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Abstract.

High resolution (< 1km) atmospheric modeling is increasingly used to study precipitation distributions in complex terrain

and cryosphere-atmospheric processes. While this approach has yielded insightful results, studies over annual time-scales or

at the spatial extents of watersheds remain unrealistic due to the computational costs of running most atmospheric models.

In this paper we introduce a High-resolution variant of the Intermediate Complexity Atmospheric Research (ICAR) model,5

HICAR. We detail the model development that enabled HICAR simulations at the hectometer scale, including changes to the

advection scheme and the wind solver. The latter uses near surface terrain parameters which allow HICAR to simulate complex

topographic flow features. These model improvements clearly influence precipitation distributions at the ridge scale (50m),

suggesting that HICAR can approximate processes dependent on particle-flow interactions such as preferential deposition.

A 250 m HICAR simulation over most of the Swiss Alps also shows monthly precipitation patterns similar to two different10

gridded precipitation products which assimilate available observations. Benchmarking runs show that HICAR uses 594x fewer

computational resources than the WRF atmospheric model. This gain in efficiency makes dynamic downscaling accessible

to ecohydrological research, where downscaled data is often required at hectometer resolution for whole basins at seasonal

time scales. These results motivate further development of HICAR, including refinement of parameterizations used in the wind

solver, and coupling of the model with an intermediate complexity snow model.15

1 Introduction

Atmospheric models have seen remarkable improvements over the past decades, spurred on by their importance to society.

Their usage within science ranges from climate and weather predictions to downscaling atmospheric variables as input to

further geophysical models. Specific applications have included generating forcing data over sparsely instrumented domains

(Khadka et al., 2022), downscaling global climate model output to study regional impacts (Spinoni et al., 2018), and coupling20

1



with land surface models to better simulate land-atmosphere feedbacks (Sharma et al., 2023). The concept intrinsic to all

of these applications is one of scale. As model resolution increases, processes which were previously parameterized can be

explicitly resolved, and the representation of the underlying terrain improves, allowing for more accurate dynamics (Wyngaard,

2004; Chow et al., 2019; Prein et al., 2013).

High-resolution (< 1km) simulations of winter storms in complex terrain have been used to augment our process-level under-25

standing of particle-flow interactions such as preferential deposition (Lehning et al., 2008; Gerber et al., 2018; Vionnet et al.,

2017; Mott et al., 2010). Some of these simulations aimed at very high resolutions of 25 m and below and thus used stationary

wind fields (Raderschall et al., 2008) or a decomposition of wind field into a limited number of dominating (stationary) pat-

terns to enable simulations for the length of a storm (Mott et al., 2010) to a full season (Groot Zwaaftink et al., 2013). Coupled

glacier-atmosphere models have been developed and run at a range of spatial scales, demonstrating an ability to better simulate30

surface-atmosphere energy exchanges over glaciers (Collier et al., 2013; Goger et al., 2022). And, coupled snow-atmosphere

models have been developed which explicitly resolve snow-atmosphere interactions (Vionnet et al., 2014; Sharma et al., 2023).

These studies have all demonstrated the ability of high-resolution atmospheric modeling to improve estimates of precipitation,

wind speeds, and surface-atmosphere interactions. However, all of them have focused on limited spatial and temporal extents

due to the huge computational demand required of running modern atmospheric models at the hectometer resolution. In one35

study performing 50m simulations of winter precipitation using the WRF model, nearly 34,000 core hours were required to

perform 1 day of simulation over a <100km2 domain (Kruyt et al., 2022). Any practical application of high-resolution atmo-

spheric modeling to questions concerning future climate scenarios or downscaling for land surface models is currently limited

by the computational demand of atmospheric models.

This issue is no news to the community, and idealized atmospheric models of orographic precipitation and mountain waves40

have been developed and employed in the past (Smith, 1979; Smith and Barstad, 2004). Recently, the Intermediate Complexity

Atmospheric Research (ICAR) model was introduced in Gutmann et al. (2016) (hereafter G16) to provide an alternative to

highly idealized models and modern non-hydrostatic, compressible atmospheric models. In their 2016 paper, Gutmann et al.,

demonstrated excellent agreement between ICAR and WRF when simulating mountain waves and orographic precipitation over

idealized terrain. Further demonstration over real, complex terrain at a 4km resolution gave good agreement on precipitation45

between the two models during the winter months. Most importantly, the ICAR simulations used 143x fewer computational

resources than the WRF model. The ability of ICAR to simulate orographic precipitation at the kilometer-scale has been

replicated in other studies (Horak et al., 2019). ICAR has since occupied a niche in modeling studies where downscaling of

long time series would otherwise be limited by computational resources. These results motivate the design philosophy behind

ICAR that dramatic reductions in computational time may justify modest reductions in model accuracy for certain applications.50

Such an approach is perfectly suited for high-resolution atmospheric modeling, where computational demands severely

limit the experimental design of studies. However, the dynamics and physics of the base ICAR model, namely linear mountain

wave theory and first-order upwind advection, are not suitable when modeling at the hectometer scale. Here we introduce a

High-resolution variant of the ICAR model, HICAR, which adapts the ICAR model to be suitable at resolutions below the

kilometer scale. In the second section of the paper, key parts of HICAR’s model development are detailed, with a focus on the55
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model’s wind solver, advection scheme, and input/output (I/O) operations. In the third section, information is given about other

atmospheric models and gridded datasets used in this study, as well as details about model simulation setups. These models

and datasets are then compared in section four, where various demonstrations of the HICAR model provide a limited validation

and are used to discuss the model performance. Lastly, a synthesis of the paper and a concluding discussion about the utility of

the HICAR model is presented in section five.60

2 Model Development

In the original ICAR model, the 3-D wind field can either be generated through 3-D interpolation between the coarse resolution

forcing data and the high-resolution grid, or it can be further modified using linear mountain wave theory (Smith, 1979). This

modification alone simulates the disturbance of the meso-scale flow field caused by mountain ranges, namely the generation

of mountain waves depending on the atmospheric stability. These effects are the dominant influence of the terrain on the65

meso-scale flow from scales of 10s of kilometers down to the kilometer scale, which is the scale range which ICAR was

originally developed for. Increasingly, output from kilometer-scale compressible, non-hydrostatic atmospheric models run by

regional weather forecasting offices are available (Benjamin et al., 2016; Seifert et al., 2008; Seity et al., 2011). These models

are expected to capture the dynamics approximated by linear mountain wave theory. When using these models as forcing

data for high-resolution simulations with ICAR, it would thus be redundant to run with the linear theory solution. Left with70

only an interpolated kilometer-scale wind field for a 3-D wind field, we found it necessary to implement a new wind solver

capable of capturing dynamics induced by the underlying high-resolution terrain. These flow features should be necessary to

simulate particle-flow interactions which lead to heterogeneous snowfall patterns. In addition to changes to the wind field, it

was also necessary to modify the advection scheme of ICAR and the input/output (I/O) routines. ICAR only offers the first

order upwind advection scheme, which has been shown to be highly diffusive, especially in complex terrain (Schär et al., 2002).75

