:::
the

:::::::::
associated

:::::
PDFs

::::
may

::::
then

:::
be

:::::::
directly

:::::::
assessed

::::::
against

:::
the

::::::
PDFs

:::::::
obtained

:::::
from

:::
the

::::::
remote

::::::
sensing

::::
data.

:

7.4
:::::
Future

::::::::::
application

:::
to

:::::
model

::::::::::
assessment

::::
and

::::::::::
calibration

::
In

::::::::::
geoscientific

::::::::
research,

:::
the

:::::::::
derivation

:::
and

::::::::::
comparison

::
of

::::
well

:::::::
resolved

:::::
PDFs

::::
can

::
be

::::::
useful,

::
as

:::::::::::
demonstrated

:::
in

:::
our

:::::::
selected

::::::::
examples.

::::
Yet,

:::
the

::::::::::
significance

::
of

::::::::
resolving

::::::
details

::
in

::::::::::::
nonparamteric

:::::
PDFs

:::::::
remains

:::::::
unclear.

::::::::
However,

::::::
having

::::
high

:::::::::
resolution730

::::
PDFs

:::::::::
available,

::
as

:::::::
obtained

::::
with

:::
the

::::::::
diffKDE,

::
is

::::::
readily

::
of

::::::
value,

:::
and

::::
will

:::::
likely

:::::
guide

::::::
further

::::::::::
research.An

:::::::
obvious

::::::
benefit

::
of

::
the

::::::::
diffKDE

::
is

::
its

:::::
lesser

::::::::::
dependence

:::
on

:::
the

:::::::::::
specification

::
of

:
a
::::::

single,
:::::
albeit

:::::::
optimal,

::::::::::
bandwidth.

:::
Its

:::::::::
application

::
is

:::::
likely

:::::
more

:::::
robust

:::
for

:::
the

::::::::::
assessment

::
of

:::::::::
simulation

::::::
results,

::::::
either

::::::
against

::::
data

::
or

::::::
results

:::
of

::::
other

:::::::
models

::::
(e.g.

:::::
multi

::::::
model

::::::::::
ensembles),

:::::
which

::
is

:::::::::
particularly

:::::::
relevant

:::
for

:::::::::
evaluations

::
of

:::::
future

::::::
climate

::::::::::
projections

:::::::
obtained

::::
with

:::::
Earth

::::::
system

::::::
models

::::::::::::::::::::
(e.g., Oliver et al., 2022)

:
.
:::
The

::::::::
presented

::::::::
diffKDE

:::::::
provides

:
a
::::::::::::
nonparametric

::::::::
approach

::
to

:::::::
estimate

:::::
PDFs

::::
with

::::::
typical

:::::::
features

::
of

::::::::::
geoscientific

:::::
data.

:::::
Being735

:::
able

:::
to

::::::
resolve

::::::
typical

:::::::
patterns

:::::
such

::
as

::::::::
multiple

::
or

::::::::
boundary

:::::
close

:::::::
modes,

:::::
while

:::::
being

:::::::::
insensitive

::
to
:::::

noise
::::

and
:::::::::
individual

::::::
outliers

::::::
makes

:::
the

:::::::
diffKDE

:
a
:::::::
suitable

::::
tool

:::
for

:::::
future

::::
work

::
in
:::
the

:::::::::
calibration

::::
and

::::::::::
optimization

:::
of

::::
Earth

:::::::
system

::::::
models.

:

Comparison of model and field data requires additional processing to account for spatial-temporal differences between

collected samples and model resolution. Typically, simulation results are available at every single spatial grid point and in

every time step. In comparison, field data are usually sparsely available only. Interpolating such sparse field data can introduce740

high uncertainty (e.g., Oliver et al., 2022). PDFs provide a useful approach to investigate data independent of the number of

data points available (Thorarinsdottir et al., 2013). A comparison of two such functions can easily resolve the issue of non-equal

field observations and simulation results. Histograms are commonly used as an approach to compare and ultimately constrain

the distribution of model data to observations. However, many issues arrive including the subjective selection of intervals and

histograms not being proper PDFs themselves.745

The presented diffKDE provides a non-parametric
::::::::::::
nonparametric approach to estimate PDFs with typical features of geosci-

entific data. Being able to resolve typical patterns such as multiple or boundary close modes, while being insensitive to noise

and individual outliers makes the diffKDE a suitable tool for future work in the calibration and optimization of Earth system

models.

