
Surrogate model-based precipitation tuning for CAM5
Xianwei Wu1, Liang Hu1, Lanning Wang2, Haitian Lu4, and Juepeng Zheng3

1School of Computer Science and Technology, Jilin University, Changchun, China
2College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
3School of Artificial Intelligence, Sun Yat-Sen University, Zhuhai, China
4National Supercomputing Center in Wuxi, Wuxi, China

Correspondence: Juepeng Zheng (zhengjp8@mail.sysu.edu.cn)

Abstract. The uncertainty of physical parameters is a major reason for a poor precipitation simulation performance in Earth

system models (ESMs), especially over the tropical and Pacific regions. Although tuning related parameters can help reduce

such uncertainty factors, repetitive runs of ESMs incur large computational costs. While surrogate models can reduce the

computational costs in many tuning scenarios, building an effective surrogate model for the community atmospheric model

(CAM) is a complex integration of many processes, which is an unresolved challenge due to its strong nonlinear behaviors. In5

this study, we present a surrogate model-based parameter tuning framework for the CAM and apply it to improve the CAM5

precipitation performance. We propose a multilevel surrogate model-based optimization method. First, a global-level surro-

gate model is constructed with a gradient boosting regression tree (GBRT), which has been proven, through cross-validation

experiments, to have a more significant effect than other methods. The candidate point approach (CAND) is applied to bal-

ance exploration and exploitation to obtain better values for establishing a local-level surrogate model. A local-level surrogate10

model is then constructed based on a significantly reduced number of selected points.. We design a trust region approach to

adjust the sampling region during the tuning process. This proposed method has a faster convergence speed and higher accu-

racy during the tuning process. We attempt a region-based optimization method to improve the CAM simulation results over

some areas with large errors. The results show that the surrogate model-based optimization method can significantly improve

the simulation performance of the CAM model. The average improvement of the selected regions is 19%. To integrate the15

optimization results of these regions, we design a nonuniform parameter parameterization scheme and integrate the parame-

ters using a parameter smoothing scheme, and the experimental results improve in four regions. These simulation experiment

results of CAM5 demonstrate that this proposed surrogate model-based method improves the precipitation simulation of the

CAM model.

1 Introduction20

The Earth system model (ESM) is an indispensable tool for predicting future climate change trends. In ESMs, because of the

grid resolution constraint, physical parameterization schemes are used to describe subgrid physical processes. These subgrid-

scale parameterizations involve interactions with continental hydrology, aerosol microphysics, radiation, thermodynamics,

chemistry and biology (Hourdin et al., 2017). Each of them contains many uncertain parameters, which represent global
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processes. These parameters control the physical processes at the subgrid scale, and slight variations could lead to huge devi-25

ations in the simulations. Therefore, it is important to calibrate the parameters to better capture real world physical behaviors.

Generally, parameter tuning depends on the experience of climate model experts (Wu et al., 2020). However, the physical pro-

cesses in the Earth system model are becoming increasingly complex as atmospheric science continues to advance. Traditional

expertise-based tuning methods have gradually become less useful.

Automatic optimization algorithms are effective tools to replace the manual methods. There have been many studies that used30

various optimization techniques to achieve parameter tuning. For example, Yang et al. (2012) used multiple very fast simulated

annealing (MVFSA) (Ingber, 1989) to tune the Kain-Fritsch (KF) convective parameterization and improved weather research

and forecasting (WRF) simulation performances over the Southern Great Plains (SGP) region. Afshar et al. (2020) attempted

to tune the parameters of the Kain-Fritsch scheme in the WRF model to reduce the uncertainty in quantitative precipitation

prediction. These models, with relatively simple calculation processes, can find better parameters through a certain number of35

iterations.

When dealing with parameter tuning of complex ESMs such as CAM, the abovementioned methods may become infeasible.

Because these models require a long-time simulation to achieve a steady state, the computational cost incurred by the iterations

of the optimization method is unacceptable. Effectively reducing the optimization time is an important problem to be considered

for the parameter tuning methods for these complex ESMs. Many studies focus on solving the problem; for example, Yang et al.40

(2013) proposed a simulated stochastic approximation annealing (SSAA) (Liang et al., 2014)-based parameter tuning method.

The parameters of the Zhang-McFarlane scheme in CAM5.3 were tuned by the SSAA, and there were some positive impacts,

including a double intertropical convergence zone and East Asian monsoon precipitation after using the optimal parameters.

To improve the optimization efficiency, Zhang et al. (2015) enhanced the downhill simplex optimization technique, leading

to the discovery of a better local minimum solution by selecting more appropriate initial parameter values. Simulation results45

on the grid-point atmospheric model of IAP LASG version 2 (GAMIL2), in limited optimal iterations, proved the downhill

simplex method was better than the global optimization algorithms. Zhang et al. (2018) proposed an automated tuning approach

that integrates automatic tuning with short-term hindcasts to alleviate the heavy computational workload. The tuning led to

a substantial reduction in the significant underestimation of the CAM5 longwave cloud forcing, and the overestimation of

precipitation. These studies indicated that such algorithms can calibrate parameters automatically, and effectively improve the50

simulation accuracy of the ESMs. However, the quality of the solution is related to the number of iterations, and a better

solution implies more iterations. Typically, ESMs are more complex and resource-consuming than other problems. Therefore,

the computational cost generated by such iteration processes is usually unacceptable. Although these methods shorten the

optimization time to varying degrees, compared to the traditional parameter tuning methods, they still need to run an ESM

many times.55

Surrogate models are regarded as effective tools to solve computationally expensive optimization problems (Sun et al.,

2017). The objective function of these problems is difficult to describe as a mathematical expression; the mathematical ex-

pression is complex and time-consuming. The key to solving these problems is to reduce the number of expensive model

runs to an acceptable level. A surrogate model establishes connections between adjustable parameters and the responses of a
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complex expensive model by statistical or data-driven models to approximate a complex expensive model. This is one of the60

most commonly used approaches to optimizing large complex models. Recently, some studies have indicated that there are

various methods to construct surrogate models, such as polynomial regression (Lian and Liou, 2005), support vector machines

(Vapnik, 1999; Loshchilov et al., 2010), radial basis function (RBF) networks (Gutmann, 2001) ANNs (Gaspar-Cunha and

Vieira, 2005) and Gaussian processes (GPs, alternatively known as Kriging or models for design and analysis of computer

experiments (DACE)) (Rasmussen, 2003; Jie et al., 2017). Based on these studies, some optimization methods were proposed65

for parameter optimization. For example, efficient global optimization (EGO) (Jones et al., 1998) used the Kriging method.