When simulating precipitation events, it is important that heterogeneities in moisture and temperature are maintained and do

not become too smooth. Finally, as model resolution and speed increased, it became paramount to be able to efficiently read

and write large volumes of data without significantly affecting run time. The following two subsections focus on new options

for the wind solver in HICAR, while the last two focus on changes affecting the advection scheme and model input/output

(I/O)(Figure 1).80

2.1 Direct Adjustment of Wind Field

Taking a cue from existing statistical models of surface winds in complex terrain (Winstral and Marks, 2002; Winstral et al.,

2017; Liston and Elder, 2006; Dujardin and Lehning, 2022), we first develop corrections to the interpolated wind field near

the surface based on the underlying terrain. This is done through terrain descriptors calculated at model initialization and then

applied to the wind field at runtime. Terrain descriptors represent some qualitative information about the terrain quantitatively,85

such as if a particular location is sheltered from a particular wind direction. Parameterizations can then be developed using these
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Figure 1. Schematic of major changes to HICAR’s runtime loop compared to figure 1 of G16. The left side of the figure features the I/O

loop handeled by I/O processes, while the right side features the runtime loop of HICAR, with a focus on the steps discussed in sections 2.2

and 2.3. Blue colors correspond to I/O processes, green to steps of the wind solver, purple to steps of the physics integration loop, and red

to communication between I/O and compute processes. Within the wind solver and physics loop, downward arrows are implied between the

steps where not indicated.

values, enabling non-local interactions between the topography and winds to be accounted for in a computationally efficient

manner.

2.1.1 Terrain Descriptors

Topographic Position Index (TPI)90
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When downscaling winds from coarse to high resolutions, the representation of the model terrain can vary drastically. What

appears as a small depression in the terrain at a 1km resolution may actually be a steep valley when viewed at a 100m resolution.

To find areas in the high-resolution domain where large differences with the coarse Digital Elevation Model (DEM) may affect

wind fields, we use the Topographic Position Index (TPI, Jenness 2006, Weiss 2001). TPI is calculated as the difference in

elevation between a given terrain element, and the average terrain height within a given radius around that terrain element:95

TPI = zhi − z̄radius (1)

Where zhi is the high-resolution elevation and z̄radius is the mean elevation of the high-resolution grid within a given radius

around zhi. We set the search radius to be 4 km. The chosen search radius will depend upon the resolutions of the model and

the forcing data being used. In general, larger search radii lead to wider bands of positive and negative TPI, while smaller radii

select just the valley bottoms and tops of peaks, resulting in a more heterogeneous distribution of TPI (Weiss 2001). TPI has100

previously been used as a variable in other wind downscaling schemes (Winstral et al., 2017), serving to highlight areas where

winds are expected to be higher, such as an exposed ridge. TPI was chosen as a terrain descriptor instead of locally differencing

the model and forcing DEMs because it gives a description of exposure, which is a non-local concept. For example, a hill in

a valley may have the same elevation on the high-resolution grid as on the smoother, coarse-resolution forcing grid, and the

terrain difference would be 0. However, if this hill is in a valley, it is still relatively lower than the surrounding terrain, and this105

would result in a negative TPI.

3D Sx

The Sx parameter was first introduced by Marks et al. (2002), quantifying the maximum slope from a surface grid cell to a

terrain element in the upwind direction. The Sx parameter was thus interpreted as a proxy for how sheltered a surface grid

cell was from incoming winds, as the upwind terrain element was expected to disrupt the flow. Sx has since been used in110

many parameterizations of surface wind (Marks et al., 2002; Winstral et al., 2013; Grünewald et al., 2013). Importantly, the

Sx parameter gives directional information about terrain-wind interactions, which supplements the omni-directional TPI. Here

we extend the original concept of Marks et al. (2002) into three dimensions, calculating Sx not just for the surface grid cells,

but for all model grid cells in the vertical dimension. The motivation behind this is that the sheltering effects provided by an

upwind terrain element will be felt above the surface as well as on the ground. The procedure for calculating 3D Sx is similar115

to that for 2D Sx: it is the maximum upwind slope between a grid cell (this time allowed to be above the surface) and the

largest upwind terrain element. We add an important caveat that the largest upwind terrain element must also have a positive

TPI value. This is done under the assumption that flow separation is more likely to occur for exposed terrain elements (positive

TPI). The following equation:

SxA,dmax(x,y,z) =max

(
tan−1

(
DEM(xv,yv)−Z(x,y,z)√

(xv −x)2 +(yv − y)2

))
(2)120
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gives the Sx value for a given azimuth angle A, calculated at a specific point (x,y,z), using a search radius of dmax. DEM

is the high-resolution DEM (2D) and Z is the grid cell height on the mass grid (3D). (xv,yv) give the location of the terrain

element for which Sx is being calculated against. dmax is a namelist variable which the user can define. A qualitative illustration

of the 3D Sx parameter is given in Figure 2.

2.1.2 Application of Terrain Descriptors125

The two terrain descriptors, TPI and Sx, seek to highlight areas of the domain where direct adjustment to the interpolated wind

field are necessary. TPI indicates relative differences between the high-resolution terrain and a low-resolution representation,

which is to say areas where the interpolated, high-resolution wind field are experiencing terrain features which the forcing

terrain’s lower resolution DEM may not resolve. Because TPI is non-directional, we only consider adjustments to the wind

speed, and consider to increase wind speeds at areas of positive TPI (HICAR terrain higher than forcing terrain) and decrease130

them at areas of negative TPI. Testing showed that the wind solver discussed in section 2.2 adequately increases wind speeds

over areas of positive TPI without a direct TPI-based adjustment, so only adjustments in areas of negative TPI are performed.

This can be explained conceptually as reducing wind speeds in valleys deeper, and thus more removed from mesoscale wind

speeds, than the forcing terrain suggests. This correction is only considered within the first 200m above the surface and is

gradually decreased up to this height. This height limit was chosen empirically after testing multiple decay heights. Corrections135

based on TPI can thus be formulated as:

TPIcor =
TPI

TPImax

ztop − z

ztop
, TPI < 0 (3)

where TPI is the surface TPI computed at each grid cell and z is the height of the grid cell in question. TPImax is a scaling

factor controlling the correction, and was set to 200 in our simulations. ztop controls the height at which the correction goes to

0, in this case 200m.140

Corrections based on the Sx parameter are considered for all grid cells with a negative Sx value. For these cells, a threshold

Sx angle, Sxthresh, is calculated at the surface:

N =

√
g

θ

dθ

dz
(4)

Ri=
N2(

du
dz

)2
+
(
dv
dz

)2 (5)

Sxthresh = 180°min(max(0,Ri) ,0.25) (6)145

where N is the Brunt-Väisälä frequency, θ is potential temperature, and Ri is the Richardson Number. All vertical gradients

are calculated over the first 100m above the surface. This is following the methodology of Menke et al. (2019) where the

