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Abstract.   

We describe a new FORTRAN 90 computer program to solve the system of equations for the NH4
+–Na+–Ca2+–K+–Mg2+–

SO4
2––NO3

––Cl– system, based on the algorithms of ISORROPIA II, but containing algorithm improvements and corrections.  10 

These allow the code to deliver more accurate solution results in formal evaluations of accuracy of the roots of the systems of 

equations, while reducing processing time in practical applications by about 50%.  The improved solution performance results 

from several implementation improvements relative to the original ISORROPIA algorithms.  These improvements include (i) 

the use of the ‘interpolate, truncate and project’ (ITP) root–finding approach rather than bisection, (ii) the allowance of search 

interval endpoints as valid roots at the onset of a search, (iii) the use of a more accurate method to solve polynomial subsystems 15 

of equations, (iv) the elimination of negative concentrations during iterative solutions, (v) corrections for mass conservation 

enforcement, and (vi) several code structure improvements.  The new code may be run in either a “vectorization” mode wherein 

a global convergence criterion is used across multiple tests within the same chemical subspace, or a “by gridpoint” mode 

wherein individual test cases are solved with the same convergence criteria. The latter approach was found to be more efficient 

on the compiler tested here, but users of the code are recommended to test both options on their own systems.  We also note 20 

that implementation of inorganic chemistry within chemical transport models should take care to retain residual or “free” mass 

of aerosol species remaining after partitioning, to ensure mass conservation – the new code has been constructed to explicitly 

conserve the input mass.  The new code is provided as open–source FORTRAN 90 shareware. 

1 Introduction  

Anthropogenic atmospheric particulate matter (aerosols) can negatively impact the Earth’s climate and biosphere – aerosols 25 

can alter the atmosphere’s radiative forcing (Jacobson, 2001; Schmale et al., 2021), contribute to acid rain (Irwin and Williams, 

1988), reduce atmospheric visibility (Quan et al., 2015) and cause morbidity in humans (Atkinson et al., 2014) and other plant 

and animal species (Lovett et al., 2009).  Atmospheric particulate matter is comprised of organic and inorganic species, with 

25 to 60% of particulate matter being inorganic by mass (Harrison and Pio, 1983; Heintzenberg, 1989).  The inorganic portion 
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of atmospheric particulate matter consists primarily of sulfate (SO4
2–), nitrate (NO3

–), ammonium (NH4
+), chloride (Cl–), 30 

calcium (Ca2+), potassium (K+), magnesium (Mg2+) and sodium (Na+) (Harrison and Pio, 1983; Wang et al., 2003).  Along 

coastlines and within marine air masses, inorganic bromide (Br–) may also be common (Sander et al., 2003).  Ca2+, K+, Mg2+, 

Na+ and Cl– exist principally in the coarse mode, and these species are particularly important to the partitioning of ammonium 

and nitrate (Metzger et al., 2006).  As an example, coarse mode particle nitrate may form via adsorption of nitric acid (HNO3) 

onto sea salt (Savoie and Prospero, 1982).  It should be noted that a considerable amount of K+ may also be present in the fine 35 

mode when it is generated during biomass burning events, termed ‘pyrogenic potassium’ (Metzger et al., 2006).  The transfer 

of cation and anion mass between gas and particulate phase is crucially dependent on inorganic thermodynamic partitioning – 

for example, observations have indicated that base cations (Ca2+, K+, Mg2+, Na+) and the ammonium ion (NH4
+) can compete 

for uptake of HNO3 (the former residing in coarse mode, the latter in fine mode particle nitrate formation) (Makar et al., 1998, 

Anlauf et al., 2006). 40 

The aerosols can reside in the crystalline solid phase or exist as an aqueous solution of ions, and may be in 

thermodynamic equilibrium with atmospheric gases.  The partitioning of the inorganic species between the solid, gaseous and 

aqueous phase is a complex computational problem, owing to the many nonlinearities involved.  The equations describing 

high concentration (non–ideal) inorganic heterogeneous equilibrium between gases, ions and crystallized solid phases present 

a system of N equations in N unknowns (where N is the number of chemical constituents).  While these equations may be 45 

addressed through searching for roots of polynomials resulting from substitution of equations, the non–ideal nature of the 

problem manifests as corrections to the equilibrium constants in the equations (activity coefficients) which in turn depend on 

concentrations in the condensed phase – increasing the nonlinearity of the system of equations, and requiring the development 

of special techniques for their solution.  Several solvers have been developed to simulate the thermodynamic partitioning of 

inorganic species (see Zhang et al., 2000 for a detailed review of these solvers).  AIM2 (Clegg and Pitzer, 1992; Wexler and 50 

Clegg, 2002) and GFEMN (Ansari and Pandis, 1999a, b) are considered the most rigorous solvers, in that they attempt to find 

a global minimum in the Gibbs free energy of the constituents, but the downfall of this approach stems from the computational 

time and operator review required to discriminate between the true global minimum and (potentially many) local minima 

(Makar et al., 2003).  This difficulty has prevented the use of these solvers in three dimensional (3D) chemical transport models 

to date.  However, these models may be used to help determine sub–systems of equations – local solution spaces where gas 55 

and aerosol partitioning will occur with a smaller number of constituents – and hence describe simplified systems that may be 

solved with more efficient methods.  Inorganic heterogeneous chemistry implementations in chemical transport models have 

relied on computationally efficient algorithms, which directly solve the system of inorganic heterogeneous chemistry equations 

by considering the species chemical potentials within these predetermined subspaces of a smaller numbers of species, hence 

simplifying and reducing the number of equations and unknowns.  The specific subspace to be solved is determined based on 60 

the input precursor species, and ratio(s) of the total available cations to the total available sulfate (see Sect. 2).  This approach 

effectively breaks the larger problem into several separate smaller problems.  Solvers that apply this tactic include SCAPE 

(Kim et al., 1993a,b; Kim and Seinfeld, 1995; Meng et al., 1995), EQUILSOLV–II (Jacobson, 1999), 

https://doi.org/10.5194/gmd-2023-159
Preprint. Discussion started: 28 September 2023
c© Author(s) 2023. CC BY 4.0 License.



