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Thank you very much for your patient and detailed comments on our work [1]. These valuable

comments are very helpful for us to improve this paper. After carefully reading all the questions,

we have answered each of them and will make appropriate corrections in the revised version of our

manuscript.

In this attachment, the blue paragraphs represent your comments, and the black paragraphs below

are our corresponding replies.

1 Replies to major comments

Replies to major comments are as follows:

1. The manuscript structure, particularly the method section, needs to be reorganized to improve

the compactness. There are several areas that require clarification. For instance, Algorithm 1 calculates

the RMSE, but its definition is found in section 3.2.2. It would be more appropriate to move the

definition to section 2. Additionally, in Line 4 of Algorithm 2, it is unclear whether the new parameters

are obtained using CAND. Furthermore, it is not explained why the local-level surrogate utilizes

Gaussian Process. In addition, it could describes the difference between the algorithm used in this work

and the ASMO. Typically, optimization algorithms require hundreds of steps to achieve convergence,

but in this work, only around 20 steps of local optimization are performed. It is hard to say the

algorithms get convergence. It appears that the ASMO method can achieve local optimization more

quickly. The conclusion is not convinced. The description of CAND is difficult to follow, particularly

the calculation vs and vd, which is lack of calculation details. The cross validation describe can move

from result section to the method section.

Thanks for your comment. This comment contains multiple questions, we will reply these questions

separately.

1) We will improve the structure of the study in revised manuscript according to the comments.

2) The new parameters are not obtained by CAND, CAND is just used for global-level surrogate

model. xt is the optimal solution within the trust region of the surrogate model. f(xt) represents the

objective function (in this problem is RMSE) of the simulation results of this parameter set in CAM5.

3) In the process of constructing the global surrogate, because of the relatively large amount of

samples, we chose some relatively complex learning-based models and selected the optimal method

based on cross-validation results. The results in this paper indicates that the GBRT is the best

method to construct global surrogate model.

In the process of building local surrogate models, we take into account the insufficient number of

samples. Using some relatively complex learning-based methods may lead to under-fitting. Therefore,

we consider selecting some relatively simple construction methods. Among them, Polynomial Response

Surface (PRS), Gaussian Process (GP), and Radial Basis Function (RBF) are the most commonly used

regression-based or statistics-based methods, widely used for various complex parameter optimization
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Figure 1: Local surrogate model cross-validation results

problems in the industry [2]. Therefore, we consider choosing one of these three as the method for

constructing local surrogate models. Among them, we first consider PRS. Although it is the simplest

method, the fitting performance of the PRS model to complex curves is relatively poor. PRS model is

a simple model based on polynomials, and it may not perform well for complex, nonlinear, or highly

interactive systems. Its expressive capacity is limited and may not accurately capture certain complex

relationships. According to [3], the polynomial surrogate model does not perform well in terms of

fitting accuracy for multivariate and nonlinear problems. Therefore, we choose either GP or RBF to

construct the local surrogate model.

In order to choose a model that is more suitable for our study, we conducted cross-validation

experiments based on the selection method for the global model. We selected three learning-based

methods: Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN)

for comparison. The results are shown in the figure 1. The results indicate that compared with RBF

method, GP has a smaller error in cross-validation, providing more accurate predictions. Moreover,

the cross-validation results are better than the three learning-based methods. In contrast, the RBF

method not only has a larger error but also a wider range of upper and lower relative error bounds. The

prediction results are unstable, and the predictive performance is lower than the three learning-based

surrogate model construction methods.

Please note that in these paragraphs, “global” and “local” represent the different

surrogate model, rather than “global/local optimal” in optmization process or simulation

results in “global/region”.

We will add the relevant experimental results to the revised manuscript.

4) The entire optimization process consists of over 20 steps. After obtaining the current optimal

solution, there are several validation steps. Once these validation steps are completed, and no new op-

timal solution is found, we consider the current optimal solution as the final result of the optimization.

In the figure, we illustrate the reduction in RMSE during the optimization process and the associated

errors.