Richardson number used to classify stable and unstable conditions for leeside re-circulation was calculated over the first 100m

above the surface. EQ #6 says that for Ri values greater than 0.25 [Stable], no sheltering effects occur, and for negative Ri
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values [Unstable], the threshold Sx angle is 0°. Although Sxthresh is only calculated at the surface, it is used throughout the150

column to apply the following corrections in 3D. This threshold angle is then used to calculate an Sx correction factor

Sxcorr =
Sx−Sxthresh

ϕdef
(7)

Where Sx is the Sx angle for the given grid cell, Sxthresh is the threshold angle calculated for that column, and ϕdef, a

scaling factor, is set to 30°. Sxcorr is then applied to the U and V wind vectors by divvying up the correction according to the

slope of the underlying topography. This is shown conceptually in Figure 2, and follows the equation:155

SLOPE =

√(
dz

dx

)2

+

(
dz

dy

)2

(8)

Sxu,cor =−dz

dx

Sxcor

SLOPE2

(
dz

dx
Um +

dz

dy
Vm

)
(9)

Sxv,cor =−dz

dy

Sxcor

SLOPE2

(
dz

dx
Um +

dz

dy
Vm

)
(10)

Where Um and V m are the U and V velocities staggered to the mass-grid, and SLOPE is the terrain slope. Vertical gradients

shown here are calculated over the grid cell. The net effect is to apply both a correction to the wind speed, and to rotate the160

wind vector about the slope-tangent. Finally, the two correction factors for TPI and Sx are applied as such:

U = U −Sxu,corr (11)

V = V −Sxv,corr (12)

U = U(1+TPIcor) (13)

V = V (1+TPIcor) (14)165

We note that parameter values and correction formulations used in this section are somewhat arbitrary. The logic behind

the corrections is explained above, and the exact values were reached through a sparse sampling of the parameter space. The

goal of the current study is to demonstrate the potential of combining a pre-conditioning step, described in the current section,

with the diagnostic wind solver described in the following section. The effects of this currently under-constrained approach to

correcting the wind field is discussed further in Section 4.1, and these corrections will be further refined in a future study by170

using observations of the 3D wind field in complex terrain.

2.2 Mass-Conserving Wind Solver

After adjusting the wind field according to terrain descriptors, or after ingesting any arbitrary wind field from forcing data, the

resultant wind field is not guaranteed to be divergence-free. Because ICAR is an incompressible atmospheric model, this would
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Figure 2. A conceptual outline of the Sx sheltering process. Areas where a correction should be applied are first selected, as indicated in the

upper row. Only terrain elements with a positive TPI value are considered to be potential sheltering terrain elements. The smaller hill on the

left has no positive TPI values along its slopes, so it does not produce an area of reduced wind speeds in the lee. The hill on the right does

have a positive TPI value at its peak, so it is considered for sheltering. The Sx values in the leeside of the peak are examined and compared

to the threshold Sx value, Sxthresh, calculated in Eq. #6. Grid cells with Sx angles larger than this threshold angle experience a correction to

their U and V wind speeds, as detailed in the second row of the figure. We consider that the maximum deflection of the leeside vector would

be a rotation about the elevation gradient of the grid cell. This maximum correction is then applied to the initial vector with a correction

factor, Sxcorr , as calculated in Eq. #7. The resultant vector is thus a mixture between the initial vector and the maximum possible correction.

mean a violation of mass-conservation. Thus, some further correction to the 3D wind field must be applied to ensure mass-175

conservation. In the original ICAR model, this is ensured by calculating the divergence for each model layer and prescribing

the grid-relative vertical velocity at the top of each layer such that divergence is eliminated. This is sometimes referred to as the

"kinematic method" of balancing the winds (O’brien, 1970; Homicz, 2002). Unfortunately, this method is known to produce

excessive vertical motion even for modest amounts of residual divergence (Goodin et al., 1980). Figure 3 shows the strong

vertical winds which are often observed in high-resolution simulations using the ICAR model with the kinematic method for180

balancing the 3D wind field. The strong vertical winds observed in the ICAR simulations are due to a) large grid distortions

in complex terrain at high resolutions, b) the use of high-resolution forcing data from a compressible atmospheric model, and

c) the kinematic solution for vertical wind itself (EQ #9 in G16). As the horizontal resolution is reduced, the magnitude and

variations of the vertical motions are reduced. As a result, simulations with the ICAR model at coarser resolutions exhibit less

strong vertical motion than shown here. However, such simulations still exhibit increasing vertical motion as a function of185

height due to the use of the kinematic solution for vertical velocity (O’brien, 1970). This results in excessively strong vertical
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Figure 3. Comparison of vertical motion between ICAR and HICAR at 50m and 450m resolutions for an arbitrary simulation time step.

ICAR is shown in the first row, HICAR in the second.

motion at the model top, and explains the sensitivity of ICAR to the height of the model top and choice of upper boundary

condition reported in Horak et al. (2019) and Horak et al. (2021).

This issue alone motivates the implementation of a new approach to balancing the 3D wind field. When using the empirical

adjustment of the 3D wind field described above, even more divergence is introduced to the wind field, resulting in entirely190

nonphysical vertical velocities. Clearly another technique for calculating vertical velocity is required for high-resolution appli-

cations.

HICAR employs a method for calculating a mass-conserving wind field which is based on a variational calculus technique.

This technique has been developed over prior decades of wind modeling and pollutant transport (Sasaki, 1958; Sherman, 1978;

Ross and Fox, 1991), and has been adapted into a variety of wind models (Moussiopoulos et al., 1988; Forthofer et al., 2014).195

Wind Tunnel experiments and field observations have routinely demonstrated this techniques ability to simulate speed up and

deflection of flow around obstacles (Ross and Fox, 1991; Forthofer et al., 2014; Wagenbrenner et al., 2016). The method works

by solving an optimization problem where two functions are reduced: the divergence of the wind field and the total deviations

of the solution wind field from the initial wind field.

Div =
dρu

dx
+

dρv

dy
+

dρẇ

dż
(15)200

Diff = (ui −u)2 +(vi − v)2 +α(wi −w)2 (16)
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Where u and v refer to the east- and north-ward wind speeds, w refers to the vertical wind speed, and ẇ refers to the

contravariant, grid-relative wind speed. All of the xi variables indicate initial values. The distinction between w and ẇ is

necessary when the optimization is performed on a grid with a vertical coordinate transformation such as sigma or SLEVE

coordinates (Gal-Chen and Somerville, 1975; Schär et al., 2002) and is further detailed in Ross et al. (1988). An excellent205

overview of the maths used to solve this optimization problem and a discussion of various considerations is given in Homicz

(2002) and a general review is provided by Ratto et al. (1994). Because an initial guess is required for wi, HICAR allows the

user to specify vertical motion as an input variable. Otherwise, wi is taken to be 0, such that vertical motion is minimized. In the

above equations, the variable α is used to control the relative weighting of changes to horizontal or vertical motion. This allows

the solution to account for effects of atmospheric stability if one makes α a function of atmospheric stability. For example,210

larger values of α increase the weighting of changes to w from its initial value relative to changes of u and v from their initial

values. This means that a better solution to the minimization would be found by preferring changes to u and v over w when

eliminating divergence. The result of this is more deflection around terrain and less vertical motion, which one would expect

during stable atmospheric conditions. A demonstration of the effects of different values of α is given in Figure 4, showing

the wind field generated by the maximum (1.0) and minimum (0.1) values that α is allowed to take. For the stable condition215

(α= 1.0) we see surface wind speeds approaching 10 m s-1 over the ridge crest and blocking of flow upwind of the ridge.