3 

 

ISORROPIA/ISORROPIA II/ISORROPIA–lite (Nenes et al., 1998; Fountoukis and Nenes, 2007; Kakavas et al., 2022), HETV 

(Makar et al., 2003) and HETP (presented herein).  HETV (HETerogeneous Vectorized) was a vectorized solver (i.e., 65 

optimized for vectorized architecture) based on the original ISORROPIA algorithms (Nenes et al., 1998), but with numerical 

improvements related to more accurate evaluation of cubic and quadratic equations whose coefficients may vary by several 

orders of magnitude, coding structure changes to replace logical IF statements with mathematical equivalents, the elimination 

of redundant calculations, the replacement of intrinsic functions in activity coefficient calculations by high order Taylor series, 

and the gathering of similar problems within a single–subsystem for solution using a global convergence criteria.  These 70 

modifications allowed HETV to perform calculations in 1/38 to 1/89 of the time required for ISORROPIA (v1.0), on a vector 

supercomputer (the fastest supercomputer architecture at the time the HETV code was created – more recent supercomputer 

architectures focus on parallel processing across multiple processors to reduce processing time).  In 2007 an update to 

ISORROPIA was released that included ‘crustal’ species (Mg2+, K+, Ca2+) and sea salt (Na+, Cl–) (referred to as ISORROPIA 

II; Fountoukis and Nenes, 2007).  More recently, a simplified (and extended) version of ISORROPIA II has been developed 75 

(called ISORROPIA–lite) that attempts to address the metastable state (those subsystems in which liquid water is present) as 

well as effects of organic aerosols on the partitioning of the inorganic system.  ISORROPIA–lite solves the same chemical 

subspaces as ISORROPIA II, but only for the metastable state option (i.e., efflorescence branch) and uses precalculated binary 

activity coefficients, resulting in a solver that executes about 35% faster than ISORROPIA II (Kakavas et al., 2022).  The 

underlying issue driving the use of a metastable state assumption in regional air quality models for inorganic heterogeneous 80 

chemistry solvers is that the presence of water in the aerosol is not only controlled by the inorganic components, but also by 

other components within a mixed–phase aerosol.  In the absence of these additional sources of aerosol water, the “pure” (i.e.  

only) inorganic aerosol thermodynamics can result in partitioning to the aerosol phase as only crystalline solids (no ions), 

whereas the presence of the additional sources of aerosol water will ensure that some water is always present – and hence the 

subsystems of equations that have no water will not be encountered.  It has been reported that metastable state aerosols may 85 

be ‘ubiquitous’ in the Earth’s atmosphere, existing more than 50% of the time when the relative humidity is between 45 and 

75% (Rood et al., 1989; Tang et al., 1995); this may be especially true in the case of dissolved impurities such as organic 

species.  Applications of inorganic aerosol thermodynamics with 3D chemical transport models thus tend to assume a 

metastable state as the most likely conditions in the troposphere.   This assumption also reduces the number of chemical sub–

spaces required to obtain a solution of the system of equations for inorganic heterogeneous chemistry, and additions such as 90 

formulae for the water activity associated with organic aerosols may be used to better simulate the aerosol water content 

(Kakavas et al, 2022).   

 In the different versions of ISORROPIA and HETV, the roots of sub–systems of equilibrium equations are used to 

determine the thermodynamic equilibrium solution, the result being the concentrations of the inorganic ions and the 

partitioning gases.  In ISORROPIA/ISORROPIA II/ISORROPIA–lite and HETV, convergence of these solutions to these 95 

systems of equations are obtained via a bisection search, while in SCAPE, Newton’s method is employed.  It is well known 

that Newton’s method may fail to converge if the ‘initial guess’ of the root is too far away from the actual root (Burden and 
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Faires, 2011).  Unlike Newton’s method, the bisection method is guaranteed to converge (though the convergence may be 

slow), requiring at most 𝑛𝑒𝑣𝑎𝑙 = log2 (
𝑏−𝑎

2𝜀
) function evaluations to locate the root (𝑥) on the interval [𝑎, 𝑏] such that 

|𝑥𝑖 − 𝑥∗| ≤ 𝜀, where 𝜀 is a set tolerance and 𝑥∗ is the current estimate of the root, and 𝑥𝑖 is the previous estimate of the root.  100 

In most cases, the bisection method will require all 𝑛𝑒𝑣𝑎𝑙  function evaluations for convergence (Oliveira and Takahasi, 2021).  