Dynamic coordinate search using response surface models (DYCORS) (Regis and Shoemaker, 2013) improved the RBF surro-

gate model for high-dimensional expensive models. However, most of these surrogate model optimization methods focused on

mathematical function benchmarks. It is obvious that the optimization for the mathematical functions can differ significantly

from optimizing parameters in complex real-world models.70

In recent years, with the development of surrogate model-based optimizations, these methods have been widely used to

solve the parameter tuning problems of complex geoscientific models. Neelin et al. (2010) constructed a polynomial model

that can approximate an atmospheric general circulation model (AGCM) to guide parameter choices. Müller et al. (2015) used

the RBF surrogate model to optimize the methane emission predictions of the community land model (CLM). Xu et al. (2018)

proposed a surrogate model-based optimization method to improve the prediction accuracy of the soil organic carbon (SOC)75

results applying the calibrated parameter values, and result shows that the error could be reduced by up to 12%. Wang et al.

(2014) established a connection between the optimization of mathematical benchmarks and complex geoscientific models, and

proposed the adaptive surrogate model-based optimization (ASMO) method; a SCA-SMA hydrologic model was tuned based

on the ASMO method. On this basis, ASMO was used to calibrate the parameters of various complex geoscientific models.

For example, Gong et al. (2015) focused on the Heihe river basin and attempted to tune the parameters which belong to the80

common land model (CoLM) by a MO-ASMO method. Di et al. (2018) implemented the ASMO method to tune WRF model

parameters to increase summer precipitation simulations over the Greater Beijing area. Chinta and Balaji (2020) presented a

MO-ASMO method to enhance the prediction accuracy of the Indian summer monsoon (ISM) in the WRF model. Zhang et al.

(2020) proposed a land surface evapotranspiration (ET) optimization method based on the multivariate adaptive regression

splines (MARS) surrogate model and the ASMO method. The mentioned studies have sufficiently shown that surrogate model-85

based optimization methods are capable of resolving the ESM parameter tuning problems. However, most of these studies

focused on weather models or land models, such as WRF, CoLM and CLM, which cannot prove that the surrogate model-based

optimization methods are effective for CAM parameter tuning. CAM is strongly nonlinear and contains more complex physical

processes. The application of surrogate models for CAM requires further exploration. It is well known that the CAM model

is a complex ESM, and CAM5 cleanly separates the parameterization suite from the dynamical core(Neale et al., 2010). The90

precipitation process is complicated (Dai, 2006), and the precipitation-related processes include cumulus convection processes,

large-scale circulation, microphysical processes, boundary layer processes, etc. Zhang and McFarlane (1995); Morrison and

Gettelman (2008) showed that the precipitation process is related to several physical quantities. In addition, the intensity of

the precipitation and the influence of the parameters show a strong nonlinear relationship, which is hard to describe through
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a mathematical function. Anderson and Lucas (2018) used the random forest method to predict global mean precipitation;95

however, it only established precipitation predictions based on global average values and could not resolve the precipitation

errors based on the precipitation distributions. It is challenging to construct an effective surrogate model for CAM precipitation

and tune the parameters based on a surrogate model.

The CAM is a well-calibrated model (Zhang et al., 2018). Many simulation experiments have indicated that CAM5 captures

the global scale of the precipitation characteristics reasonably well (Qian et al., 2015; Chen and Dai, 2019). However, the100

simulation results are still not accurate in some areas. Improving the simulation results over the areas with errors has become

one of the biggest CAM simulation challenges, and many studies have attempted to improve the CAM simulation results

over these error areas. Li et al. (2015) analyzed the precipitation climatological features over East Asia. Pathak et al. (2021)

attempted to improve a CAM5 precipitation simulation over South Asia. Wang et al. (2016) improved the tropical precipitation

variability simulation results in CAM5. These studies demonstrated, that compared with the default experiment, the simulation105

results over some regions can be improved to a certain degree. In this study, a region-based parameter tuning experiment is

proposed, and the results show that the results over each region are better than those of the default experiment.

The main research contributions of this work are as follows:

1. We first propose a surrogate model-based parameter tuning method for CAM5 precipitation in this study. Considering

that the nonlinearity and complexity of CAM are much higher than those of other models, such as WRF, the effectiveness and110

feasibility of the method are validated in this work.

2. We design a multilevel surrogate model method. The multilevel surrogate model method integrates the CAND approach

and trust region to update the surrogate model in each iteration. The results show that the proposed method has a faster

convergence speed and fewer errors during the tuning process.

3. We design a nonuniform parameter parameterization scheme, and integrate parameters using a parameter smoothing115

scheme. We explore the influence of the same parameter on precipitation over different regions. Then, a region-based opti-

mization is proposed based on this result, and we construct different surrogate models for each area. The average improvement

of the selected regions is 19%. The nonuniform parameter parameterization scheme attempts simultaneous optimizations for

as many regions as possible, and the experimental results are improved in four regions.

The structure of this paper is as follows. In section 2 we provides the details of the experimental design and the description120

of the model. Section 3 introduces the surrogate model-based parameter optimization method. In Section 4, we prove the

robustness and effectiveness of the surrogate model construction, and provide evaluations and analyses of the optimization

results. Section 5 comprises the conclusion and discussion.

2 Design of experiment

2.1 Model description125

In this study we select the community atmospheric model (CAM Version 5.3), which serves as the atmospheric component

of the community earth system model (CESM, Version 1.3). The model adopts the spectral element dynamical core (SE-
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dycore) formulation. The CAM is integrated with a data ocean model (DOCN), an active community land model (CLM) and a

thermodynamics-only sea ice model (CICE).

2.2 Experimental design130

Table 1. Regions selected in this study

Name Region

WarmPool -15°-15°N, 120°-150°E

South Pacific -30°-0°N, 190°-250°E

Niño 6°-12°N, 210°-270°E

South America -20°-0°N, 280°-300°E

South Asia 0°-10°N, 75°-115°E

East Asia 15°-40°N, 105°-140°E

A series of AGCM simulations are carried out for 6 years (with 1 year as the model spin-up) for all the simulations. The

compset used in this study is F_2000_CAM5, and the resolution is ne30_g16. We use the climatological SST dataset for DOCN

input data.

Precipitation plays a crucial role as a key physical process. In ESMs, numerous uncertain parameters related to the represen-

tations of cloud microphysical processes and deep and shallow convection scheme have a significant impact on precipitation135

(Qian et al., 2015). Therefore, the parameters we considered included the ZM deep convection scheme(Zhang and McFarlane,

1995), the UW shallow convection scheme(Park and Bretherton, 2009) and the cloud fraction(Morrison and Gettelman, 2008).