Correspondingly, vertical motion is around +/- 2 m s-1 over the ridge. For the unstable case (α= 0.1), there is comparatively

little deflection of the flow field upwind of the ridge, and little speed up over the ridge crest. Vertical motion is significantly

enhanced in the unstable case versus the stable case. As such, α can be used to select different solutions to the optimization

problem depending on atmospheric stability.220

In our implementation, the α variable is calculated at each input time step and for each grid cell according to the atmospheric

stability at that location according to:

α=

√
1− 0.5

√
1+4Fr4 − 1

Fr4
(17)

Fr =
WS

L ∗N
(18)

Where Fr is the Froude number, WS is the wind speed, L is the scale length, and N is the Brunt-Väisälä frequency (BVF).225

Equation #17 comes from Moussiopoulos et al. (1988) and is straight forward, but the calculation of the Froude number

deserves further discussion. In order to calculate α in 3D, the Froude number must also be calculated in 3D. To do this, WS, L,

and N are calculated for each grid cell. The scale length, L, is the height difference between the grid cell height and the largest

downwind terrain element, plus some constant to ensure a minimum value for L. L is calculated for each grid cell and each wind

direction at initialization so that it can be easily looked up at run time. Some search radius must be imposed when calculating L,230

which we set to 4km. Brunt-Väisälä frequency is then calculated by considering the column of air above the grid cell for which

it is calculated. If there is a downwind obstacle, the column of air extends from the current grid cell height up to the altitude

of the downwind obstacle. If there is no obstacle, BVF is calculated using a difference over the current grid cell. The effect
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of these considerations is a Froude number which describes the ease of lifting a parcel of air over a given downwind obstacle.

This approach of using a spatial-temporally varying α differs from prior implementations of Sherman 1978’s technique, where235

either α was set to be 1.0 (Forthofer et al., 2014) or where α varied in time but not in space (Moussiopoulos et al., 1988).

Thus our approach can handle complex situations where flow blocking varies as a function of height, such that flow may be

blocked at the foot of a mountain but rise over the obstacle at higher altitudes. The computational demands of this technique

are relatively small in comparison to other components of HICAR (advection, microphysics), since most of its calculations are

performed once at initialization, and the solution of equations # 15 and 16 are only performed when ingesting new input data240

instead of at every physics time step.

2.3 Advection and Physics Parameterizations

The original ICAR model offers a first-order upwind advection scheme. Although this scheme is highly diffusive (Schär

et al., 2002), it has the advantage of low computational demand, making it suitable for ICAR’s original development purposes

and target resolutions. For our application at higher resolutions, and particularly with an interest for strongly heterogeneous245

precipitation patterns at the ridge-scale, a less-diffusive advection scheme was required. The issue of numerical diffusivity in

complex terrain has been well documented (Westerhuis et al., 2021; Lundquist et al., 2012). Higher order advection stencils

(odd-ordered up to 5th order) have thus been implemented in the HICAR model. These schemes, in combination with the

SLEVE coordinate system (Schär et al., 2002; Kruyt et al., 2022), reduce numerical diffusion in HICAR simulations. To achieve

larger physics time steps, a pseudo-Runge-Kutta-3 (RK3) advection integration is added to HICAR (Wicker and Skamarock,250

2002). Lastly, the use of RK3 time stepping required the addition of a monotonic flux-limiter for the standard advection scheme

(Wang et al., 2009).

Since the original publication of G16, numerous physics parameterizations have been added to the model, and will be

detailed in Kruyt et al., 2023, in prep.. Of importance to this paper, the Noah land surface model (LSM) (Ek et al., 2003),

Morrison microphysics scheme (Morrison et al., 2009), RRTMG radiation scheme (Thompson et al., 2016), and the YSU PBL255

scheme (Hong et al., 2006) have all been added to the model and will be used for the simulations which follow in later sections.

2.4 Asynchronous I/O

As model efficiency increases, it is natural to push the model to run for larger domains and larger time periods. Additionally, as

the simulation resolution increases, forcing data of a higher resolution is needed. The cumulative effect of these two points is

that efficient, high-resolution models must output and input large amounts of data (Prein et al., 2015). For example, for the setup260

used in section 4.2.1, one day of simulation requires reading 11GB of forcing data and outputting 14.5GB of data, depending

on output variables selected. To avoid blocking I/O operations on the runtime loop and to facilitate a many-programs one-file

access pattern, an asynchronous I/O strategy was adopted. This is shown in Figure 1 via the blue elements on the left. Input and

output is handled by a few processes which are split from the simulation processes at initialization. These I/O processes then

coordinate their file access through parallel netCDF I/O, resulting in less demand on the file system and eliminating the need265
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Figure 4. Demonstration of the two end-member solutions for HICAR’s wind solver under the two extreme stability conditions. The plan

view panels in the top row are centered on a ridge cutting horizontally across the figure. A vertical transect across this ridge is shown in the

lower panels, with the location of the transect indicated in the upper panels by the white dotted line. Surface wind flow lines are overlaid

on a topographic base map in the upper panels, with flow line color corresponding to wind speed. The left column of the figure displays the

maximum stable condition, while the right column shows the maximum unstable condition.

for stitching together output files in post-processing. These changes make the model faster by overlapping I/O with physics

processes, and make it possible to directly use simulation output to force one-way nested runs, as done in section 4.2.1.
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3 Model Setup and Datasets

3.1 COSMO Model

The Consortium for Small-scale Modeling (COSMO) model is run operationally by the Swiss weather service, MeteoSwiss,270

over a domain encompassing Switzerland (www.cosmo-model.org). COSMO is a non-hydrostatic, compressible atmospheric

model capable of simulating the state of the atmosphere over complex terrain such as the Swiss Alps. Predicted variables from

COSMO such as temperature, humidity, and wind speeds are made available by MeteoSwiss. Output from the 1.1km and 2km

resolution COSMO simulations, COSMO1 and COSMO2, respectively, are used in this study. COSMO2 output is used to force

the 1350m WRF, ICAR, and HICAR simulations discussed in section 4.1 and 4.2.1, while COSMO1 output is used to force the275

250m HICAR simulation in section 4.2.2 and 4.3, and the 450m HICAR simulation in section 4.4. The HICAR simulations are

forced with specific humidity, temperature, pressure, and the 3-D wind field (U/V/W) from the COSMO model. All COSMO

variables are bi-linearly interpolated in 3D to the HICAR grid using latitude, longitude, and vertical height. Then, specific

humidity and temperature are forced at the boundaries, while pressure and winds are input for the full 3-D grid, with the winds

being further modified using the downscaling scheme described in section 2.280

3.2 WRF Model

The Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) is a non-hydrostatic and compressible atmo-

spheric model used widely in research and operational forecasting (Benjamin et al., 2016). WRF has also been successfully run

at very high resolutions (50m) over the complex terrain of the alps (Gerber et al., 2018, 2019; Goger et al., 2022; Kruyt et al.,

2022). For these reasons, we use WRF in this study to demonstrate a "gold-standard" for atmospheric modeling in comparison285

to HICAR runs. All output from the WRF model comes from prior simulations first presented in Gerber et al. (2018), and thus

guided the choice of spatio-temporal domain for some of the simulations presented in section 4. All WRF data presented is at

a 50m horizontal resolution.