Recently, Oliveira and Takahasi (2021) developed a modified bisection approach called “interpolate, truncate and project” 

(ITP), which may obtain superlinear convergence, therefore reducing the execution time required to obtain a solution with the 

same accuracy as the typical bisection method (note that the bisection method has linear convergence).  To achieve an improved 

order of convergence, the ITP method incorporates a regula–falsi estimate into the bisection method.  The ‘typical’ bisection 105 

method simply splits the original interval in half, with 𝑥∗ becoming the midpoint of this interval (𝑥∗ = 𝑥1 2⁄ = 0.5(𝑎 + 𝑏)) – 

a new interval is then chosen (i.e., [𝑎, 𝑥∗] or [𝑥∗, 𝑏]) based on the sign change.  The regula–falsi estimate, however, is 

determined by fitting a straight line through the identified interval by using the function values at each endpoint (i.e., 𝑥𝑓 =

[𝑏𝑓(𝑎) − 𝑎𝑓(𝑏)] [𝑓(𝑎) − 𝑓(𝑏)]⁄ ) – this estimate defines the ‘interpolation’ aspect of the ITP method.  By making use of these 

two estimates simultaneously (i.e., 𝑥∗ and 𝑥𝑓), ITP is able to outperform the typical bisection method for both convergence 110 

rate and accuracy. For well–behaved functions (i.e., only one root in function’s domain) ITP requires on average 24 to 37% of 

the iterations required by bisection, and for ill–behaved functions (i.e., multiple roots in function’s domain, discontinuities) 

ITP requires on average 82% of the iterations necessary for bisection.  The full mathematical details describing the ITP method 

(as well as pseudocode) are given in Oliveira and Takahasi (2021) and are not repeated herein. 

In this work we present HETP (HETerogeneous vectorized or Parallel), a solver based on the metastable state 115 

algorithms of ISORROPIA II, which can be optimized for vector (i.e. similar problems for a subsystem are gathered and solved 

with a global convergence criterion) or parallel processors (the latter employing local, by grid point solutions to the system of 

equations to minimize processing time on parallel processors).  HETP focuses exclusively on the metastable state 

(efflorescence branch) where some amount of liquid water is always assumed to be present in the aerosol, even at very low 

relative humidity; the metastable state assumption is currently applied in various state–of–the–art global and regional chemical 120 

transport models, such as GEM–MACH, GEOS–CHEM and CMAQ.  GEM-MACH uses HETV (Makar et al. 2018), while 

CMAQ (Wang et al., 2012) and GEOS-CHEM (Pye et al, 2009) use ISORROPIA II.  HETP has been updated to improve its 

numerical stability and computational speed compared to ISORROPIA II, as will be discussed in detail below.  Specifically, 

in addition to the numerical improvements associated with its predecessor, HETV, modifications have been made to 

incorporate base cations and chlorine, to ensure mass conservation, and to update the bisection method to ITP.  In the following 125 

sections, we demonstrate that the implementation of ITP not only decreases the execution time of the solver, but it can also 

improve the final convergence of the chemical system by initializing the search with a species concentration (i.e., an initial 

guess) that is closer to the actual solution being sought (at thermodynamic equilibrium).  Thus, we have developed a new 

solver (HETP) that has improved the accuracy and decreased the execution time compared to the original ISORROPIA II 

metastable state algorithms.  Section 2 briefly outlines the background theory underpinning the solver, followed in Sect. 3 by 130 
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a detailed list of modifications that are unique to HETP (relative to ISORROPIA II).  The final sections provide a 

comprehensive comparison between ISORROPIA II and HETP, in terms of output results and computational speed, both of 

which are improved in the HETP algorithm.  For brevity we will henceforth refer to ISORROPIA II as ISORROPIA in the 

remainder of this paper.   

2 Background theory  135 

HETP is based on the algorithms of ISORROPIA, which are in turn based on Gibbs free energy minimizations to define 

subspaces of systems of equations for inorganic heterogeneous chemistry.  ISORROPIA solves two types of problems, referred 

to as the ‘forward’ or ‘reverse’ problem.  The forward problem requires known input precursor concentrations (total gas + 

aerosol), along with a relative humidity and air temperature, to predict the equilibrium state.  HETP does not consider the 

reverse problem where the relative humidity, air temperature and aqueous aerosol species concentrations are known (i.e., no 140 

gaseous species are included in the input precursor concentrations), and a solution is sought to determine the resulting 

equilibrium and gas concentrations.  The ISORROPIA solvers have been used in a large number of chemical transport model 

applications (i.e., ISORROPIA: 1250 citations; ISORROPIA II: 1245 citations), and have been a key component in these 

models, allowing inorganic heterogeneous chemistry calculations to be carried out in a timely fashion.  Here, we build on those 

solvers, and would like to acknowledge their important contribution to air–quality modelling science. As stated in Sect. 1, 145 

HETP assumes a metastable state (where some liquid water is always present even at low relative humidity).  The required 

input precursor species are the total sulfate (TS, expressed as molar equivalent H2SO4), total ammonium (TA, expressed as 

molar equivalent NH3), total nitrate (TN, expressed as molar equivalent HNO3), total sodium (TNa, expressed as molar 

equivalent Na), total chloride (TCl, expressed as molar equivalent HCl), total magnesium (TMg, expressed as molar equivalent 

Mg), total potassium (TK, expressed as molar equivalent K) and total calcium (TCa, expressed as molar equivalent Ca).  Units 150 

of these net precursor species are mol m–3 air upon input into both ISORROPIA and HETP.  For some input conditions 

ISORROPIA will adjust the input precursor concentrations prior to determining the subroutine that should be entered. 

