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The reviewer comments are presented followed by underlined author responses. 
  
The paper presents a comprehensive study introducing downscaling work to a 9 km 
resolution for 16 CMIP6 GCM experiments using the WRF model. The manuscript well 
describes the methodology and the WUS-D3 dataset. I recommend publishing the 
paper after some minor revisions as follows. 
 
Comments:  
1. GCM selection: the authors outlined 6 processes considered in the evaluation and 
selection of GCMs. While they refer to the ranking methodology in a technical note 
(Krantz et al. 2021) and a paper currently under revision (Goldenson et al. 2023, in 
revisions), I recommend providing more information on two key aspects. Firstly, 
elaborate on the process selection – explain why these 6 processes were chosen; why 
extreme precipitation across California is included among the selected processes, given 
the coarse resolution of GCMs and the fact that this diagnostic variable might not play a 
role in the ICBC of the downscaling framework. Secondly, provide more details on the 
ranking methodology: clarify how these 6 processes are considered in the final ranking; 
are they equally weighted? How do temporal and spatial patterns contribute to the 
selection process? 
 
Happy to provide additional context and clarification here. For the first question, the 
processes were chosen based on our team’s experience in processes that are of 
regional relevance. For California specifically, we actually considered a set of metrics 
for biases within just this category. Specifically, we considered the following, 
conditioned on days when GCM precipitation exceeded the 95th percentile (biases 
relative to ERA5): integrated water vapor, sea level pressure, and the 250 hPa zonal 
wind. We also used the third empirical orthogonal function (EOF) of the 500 hPa 
geopotential, whose spatial pattern is strongly correlated with extreme precipitation (> 
99th percentile) across the region (See Chen et al., 2021). Additionally, we also included 
a metric for large-scale circulations from the GCM that may affect Los Angeles extreme 
precipitation. 
 
To answer the first question, the metrics of GCM bias were of hemispheric, Pacific 
Ocean, western U.S., and California scope. Since California is so latitudinally expansive 
however, and because the landfalling atmospheric rivers that bring the state extreme 
precipitation generally provide abundant rainfall downstream to the western U.S. 
interior, we believe that including biases across California should be regarded as 
regional versus point biases. Further, since the large-scale patterns of temperature and 
horizontal winds are preserved above the boundary layer via spectral nudging on the 
45-km WRF grid, we believe that consideration of biases in the large-scale dynamic 
fields associated with extreme precipitation events across California, have regional-
scale and western U.S. consequences. 
 
Regarding the second question, spatial patterns and temporal patterns are considered 
in the selection process. For instance, the time-variability of ENSO and high-frequency 



synoptic variability of landfalling waves are considered, while the spatial variability of the 
California precipitation mode is considered via the identification of where the 
geopotential anomalies exist upstream of the region. Additionally, our metrics per 
Simpson et al., (2020) consider jet stream landfall position bias, accounting for spatial 
bias. More generally however, these processes were not considered equally in the 
finalized GCM selection process. First, metric redundancy was addressed by computing 
a set of EOFs from the metrics, and only retaining a subset of EOFs that capture most 
of the variation between models. The result is a reduced set of linear combinations of 
metrics that efficiently captures nearly all of the variance across GCMs; this process 
constituted a weighting of the metrics themselves based on redundancy with other 
metrics. It was found that the first 6 EOFs described 91% of the variance amongst 
models, with only a subset of metrics explaining most of the variability between GCMs.  
After the EOF decomposition, and overall score was computed for each GCM. The least 
biased (highest scoring) GCMs were then generally selected. 
 

We have rewritten Sec. 2.2 to read: ‘Prioritizing SSP3-7.0 with an end-of-century 
radiative forcing of 7 W m-2, we selected 14 GCMs (Table 1) based on three criteria: (i) 
their skill in simulating important processes that govern western North American climate 
over the historical (1980-2010) period, (ii) their collective representativeness of the 
broader CMIP6 ensemble spread in future temperature and precipitation responses, 
and (iii) data availability. Aspects considered in the GCM evaluation included: 

1. Large-scale meteorology associated with Santa Ana and Diablo winds – 
important for extreme wind and fire risk across the southwestern U.S. We use 
this metric to minimize the usage of GCMs which simulate a distorted portrayal of 
the Pacific High. 

2. The El Niño Southern Oscillation (ENSO) – well-known to modulate the 
interannual variability of precipitation and temperature across the western U.S. 
We use this metric to prioritize GCMs which adequately capture the ENSO-
Western U.S. teleconnection. 

3. Northern Hemisphere blocking and circulation (Simpson et al., 2020) – Wave 
characteristics, both over climate and synoptic time scales, are directly related to 
the variability of precipitation across the Western U.S. We use this metric, for 
instance, to ensure that GCMs are down-selected if they are too progressive in 
their simulation of mid-latitude waves. 

4. Landfalling jet characteristics – Atmospheric rivers are responsible for a majority 
of West-Coast precipitation. As such, we only select GCMs that demonstrate 
superior performance in their landfalling position and tilt. 

5. GCM-simulated surface air temperature and precipitation – while these variables 
can be incorrectly simulated in GCMs despite the more-or-less correct treatment 
of their local driving processes, which may be more important for driving a 
regional climate model, we include these variables to account for the 
relationships between the GCM-simulated processes and GCM-simulated 
surface temperature/precipitation profiles.  