8 Summary and conclusions750

In this study we constructed and tested an estimator (KDE) of probability density functions (PDFs) that can be applied for

analysing geoscientifc and ecological data. KDEs allow the investigation of data with respect to their probability distribution,

and PDFs can be derived even for sparse data. To be well suited for geoscientific data, the KDE must work fast and reliably on
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differently sized data sets, while revealing multimodal details as well as features nearby data boundaries. A KDE should not

be overly sensitive to noise introduced by measurement errors or by numerical uncertainties. Such an estimator can be applied755

for direct data analyses or can be used to construct a target function for model assessment and calibration.

We presented a novel implementation of a KDE based on the diffusion heat process (diffKDE). This idea was originally

proposed by Chaudhuri and Marron (2000) and its benefits in comparison to traditional KDE approaches were widely inves-

tigated by Botev et al. (2010). Our approach combines the solution of the diffusion equation with with two pilot estimation

steps that correspond to the Gaussian KDE. We used an
:::
We

:::::
chose

:::
this

::::::::
approach

::
to

:::::
KDE,

:::::::
because

:
it
:::::
offers

:::::
three

::::
main

::::::::
benefits:760

::
(1)

::::::::::
consistency

:::
at

:::
the

:::::::::
boundaries

:::
(2)

::::::
better

::::::::
resolution

:::
of

::::::::::
multimodal

::::
data

:::
(3)

::
a

::::::
family

::
of

::::::
KDEs

::::
with

::::::::
different

:::::::::
smoothing

:::::::::
intensities.

:::
We

::::::
provide

::::
our

::::::::
algorithm

::
in

:::
an

::::
open

::::::
source

::::::
Python

::::::::
package.

::::
Our

::::::::
approach

:::::::
includes

:
a
::::
new

:
approximation of the

optimal bandwidthfor the diffKDE by a central differential quotient and plug-in of the pilot estimates. For their bandwidths

we used variations of the
:::::::::
bandwidth,

::::::
which

::::::
equals

:::
the

::::::
square

::::
root

::
of

:::
the

:::::
final

:::::::
iteration

:::::
time.

:::
We

:::::::
directly

:::::::::::
approximate

:::
the

::::::::
analytical

:::::::
solution

::
of

::::
the

:::::::
optimal

:::::::::
bandwidth

::::
with

::::
two

::::
pilot

:::::::::
estimation

:::::
steps

::::
and

:::::
finite

::::::::::
differences.

:::
We

::::::::
calculate

:::
the

:::::
pilot765

:::::::
estimates

:::
as

:::::::
solutions

:::
of

:
a
::::::::
simplified

::::::::
diffusion

::::::::
equation

::
up

::::
until

::::
final

::::::::
iteration

::::
times

:::::::
derived

::::
from

::::::::
literature

:::::
based

::::::::::
bandwidths

:::::
called rule of thumb by Silverman (1986). Our

:::
new

:
approach results in three subsequent estimations of the PDF, each of them

chosen with a finer bandwidth approximation.

Finite differences build the fundamentals of our discretization. The spatial discretization are equidistant finite differences.

The δ-distribution in the initial value is discretized by piecewise linear functions along the spatial discretization points con-770

structing a Dirac-sequence. For the timestepping we applied an implicit Eulerian algorithm on an ordinary differential equation

set up by a tridiagonal matrix corresponding to the diffusion equation on the spatial equidistant grid.