3.3 ICAR/HICAR Setup

Simulations using the ICAR and HICAR models, introduced in section 2, are presented in section 4. The HICAR simulations290

utilize the YSU PBL scheme, the Noah land surface model, RRTMG radiation scheme, and the Morrison two-moment micro-

physics scheme. The surface scheme used is the Noah scheme detailed in (Chen and Dudhia, 2001). This microphysics scheme

was chosen due to its demonstrated efficacy in forecasting precipitation in complex terrain (Liu et al., 2011), and use in the

WRF simulations of Gerber et al. (2018). Only the wind fields from the ICAR simulations are analyzed, and because there is

no physics-dynamics coupling in either ICAR or HICAR, ICAR was not run with these physics parameterizations enabled.295

HICAR has been developed as a variant of the ICAR model, as these models share a core code base. The HICAR variant of

ICAR can be turned on by passing "HICAR" to the variant option of the namelist file. This switches on a number of namelist

options, ensuring that the configuration is optimized for high-resolution runs in complex terrains. Specifically, the namelist
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options which designate a run with the HICAR model include: terrain-following SLEVE coordinates, variational-calculus-

based wind solver, and wind modifications based on terrain-descriptors.300

3.4 Spatio-temporal Domains

Sections 4.1 and 4.2.1, as well as the figures presented in section 2, use the same 50m domain introduced in Gerber et al. (2018).

It is roughly 10km x 10km square, with the 50m horizontal resolution simulations covering a 24 hour period over the day of

March 5th, 2016. This domain covers the Upper Dischma valley outside of Davos, Switzerland. We adopt the terminology "xx

m simulation" to refer to the horizontal resolution of a simulation. The 50m HICAR and ICAR simulations for this run are305

nested within 150m, 450m, and 1350m simulations of the same respective model, following the methodology of Gerber et al.

(2018) for their WRF runs. Importantly, ICAR/HICAR allows the use of a coarser vertical grid than WRF (Horak et al., 2021).

As a result, the WRF simulations use 40, 40, 60, and 90 vertical levels for the 1350m, 450m, 150m, and 50m simulations,

while ICAR/HICAR used only 20, 20, 60, and 60.

Sections 4.2.2 and 4.3 discuss results from a 250m simulation of HICAR covering most of the Swiss Alps from Lausanne in310

the west to Val Müstair in the east, for a roughly 280km X 170km domain. The simulation was run for the month of January

2017.

Section 4.4 repeats a benchmarking setup from Kruyt et al. (2022), running the HICAR model at a 50m resolution for five

days in March 2019 over a roughly 7.5km x 7.5km domain. This 50m domain is nested within a 450m domain, following the

methodology of Kruyt et al. (2022).315

High-resolution domain data for all simulations comes from Gerber and Lehning (2021), which provides ASTER Global

Digital Elevation Model V002 and Corine land use data at a resolution of 1 arcsec (Spacesystems and Team, 2019; Agency,

2006). For the HICAR simulations, this terrain data was then upscaled to the desired target resolution with no smoothing

applied. In order to run the WRF model at resolutions approaching 50m, certain considerations must be applied to the model

topography. For the WRF simulations, to ensure model stability at reasonably long time steps, the terrain for all high-resolution320

simulations is smoothed using a 1-2-1 smoothing filter with 14 passes, and the terrain near the boundaries of the outer-most do-

main is smoothed to match the COSMO topography. Although this smoothing procedure is not required to run ICAR/HICAR,

the same smoothed terrain data as the WRF simulation is used for one HICAR simulation presented in section 4.2.1. This

is done in order to enable a direct comparison between WRF and HICAR for the same topography. In a future publication,

potential improvements of using unsmoothed topography on wind speeds in HICAR will be examined.325

3.5 Gridded Datasets

In section 4.2.2, two gridded datasets for precipitation are used, MeteoSwiss’s RhiresD product (MeteoCH, 2013), and the

precipitation product produced by the SLF Operational Snow Hydrology Service (OSHD) using an Optimal Interpolation (OI)

technique (Magnusson et al. (2014); Mott et al., submitted). RhiresD is constructed by taking precipitation data from a dense

network of precipitation gauges distributed throughout the Alps, and then applying a climatological precipitation-elevation330

gradient to extrapolate observations beyond gauges, using a version of the PRISM algorithm (Daly et al., 1994). The OSHD
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Table 1. Model Configurations. For advection order, "#H" referes to the numeric order of the horizontal advection stencil, and "#V" to that

of the vertical.

Resolution Wind-solver Advection
Terrain

Smoothing
Microphysics PBL LSM

4.1, 4.2.1

WRF 50m Navier-Stokes 5H, 3V Yes Morrison None (LES) Noah-MP

HICAR 50m
Variational Solver +

Sx & TPI
3H, 3V No Morrison YSU Noah-LSM

HICAR,

No Sx+TPI
50m Variational Solver 3H, 3V No Morrison YSU Noah-LSM

HICAR,

WRF-topo
50m

Variational Solver +

Sx & TPI
3H, 3V Yes Morrison YSU Noah-LSM

ICAR 50m Interpolation 1H, 1V No N/A N/A N/A

4.2.2, 4.3

HICAR 250m
Variational Solver +

Sx & TPI
3H, 3V No Morrison YSU Noah-LSM

4.4

WRF 50m Navier-Stokes 5H, 3V Yes
Thompson-

Eidhammer

LES +

(Shin and Hong, 2015)
Noah-MP

HICAR 50m
Variational Solver +

Sx & TPI
3H, 3V No Morrison YSU Noah-LSM

ICAR 50m Interpolation 1H, 1V Yes
Thompson-

Eidhammer
(Hong and Pan, 1996) Noah-LSM

precipitation product is obtained by first partitioning RhiresD into solid and liquid precipitation and then updating the snowfall

fraction by assimilating snow station data from 350 locations using optimal interpolation (Magnusson et al., 2014). This allows

for a higher station density at higher elevations relative to RhiresD, and minimizes underestimates of precipitation during

snowfall events due to gauge undercatch. Of course, selecting for snow station sites introduces other spatial biases in station335

representativeness (Grünewald and Lehning, 2015). A full description of the OI procedure used in the OSHD product can be

found in Mott et al., submitted.
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4 Model Demonstrations