Considering the fact that the model parameters have significant regional dependence, we split the globe into six main regions

to represent the key features of the whole global variable (i.e., the total precipitation rate, PRECT) as (Yang et al., 2013) to

conduct the surrogate model simulations, which include, the WarmPool, South Pacific, Niño, South America, South Asia and140

East Asia regions. We construct 6 surrogate models for each region, and the optimization process described in Section 3 is im-

plemented 6 times. Our results show 5-year climate runs, which fulfill our need to look at the tropics. In addition, we compare

the results of the parameterization of the surrogate model with the ERA5(Hersbach et al., 2020) precipitation rate to verify our

optimization effect.

The parameter ranges and default values are shown in Table 2. Previous studies have identified these parameters as being sen-145

sitive to precipitation. Qian et al. (2015) and Pathak et al. (2020) indicated that the threshold relative humidity for the stratiform

low clouds (cldfrc_rhminl) Makes the most significant contribution to the variance of both global ocean mean precipitation and

global mean precipitation. The parameter named zmconv_tau which representes the time scale for the consumption rate of

deep convective available potential energy (CAPE) is regarded as an important parameter for global total precipitation and

deep convective precipitation (Yang et al., 2013). Pathak et al. (2020) showed that the autoconversion size threshold for the ice150

to snow (micro_mg_dcs) has a significant impact on the variance in the large-scale precipitation rate, convective precipitation
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Table 2. CAM5 parameter descriptions, default values and ranges. The CAPE represents the convective available potential energy.

Parameter Description Range Default

cldfrc_rhminl Threshold relative humidity for the stratiform low clouds 0.80∼ 0.99 0.8975

zmconv_dmpdz Parcel fractional mass entrainment rate −2.0× 10−3 ∼−0.2× 10−3 −1.0× 10−3

zmconv_c0_ocn Deep convection precipitation efficiency over the ocean 1.0× 10−3 ∼ 0.1 0.045

zmconv_tau Time scale for consumption rate deep CAPE 1800∼ 28800 3600

micro_mg_dcs Auto conversion size threshold for the ice to snow 100× 10−6 ∼ 500× 10−6 400× 10−6

micro_mg_ai Fall speed parameter for the cloud ice 300∼ 1400 700

rate and total (convective + large-scale) precipitation rate. The parcel fractional mass entrainment rate (zmconv_dmpdz) is a

parameter with high influence on both the global mean precipitation and the total variance of extremes precipitation. However,

its contribution to the variance of global land mean precipitation or global ocean mean precipitation is relatively smaller. In

sensitivity experiments related to precipitation, the fall speed parameter for the cloud ice (micro_mg_ai) has been recognized155

as a parameter with significant impact (Sanderson et al., 2008). In CAM5, the deep convection precipitation efficiency over

the ocean (zmconv_c0_ocn) is exclusively applied in oceanic regions. Nevertheless, it also has a notable impact on the pre-

cipitation variance over certain land areas, demonstrating substantial nonlocal effects and feedback on land precipitation from

processes occurring over the ocean (Qian et al., 2015).

3 Method160

3.1 The surrogate model-based tuning method procedure

The surrogate model-based parameter tuning method involves several steps. To begin with, the initial sample sets of these

parameters are created through a sampling method. Then, these sample sets are utilized as input parameters to conduct the

CAM model simulation and to calculate the RMSE objective function value. Second, the global-level surrogate model is

created by matching these samples and the corresponding CAM simulation results. A surrogate model establishes connections165

between the adjustable parameters and the responses of a complex expensive model by statistical or data-driven models to

approximate the complex expensive model. In each iteration, a distinct strategy is employed to generate new sample points,

and the points are treated as input parameters to execute the real model. The strategy leverages the information and knowledge

obtained from the surrogate model to optimize the run time of the real complex model to fulfill the requirement of accuracy. The

recently generated sample points and their corresponding simulation outputs are added to the initial sample sets and are used170

to update the global-level surrogate model until global-model convergence. Then, a local-level surrogate is constructed using a

significantly smaller number of sampling points with high-quality CAM model simulation results, to avoid falling into a local

optimum. Furthermore, strategies for dynamically changing the search space are applied to update the local-level surrogate

model. Finally, once the convergence criteria of the local-level surrogate model are met, the tuning method finishes and outputs
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Figure 1. The flowchart of the multilevel surrogate model-based parameter tuning method

the optimized parameter values. In the parameter tuning process, each surrogate model can fully explore the parameter space175

to obtain better solutions, generating a large number of samples. Just a limited number of selected promising parameter points

will be sent to the real complex model. By avoiding simulations with low-quality parameters, we can significantly reduce

the quantity of meaningless real model simulations. Therefore, the surrogate replaces the actual complex model, and the

computation cost will be substantially reduced during the tuning process. A specific implementation showing how to tune

CAM5 precipitation parameters using this surrogate model-based method is illustrated in Figure 1 and is described in Algorithm180

1.

Algorithm 1 The multilevel surrogate model-based tuning method for CAM precipitation

1: Generate sampling set by Latin hypercube sampling method.

2: Run the CAM model with the parameter set in Line 1 and calculate corresponding RMSE.

3: Construct GBRT global-level surrogate model based on the sampling set.

4: while End condition is not met do

5: Selected the next point as input to run CAM model by CAND strategy.

6: Run CAM model with new parameter in Line 5 and calculate the RMSE of the new point.

7: Update the surrogate model using new parameter and RMSE value in Line 6.

8: end while

9: Construct GP local-level surrogate model using a few high-quality sampling points results.

10: Update the local-level surrogate model and trust region.

11: return The the tuning results of CAM precipitation.

3.2 Global-level surrogate model

3.2.1 Initial Sampling

For the initial sampling, the sampling method affects the accuracy of the surrogate model. Monte Carlo sampling (Sobol’, 1967;

Halton, 1964) and Latin hypercube sampling (LHS) (Mckay and Conover, 1979) are appropriate methods for constructing the185

surrogate model because of their flexible sample sizes and good space filling capabilities, and with relatively few points, they

cover the entire sample space (Wang et al., 2014). However, the values used in Monte Carlo sampling are randomly drawn
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based on a probability distribution, and because of the complexity of CAM, it is difficult to attain additional knowledge of

probability distributions about the CAM model simulation results and corresponding parameters. Therefore, we choose the

LHS sampling method as the initial sampling method. It is a stratified sampling method. In contrast to random sampling, this190

method maximizes the stratification of each edge distribution so that guarantees complete coverage of each variable range. In

contrast to random sampling, LHS guarantees that the collection of random numbers accurately represents the true variability

of these parameters (Iman et al., 1981).