Specifically, ISORROPIA will adjust TA and TCl so that they are no less than 1×10-10 mol m-3, and if (TNa + TS + TN) < 

1×10-10 mol m-3, then ISORROPIA will adjust TNa and TN so that they are no less than 1×10-10 mol m-3 (note these are 

applicable only to Branch 3 and 4; see Fig. 1).  These adjustments performed within a chemical transport model result in output 155 

speciation that violates mass conservation, since mass is created for TA, TN, TCl and TNa.  As a result, ISORROPIA currently 

used in GEOS-CHEM v14.0.0 (GEOS-CHEM, 2022) does not perform these mass adjustments; it should be noted that GEOS-

CHEM v14.0.0 uses ISORROPIA v2.2 which contains minor bug fixes compared to ISORROPIA II (v2.0).  CMAQv5.4 which 

also uses ISORROPIA v.2.2 (CMAS, 2016; USEPA, 2022), does perform these initial mass adjustments, however any output 

that results from input data that are mass adjusted are flagged.  HETP adopts the approach of GEOS-CHEM and likewise does 160 

not perform these initial mass adjustment. Therefore, ISORROPIA v2.2 used herein (obtained from CMAQv5.4; USEPA, 
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2022) has been modified so that it also does not perform the aforementioned mass adjustments.  Other than this modification, 

the branches and chemical subspaces (shown in Fig. 1) are identical to ISORROPIA. 

Table 1 lists the entire set of equilibrium reactions (ER1 to ER7) that are solved in various chemical subspaces of the 

metastable state ‘forward’ option of both ISORROPIA and HETP.  The decision tree (outlined at the end of this section) used 165 

to select the appropriate chemical subspace, as well as the equilibrium reactions shown in Table 1, are identical to ISORROPIA 

(Fountoukis and Nenes, 2007).  ER1 to ER7 are solved by introducing additional relationships for mass conservation, 

electroneutrality (i.e., a charge balance equation), aerosol water activity, and mean activity coefficients (𝛾) to represent ion–

ion interactions in non–ideal solutions (𝛾 → 1 as the solution becomes more dilute, i.e.  more “ideal”).  Given in Table S1 are 

the equilibrium reactions that form the basis of dry salt partitioning (ER8 to ER25) that is completed during the initialization 170 

of several metastable state subspaces.  It should be noted that ER8 to ER25 are not solved directly – instead the input precursor 

species are partitioned into various salts based on these equilibrium reactions.   

The exact salts that form (i.e., which anions are matched by which cations) depends on the specific chemical subspace 

that is entered and whether the subspace is ‘sulfate rich’, ‘sulfate super–rich’ or ‘sulfate poor’; these classifications are 

determined by the relative amounts of the input cations to the total available sulfate.  For example, in CALCP13 (the algorithm 175 

branch describing a sulfate poor case with base cations present) calcium, potassium and magnesium first react with the sulfates 

to produce CaSO4, K2SO4 and MgSO4 respectively, and sodium and chloride react to form NaCl.  Any free calcium will then 

react with nitrate and free chloride to form Ca(NO3)2 and CaCl2 respectively.  Next, free magnesium will react with free nitrate 

and free chloride to form Mg(NO3) and CaCl2, respectively, and then free sodium will then react with free nitrate to form 

NaNO3.  Finally, free potassium will react with free chloride and free nitrate to form KCl and KNO3, respectively.  The order 180 

of dry salt partitioning in the remaining chemical subspaces (where applicable) are provided in Table S2 of the Supplemental 

Information, and are identical to ISORROPIA (except for CALCL9, discussed in Sect. 3).  Depending on the amount of anions 

and cations present for this initial partitioning stage, some of these input components may be in excess of the amount which 

can be partitioned into salts.  This excess mass, beyond that required to create a set of salts, is referred to as the “free” amount 

of the given component.  The salts created in this initial stage of partitioning are then assumed to undergo deliquescence in 185 

each of the problems to be solved, resulting in an aqueous phase speciation that is then used as the initial conditions for which 

a thermodynamic solution is required.  The “free” mass must therefore be treated carefully in the context of the application of 

thermodynamic solvers within chemical transport models.  A key requirement for chemical transport models is that they 

conserve the mass of transported species, within process representation such as inorganic thermodynamics.  Solvers such as 

ISORROPIA conserve mass for the “captured” or “non–free” portion of the input chemical speciation.  However, the “free” 190 

mass must be retained by the program accessing the solver, to prevent loss of mass of species such as Na, Mg, K, and Ca; the 

free mass must be added back to the captured mass partitioned by the solver prior to returning to the program accessing the 

inorganic heterogeneous chemistry solver.  Currently ISORROPIA only outputs the aqueous, solid or gaseous species that 

result after partitioning at thermodynamic equilibrium, and not ‘free’ amounts.  If the ‘free’ amounts are not retained and used 

to conserve mass, inputs to the solver which result in ‘free’ species will be lost in the solver call.  Some of the chemical 195 
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subsystem solvers in ISORROPIA retain the free amounts, while others do not; we note that the free amounts are not being 

tracked in some community regional chemical transport models employing ISORROPIA (i.e., CMAQv5.4, GEOS–CHEM 

v14.0.2); these implementations may be inadvertently losing aerosol mass due to this issue, where the free amounts were not 

being retained and hence inorganic aerosol mass may sometimes inadvertently be lost in these regional models.  In HETP, the 

free amounts have been retained in all cases and are returned to the calling code.  The manner in which the initial salt 200 

concentrations are determined, including the “free” amounts, is provided in detail in Table S2 (Supplemental information); 

HETP tracks all free amounts explicitly, otherwise, the initial dry salt concentrations outlined in Table S2 are determined 

identical to ISORROPIA (except CALCL9 which is discussed in Sect. 3) 

 

Table 1: Equilibrium reactions (ER) considered in metastable state chemical subspaces, identical to ISORROPIA (Fountoukis and Nenes, 2007).  These 205 
reactions are solved directly within the appropriate major system.  ∆𝑮𝒇

𝟎, ∆𝑯𝒇
𝟎 and ∆𝑪𝒑

𝟎 are the standard molar Gibbs free energy, enthalpy of formation and 

heat capacity at standard pressure, 𝑹 = 8.314 J mol–1 K–1 is the universal gas constant, and 𝑻𝟎 = 298.15 K is the reference temperature.  Each species 

concentration with units of mol m–3 is converted to a molality using the aerosol liquid water content in kg m-3.  Here, 𝜸 is a multicomponent activity 

coefficient and 𝒑 is a gas partial pressure.  