4.1 Wind Fields

In section 2.2, the effects of the changes to the wind solver were shown for comparison with ICAR (Figure 3) and for a340

demonstration of their ability to simulate atmospheric stability (Figure 4). To discuss the wind solver of HICAR in the context

of existing atmospheric models, we present here results comparing HICAR to the WRF model. Figure 5 shows a plan view of

multiple model simulations at 50m over complex terrain in the Upper Dischma valley of Davos, Switzerland. As discussed in

section 2, the COSMO forcing data provided is expected to capture the effects of mountain waves which the linear wind solver

of ICAR is designed to capture, so this module of ICAR was turned off. As a result, the ICAR simulation shown is bilinearly345

interpolated COSMO2 data. The surface flow field from ICAR is quite homogenous as a result, with uniform south-westerly

flow over the domain and a narrow range of wind speeds over the domain. This is in contrast to the WRF simulation, which

reports various modifications to the flow pattern (blocking, cross-slope flow, terrain-induced speed-up), as well as a larger

range of wind speeds. This result is instructive that ICAR alone is not suitable for high-resolution simulations. WRF also

reports higher wind speeds at ridge crests than any of the HICAR simulations, but WRF has been found to overestimate speed350

up of winds over topography (Gerber et al., 2018; Gómez-Navarro et al., 2015; Goger et al., 2022; Umek et al., 2021).

For examining the effects of the wind solver detailed above, we present two HICAR simulations: one with the empirical

adjustments based on terrain-descriptors and one without. The simulation without terrain-descriptors uses a procedure to diag-

nose its winds which is similar to that employed by models like WindNinja (Forthofer et al., 2014) but, with the distinction of

using a spatio-temporally varying value for α (EQ #17). This simulation already captures a wider range of surface wind speeds355

than the base ICAR model, and offers some of the flow field deflection observed with the WRF model. This is consistent with

prior studies which have employed the technique from Sherman (1978). Once the terrain descriptors are used, we see that

certain features of the flow field present in the WRF simulation also emerge in the full HICAR run. Of note are the cross-slope

flows and lee-side reductions in wind speed. Due to the improved terrain representation capable with the ICAR/HICAR model,

these flow features develop for secondary valleys not fully resolved in the WRF topography. This demonstrates the added value360

of this two-step approach to generating a diagnostic, mass-conserving wind field.

The advantages of the terrain descriptors are on show in Figure 6 as well. This figure presents a vertical cross section of

modeled flow across the Sattelhorn ridge, which is in the upper-center of Figure 5. The WRF model shows a large eddy in the

lee-side of the ridge, with a long horizontal extent and reduced wind speeds relative to the flow outside of the lee. This eddy

also gives rise to up-slope flow at the surface of the lee of the ridge. The HICAR run simulates a similar dynamic structure.365

The eddy present in HICAR has a shorter horizontal extent and is stronger, resulting in higher wind speeds within the eddy

and faster reverse flow at the surface of the lee. Despite these differences in the properties of the eddy, the ability of HICAR to

predict the presence of such flow features is a surprising result, since no prior applications of Sherman 1978’s technique have

reported such behavior. We attribute this to our use of terrain-descriptors, which predispose the solution of Sherman 1978 to

generate an eddy in the lee, all of which may be due to the sharper terrain represented by HICAR. It is easy to imagine how this370

approach of pre-conditioning a wind field and then using a diagnostic, mass-conserving solver, could be used to parameterize
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other dynamic effects, and has previously been shown to yield reasonable results when parameterizing thermally driven winds

(Forthofer, 2007). We also note that the calculation of the terrain-descriptor based corrections depends upon somewhat arbitrary

constants, and thus could be adjusted to yield eddies of varying horizontal extent. This tuning of the terrain-descriptor-based

adjustments will be done in a future study, using distributed observations of winds in complex terrain as a basis for tuning and375

validation.

The differences in terrain representation between WRF and ICAR/HICAR are also on display in Figures 5 and 6. WRF and

other models which prognostically solve for winds rely on spatial gradients of pressure to calculate wind speeds. In order to

simplify the lower boundary condition, these models also typically employ terrain following coordinates where model coor-

dinate surfaces slope as the terrain does. This means that high-resolution simulations will feature large coordinate distortion,380

and pressure differences in the horizontal may become quite large as one vertical cell surface exists at lower elevations than

another. This may lead to large pressure gradients which require very fine time steps to stably integrate. The model terrain is

typically smoothed to allow for smaller grid distortions, smaller pressure gradients, and thus larger time steps. Recent imple-

mentation of an immersed boundary method in WRF allows for this entire consideration to be skipped, although such a domain

discretization comes with its own trade-offs (Lundquist et al., 2012).385

The above discussion is valid for atmospheric models which solve prognostic equations for momentum. Neither the ICAR

model nor the HICAR variant do this, opting for diagnostic solutions for the wind field instead. As a result, issues of model

stability arising from terrain steepness do not exist, and we can include model terrain without any artificial smoothing or

implicit numerical diffusion. This is apparent in the elevation profile of Figure 6 and, to a lesser extent, in the DEM of Figure 5.

The difference in terrain used may lead to the different lee-side dynamics when comparing the HICAR and WRF simulations.390

This ability of ICAR and HICAR to represent the terrain without any artificial smoothing is a major strength of both models.

High-resolution atmospheric modeling is assumed to yield more accurate forecasts in part through improved representation of

the underlying terrain. If HICAR can represent topography more accurately than WRF at the same horizontal resolution and

without explicit numerical diffusion, it allows for effectively higher model resolutions than WRF.

4.2 Precipitation Distribution395

4.2.1 Ridge-scale

The above discussion of terrain representation also plays an important role in precipitation distribution, as is on display in

Figure 7. There are noticeable differences in the snowfall transects of the two HICAR simulations, one using the unsmoothed

topography (HICAR) and the other using WRF’s smoothed topography (HICAR, WRF-topo). This result supports the above

point that HICAR’s improved terrain representation leads to a higher effective model resolution, impacting the simulation400

results. We also note a strong wet-bias over the domain for the WRF model, with precipitation amounts nearly double what

was recorded at a snow depth station located in the domain (Figure 7). This wet bias was attributed to excessive orographically

enhanced precipitation in Gerber et al. (2018). The snowfall transects reveal ridge-scale differences in precipitation for all

model simulations, with the windward (left) side of the ridge receiving approximately 15% more snowfall than the leeward
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Figure 5. Comparison of surface flow fields at a 50m resolution between models and model setups for March 5th, 2016, 00:00 UTC+1.