6. Extreme precipitation across California – Generally, extreme precipitation events 
in California are driven by large-scale synoptic events (described by column 
water vapor, 500 hPa geopotential, and upper tropospheric wind speeds). These 



large-scale patterns can have ramifications for weather and climate as they 
propagate downstream, hence we include an evaluation of bias in these fields for 
our GCM selection. 

7. Regional wind shear – Wind shear helps to moduleate the lifetime of precipitation 
systems through storm-scale organization and is a measure for the larger-scale 
background baroclinicity which is important for storm tracks. We thus evaluate its 
bias. 

The ranking system is described in Krantz et al. (2021), and the process of choosing 
GCMs to downscale based on end-user needs and locally relevant atmospheric 
processes is described in Goldenson et al. (2023). To emphasize, being subject to 
these selection processes, the GCMs downscaled in this study span the range of future 
changes in temperature and precipitation from CMIP6 across the WUS. 
 For more details on the GCM selection process, we refer readers to Krantz et al., 
(2021). However, we highlight that temporal and spatial variability was considered in 
ranking a preferred set of GCMs to downscale. Specifically, the time-variability of ENSO 
and high-frequency synoptic variability of landfalling waves are considered, while the 
spatial variability of the California precipitation mode Chen et al. (2021) was factored 
into our analyses via the identification of where the geopotential anomalies exist 
upstream of the western U.S. on extreme precipitation days. Additionally, our metrics 
per Simpson et al., (2020) consider jet stream landfall position bias. Finally, Krantz et al. 
(2021) performed a variance decomposition using empirical orthogonal functions to 
reduce the effects of metric redundancy, weighting them accordingly in the final 
rankings of GCMs.’ 
 
2. L330: The authors stated that “Interestingly, downscaling generally reduces warming 
(leftward pointing arrows)” and hypothetically attributed it to the reduced snow albedo 
feedback with downscaling. I recommend that the authors prove this hypothesis by 
comparing the snow outputs of both WRF and GCMs. 
 
The suggestion of a stronger warming response in the GCMs relative to WRF is 
intended only as a hypothesis and thus needs to be tested. Our group plans to look at 
this in another paper (in preparation). 
 
3. The authors conducted a more in-depth analysis of the changes in rx1day and 
tmax99. However, there is no explanation as to why only these two indices, among 
many possible extreme indices, were selected. Furthermore, why did the authors opt for 
the absolute index (rx1day) when analyzing rainfall, while choosing the percentile index 
for temperature. 
 
The purpose of this manuscript was to present the dataset rather than conduct 
extensive scientific process studies and analyses of extremes. However, we wanted to 
inspire the community to use the dataset, so we conducted initial analyses to examine 
mean changes in mean temperature and precipitation, as well as rx1day precipitation 
and Tmax99. We looked at these common extreme metrics (and mean changes) to 
showcase how the footprint of topography is represented in the climate response, a 
feature not characteristic of the GCMs. Rx1day is a common metric for extreme 



precipitation while Tmax99 is also common in extreme heat analyses, so for an 
overview of the dataset, we thought that presenting these two metrics alone would be 
enough to inspire community analysis. We certainly acknowledge that this analysis was 
by no means comprehensive, and future studies using WUS-D3 should include a more 
expansive set of metrics. 
 
Minor comments:  
1. L210, 215 should refer to Table 1’s last column. The caption of Table 1 should also 
provide an explanation of the last column (SST mode) 
 
Done! 
 
2. Please add the names of locations mentioned in the text to Figure 1, such as 
California’s Central Valley, Sierra Nevada, and state names, … 
 
This is a great idea and has been done for state names. Regarding the mountain 
ranges, this may be difficult since we list 5-6 over a large geographic region. Indicating 
these regions in Fig. 1 may clutter the figure. Thus for now, we only include state 
names. 
 
References 
Krantz, W., Pierce, D., Goldenson, N., and Cayan, D.: Memorandum on Evaluating 
Global Climate Models for Studying Regional Climate Change in California, The 
California Energy Commision, https://www.energy.ca.gov/sites/default/files/2022-
09/20220907_CDAWG_MemoEvaluating_GCMs_EPC-20-006_Nov2021-ADA.pdf, 
2021. 

Simpson, I. R., Bacmeister, J., Neale, R. B., Hannay, C., Gettelman, A., Garcia, R. R., 
Lauritzen, P. H., Marsh, D. R., Mills, M. J., Medeiros, B., and Richter, J. H.: An 
Evaluation of the Large-Scale Atmospheric Circulation and Its Variability in CESM2 and 
Other CMIP Models, Journal of Geophysical Research: Atmospheres, 125, 
e2020JD032835, https://doi.org/10.1029/2020JD032835, 2020. 

 

https://www.energy.ca.gov/sites/default/files/2022-09/20220907_CDAWG_MemoEvaluating_GCMs_EPC-20-006_Nov2021-ADA.pdf
https://www.energy.ca.gov/sites/default/files/2022-09/20220907_CDAWG_MemoEvaluating_GCMs_EPC-20-006_Nov2021-ADA.pdf