In addition to the sampling method, the number of samples is also a key factor. Regis and Shoemaker (2007) attempted to set

the number of samples equal to 2(d + 1), and d is the number of dimensions of the problem; however, CAM is more complex195

and more nonlinear, and too few initial samples will seriously affect the convergence speed. Gong et al. (2015) and Wang

et al. (2014) analyzed the relationship between the performance of the surrogate model and the quantity of samples. When the

number of samples exceeds 20 times the number of parameters, the performance of the surrogate model will not improve with

an increase in the number of samples. Therefore, considering the efficiency of the method and parameters calibrated in this

study, the initial sample set is defined as 60, each sample consists of 6 parameter values, and each sample is used to run the200

CAM model to calculate total precipitation.

In this work, 60 samples are extracted from the 6 parameters described in Section 2.2 using the Latin hypercube sampling

method, and the steps are as follows. For one-dimensional Latin hypercube sampling, the cumulative density function is divided

into n equal partitions, and a random data point is chosen within each partition. We know that each parameter is uniformly

distributed within its value range. To obtain 60 samples, each parameter is divided into 60 groups without overlapping in the205

definition range based on the cumulative density function of uniform distribution. The probability of each group being obtained

is 1/60. In the interval of each group of parameters, one parameter value is selected randomly. There are 6 vectors generated

by the above rules, each of which represents the sampling results of one parameter and contains 60 elements. We try to obtain

a 6*60 matrix, where each row of the matrix represents a sample point, so that we randomly select one element in each vector

and form a new 6-dimensional vector. There are 60 vectors in total. The sampling points are evenly distributed throughout the210

solution space.

3.2.2 Fitness function

The objective of parameter tuning is to enhance the CAM simulations, leading to a better alignment with the reanalysis data.

Therefore, the root-mean-square error (RMSE) is used in this study to evaluate discrepancies between the model simulation

and observation data. The RMSE is computed by comparing the meteorological variable total precipitation (PRECT) with the215

observation data, and the expression of RMSE is as follows:

RMSE =

√√√√ 1
N

N∑

i=1

(modi− obsi)2 (1)

8

https://doi.org/10.5194/gmd-2023-164
Preprint. Discussion started: 16 August 2023
c© Author(s) 2023. CC BY 4.0 License.



where N is the total number of grid points in the simulation region and modi and obsi are the model-simulated and observation

data values at grid point i, respectively. A smaller RMSE value means a smaller error between the model simulation and

observation data. The objective of the optimization method is to minimize the RMSE of each region.220

3.2.3 Generate new sample points

After completing the above steps, a surrogate model for the CAM precipitation simulation results is constructed. Generally,

when solving a complex parameter optimization problem by a surrogate model, to improve the accuracy simulation results

of the surrogate model, additional new sample points need to be added. new sample points need to be added to improve

the accuracy of the surrogate model, thus reducing the number of simulations of the actual complex model. Strategies for225

generating new sample points transform the process of parameter point generation into optimization problems, employing an

evaluation criterion. They are iterative methods and the new parameter point generations are guided by utilizing data acquired

from previous iterations. In this step, a new parameter set will be created for the optimal parameter values of the global-level

surrogate model, and the optimal parameter values will be put into the CAM to obtain the corresponding RMSE between this

simulation and the observation data.230

There are several methods to generate the next point sample point, for example, minimum interpolating surface (MIS) strat-

egy (Jones, 2001) and maximizing expected improvement (MEI) strategy (Jones et al., 1998). In MIS strategy, after identifying

the minimum of the surrogate model, it is considered as a new point and added to the initial sample set, and then the sur-

rogate model is updated. However, the MIS strategy is suitable for surrogates with high accuracy. CAM is a complex ESM

with strong nonlinearity, and the surrogate model constructed by dozens of sampling points cannot maintain a high accuracy.235

The MEI strategy utilizes the standard error to encourage the method to revisit the regions with sparse points. This method

requires computing the expected improvement resulting from sampling at a specific point.. However, it is easy to fall into a

local minimum.

Therefore, we need an appropriate strategy to update the surrogate model for CAM precipitation. In this work, we select

the candidate point (CAND) approach (Regis and Shoemaker, 2007), which achieves a balance between exploitation and240

exploration. Exploitation refers to the rapid convergence within a region to identify a local optimum. Exploration involves

searching in uncharted regions of the parameter space to locate a global optimum. Balancing the exploration and exploitation

ensures that the tuning method can find the genuine global optimum and avoids wasting computational cost on meaningless

parameter areas. The CAND approach is as follows.

There are four steps in the CAND strategy. First, the maximum and minimum of the surrogate model are calculated. A245

candidate point set Ω is generated, and the corresponding fitness function values of each point are calculated and represented

by s(x).

In the second step, the V S values are calculated, and the V S values represent the exploitation mechanism, which describes

the level of the fitness function values of each point in the candidate point set Ω output by the surrogate model. A smaller V S

value means a better simulation result of the current surrogate model.250
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In the third step, the V D values of each point in Ω are calculated. A smaller value of V D means that the current point is

an effective exploration. The V D values represent the exploration mechanism. A smaller value of V D means that the current

point is an effective exploration. δ (x) represents the minimum distance from point x in Ω to the point in the initial sample set

generated in Section 3.2. The V D values express the exploration for the unknown region of the current surrogate model. We

know that the sample set used to construct the surrogate model is just a small part of the entire parameter space. Using the255

surrogate model to quickly traverse the unknown region is conducive to obtaining higher quality solutions in these unknown

regions.

In the fourth step, for each point x in Ω, the values of the acquisition function ωV S (x)+(1−ω)V D (x) are calculated, and

the minimum acquisition function value is selected from the candidate point set Ω. ω represents an accommodation coefficient

that balances the local optimum and global optimum. Corresponding point coordinates will be sent into the actual complex260

model in this CAM5.3 study to obtain the RMSE of this set of parameters. The candidate point x, and its RMSE, will be sent to

the initial sample set generated in Section 3.2, the surrogate will update based on the new sample set, and this iteration is then

finished. After each iteration, a new pair of parameters their corresponding RMSE will be incorporated into the initial sample

set. After an initial sample set updating the surrogate model will update.