In terms of errors, it’s possible that our method may indeed have slightly higher errors compared
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to ASMO in the end. However, our method demonstrates greater stability throughout the entire

optimization process, with errors consistently maintained at a lower level. In contrast, AMSO exhibits

initial oscillations in errors, indicating that our surrogate model remains stable. While our final error

may be slightly higher than that of ASMO, we believe that in cases where the errors are relatively

close, the reduction in the number of optimization iterations is a highlight of our method, resulting in

resource savings.

5) CAND (candidate points) strategy is proposed in [4], has been widely used in surrogate model-

based optimization method [5, 6]. It is used for balance the global exploration and local exploitation.

Please note that the terms “global and local” represent characters of the optimal solution

in optimization methods rather than “best parameter for global precipitation or region

precipitation”.The inputs of the strategy are a set of generated points Ω, a set of initial sampling

points A, and the output of the strategy is the best candidate point selected from the generated points

Ω.

In each iteration step, there are two criteria in CAND to select to select the best candidate point:

i). Estimated function value obtained from the surrogate model.

ii). Minimum distance from previously evaluated points.

The first criterion represents the exploitation, which means that search a better solution based

on known regions. The second criterion represents the exploration, which means that search a better

solution in an unknown region. Please note that in this sentence “region” represents a part

of parameter space rather than precipitation simulation results over each “region” like

East Asia. In order to find the next candidate for evaluation, we do not minimize that fitness function

over a continuous set. Instead, we select the best among a finite set of randomly generated points.

Fitness functions are made up from these two criteria: the value of fitness function obtained from the

surrogate model at each point and its minimum distance to existing data points.

The description of CAND is described in Algorithm 1:

Algorithm 1 Candidate point strategy

1: Compute smax ← maxx∈Ω s(x) and smin ← minx∈Ω s(s)
2: for each x ∈ Ω do

3: V S(x) =

{
s(x)−smin

smax−smin if smax > smin

1 else

4: Calculate corresponding value of objective function for each sample.
5: end for
6: for each x ∈ Ω do
7: ∆(x) = miny∈Ad(x, y);
8: end for
9: Compute ∆max ← maxx∈Ω s(x) and ∆min ← minx∈Ω s(x)

10: for each x ∈ Ω do

11: V D(x) =

{
∆(x)−∆min

∆max−∆min if ∆max > ∆min

1 else

12: end for
13: return argminx∈ΩwV

S(x) + (1− w)V D(x)

Where, the Ω represents the random samples generated in this iteration process. S(x) represents

the predict value of point x generated by surrogate model. ∆(x) is the minimum distance from point

x to the current sampling point set A and y represents each point in set A. In line 1, fitness function

values of generated point sets are calculated according to the surrogate model and their maximum

and minimum are marked. In line 2-4, the value of V S is calculated and the for loops represents the
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criterion 1, a smaller value of V S means that the current point is an effective exploitation. In line 6-8,

the minimum distance ∆(x) between the point sample Ω and current sampling point set is calculated

in the for loops. The maximum and minimum of ∆(x) are marked in line 9. The for loops in line

10-12 represent the criterion 2, a smaller value of V D means that the current point is an effective

exploration. The last line means the weighted sum to balance the exploration and exploitation.

We will add these to the revised manuscript in section 3.2.3.

6) We will move the cross validation to section method according to your comment.

2. The manuscript lacks a thorough mechanism analysis of how parameters affect precipitation

on a global and regional scale. While section 4 presents optimization results, it lacks organization

and falls short in providing a detailed understanding of the underlying mechanisms. To enhance

the manuscript, it is recommended to delve deeper into the analysis. By investigating the cause-effect

relationships between parameters and precipitation patterns, physics insights can be gained to improve

the parameterization scheme.

Thanks for your comment. We try to reply to this comment from the following points.

1).The purpose of this work is to improve the CAM5 precipitation simulation result accord to

parameter tuning method, rather than analyzing the mechanism of physics process. We believe that

the goal has been achieved and it is a complete work. In general, the calibration of parameters

in parameterization schemes relies on statistical models and expert knowledge, leading to significant

uncertainty. Small variations in parameter values can result in substantial changes in simulation results.