Equation 

No. 

Equilibrium reactions and values of 

𝐞𝐱𝐩(−∆𝑮𝒇
𝟎 (𝑹𝑻𝟎)⁄ ), −∆𝑯𝒇

𝟎 (𝑹𝑻𝟎)⁄ , −∆𝑪𝒑
𝟎 𝑹⁄  

Equilibrium equation 

ER1 

𝐾HSO4
: HSO4

−
(aq)

⇌ H(aq)
+ + SO4

2−
(aq)

  

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 1.015×10–2 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  8.85 

∆𝐶𝑝
0 𝑅⁄  25.14 

 

𝐾HSO4
=

[H+][SO4
2−]

[HSO4
−]

(
𝛾H2SO4

3

𝛾H−HSO4
2 )   [mol kg–1] 

ER2 

𝐾NH3𝑎
: NH3(g) ⇌ NH3(aq) 

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 5.7639×101 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  13.79 

∆𝐶𝑝
0 𝑅⁄  –5.39 

 

𝐾NH3 𝑎
=

[NH3(aq)]

[𝑝NH3(aq)
]

(𝛾NH3(aq)
)   [mol kg–1 atm–1] 

ER3 

𝐾NH3𝑏
: NH3(aq) + H2O(aq) ⇌ NH4

+
(aq) + OH(aq)

−  

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 1.805×10–5 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  –1.50 

∆𝐶𝑝
0 𝑅⁄  26.92 

 

𝐾NH3 𝑏
=

[NH4
+][OH−]

[NH3(aq)]𝑎𝑤

(
𝛾

NH4
+𝛾OH−

𝛾NH3(aq)

)   [mol kg–1] 

ER4 

𝐾H2O: H2O(aq) ⇌ H(aq)
+ + OH(aq)

−  

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 1.010×10–14 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  –22.52 

∆𝐶𝑝
0 𝑅⁄  26.92 

 

𝐾H2O =
[H+][OH−]

𝑎𝑤
(𝛾H+𝛾OH−)   [mol2 kg–2] 

with 𝛾H+ = 1 and 𝛾OH− = 1 

ER5 

𝐾HNO3
: HNO3(g) ⇌ H(aq)

+ + NO3
−

(aq)
 

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 2.511×106 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  29.17 

∆𝐶𝑝
0 𝑅⁄  16.83 

 

𝐾HNO3
=

[H+][NO3
−]

𝑝HNO3

(𝛾H+𝛾NO3
−)   [mol2 kg–2 atm–1] 

 

ER6 

𝐾HCl: HCl(g) ⇌ H(aq)
+ + Cl(aq)

−  

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 1.971×106 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  30.20 

∆𝐶𝑝
0 𝑅⁄  19.91 

 

𝐾HCl =
[H+][Cl−]

𝑝HCl
(𝛾H+𝛾Cl−)   [mol2 kg–2 atm–1] 

ER7 

𝐾NH4NO3
: NH4NO3(s) ⇌ NH3(g) + HNO3(g) 

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 4.199×10–17 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  –74.735 

∆𝐶𝑝
0 𝑅⁄  6.025 

 

𝐾NH4NO3
= 𝑝NH3

𝑝HNO3
    [atm2] 

 210 
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The equilibrium constants are calculated from the Van’t Hoff equation, where ∆𝐻0(𝑇0) is approximated for a small 

temperature range (Denbigh, 1981) as  

 

𝐾𝑗(𝑇) = 𝐾0 exp [−
∆𝐻0(𝑇0)

𝑅𝑇0
(

𝑇0

𝑇
− 1) −

∆𝑐𝑝
0

𝑅
(1 + ln (

𝑇0

𝑇
) −

𝑇0

𝑇
)],       (1) 215 

 

where 𝐾0 is the equilibrium constant at a reference temperature of 𝑇0 = 298.15 K, 𝑅 = 8.314 J mol–1 K–1 is the universal gas 

constant, ∆𝑐𝑝
0 (J mol–1 K–1) is the change of molar heat capacity of products minus reactants and ∆𝐻0 (kJ mol–1) is the enthalpy 

change of the reaction at temperature 𝑇0 (K).  𝐾0 is determined as 

 220 

𝐾0(𝑇0) = exp (−
∆𝐺𝑓

0

𝑅𝑇0
),           (2) 

 

where ∆𝐺𝑓
0 (kJ mol–1) is the standard molar Gibbs free energy of formation at 𝑇0.   

The mean activity coefficients are calculated following the same methodology as in ISORROPIA: multicomponent 

activity coefficients are calculated according to Bromley’s formula (Bromley, 1973), binary activity coefficients are 225 

determined from the Kusik–Meissner relationship (Kusik and Meissner, 1978), and the temperature dependence of the 

multicomponent activity coefficients is calculated following Meissner and Peppas (1973).  HETP (as in ISORROPIA) assumes 

that OH–
(aq) is small compared to other species, and hence it is not used in the calculation of ionic strength.  HETP only allows 

on–line calculation of activity coefficients and does not use precalculated look–up tables.  