In the CAND approach, the MIS strategy is used for exploitation. The strategy for exploration is calculating a weight265

parameter which is represented by a distance between the candidate point and the sample points. The set of the previously

sampled points denote the region which has been explored, allowing us to estimate uncertainty from the weight parameter

based on the distance to this region. To generate the new sample point, another weighted combination of these two strategies

is employed. Our operations and calculations in the CAND strategy are based on the surrogate model, which greatly reduces

the number of CAM executions in the parameter tuning process. We can take advantage of the surrogate model; even if the270

candidate sample set Ω is very large, the surrogate model can still obtain the RMSE results in a very short time.

3.3 Local-level surrogate model

3.3.1 Surrogate model construction

Because the surrogate model is constructed by a small number of real complex model samples, it cannot accurately simulate the

actual situation of the complex model. Moreover, the optimal solution determined by the surrogate model is an approximate275

value, and the approximate performance of the surrogate model within the local range near the optimal solution is closely

related to the overall optimization accuracy. Therefore, it is necessary to establish a local-level surrogate model to mine the

local optimal value of the real complex model so that the local approximation ability is enhanced.

The Gaussian process (GP) is used to construct the local-level surrogate model in this study. GP can transform discrete

point distributions into function distributions, and is more adapted to small-scale optimizations (Karim et al., 2020). GP is280

defined as a prior distribution over function, and the original model f(x) is assumed generated from such a prior distribution

(Garrido-Merchán and Hernández-Lobato, 2020). A GP is characterized by the mean function m(x) and its covariance function
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k(x,x′):

m(x) = E[f(x)] (2)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′)] (3)285

For the regression problem, consider the following model:

y = f(x) + ϵ (4)

where x is the input vector and f is the output variable. y is the training output corrupted by the additive noise, and ϵ repre-

sents the independent and identically distributed Gaussian noise term ϵ∼N(0,σ2
n) with 0 mean and σ2

n variance. The prior

distribution of y is as follows:290

y ∼N(0,K(X,X) +σ2
nIn) (5)

We can obtain the joint distribution of training outputs y and the testing outputs as a joint Gaussian distribution:

 y

f∗


∼N


0,


K(X,X) +σ2

nIn K(X,X∗)

K(X∗,X) K(X∗,X∗)





 (6)

where f∗ and X∗ respectively represents the test output and test input matrix, and K(X,X) is the covariance matrices of the

training inputs. K(X,X∗) is the covariance matrices between the training inputs and test inputs and K(X∗,X∗) represents295

covariance matrices of the test inputs. Thus, we can deduct the posterior probability distribution of these test outputs f∗:

f∗ |X,y,X∗ ∼N(f∗, cov(f∗)) (7)

f∗ = K(X∗,X)[K(X,X) +σ2
nIn]−1y (8)

cov(f∗) = K(X,X∗)−K(X,X∗)[K(X,X) +σ2
nIn]−1K(X,X∗) (9)

The mean and variance of the predicted values for the test point X∗ are denoted as µ̂∗ = f∗ and σ̂2
f∗

= cov(f∗), respectively.300

3.3.2 Trust Region Method

The trust region method is utilized to solve the unconstrained optimization problems. For a continuous differentiable function

of the second order, the primary concept revolves around approximating the objective function with a quadratic function in

the vicinity of the extreme point. This quadratic function seeks optimality within the current trust region centered around the

optimal point. The range of the trust region will be dynamically adjusted based on the ratio of the real function to the quadratic305

function.

In this paper, CAM parameter tuning is a nonlinear optimization problem that is difficult to describe by a mathematical

function; therefore, the surrogate model is built as a replacement for the quadratic function. and the ratio is calculated as

follows:

σ =
f(xt+1)− f(xt)

ˆf(xt+1)− ˆf(xt)
(10)310
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where f(xt) is the real model output, in this problem it is the CAM simulation result corresponding to the solution which is

the near optimal in the t-th iteration., and ˆf(xt) is the estimated value of the near optimal solution obtained by the surrogate

model. The ratio is represented as follows:

∆k+1 =





0.25∆k σ ≤ 0.25

∆k 0.25 < σ ≤ 0.75

2∆k σ > 0.75

(11)

The range of the new trust region depends on the quality of the surrogate model fitting result. If the fitting result is good,315

the trust region will be expanded or kept unchanged in the next iteration; otherwise, the trust region will be reduced. When σ

is less than 0.25, the fitting result is not accurate within the current range, and the trust region should be reduced. When σ is

close to 1, which represents the high proximity of the surrogate model, we can expand the radius of the current trust region;

otherwise, the trust region keeps the original range in this iteration.

The trust region-based process in this proposed method is shown in Algorithm 2:

Algorithm 2 The trust region method

1: Select initial point x0 and intial range of trust region.

2: while End condition is not met do

3: Calculate the σ value, update the trust range.

4: Add the xt and f(xt) to the points set of the local-level surrogate model and update the model.

5: end while

320

In this method, we select the best ten percent sampling points from the sample set of the global-level surrogate model to

construct the Gauss process model. The optimal solution value generated by the global-level surrogate model is set as the initial

point, and the maximum space enclosed by the initial point set of the local-level surrogate model is defined as the initial trust

region.

4 Result325

4.1 Method evaluation

4.1.1 Surrogate Model Construction

Different methods are selected to construct surrogate models for different types of problems. We evaluate which of the follow-

ing surrogate model construction methods are the most suitable for a CAM precipitation simulation: (a) Adaboost, (b) random

forest (RF), (c) support vector machine (SVM), (d) bagging, (e) gradient boosting regression tree (GBRT), (f) decision tree and330

(g) K-nearest neighbor (KNN). Cross validation (CV) (Browne, 2000) is a statistical method used to compare each machine

learning algorithm. In this paper, the N-fold CV method is implemented to obtain the best surrogate model method for simu-

lating CAM precipitation, which works as follows. The entire sample set S{X,Y } is divided into N subsets. Each of them is
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Figure 2. Cross-validation results to compare the performance between these methods. The Y-axis represents the relative error between the

experimental and reanalysis data.

equal and independent.

S{X,Y }= S1{X,Y },S2{X,Y }, ...,Sn{X,Y }. (12)335

With a specific surrogate model method, the surrogate model is constructed by a N−1 subset of points. The input data are these

subsets, and the output data of the surrogate model are the RMSE results of the corresponding sample points. The surrogate

model is built N times. For each time, N−1 subsets are used to create the surrogate model for training datasets. The remaining

dataset is regarded as the test dataset. The relative error is used to evaluate the performance of these methods in this paper.