Our diffKDE implementation includes pre-implemented default output options. The first is the visualization of the diffusion

time evolution showing the sequence of all solution steps from the initial values to the final diffKDE. This lets a user see
::::
view

the influence of individual data points and outlier accumulations on the final diffKDE and how this decreases over time. The775

second is the visualization of the pilot estimate that is also included in the partial differential equation to introduce adaptive

smoothing properties. This provides the user an easy insight into the adaptive smoothing as well as the lower boundary of

structure resolution given by this parameter function. Finally, an interactive plot provides a simple opportunity to explore all

of these time iterations and look even beyond the optimal bandwidth and see smoother estimates.

Our implementation is fast and reliable on differently sized and multimodal data sets. We tested the implementation for up780

to 10 million data points and obtained acceptably fast results. A comparison of the diffKDE on known distributions together

with classically employed KDEs showed reliable and often superior performance. For comparison we chose a SciPy imple-

mentation (Gommers et al., 2022) of the most classical Gaussian KDE (Sheather, 2004), an Scikit implementation (Pedregosa

et al., 2012) of an Epanechnikov KDE (Scott, 1992) and a Python implementation (Hennig, 2021) of the improved Gaussian

KDE developed by Botev et al. (2010). We designed multimodal and different boundary-close distributions and found our785

implementation to generate the most reliable estimates across a large range of sample sizes (Fig. 9). The diffKDE was neither

prone to oversmoothing nor overfitting of the data, which we could observe in the other tested KDEs. A noise sensitivity test

in comparison to the other KDEs also showed a good stability of the diffKDE against noise in the data.
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An assessment of the diffKDE on real marine biogeochemical field data in comparison to usually employed KDEs reveals

superior performance of the diffKDE. We used carbon isotope and plankton size spectra data and compared the diffKDE to the790

KDEs that were used to explore the data in the respective original data publications. On the carbon isotope data, we furthermore

applied all previous KDEs for comparison. In both cases we were able to show that the diffKDE resolves relevant features of

the data while not being sensitive to individual outliers or uncertainties (noise) in the data. We were able to obtain a best

possible and reliable represantation of the true data distribution, better than those derived with other KDEs.

In future studies the diffKDE may potentially be used for the assessment, calibration and optimization of marine biogeochemical-795

and Earth system models. Already a plot of PDFs, of field data and simulation results respetcively, may provide visual insight

into some shortcomings of the applied model. A target function can be constructed by adding a distance like the Wasserstein

distance (Panaretos and Zemel, 2019) or other useful metrics for the calibration of climate models that can be investigated

(Thorarinsdottir et al., 2013). Thus, KDE applications such as our diffKDE can greatly simplify comparisons of differently

sized field and simulation data sets.800

Code availability. The exact version of the diffKDE implementation (Pelz and Slawig, 2023) used to produce the results used in this paper

is archived on Zenodo: https://doi.org/10.5281/zenodo.7594915.

Appendix A:
:::::::
Optimal

::::::::::
bandwidth

::::::
choice

:::
for

:::
the

:::::::
general

::::
KDE

:::
The

:::::::::
derivation

::
of

:::
the

:::::::
optimal

:::::::::
bandwidth

:::::
choice

:::
for

::
a

::::
KDE

::::
was

::::::
already

:::::::::
described

::
in

::::::::::::
Parzen (1962)

:::
and

:::
can

:::
be

:::::
found

::
in

:::::
more

::::
detail

::
in
:::::::::::::::

Silverman (1986)
:
.
:::
The

:::::::::
additional

::::::::
conditions

::::::
stated

::
in

:::
Eq.

:
7
::
to
:::
the

::::::
kernel

:::::::
function

:
805 ∫

R

yK (y)dy = 0 and
∫
R

y2K (y)dy = k2 ∈ R \ {0}

:::::::::::::::::::::::::::::::::::::::::

(A1)

:::::::::
correspond

::
to

:::
the

::::
order

::
of

:::
the

:::::
kernel

:::::
being

:::::
equal

::
to

:
2
::::::::::::::
(Berlinet, 1993).