 Aerosol liquid water content is calculated according to the ZSR correlation (Robinson and Stokes, 1965), where the 230 

water activity (𝑎𝑤) is equal to the fractional relative humidity (0 to 1 scale).  It is assumed that there are negligible effects from 

droplet curvature (i.e., Kelvin effect), and that the growth of an aerosol by uptake of H2O does not affect the ambient water 

vapor pressure (i.e., no effect on the ambient relative humidity).   

 There are other simplifications and assumptions applied to the metastable state in HETP and ISORROPIA including: 

(i) sulfuric acid, sodium, magnesium, calcium and potassium are assumed to only exist in the aerosol phase (i.e., no sulfuric 235 

acid gas), (ii) calcium sulfate (CaSO4) never dissolves and will only be present as a solid species, (iii) in cases that are sulfate 

rich (B4, C2, E4, F2, I6, J3, L9, K4), the ions NH4
+, NO3

– and Cl– are “assumed to be minor species that do not significantly 

perturb the [thermodynamic] equilibrium” (Fountoukis and Nenes, 2007) – the partitioning problem to be solved  for these 

ions in sulfate–rich cases is referred to as a “minor system”.  All minor systems are solved after convergence of the major 

system has been achieved.  Practically, for point (iii) above, this implies that NO3
– and Cl– within the minor system will not 240 

affect the charge balance or the activity coefficients of the major system.  The concentration of H+ determined from the major 

system is used as the basis to perform the partitioning between the aerosol and gas phase in the minor system(s) (using the 

equilibrium reaction(s) in Table 1 which describe the minor system(s) to be solved).   

 The system of equations and order of the operations to create a solution is identical between ISORROPIA and HETP 

using the same chemical subspaces.  The subspace that will be entered (and therefore the speciation that will be present) is 245 
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determined based on the input precursor species.  If crustal species (TK, TMg and TCa), TNa and TCl are all near zero, then 

the set of chemical subspaces reduces to those used in HETV (Makar et al., 2002) and the original release of ISORROPIA 

(Nenes et al., 1998).  Both codes follow the same procedure, creating three sulfate ratios used to determine the chemical 

subspace for solution: the “total sulfate ratio” (𝑅1), “crustal species and sodium ratio” (𝑅2) and “crustal species ratio” (𝑅3),  

 250 

𝑅1 =
TA+TNa+TCa+TK+TMg

TS
           (3) 

 

𝑅2 =
TNa+TCa+TK+TMg

TS
           (4) 

 

𝑅3 =
TCa+TK+TMg

TS
 .           (5) 255 

 

 

Figure 1: Domains of the systems of equations, based on ISORROPIA.  For Branch 3, each of 𝐓𝐒, 𝐓𝐀 and 𝐓𝐍 > tiny, as well as one (or 

both) of 𝐓𝐍𝐚 and 𝐓𝐂𝐥.  For Branch 4, each of 𝐓𝐒, 𝐓𝐀 and 𝐓𝐍 > tiny, as well as one (or all) of 𝐓𝐌𝐠, 𝐓𝐊 and 𝐓𝐌𝐠 – thus Branch 4 does not 

necessarily require 𝐓𝐍𝐚 or 𝐓𝐂𝐥  > tiny.  However, it should be noted that for a solution to be possible, subcases H6, G5, M8, O7 and P13 do 260 
require 𝐓𝐂𝐥 > tiny.  The dashed lines in the figure implies that the domain extends infinintely in the direction of increasing R1 or R2; for 

example, in Branch 1, 𝟎 ≤ 𝑹𝟏 < ∞, but in the figure 𝑹𝟏 only extends to 4, and subcase CALCA2 extends for all TA/TS >2. 
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These ratios are used as the basis to determine the appropriate chemical subspace that is entered (15 possible metastable 

subspaces in total).  The possible subspaces (given the input ratios 𝑅1, 𝑅2 and 𝑅3) are summarized in Fig. 1, along with the 

resulting speciation (aqueous, gaseous and solid).  The bold font species are solved in the major system, while regular font 265 

species are solved in the minor system.  Four unique ‘branches’ exist: in Branch 1 only TS and TA are present, in Branch 2 

only TS, TA and TN are present, in Branch 3 TS, TA and TN are present, and at least one of TNa or TCl, and in Branch 4 TS, 

TA and TN are present, and at least one of TCa, TK or TMg.  The branches are further subdivided into subcases depending on 

input concentrations.  It should be noted that the subcases G5, H6, O7, M8 and P13 require that TCl be present (along with the 

aforementioned requisite species), otherwise a solution is not possible due to small numbers and floating point arithmetic 270 

limitations; this limitation occurs since HETP does not apply the mass modification that sets TCl = max(TCl, 1×10-10), as 

discussed near the start of the section. 

3 Algorithm design and improvements   

During the development of HETP, several improvements related to the mathematical techniques were incorporated relative to 

ISORROPIA (and HETV), as well as additional modifications related to mass balance.  These modifications and improvements 275 

include: 

(1) An updated root finding algorithm, referred to as ‘interpolate, truncate and project (ITP)’ (Oliveria et al.  2021), has 

been used instead of the bisection method in HETP.  ITP has the advantage of ‘superlinear convergence’, and hence 

may obtain a root with the same accuracy as bisection, but in less iterations.  The increased rate of convergence can 

affect the activity coefficients; in some cases, the faster convergence of ITP can alter the ionic strength, resulting in 280 

different activity coefficients being calculated early on in the iterative process than would be determined from the 

bisection algorithm used in ISORROPIA.  The new approach may also contribute to an improved formal accuracy 

performance for estimating the roots, for the same convergence criteria level (see Sect.  4.1).   