The upper four panels show flow fields overlaid on model topography. Model topography is smoothed for the WRF run compared to the

HICAR/ICAR runs. Thickness of flow lines corresponds to wind speed, with thicker flow lines indicating higher wind speeds. The lower row

of panels displays the surface wind speeds of the various model runs. The sparser flow lines for the ICAR simulation are a plotting decision

to avoid redundancy and do not reflect a difference in the simulation setup. The orange arrow indicates the location of the Sattelhorn Ridge,

which is shown in profile in Figure 6.

(right) side in the HICAR simulations. The WRF simulation shows a similar although more modest ridge-scale difference,405

with a positive snowfall anomaly (relative to mean over the transect) beginning on the windward side and continuing until

just downwind of the ridge, followed by a steady decrease in snowfall anomaly. The main difference between the HICAR and
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Figure 6. Profile view of flow fields at a 50m resolution between models for March 5th, 2016, 02:00 UTC+1. Wind direction is indicated

by the flow lines, and line thickness corresponds to wind speed, where thicker lines show higher wind speeds. Wind speed is given by the

background color. A profile of the underlying terrain is shown in each panel, with the WRF simulation having smoother terrain than the

ICAR or HICAR simulations.

WRF simulations are the magnitude of the windward and leeward differences. This can be partly explained by the leeside

dynamics simulated by both models. Taking the flow profiles shown in Figure 6 to be representative of the flow differences

over the 24-hour event, we note that HICAR has higher wind speeds aloft on the leeside of the ridge due to the presence of the410

eddy. The peak in precipitation on the windward side is likely due to blocking of the lowlevel flow and reduced wind speeds

on this side of the peak (Figure 6). We note a positive anomaly in snow depth just downwind of the ridge, which we attribute
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to the strong horizontal wind speeds aloft, inline with previous studies of preferential deposition (Mott et al., 2014; Wang and

Huang, 2017). In fact, the HICAR snow depth distributions show a similar windward/leeward pattern to results obtained by

Comola et al. (2019) using an LES model over ideal topography. This cumulative effect of the flow field on snow depth can be415

realized intuitively by tracing the flow lines of Figure 6 across the ridge and imagining snow sedimentation given a constant

sedimentation rate. The question of if this flow pattern is accurate for this particular event has not been demonstrated, but given

the proven accuracy of HICARs advection scheme (Wang et al., 2009), the resultant deposition pattern is certainly physically

consistent with the given flow field. This discussion demonstrates the research utility of HICAR: it can be used to efficiently

(Section 4.4) test different flow patterns at the ridge scale and see how they affect particle-flow interactions. A later validation420

of HICARs flow fields would determine how predictive the simulated deposition patterns are.

4.2.2 Range-Scale

Accurate high-resolution precipitation estimates in complex terrain are a slippery target (Lundquist et al., 2019; Bonekamp

et al., 2018). Gauge-based gridded products are subject to gauge undercatch, and assumptions about the spatial patterns used to

interpolate them (Rasmussen et al., 2012; Collados-Lara et al., 2018; Lundquist et al., 2010). Radar products meanwhile suffer425

from occlusion when scanning in complex terrain (Germann et al., 2022). As a result, high-resolution comparisons of modeled

versus observed precipitation in complex terrain deserve careful consideration to offer any form of model validation. We spare

any detailed quantitative validation for a future study, and instead offer a comparison of different gridded precipitation products

for the sake of discussion.

Figure 8 shows accumulated precipitation for January 2017 from two gridded products and a 250m HICAR simulation. We430

first note that the majority of storms during January 2017 came from the northwest, and our simulation domain for HICAR

extended slightly beyond the boundaries of the figure shown to just include the Swiss Plateau. The HICAR simulation is forced

with only water vapor from COSMO1, so the microphysics requires some time to "spin-up", generating hydrometeors and thus

precipitation. This may explain some of the lower precipitation amounts along the pre-Alps in the upper northwest of the figure

relative to both RhiresD and the OSHD precipitation product.435

Overall, Figure 8 shows remarkable agreement between HICAR and the two gridded precipitation products for a one month

winter period. The OSHD precipitation product gives larger precipitation values at higher elevations than RhiresD since it is

generated by back-calculating precipitation from snow water equivalent, avoiding gauge undercatch during snowfall events

(Magnusson et al., 2014). This result suggests that the larger precipitation values obtained from the HICAR simulation are

possible. The inter-alpine areas (center) of the domain however show less precipitation in HICAR than either gridded prod-440

uct, especially in the valleys. However, these differences between HICAR and the other gridded products are comparable to

differences observed between the gridded products themselves. Lastly, we note that the product using climatological averages

for its interpolation, RhiresD, returns a smoother field of precipitation than either HICAR or the OSHD product. The OSHD

product yields stronger elevation gradients of precipitation, which is likely due to its higher station density at higher elevations

relative to RhiresD, and its ability to capture unbiased precipitation during snowfall events. This suggests that the stronger445

gradients observed from HICAR are appropriate. None of this discussion is to assert an accuracy of one product over another,
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Figure 7. Differences in snowfall over the Upper Dischma Valley for a 24-hour snowfall event on March 5th, 2016. All terrain data displayed

is from the unsmoothed HICAR run. All values of snowfall are reported in cm, with the WRF and HICAR snowfall values converted from

mass to depth assuming a constant density of 100 kg m-3. The upper left panel shows a DEM of the area, with a dot in the valley indicating

the location of a snow depth sensor an arrow indicating the location and direction (left-right) of the transect shown in the upper right panel.

This arrow points along the prevailing wind direction during the 24-hour snowfall. The upper right panel shows snow depth transects across

the Sattelhorn ridge for three model simulations, WRF, HICAR, and HICAR run with the same smoothed topography as WRF. Mean snowfall

is almost twice as large in WRF than in HICAR, so snow depth is reported as percentage of the mean snow depth along the transect in order

to compare the HICAR and WRF simulations on the same graph. The lower two panels show the spatial distribution of snow depth across

the domain, with the value recorded at the snow depth station over the 24-hour period (20.3cm) overlaid.

but is instead to demonstrate that HICAR’s precipitation estimate is as consistent with existing precipitation products as those

products are with each other.
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Figure 8. Precipitation over the central and eastern Swiss Alps during January 2017 at a 250m resolution. All three plots of precipitation

have point data from the OI product overlaid as dots. Since these mostly coincide with the same values for the OI product, the dots are often

indistinguishable from the background field in the top panel.