In this paper, we propose a surrogate model based method which can quickly calibrate parameters,

and improve CAM5 precipitation using the proposed multi-level surrogate model method. During the

optimization process, we found that the same parameter value has different effects on simulation results

in different regions, called “rocker effect”. This suggests that it is challenging to achieve precipitation

optimization for all regions using the same set of parameters. Therefore, we design a non-uniform

parameterization scheme, employing different parameter values for distinct regions. We find a more

suitable set of parameters for each region according to the multi-level surrogate model-based method

and integrate these different sets of parameter values into one case.

2).We do not change the physical process in the parameterization schemes, we only changed the

values of the parameters, or different values in different regions. In this paper, we use CAM5 and

the selected parameters belong to three different parameterization schemes: The cloud microphysics

parameterization scheme is proposed by [7, 8, 9]. The deep convective parameterization scheme is

proposed by [10] and modified by [11]. The cloud fraction parameterization scheme is proposed by [12].

We believe that these studies have analyzed the physical meanings of each parameter and their effects

on simulation results. While maintaining these physical processes, we improve the parameterization

scheme based on the optimal values obtained for each region through the proposed tuning methods.

In the improved parameterization scheme, the parameter values for each selected region are set to the

tuned values, while the values for other regions remain at default parameters. In the parameterization

scheme file, there have been no changes to the descriptions of physical processes. The modifications

we made involve selecting different numerical values based on the judgment of region latitudes and

longitudes. So that we believe that these positive improvements achieved by changing the values of

the parameters. In [13], there is more introduction to the mechanism of physics process, including

the impact of each parameter on precipitation results in different regions. We also refer to this work

when selecting parameters and determining the range of these parameters. We will try to explain these

effects from the parameter value changes according to this work and any other related works.

3. In equations 10-11, it could be possible for the numerator to be very large, and the denominator
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Figure 2: Sigma value

can be very small. This implies that the value of sigma could exceed 0.75, but the fitness is bad. If

the fitness is good, the value of sigma could be close to 1 rather than just being greater than 0.75.

In order to confirm the radius of the trust region, we some works about trust region [14, 15], the

update parameter η1, η2 are both less than 1 and they satisfy 0 < η1 < η2 < 1. In this paper we

set η1 = 0.25 and η2 = 0.75. If the σ > 0.75, we consider ”increase the radius if the change is very

successful , σ ≥ η2 ”[16]. In our method, the surrogate model ensures a certain level of accuracy,

preventing scenarios where the numerator significantly outweighs the denominator.

To validate whether the value of σ is reasonable, we extract and plot the sigma values during the

optimization and validation convergence processes, as shown in Figure 2. It can be observed that all

values are distributed between 0.6 and 1.6, indicating that the error of the surrogate model is generally

controlled within a certain range, without exceptionally small or large outliers.

We believe that the setting of σ is free from anomalies and can effectively optimize the precipitation

parameters of CAM5.

4. Improving the clarity of motivation for the nonuniform parameter parameterization scheme.

Thanks for your comment. We try to reply to this comment from the following points.

1) In this paper, the motivation for the nonuniform parameter parameterization scheme is as follows:

• It is well known that CAM5 is a well tuned model, however the holistic optimal parameters

do not necessarily mean they are the best solutions for every region. The simulation results

over these regions are challenging to improve through global tuning experiments. Please note
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Figure 3: Global spatial distributions of relative contributions (%) of parameters to total variance of
annual mean precipitation in [13].

that in this sentence “global” tuning represents the CAM5 tuning experiments to

improve the global simulation results of precipitation rather than “global optimal”

in optimization process.

• Regional optimization experiments demonstrate that some regions have optimal parameters,

leading to better results than default parameters. However, applying these parameters to global

simulations may not obtain optimal results; they are effective only within the selected regions

for achieving the best simulation outcomes.

• Our experiments show that there is a “rocker effect” in the influence of parameters on precipita-

tion. The same parameter values have different effects on different regions. When the simulation

results in one region improve due to changes in parameter values, the results in other regions may

decline. This implies that optimizing precipitation for all regions using a single set of parameters

is challenging.