(2) All bisection subroutines in ISORROPIA employ a root bracketing approach to obtain an initial interval [𝑥𝑎, 𝑥𝑏] 

where 𝑓(𝑥𝑎)𝑓(𝑥𝑏) < 0, signifying that a root exists within the interval according to the intermediate value theorem 285 

(assuming a continuous function).  We have found that ISORROPIA does not check to determine if either endpoint 

is a valid root, that is, if 𝑓(𝑥𝑎) = 0 or 𝑓(𝑥𝑏) = 0.  Instead, ISORROPIA will proceed to the next interval, continuing 

its search for a root, potentially locating a different root than expected (the code seeks the smallest positive real root 

in the case of multiple roots in the search domain), or a slower convergence towards the start or end of the root interval 

than might otherwise be the case.  In HETP we have included a check during the root bracketing stage to identify 290 

cases when 𝑥𝑎 or 𝑥𝑏 is a valid root.  If an endpoint is a root, then HETP will return since an equilibrium solution has 

been found.  It should be noted that the occurrence of an endpoint as a valid root is extremely rare and hence neglecting 

this modification will have no effect on most output from the solver, but nonetheless we have included this possibility 

in HETP for completeness and accuracy.   

https://doi.org/10.5194/gmd-2023-159
Preprint. Discussion started: 28 September 2023
c© Author(s) 2023. CC BY 4.0 License.



11 

 

(3) In some cases that require ITP (or bisection in ISORROPIA) to obtain an equilibrium solution, the independent 295 

variable (i.e., 𝑥) converges, but the function being evaluated at 𝑥 (i.e., 𝑦 = 𝑓(𝑥)) oscillates between a negative and 

positive value, and thus |𝑦| does not converge to zero as expected if 𝑥 is a root (despite convergence of 𝑥).  This 

oscillating behavior of 𝑦 may indicate that 𝑥 is a discontinuity or that there is significant non-linearity in the 

partitioning, and hence 𝑥 is not an accurate solution to the system of equations.  For all subroutines requiring ITP, 

HETP will track the species concentrations, activity coefficients and the value of 𝑥 that are found to minimize |𝑦| 300 

during the iterative process.  If after convergence of 𝑥 it is determined that |𝑦| is not minimized compared to all earlier 

iterations, then HETP will ‘reset’, and instead use the 𝑥 value, species concentrations and activity coefficients that 

were found to minimize |𝑦| – this is chosen as the solution of the system.  The effect of this modification on the output 

from HETP is discussed in Sect 4.2.  

(4) In all chemical subspaces, a quadratic equation must be solved for a subsystem of the equations, while in some cases 305 

a cubic equation will be solved.  Quadratic equations have the form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where the solution (i.e., 

corresponding to 𝑥 = 0) is usually expressed as the quadratic formula 𝑥 =
(−𝑏±√𝑏2−4𝑎𝑐)

2𝑎
.  As identified in Makar et 

al.  (2003) and implemented in the original version of HETV, when the coefficient ‘𝑏’ differs by several orders of 

magnitude from coefficients ‘𝑎’ or ‘𝑐’, floating–point arithmetic can fail to give an accurate answer for 𝑥 when using 

the standard root formula.  For example, if √𝑏2 − 4𝑎𝑐 ≈ 𝑏, then addition in the quadratic formula may be problematic 310 

since we are subtracting two nearly equal numbers (i.e., ≈  −𝑏 + 𝑏).  In HETP (and  HETV), a Taylor series expansion 

of the quadratic formula is used instead, to approximate the root for times when the coefficients ‘𝑏’ and ‘𝑐’ differ by 

orders of magnitude (note that 𝑎 = 1 in all subroutines; formulae were normalized).  For cases where a cubic equation 

must be solved, HETP will employ an ITP search to obtain an estimate of the smallest positive real root if an exact 

analytic solution is not possible.  The generic formulae describing the exact analytic solution of a cubic polynomial 315 

is from Spiegel et al., (2009) and is used in ISORROPIA.  It should be noted that the requirement to solve a cubic 

equation occurs only during the solution procedure of the minor systems of I6, J3, L9 and K4.  The most recent 

version of ISORROPIA (i.e., ISORROPIA–lite) did not address these outstanding numerical issues. 

(5) During the development of HETP we have identified several cases where a negative ion or gas concentration can be 

output from ISORROPIA.  For example, a negative concentration of NH4
+ can occur when solving the minor system 320 

NH3(g) + H+
(aq) ↔ NH4

+
(aq) for thermodynamic equilibrium.  In this case, HETP and ISORROPIA will solve a quadratic 

equation to determine the concentration of ammonia gas (NH3).  From the concentration of NH3, the ammonium 

cation is determined as NH4
+ = NH4

+
i – NH3, where NH4

+
i is the ammonium concentration determined from the major 

system (see Table S2, Supplemental Information).  If partitioning (after solving the quadratic equation) at this stage 

gives NH3 ≈ NH4
+

i, then subtraction of two nearly identical numbers may lead to a floating point arithmetic error and 325 

a final concentration of NH4
+ < 0 (in the original ISORROPIA equations).  In HETP, negative output is strictly 
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prohibited.  To accomplish this we have utilized max statements that force any negative concentrations to zero, in 

conjunction with the more accurate evaluation of the quadratic formula (i.e., point 4 above). 