4.3 Cold Air Pooling

Figure 9 shows a cold air pooling event on the morning of January 24th, 2017. We observe that, over the course of the450

early morning hours, strong mesoscale winds recede from over the valley, allowing a cool, stable boundary layer layer to

develop and for that cool air to migrate toward lower elevations. This surface layer is ultimately re-mixed as wind speeds
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increase and surface cooling decreases around 9 AM local time. These results are somewhat surprising, as a parameterization

of thermally driven flows is not yet included in HICAR. Thus, the flow patterns shown are largely unaware of the evolving

thermal stratification of the valley. However, the wind solver used in HICAR is designed to minimize differences between its455

wind field and the wind field supplied from the forcing data. The driving model, in this case COSMO1, has been shown to

simulate valley winds supportive of cold air pooling (Goger et al., 2018), so if the LSM of HICAR simulates a cooling of the

surface, cold air pooling as shown in Figure 9 is possible. This figure demonstrates an important caveat of the HICAR model:

its dependency on physically consistent winds from forcing data. The simulation shown here was forced with COSMO1 data

at the boundaries, while the model runs in prior sections examining HICAR’s wind field were forced with COSMO2 data. A460

test of HICAR’s sensitivity to the resolution of the driving model is needed, but is beyond the scope of this study. At present,

only forcing data at resolutions where mountain waves can be expected to be resolved have been used. Yet, as noted in section

2.0, regional forecasting offices are increasingly providing model output at these resolutions.

4.4 Computational Efficiency

The main reason why HICAR may be attractive as a model is through its computational efficiency relative to existing atmo-465

spheric models such as WRF or COSMO. Aside from HICARs improved representation of terrain, the model is not expected

to simulate physical phenomena better than more complex models. Thus, understanding its computational demand is central

to establishing its utility. To quantify this demand, we repeat a benchmarking setup described in Kruyt et al. (2022). We run

HICAR at a 50m resolution over a roughly 7.5 x 7.5 km domain for a 5 day period in March 2019, which includes several

winter storms. The model numerics/physics setup is the same as those used for the above subsections for which results are470

shown. The results of the benchmarking test are presented in Table 1, alongside the results previously published in Kruyt et al.

(2022). The main takeaway from this comparison is that HICAR uses 594x fewer computational resources than WRF for the

same simulation. Stated otherwise, a year of simulation over this domain with WRF would require a significant allotment of

computing time ( 350,000 node hours, assuming 36 cores per node). With HICAR, the same simulation represents a fraction

of a modest project allocation ( 590 node hours).475

The more than twenty-fold speedup of HICAR relative to ICAR is also somewhat surprising. This result is best explained

by the switch from the GNU fortran compiler to the Cray compiler and aggressive optimization of the model code outside of

the physics parameterizations. Of these optimizations, one of the most effective at reducing runtimes was moving to batched

message passing between parallel processes. Testing of Coarray fortran, on which ICAR is parallelized (Rasmussen et al.,

2018), has revealed the Cray compiler to have a faster implementation of this fortran standard than GNU. Additionally, the480

high-performance computing architecture used in this study is the Piz Daint computer, featuring Cray XC40 compute nodes.

The use of a native compiler may contribute to speed up as well. The WRF runs here were performed with the Intel compiler,

and were not re-run for this study with the cray compiler due to constraints on computational resources. Prior studies using

WRF on the same computing archetecture additionally recommend the use of the Intel compiler (Gerber and Sharma, 2018).
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Figure 9. The development and diffusion of surface cooling for an alpine valley during dawn. The plot shows a small area of the 250m Swiss

Alp domain introduced in section 3.4. The local time is indicated on the y-axis label. Wind vectors are plotted for wind directions along the

transect. Thicker vectors indicate higher wind speeds, and winds below 0.2 m s-1 are not plotted.

5 Conclusions485

In this paper we have introduced the High-resolution variant of the ICAR model, HICAR. We detailed its primary modifications

to adapt it for simulations over high-resolution complex terrain. This consists primarily of a new approach to solving for a 3D

wind field which utilizes terrain-descriptors, TPI and Sx, to pre-condition the input wind field to approximate some expected
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Table 2. Core-hours per simulation day for benchmarking run

WRF ICAR HICAR

Core-hours 33,993 1,336 57

Speed-up over WRF 1.0 25.4 594.3

effects of the topography on the flow field (Figure 2). These effects are parameterized simply and rely on assumptions and

somewhat arbitrary constants. The model’s sensitivity to these constants will be further investigated in a future study. After490

this correction step, the pre-conditioned wind field is fed into an optimization routine, which makes the resulting field mass-

conserving while minimizing changes to the pre-conditioned field (Figure 1). A novel approach to the diagnostic wind solver

is adopted which allows atmospheric stability to influence the solution as it varies in time as well as space. This allows for

low-level flow blocking, leeside recirculation, and cross-slope flows to be simulated by the model. These changes to the wind

solver, in addition to a new advection scheme and physics parameterizations, enable the results demonstrated in section 4.495

We observe a marked improvement in the representation of wind fields in complex terrain over the base ICAR model when

comparing against the WRF atmospheric model (Figure 5). By avoiding the Navier-Stokes equations, HICAR is also able to

run stably over steeper terrain than WRF, and thus may resolve flow features induced by small-scale topography which WRF

cannot (Figure 5). These improvements to the wind field make HICAR capable of simulating heterogenous snow deposition

patterns in complex terrain, which show clear signals resulting from terrain-flow interactions (Figures 6 and 7). At larger500

scales, precipitation patterns in complex terrain are represented to the same goodness as existing gridded precipitation products

(Figure 9). ICAR/HICAR also forgoes any consideration of pressure gradients in its dynamics, allowing it to be run without any

smoothing of the underlying terrain. Most importantly, all of these developments were done while maintaining the orders of

magnitude speed up over WRF which ICAR originally demonstrated. The result is a model which is 594x faster than WRF and

can run at very high resolutions (50m), extending intermediate complexity atmospheric modeling into the resolutions typically505

used by land surface modelers. HICAR’s ability to handle very steep terrain, coupled with its computational speed, seems

well suited for modeling efforts over High Mountain Asia, where testing of various model configurations is already performed

with more computationally expensive models (Bonekamp et al., 2018). HICAR’s computational efficiency also enables high

resolution simulations over long time scales, supporting climate impact studies at the regional scale and seasonal studies of

coupled glacier-atmosphere or snow-atmosphere models at hectometer scales. This last point will be expanded upon in future510

publications, where HICAR will be coupled with an intermediate complexity snow model to enable high-resolution forecasting

of winter snowpack and spring melt. This will involve the addition of a thermal wind parameterization to improve surface flows

over glaciers and snow (Mott et al., 2020), with the goal of better resolving advective surface-atmosphere processes such as

turbulent heat exchange. As atmospheric models begin to regularly probe higher resolutions, HICAR enables rapid testing and

iteration of various model configurations with relatively little computational cost. This makes HICAR a powerful companion515

to conventional atmospheric models.
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Code and data availability. HICAR can be used for non-profit purposes under the GPLv3 license (http://www.gnu.org/licenses/gpl-3.0.html,

last access: 1 February 2023). Code for the model is available at https://github.com/HICAR-Model/HICAR. The exact release (v1.1) used

in this publication is available at https://doi.org/10.5281/zenodo.7920422. The model has dependencies for the netCDF4-parallel fortran and

PETSc libraries. Paralellisation is achieved through fortran Coarrays, which utilizes different message passing protocols depending on the520

compiler used. For use with the GNU fortran compiler, OpenCoarrays is required.
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