2) In [13], the authors discuss the contributions of different parameters to precipitation in different

regions. The research results indicate that the contribution of different parameters to precipitation

varies across regions. As shown in the figure 3, it can be observed that the contribution of parameters to

precipitation cannot be simply judged based on the relationship with ocean or land. Even in adjacent

regions, there can be some degree of differences. When using globally uniform parameter values, in

order to pursue a holistic optimal solution, approximate mean value is employed to achieve a better

overall simulation performance. If there is a significant difference between the local optimum and mean

value in certain regions, the simulation results for that region will have a large error. Please note

that “local optimum” in this sentence means that the best parameters over this region,

rather than “Local optimum solution” in the optimization process.

3) We must also consider the diversity of the oceans regions. In CAM5, the physical processes
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Figure 4: climatology SST

related to the ocean include optical reflection and some complex thermodynamic processes. The

variations in sea surface temperatures have a significant impact on these physical processes, leading to

substantial differences in simulation results across different regions. As can be seen in the Figure 4, the

sea surface temperatures vary significantly across different oceanic regions, such as the Pacific region

and warmpool. In the presence of such differences, dividing parameters based solely on ocean/land

distinctions is not precise enough. Therefore, we try to select multiple regions and utilize faster

parameter tuning method to find better parameters. These papameters are then integrated into the

same case through a non-uniform parameterization scheme.

In summary, we proposed the nonuniform parameter parameterization scheme. We search different

parameter combinations for different regions by surrogate model based tuning method and integrate

them into a single case in a non-uniform parameterization scheme.

5. Line 55, while previous methods involved running the climate model, it is important to note

that this work also requires running the climate model in each iteration. However, the manuscript

does not provide a direct comparison of the efficiency of this method with other approaches. To

enhance the evaluation of the proposed method, it would be beneficial to include an assessment of the

computational cost compared to existing methods. This evaluation can provide valuable insights into

the efficiency and computational advantages of the proposed approach, strengthening the manuscript’s

contribution in terms of computational performance.

Thanks four your comment. We are very willing to conduct some performance-related comparisons.

However, for some commonly used parameter optimization algorithms, such as DE, PSO, GA, and so

on, using these methods for parameter tuning in CAM can yield relatively good results. Nevertheless,

these algorithms require more computational resources and time during execution, which makes it

challenging to evaluate these methods based on performance.

We attempt to use algorithms such as PSO and GA for parameter tuning for the CWRF model

(Climate-Weather Research and Forecasting model) [17]. We know that CWRF, as a weather fore-

casting model, has much shorter runtime and resource consumption compared to CAM5. We refer to

these commonly used parameter settings, setting the population size to 50 and the number of itera-

tions to 100. The results show that even for a model with significantly shorter execution time and

computational resource consumption than CAM5, these optimization methods still struggle to obtain

optimal parameters within a reasonable time frame. The results may even be insufficient to meet the
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timeliness requirements for CWRF predictions. While comparing the performance advantages of our

method with other methods can demonstrate the superiority of our approach, the performance of these

methods is challenging to quantify in a short time frame due to limitations such as time constraints

and allocated computational resources.

Considering computational resources and time costs, we compare our method with the AMSO

algorithm. The ultimate advantage in performance is the advantage in the number of iterations.

2 Replies to minor comments

Replies to minor issues are as follows:

1. The title uses CAM5, but the contexts use CAM. They could be consistent.

Thanks for your comment. We will use consistent definition of CAM5 and other technical terms

over the whole manuscript.

2. Line 11: “selected points..” to “selected points.”

Thanks for your comment. We will correct it in revised manuscript.

1. Line 29: traditional tuning methods in climate modeling have certain limitations. However,

they remain highly useful. The majority of climate models employ traditional tuning approaches due

to their reliance on well-established physics knowledge. In fact, automatic tuning methods require a

solid understanding of physics to enhance their efficiency.

Thanks for your comment. We agree with your comment that manual parameter tuning remains

necessary. This is because optimizing the parameters of atmospheric models requires a solid under-

standing of the underlying physics. Our proposed method is not intended to completely replace manual

tuning but to enhance the efficiency of optimization. It is built on a foundation of substantial knowl-

edge about the model. Using automated optimization methods, we aim to improve the tuning efficiency

and reduce the consumption of computational resources. Perhaps the term ”less useful” is not quite

accurate. We will reconsider and use a more appropriate word to express our viewpoint.