:::
For

::::
such

::::::
kernels

:::::::::::::::
Silverman (1986)

::::::
showed

:::
the

:::::::::
minimizer

::
of

:::
the

:::::::::
asymptotic

:::::
mean

::::::::
integrated

:::::::
squared

::::
error

::
to

:::
be

h=

( ∫∞
−∞K (y)

2
dy

Nk2
2

∫∞
−∞ f

′′ (x)
2
dx

) 1
5

=

(
‖K‖2L2

Nk2
2‖f

′′‖2L2

) 1
5

::::::::::::::::::::::::::::::::::::::::::

(A2)

::
In

:::
our

::::::
context

::
of

::::::::
working

::::
with

:::
the

::::::
squared

:::::::::
bandwidth

::::::
t= h2

:::
this

:::::::
optimal

:::::::::
bandwidth

::::::
choice

:::::::
becomes

:
810

t=

(
‖K‖2L2

Nk2
2‖f

′′‖2L2

) 2
5

,

::::::::::::::::::

(A3)

:::::
which

:::::
equals

::::
Eq.

:::
13.
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Appendix B:
:::::::
Integral

::::::::
property

::
of

:::
the

:::::
Dirac

::::::::
sequence

Here, we briefly give the proof of the integral property of the used Dirac sequence Φh defined in Equation 36. Let h ∈ R>0.

Then we obtain815 ∫
Φh (x)dx=

xi−1∫
xi−2

Φh (x)dx+

xi∫
xi−1

Φh (x)dx+

xi+1∫
xi

Φh (x)dx

=
1

2
(xi−2−xi−1)

1

xi−2−xi−1

xi
xi−xi−1

+
1

2
(xi−xi−1)

(
1

xi−2−xi−1

xi
xi−xi−1

+
1

xi+1−xi
−xi−1

xi−xi−1

)
+

1

2
(xi+1−xi)

1

xi+1−xi
−xi−1

xi−xi−1

=
1

2
h

1

h

xi
h

+
1

2
h

(
1

h

xi
h

+
1

h

−xi−1

h

)
+

1

2
h

1

h

−xi−1

h

=
1

2

xi
h

+
1

2

xi
h
− 1

2

xi−1

h
− 1

2

xi−1

h
820

=
xi−xi−1

h

= 1. (B1)

Appendix C:
:::::
Error

:::::::::::
convergence

::
of

::::::::
observed

::::::
KDEs

:::
Tab.

:::
C1

::::::
shows

:::
the

:::::
error

::::::
values

::::::::
calculated

:::
by

:::
the

::::::::::
Wasserstein

::::::::
distance

:::
and

:::
the

::::::
MISE

:::::::
between

:::
the

::::
true

::::::::::
distribution

::::
and

:::
the

::::::::
respective

::::::
KDEs.

::::
The

::::
used

:::::::::
distribution

::
is
:::
the

:::::::
trimodal

:::::
from

:::
Eq.

:::
39

:::
and

:::
the

:::::
values

::::::
plotted

:::
in

:::
Fig.

::
9.

:
825
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Table C1.
::::
Error

:::::::::
convergence

::
of

:::
the

:::::::
observed

:::::
KDEs

::
in

:::
Fig.

::
9:
::::
The

:::
first

::::::
column

:::
lists

:::
the

::::::
sample

::::
sizes

::::
used

::
for

:::
the

::::::::
calculation

::
in
::::
each

::::
row.

:::
The

:::::::
following

::::
four

::::
lines

::::
show

:::
the

::::
error

::::::
between

:::
the

::::
four

:::::::
observed

:::::
KDEs

:::
and

:::
the

:::
true

:::::::::
distribution

::::::::
calculated

::
by

:::
the

:::::::::
Wasserstein

:::::::
distance.

:::
The

:::
final

::::
four

::::::
columns

::::::
contain

:::
the

::::::::
equivalent

:::::
errors,

:::
but

:::::::
calculated

:::
by

::
the

:::::
MISE.