The relative error is calculated between the simulation results obtained by the surrogate model built on the N − 1 subsets340

and the results in the test data. After N iterations, the relative error can be obtained as the evaluation criterion to compare

the performance of each method of surrogate model construction. The cross-validation result is shown in Figure 2. Compared

with other methods, the overall error of the GBRT-based model is lower, and the error distribution space is more concentrated.

Therefore, the GBRT method is selected to construct the global-level surrogate model.

4.1.2 Comparison of the optimization processes345

To prove the tuning effect of the proposed method, we design an experiment to compare this method with an ASMO method

based on the GP and MIS strategy. The optimization process of the two methods is shown in Figure 3. Compared with the

ASMO optimization method, we improve the optimization efficiency in many ways. Both the convergence speed and simulation

accuracy of the surrogate model are improved by the proposed multilevel surrogate model-based method. The CAND strategy

can effectively balance exploration and exploitation when updating the surrogate model so that the model can receive the350

trend and direction of the better solution. The multilevel surrogate model fully considers the existence and quality of these
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Figure 3. The tuning process with the proposed multilevel surrogate model-based method and ASMO method, and the corresponding relative

error of these two methods, where the relative error is equal to (|predictvalue− realvalue|)/realvalue.

local optima, and explores the regions where the global surrogate model is difficult to simulate or the simulation effect is not

accurate enough to obtain new optimal solutions.

4.1.3 Efficiency analysis

As mentioned earlier, one of the biggest advantages of the surrogate model is to reduce the computational cost. In this method,355

this advantage is represented in two aspects. For each iteration of each optimization step, we only run the real model once, and

all of the samples are predicted using the surrogate model. The reduction in the computational cost is directly proportional to

the number of samples generated in each step. In the entire optimization process, the number of iterations is less than that of

the other methods (Figure 3). Unlike some intelligent algorithms, this method does not have the concept of "individuals", so

there will not be a large amount of redundant computation during the optimization process.360

4.2 The limitations of global optimization

In the optimization experiment of constructing the surrogate model (Figure 4), we found that the global tuning based on the

surrogate model does not change much compared with the default value, which shows that the surrogate model has some

limitations in the process of CAM global optimization. The complexity is related to the nonlinear interactions of the earth

system model. However, the global optimum does not mean that it is the optimal result in each region. there is still an opti-365

mization space. Therefore, we need to further research this limitation and determine the most suitable parameter optimization

use scenario for the surrogate model.

To give full play to the best performance of the surrogate model, we research the relationship between the parameter change

and result change in CAM precipitation, explore the influence of a single parameter disturbance on the result and compare it
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Figure 4. The precipitation distribution of global optimization, there are optimal experiment, default simulation difference between optimal

experiment and default simulation from top to bottom.

with the default precipitation value; thus, the influence mode and intensity of parameter changes on global precipitation are370

obtained. Using the samples generated in Step 1 of Section 3, we first calculate the difference between the disturbance value

and the default value of 60 groups of single parameter samples. Then, a short-term hindcast named the cloud-associated param-

eterizations Trestbed (CAPT) (Xie et al., 2004) with an interval day 3 hindcast proposed by (Zhang et al., 2018) is simulated

60 times to obtain the precipitation value corresponding to the disturbance parameters, and to calculate the difference with

the default precipitation value. Pearson correlation analysis is carried out between them to calculate the symbolic consistency375

of the two groups of differences to determine the impact of the same parameter value on different regions. Taking rhminl as

an example, the results are shown in Figure 5. The impact of parameter changes on the world is different. There is a strong

negative correlation in marine regions, such as the South and North Pacific, the Indian Ocean and the Atlantic, while there

is a positive correlation on land, mainly concentrated in Eurasia and South America, Central Africa and other regions. This
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Figure 5. The symbolic consistency of rhminl disturbance and corresponding precipitation change.

Table 3. The CAM simulation performance increase for each region.

Region Default RMSE Optimized RMSE Reduction Rate

WarmPool 1.985 1.924 3.07%

South Pacific 0.855 0.455 46.78%

Niño 0.931 0.773 17.04%

South America 2.576 2.371 7.94%

South Asia 1.484 1.293 12.87%

East Asia 1.213 0.878 27.68%

means that when the rhminl value is disturbed relative to the default value, the change in precipitation in some regions may be380

completely opposite, similar to a "rocker" effect. In such a situation, it is difficult to use one parameter value to optimize global

change, and the increase in parameter numbers will further enhance this rocker effect, making the mapping between parameters

and precipitation complicated. To some extent, the surrogate model has difficulty approximating this complex change through

a limited number of samples and iterations, which will greatly reduce the surrogate model optimization performance.

The influence of the parameters on different regions, and the simulation results of each region are considered. We choose385

region-based optimization, abide by the parameter disturbance characteristics of the model, and give full play to the perfor-

mance advantages of the surrogate model as much as possible.
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4.3 Region-based optimization result

Based on Section 4.2, because of the "rocker" effect in CAM, the optimization result of the region may be inconsistent with

the global optimization result. Therefore, region-based optimization is more suitable than global optimization. Considering390

the global precipitation distribution, six regions are selected in this study in Table 2; they are WarmPool, South Pacific, Niño,

South America, South Asia and East Asia. A surrogate model is constructed for each region based on Section 3. The RMSE

of each region is calculated according to the range shown in Table 2 in the corresponding optimization process. Altogether,

6 surrogate models are constructed for the selected regions, and each region is optimized separately. The region optimization

result is shown in Table 3. The simulation result in each region has been advanced to different degrees, and the results of the395

South Pacific, East Asia, Niño and South Asia are notably improved. We will discuss these results.

The observation data show that the precipitation in the South Pacific region generally reveals a ladder-like decline from east to

west. The default experiment can simulate the precipitation change trend; however, there is a huge deviation in the precipitation

value during the precipitation decline in the default simulation. In Figure 6, in the observation data, the precipitation in most

areas is less than 3 mm/day. In the default experiment, the precipitation in many areas is over 3 mm/day, which leads to the400

fact that the precipitation values obtained by the default simulation are larger than the observation data, and the xy plot of the

zonal mean in Figure 7 can also capture the large difference between them. The optimization experiment maintains the change

trend of the default experiment, which is consistent with the observed data, and reduces the area in which precipitation is over

3 mm/day. This positive change is more obvious in the areas far from the equator. In the southeast, the error is reduced by 90%,

from 2 mm/day to approximately 0.2 mm/day. Moreover, the optimization did not cause a new deviation. The xy plot of the405

zonal mean shows that the optimization results over 26°-4°S are significantly better than the default experiment. Although it

did not bring a significant improvement over the two edges, the precipitation remained at a level, almost equal to the default

value, without causing a new error. From a macro perspective, the improvement of RMSE also reaches 46.78%, which is the

most significant effect in the region selected in this study.