2.Line 35, The statement that ”WRF physics process is simple” is not accurate. In fact, it is known

to be complex and intricate.

Thanks for your comment. We agree with your comment. WRF is indeed a complex model that

involves many intricate physical processes. The confusion may have arisen from our choice of words.

What we are trying to emphasize is not the complexity of the model but rather that WRF is geared

towards local execution and short-term forecasting, which generally incurs lower resource costs for

repeated runs. In contrast, CAM5 primarily focuses on global, long-term simulations, which result in

longer execution times. Therefore, when it comes to optimizing parameters for CAM, it’s challenging

to apply methods involving many iterations. We will replace the ambiguous terms in line with your

comment.

3. Line 37, The statement that ”MVFSA may become infeasible for CAM tuning” may require

further consideration. Fast simulated annealing, which is utilized in MVFSA, actually requires only one

population to search for the next optimal parameters. The MVFSA requires thousands of steps to get

a stable solution. But CAM requires a lot of computational cost for each optimization iteration. The

authors should thoroughly discuss the challenges associated with MVFSA to provide a comprehensive

understanding of its feasibility for CAM tuning.

Thanks for your comment. The term ”infeasible” does not imply that these methods cannot be

used for parameter tuning of CAM, as mentioned in the comments, MVSFA requires thousands of

iterations. After these iterations, a better set of parameters can be obtained. However, from an
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efficiency perspective, even though this method can yield improved parameters, the computational

cost and time required for thousands of iterations are deemed unacceptable. Therefore, in this paper,

”infeasible” not only refers to the capability for optimization but also encompasses whether better

parameters can be obtained through optimization within acceptable resource costs.

4. Line 51, When the optimization process reaches convergence, further iterations do not lead to

any improvement. Similarly, once the optimization algorithm has obtained a local solution, additional

iterations do not result in further enhancements. The effectiveness of the algorithm is also a determining

factor in this regard.

Thanks for your comment. We agree this comment. Typically, in the normal operation of an

algorithm, the optimal solution improves as the number of iterations increases. However, in some

cases, increasing the number of iterations may not yield any better results. This can happen when

the algorithm gets stuck in a local optimum, as mentioned in the comments, or when it has already

converged. We will modify this sentence to make it less absolute in revised manuscript.

5. Line 58, It is confusing that ‘the mathematical expression is complex and time-consuming’.

Could you explain it?

Thanks for your comment. This sentence contains a punctuation error. We will rewrite it in reviesd

manuscript.

The sentence can be rewrite as:

The objective function of these problems is difficult to describe as a mathematical

expression or the mathematical expression is complex and time-consuming.

6. Line 59. Revise the sentence “Wang et al. . . . ; a SCM-SMA hydrologic model”

Thanks for your comment. We will rewrite this sentence in revised manuscript.

The sentence can be rewrite as:

Wang et al. (2014) established a connection between the optimization of mathemati-

cal benchmarks and complex geoscientific models, and proposed the adaptive surrogate

model-based optimization (ASMO) method. In order to demonstrate the performance

of ASMO method for parameter tuning ofcomplex geoscientific models, parameters of a

SCA-SMA hydrologic model was tuned based on the ASMO method.

7. Line 85, the authors could carefully analyze the challenge of ASMO used in atmospheric model.

The method has been successfully used in WRF, CLM. what’s the real challenge for atmospheric

model?

Thanks for your comment. WRF is a regional model that focuses more on simulating specific

regions, with a smaller spatial scale. The differences and variations in parameter values within a

region are not particularly large. Therefore, the computational resource cost of parameter tuning is

not exceptionally high. CLM is a land model designed specifically for simulating processes occurring on

Earth’s land. Considering that a significant portion of the Earth’s surface is covered by oceans, which

involve complex physical and chemical changes, as well as direct energy and substance exchanges

between land and ocean, these aspects are not incorporated into CLM. In contrast, CAM includes

physical processes related to the ocean, resulting in notable differences between the two models.