:::::
sample

::::
size

:::::::::
WdiffKDE :::::::

WBKDE :::::::
WGKDE :::::::

WEKDE :::::::::::::
MISEdiffKDE :::::::::::

MISEBKDE :::::::::::
MISEGKDE :::::::::::

MISEEKDE

::
10

:::::
0.0235

:::::
0.0362

:::::
0.0266

:::::
0.0273

:::::
0.0313

:::::
0.0544

:::
0.04

:::::
0.0327

::
50

:::::
0.0181

:::::
0.0248

:::::
0.0218

:::::
0.0202

::::
0.012

: :::::
0.0133

:::::
0.0246

:::::
0.0098

:::
100

:::::
0.0042

:::::
0.0072

:::::
0.0137

::::
0.007

:::::
0.0074

:::::
0.0075

::::
0.019

: :::::
0.0068

:::
150

:::::
0.0066

:::::
0.0094

:::::
0.0153

:::::
0.0093

:::::
0.0057

:::::
0.0059

::::
0.016

: :::::
0.0062

:::
200

:::::
0.0078

:::::
0.0089

:::::
0.0152

:::::
0.0097

:::::
0.0045

:::::
0.0046

:::::
0.0141

:::::
0.0057

:::
300

:::::
0.0053

:::::
0.0062

:::::
0.0139

:::::
0.0085

::::
0.003

: :::::
0.0032

:::::
0.0116

:::::
0.0051

:::
400

:::::
0.0036

:::::
0.0048

:::::
0.0115

:::::
0.0081

:::::
0.0024

:::::
0.0025

:::::
0.0098

:::::
0.0047

:::
500

:::::
0.0027

:::::
0.0032

:::::
0.0106

:::::
0.0076

:::::
0.0021

:::::
0.0024

::::
0.009

: :::::
0.0049

:::
750

:::::
0.0036

:::::
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:::
0.01

: :::::
0.0081

:::::
0.0015

:::::
0.0016

::::
0.007

: :::::
0.0045

::::
1000

:::::
0.0032

:::::
0.0024

:::::
0.0093

:::::
0.0079

:::::
0.0011

:::::
0.0013

::::
0.006

: :::::
0.0044

::::
2000

:::::
0.0024

:::::
0.0017

:::::
0.0074

:::::
0.0077

:::::
0.0006

:::::
0.0008

:::::
0.0039

:::::
0.0043

::::
5000

:::::
0.0015

:::::
0.0019

:::::
0.0058

::::
0.008

:::::
0.0003

:::::
0.0004

:::::
0.0022

:::::
0.0042

:::::
10000

:::::
0.002

:::::
0.0019

:::::
0.0044

:::::
0.0079

:::::
0.0002

:::::
0.0002

:::::
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:::::
0.0041

:::::
50000

:::::
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:::::
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:::::
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:::::
0.0081

::::::
0.00006

: :::::
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: :::::
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:::::
0.0041

::::::
100000

:::::
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:::::
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:::::
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:::::
0.0082

::::::
0.00004

: :::::
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: :::::
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:::::
0.0041

::::::
500000

:::::
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:::::
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:::::
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:::::
0.0084

::::::
0.00002

: :::::
0.00001

: :::::
0.00007

: :::::
0.0041

:::::::
1000000

:::::
0.0005

:::::
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:::::
0.00081

: :::::
0.0084

::::::
0.00001

: :::::::
0.000007

:::::
0.00004

: :::::
0.0041
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İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,

A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python, Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.

Xu, X., Yan, Z., and Xu, S.: Estimating wind speed probability distribution by diffusion-based kernel density method, Electric Power Systems

Research, 121, 28–37, 2015.985

42

https://doi.org/10.1007/978-3-642-21551-3-19
https://doi.org/10.1214/088342304000000297
https://doi.org/10.1007/s00382-019-04797-y
https://www.jstor.org/stable/2242011
https://www.jstor.org/stable/2242011
https://www.jstor.org/stable/2242011
https://doi.org/10.1155/2019/5235429
https://doi.org/10.1137/130907550
https://doi.org/10.1016/j.ecolmodel.2013.02.010
https://doi.org/10.5194/bg-19-1587-2022
https://doi.org/10.5194/essd-13-4861-2021
https://doi.org/10.1594/PANGAEA.929931
https://doi.org/10.1038/s41592-019-0686-2