Compared with several other optimization areas, the WarmPool area spans multiple longitude and latitude ranges, the oceans410

and continents are intertwined, and the precipitation is relatively large but the optimization results are still positive in many

areas. In the south latitude area, there is a phenomenon of heavy precipitation inconsistent with the observed data in the default

experiment, and the optimized results in Figure 8 show that the precipitation in these areas has been effectively weakened in the

model simulation, and the result is closer to the observation data. This improvement can be clearly shown in the xy plot of the

zonal mean in Figure 9. Furthermore, the problem of less precipitation in the default simulation over Sulawesi Island has been415

solved, and the regions centered on the island have been positively changed. The improvement in the Northern Hemisphere

is mainly concentrated in the areas of 4°-10°N and 130°-150°E. The precipitation intensity of the default simulation in this

area is far less than the observation data, and the optimization experiment increases the precipitation in this area. The situation

of excessive precipitation in the northwest of the WarmPool has also been improved to a certain extent in the optimization

experiment. However, in areas greater than 10°N, the simulation results of the optimization experiment are not ideal, which420

also makes the deviation of the corresponding areas in the XY plot of the zonal mean larger and leads to an insufficient
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Figure 6. The precipitation distribution of the South Pacific optimization result. The left column shows the default simulation, observation

data and difference between the default simulation and observation data from top to bottom. The right column shows the optimal experiment,

observation data and the difference between the optimal experiment and the observation data from top to bottom.

Figure 7. The xy plot of the zonal mean of precipitation over the South Pacific; the X-axis shows the latitude, and the Y-axis represents the

precipitation value. The blue, red, black lines represent the optimal experiment, the default simulation and the observation data, respectively.

improvement in the RMSE. Nevertheless, for the WarmPool, the optimization results still reflect a change trend consistent with

the observation.

The XY plot of the zonal mean of South Asia is shown in Figure 10, and it can be seen that the tendency of precipitation

with the latitude has changed completely after optimization compared with the default simulation. The overall precipitation of425
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Figure 8. The precipitation distribution of the WarmPool optimization result. The left column shows the default simulation, observation

data and the difference between the default simulation and the observation data from top to bottom. The right column shows the optimal

experiment, observation data and the difference between the optimal experiment and the observation data from top to bottom.

Figure 9. The xy plot of the zonal mean of precipitation over WarmPool; the X-axis shows the latitude, and the Y-axis represents the precip-

itation value. The blue, red and black lines represent the optimal experiment, the default simulation and the observation data, respectively.

the default experiment presents an upward trend with the latitude and expresses a downward trend after optimization, which

coincides with the reanalysis data, and the optimized value is closer to the reanalysis data than the default simulation. The

precipitation distribution of the default simulation and optimization result are shown in Figure 11. Compared with the default

simulation, ocean precipitation is increased over western Indonesia so that the negative error is almost eliminated, and it is

19

https://doi.org/10.5194/gmd-2023-164
Preprint. Discussion started: 16 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 10. The xy plot of the zonal mean of precipitation over South Asia; the X-axis shows the latitude, and the Y-axis represents the pre-

cipitation value. The blue, red and black lines represent the optimal experiment, the default simulation and the observation data, respectively.

Figure 11. The precipitation distribution of the South Asia optimization result includes a default simulation, observation data, difference

between default simulation and observation data, optimal experiment, observation data and the difference between the optimal experiment

and the observation data from top to bottom.

decreased over 105-120°E. For land precipitation, the changes are smaller than for ocean precipitation, and there also exist430

differences in magnitude. However, the error between simulation and observation is significantly reduced.

In the default simulation of Niño region (Figure 12), the observation inconsistency is mainly concentrated in two areas,

the negative error area on the left and the positive error area on the right. For the improvement and optimization results of
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Figure 12. The precipitation distribution of the Niño optimization result includes default simulation, observation data, difference between

default simulation and observation data, optimal experiment, observation data, and difference between optimal experiment and observation

data from top to bottom.

these two areas, there are obvious heavy rainfall centers; the positive error area is basically consistent with the observation

data, and the negative error area is also reduced. The central region with a large error generated by the default experiment435

still exists after optimization but the value is closer to the observation data than the default result. On the whole, it shows a

positive optimization, however, in the XY plot of the zonal mean in Figure 13, the precipitation over the high value area in

the optimization result is lower than the observation. The reason is, that when improving the area of positive difference, a new

small part of the negative error is introduced from the area east of 100°W, which is the reason for the large difference in the

zonal mean between the simulation and default.440

The results in East Asia are similar to those in South Asia, which is shown in Figure 14. For the precipitation in East Asia,

the default experiment is generally less than the reanalysis data, and the obvious improvement is in southern China and the

Huanghai Sea region. We can see that in the default experiment, there is a relatively large error over the Donghai Sea, centered

around the area between Taiwan and Japan, even extending to the Huanghai Sea, the Sea of Japan and the Korean Peninsula.

The optimization results suggest that this error is almost eliminated over these regions, and it is also markedly reduced over445

the central area. The same is true in southern China. Precipitation in southern China is increased after parameter optimization,

which is low in default simulation and hard to match with observations. In addition, other areas are also improved to different

degrees, such as central China and the South China Sea. We observe such positive changes using the XY plot of the zonal mean
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Figure 13. The xy plot of the zonal mean of the precipitation over Niño, the X-axis shows the latitude, and the Y-axis represents the precipi-

tation value. The blue, red and black lines represent the optimal experiment, the default simulation and the observation data, respectively.

Figure 14. The precipitation distribution of the East Asia optimization result. The left column shows the default simulation, observation

data and the difference between the default simulation and the observation data from top to bottom. The right column shows the optimal

experiment, observation data and the difference between the optimal experiment and the observation data from top to bottom.

(Figure 15), which demonstrates that the optimization result is better than the default simulation in most cases, especially at

20-30°N, which corresponds to the changes over southern China and the Donghai Sea.450

As shown in Figure 16, the characteristics of the precipitation in South America are wide ranging and high in quantity,

and it is difficult to obtain results consistent with the observations. Compared with the default, the optimized results reflect
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Figure 15. The xy plot of the zonal mean of precipitation over East Asia; the X-axis shows the latitude, and the Y-axis represents the precip-

itation value. The blue, red and black lines represent the optimal experiment, the default simulation and the observation data, respectively.

precipitation changes that are more consistent with the observations in some areas. The zonal mean (Figure 17) shows that the

optimization result has a better performance at 12°S-2°N, and the spatial distribution shows that a small area at approximately

65°-60°W near the south of the equator has been improved after a parameter optimization. Even so, there is a great difference455

between the model simulation and the observation when evaluating South America. Overall, the optimization effect is not

significant.