So that ASMO has been successfully applied to models like WRF and CLM, the application of

surrogate model-based parameter tuning to CAM remains a challenge. In this paper, we designe a

multi-level surrogate model-based method and demonstrate that the surrogate-based methods can

enhance precipitation simulation results in CAM5.

8. Line 91, the above sentences discuss the tuning algorithms. The sentence “The precipitation

process . . . ” talk about the metrics. It would be beneficial to separate these statements into individual
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paragraphs.

Thanks for your comment. Yes, These sentences talk about challenge of surrogate model for

precipitation parameter tuning, we will separate these statements into individual paragraphs in revised

manuscript.

9. Line 110, it is hard to say the nonlinearity and complexity of CAM5 are much higher than WRF.

Thanks for your comment. We agree with your point. Perhaps it’s not straightforward to conclude

that the nonlinearity and complexity of CAM are necessarily higher than those of WRF, as both

involve a significant amount of computation and complex physical processes. We will rephrase this

sentence accordingly.

10. Section 2.1, describe more details of CAM5, such as horizontal resolution, vertical level, how

long does CAM5 run, the sst and sea ice are used prescribed seasonal climatology.

Thanks for your comment. We will add more description about CAM5 and the compset used in

this study. They include the modes used in the compset, the description of the grid and their specific

meanings. We will supplement to the revised manuscript based on [18]

11. Line 138: define the six main regions, giving a table including the range of latitude and

longitude.

Thanks for your comment. In the manuscript, the Table 1 we introduce the region selected in the

study and we will add the cite of the table in revised manuscript.

12. Line 143, why not use GPCP to estimate precipitation but use ERA5.

Thanks for your comment. Both ERA5 and GPCP can be used for precipitation analysis. They

both provide global precipitation data. However ERA5 provides higher-resolution data. Data of GPCP

are provided on a 2.5 degree grid and ERA5 precipitation data are provided on a 0.25 degree grid. We

believe that choosing data with higher resolution can significantly contrast the tuning results, thereby

demonstrating the effectiveness of the proposed method. So that we select ERA5 instead of GPCP as

the metric for precipitation parameter tuning. The RMSE is calculated between the CAM5 simulation

results and ERA5 reanalysis data.

13. Line 147, “Makes” to “makes”

Thanks for your comment. We will correct it in revised manuscript.

14. Line 163, is the “sampling method” is the latin hypercube sampling? How many samples do

you conduct?

Thanks for your comment. Yes, the ”sampling method” is latin hypercube sampling. There are 60

samples we conduct. They are described in section 3.2.1.

15. Line 280, use the correct ref for GP.

Thanks for your comment. We will add the correct ref for GP in revised manuscript.

16. Line 308, It is confusing that the surrogate model is built as the quadratic function. Does it

use GP?

Thanks for your comment. We use the GP to construct the local-level surrogate model, the

”quadratic function” means that in the initial mathematical theory of trust region , a quadratic

function is used to fit the real function. These sentence are used to describe the trust region theory

rather than introduce our proposed method.

17. For fig2, what is the y-axis? Is it the relative error? How calculate it?

Thanks for your comment. the y-axis represents the relative error between the predict value and

real value, it is calculated based on Eq.1:

relative error =
|precdictvalue− realvalue|

realvalue
(1)
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Where, the precdictvalue represents the objective function value (in this paper is RMSE) predicted

by surrogate model and realvalue represents the objective function value (in this paper is RMSE)

obtained by CAM5 simulation. We will revise this paragraphs according to this comment.

18. Line 343, ‘lower’ to ‘lowest’.

Thanks for your comment. We will correct it in revised manuscript.

19. Section 4.1.3 should be merged into section 4.1.2.

Thanks for your comment. We will reorganize the structure according to the the comment and

other comments about the structure.

20.In figure 4, it should include the obs pattern, or the difference between opt/default and obser-

vation.

Thanks for your comment. We will add new results figures in revised manuscript according to this

comment.

21.Line 366, it is confusing for this sentence “Therefore, we need to further . . . ”

Thanks for your comment. In previous sentences. We illustrate that the result of global-based

tuning is not significant, some regions still need to be tuned. So that we try to find the best way to use

the proposed method to improve the simulation result. Perhaps our choice of words was not precise.

We will use more accurate term in this sentence.
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