4.4 Ensemble optimization results of the nonuniform parameter parameterization scheme

In the local optimization experiments, we found that a local optimization may lead to the simulation results of other regions

moving in a worse direction, that is, the optimization of one region is at the cost of worse results in other regions, which460

is unacceptable. Therefore, we design a nonuniform parameter parameterization scheme to integrate the optimal parameters

of multiple regions into one case. In the selected region, we use the parameters obtained through the surrogate model-based

optimization methods, and use default values in other regions. To prevent the large difference in parameter values between the

two sides of the regional boundary from affecting the experimental results, we design a boundary smoothing scheme to achieve

a smooth transition of parameter values from the center to the boundary of each region. The same or similar parameter values465

are obtained at the boundary:

x = max(
∣∣∣∣
lat− centerlat

1
2width

∣∣∣∣ ,
∣∣∣∣
lon− centerlon

1
2 length

∣∣∣∣) (13)

weight =
1
2
(cos(πx3) + 1) (14)

value = (optmization_value− default_value) ∗weight+ default_value (15)

where x is used to evaluate the distance from each point in the region to the center of the region. lat, lon represent the latitude470

and longitude of the point, respectively, and centerlat,centerlon represent the latitude and longitude of the center point.

width, length represent the width and length of the selected region. The denominator is equal to the distance between two

boundaries and the center point. x means the maximum distance from the point to the length or width of the region, and the
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Figure 16. The precipitation distribution of the South America optimization result. The left column shows the default simulation, observation

data and the difference between the default simulation and the observation data from top to bottom. The right column shows the optimal

experiment, observation data and the difference between the optimal experiment and the observation data from top to bottom.

Figure 17. The xy plot of the zonal mean of precipitation over South America; the X-axis shows the latitude, and the Y-axis represents

the precipitation value. The blue, red and black lines represent the optimal experiment, the default simulation and the observation data,

respectively.

value is between 0 and 1. weight is the weight of the distance for each point. The closer to the center point, the closer the

weight is to 1, and the closer the parameter value is to the optimized value. The closer to the boundary, the closer the weight475

is to 0, and the closer the parameter value is to the default value. Equation 15 provides a cosine weight function, which allows
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Figure 18. The difference between the experiment simulation result with the ensemble parameters of each region and the default experiment

simulation result

each real number between 0 and 1 to correspond to a 0-1 variation interval, and the dependent variable gradually decreases as

the independent variable increases.

The ensemble parameter experiment results are shown in Table 4. In this case, different parameters were set according to

different regions, and out of the six regions, four regions achieved better simulation results than the default experiment, with480

two regions performing slightly worse than the default experiment. We know that the simulation results of each region are to

some extent influenced by the parameter values of other regions, so it is difficult to achieve a level of individual optimization

for each region in Section 4.2. Among them, the South Pacific, Niño, South America and East Asia regions all achieved varying

degrees of improvement, while the WarmPool and South Asia regions slightly decreased compared to the default values. The

distribution map of precipitation is shown in Figure 18. Compared with the default experiment, the new experimental results485

have undergone many positive changes; it reduced precipitation in North China and increased precipitation in the East China

Sea and the ocean area east of the East China Sea, which are the reasons for the improvement of the simulation results over

East Asia. In the Pacific region, a portion of the precipitation within the 150W-120W region was reduced, however, there was

an increase in precipitation in the western region and near the equator, which also resulted in the simulation results in the South

Pacific region not being as significant as the regional optimization results in Section 4.2. The precipitation levels in the Niño490

region located in the eastern Pacific Ocean near Central America are reduced, and the improvements in some areas to the west

are all positive. On the South American continent, some small-scale increases in precipitation are the reason for improving the
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Table 4. The tuning results of the ensemble parameter experiment over a selected region.

Region Default RMSE Optimized RMSE Better(+) or Worse(-)

WarmPool 1.985 2.037 -

South Pacific 0.855 0.802 +

Niño 0.931 0.741 +

South America 2.576 2.540 +

South Asia 1.521 1.759 -

East Asia 1.213 1.054 +

simulation effect in South America, as such areas are relatively small, so the overall improvement is not significant. In addition,

in regions such as Southern Africa, Central Asia and the Gulf of Mexico, precipitation decreases to varying degrees compared

to the default experiments. However, the increase in precipitation in the WarmPool and South Asian regions result in a slight495

increase in error between the simulation results and the default experiment. Overall, the results of such simulation experiments

can reach a level close to the default experiment in most regions, with relatively positive changes in some regions, and only a

small portion of the results are slightly lower than the level of the default experiment.

5 Conclusions

The surrogate model is widely used to solve complex and expensive optimization problems, such as various earth system500

models, and it has not received enough attention in CAM parameter optimization. In this paper, we propose a multilevel

surrogate model-based parameter optimization method for CAM precipitation. First, we demonstrate that the surrogate model

method can be used to improve the precipitation simulation of CAM. An appropriate surrogate model is selected by cross

validation. Second, we propose a multilevel surrogate method, which is demonstrated to have a faster convergence speed

and fewer errors during the tuning process. Third, because of the "rocker" effect of the parameter, we design region-based505

optimization experiments and select six regions as the performance indicators. The improvement is more pronounced in the

South Pacific and East Asia regions, reaching 46.78% and 27.68%, respectively. The improvement in the Niño and South Asia

regions also reach more than 15%. The two regions with a more modest improvement are the WarmPool and South America

regions, which are both below 10% at 7.41% and 7.94%, respectively. To integrate these results over each region, we attempt

a nonuniform parameter parameterization scheme and implement weight-based boundary smoothing for each region. In the510

new parameterization scheme, the same parameter has different values in different regions. The optimal parameters of the

six regions are integrated into one case over the corresponding region. The ensemble parameter experimental results showed

positive changes in four of the six regions we selected but two regions did not improve. This also reflects certain limitations

in the CAM surrogate model-based optimization. In future work, the scope of the application and construction methods of

26

https://doi.org/10.5194/gmd-2023-164
Preprint. Discussion started: 16 August 2023
c© Author(s) 2023. CC BY 4.0 License.



the surrogate models will be further explored to improve the efficiency of CAM optimizations. In addition, we will apply this515

method to other variables or for multiobjective optimizations.
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