(6) In ISORROPIA, the initial dry salt partitioning that is completed at the commencement of chemical subspace L9 may 

fail to conserve mass for sulfate, ammonium, potassium and sodium, in some cases.  In HETP we have slightly 330 

modified the initial dry salt partitioning of CALCL9 (see Table S2, Supplemental Information) to ensure mass 

conservation holds for all cases; any free TA that may result in L9 is assumed to be in the gas phase as NH3, and is 

added back to the final equilibrium solution after convergence of both the major and minor systems. As discussed in 

Sect. 2, the free amounts of SO4, Na, Mg, K and Ca are explicitly tracked in HETP for all chemical subspaces and 

returned to the calling code to prevent a loss of mass in the output speciation.  335 

(7) Mass conservation may not hold in ISORROPIA when the input precursor concentrations are near the lower limit for 

species concentrations, “tiny” (1×10–20 mol m–3), used in the solver.  The same lower limit used to bound the input 

precursor concentrations is also used throughout ISORROPIA to bound the species concentrations during and after 

chemical partitioning.  In HETP we use the same lower limit as ISORROPIA to bound the input precursor species 

(i.e., tiny), but during and after partitioning the lower limit for gaseous speciation is reduced to tiny2 = 1×10–28 mol 340 

m–3.  This reduction of the lower limit for gaseous speciation during the iterative process improves mass conservation 

for the limiting case when the input precursor concentrations are near the lower limit of tiny.   

(8) The subroutine ‘adjust’ performs a post–convergence mass balance adjustment for ammonium, sulfate, nitrate and 

chloride, with the goal of ensuring mass conservation holds to machine precision.  Specifically, this subroutine checks 

only for excess mass relative to the input totals.  If identified, the excess mass is removed first from the aqueous 345 

phase, and then from the solid phase, and finally from the gaseous phase, until no excess remains.  However, the mass 

adjustment of sulfate in ISORROPIA does not include CaSO4 in the mass balance calculations, and therefore in some 

cases, ISORROPIA will fail to properly conserve mass to machine precision.  In HETP we have included CaSO4 in 

the mass balance adjustment of sulfate. 

(9)  Improvements to the overall code structure and efficiency include: 350 

(a) Use of Fortran 90 (compared to Fortran 77 in ISORROPIA),  

(b) Use of explicit declarations only – all subroutines now start with an ‘implicit none’ statement and all common 

blocks have been removed, 

(c) Removing all GOTO statements, and instead using Fortran 90 constructs such as ‘do while’ loops, 

(d) Removing function and subroutine calls, except for process calls to calculate activity coefficients (calcact), to 355 

solve a cubic equation (poly3) and to perform a post–convergence mass balance adjustment (adjust) – i.e.  

reducing the call factor overhead for individual subroutine calls to the largest extent possible, 

(e) Moving expressions being recalculated unnecessarily within loops to take place prior to the loop, and removing 

calculations that serve no purpose to the actual solution being sought, 

(f) Pre–calculating constant values which are then stored as variables to be used later in the subroutine and,  360 
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(g) Designing the code to include an optional use of a vectorization–by–grid point approach (Makar, 1995), which 

may reduce the call factor overhead on some compilers. 

4 Comparison between HETP and ISORROPIA  

4.1 Case–by–case comparison  

In this section the output from HETP is compared to ISORROPIA for a set of 10,000 artificially generated input ‘test cases’ 365 

that span the domain of each chemical subspace.  The test cases have all precursor species held constant except the total sulfate 

(TS) which is slowly varied (linearly) over the range of the chemical subspace.  Tests of this nature demonstrate the stability 

of numerical solutions – adjacent tests along the same axis of variation in general are expected to be smoothly varying (Makar 

et al., 2003).  The convergence criteria are consistent between both solvers.  For activity coefficients, 𝜖𝑎𝑐𝑡 = 1 × 10−6 and 

𝑚𝑎𝑥𝑖𝑡𝑎𝑐𝑡 = 4, where 𝜖𝑎𝑐𝑡 is the relative error limit between successive iterations of activity coefficient calculations, and 370 

𝑚𝑎𝑥𝑖𝑡𝑎𝑐𝑡 is the maximum number of allowed iterations.  For bisection or ITP, 𝜀 = 1 × 10−9, 𝑚𝑎𝑥𝑖𝑡𝑏𝑠𝑒𝑐 = 100 and 𝑛𝑑𝑖𝑣 =

5, where 𝜀 is defined in Sect. 1, 𝑚𝑎𝑥𝑖𝑡𝑏𝑠𝑒𝑐 is the maximum number of allowed iterations, and 𝑛𝑑𝑖𝑣 is the number of 

subdivisions searched for an interval containing a root (i.e., sign change) prior to the start of bisection or ITP.  All output from 

HETP (in this section and those presented hereafter) includes the modifications outlined in Sect. 3 unless stated otherwise, 

while the ISORROPIA code used in this comparison is the base version (ISORROPIA v2.2) used in the CMAQ air–quality 375 

model (USEPA, 2022).  ISORROPIA throughout this paper has been complied using the ‘–r8’ flag (all real variables converted 

to double precision) to ensure the precision of both solvers is consistent (HETP uses double precision throughout). All 

numerical tests herein were executed on a Lenovo ThinkSystem SD650v2 DWC computer, which uses an Intel® Xeon® 

Platinum 8380 CPU running at a clock speed of 2.30 GHz, with 512 GB of available random access memory.  

 380 

 

 

 

 

 385 
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Figure 2: A side–by–side comparison of the output from HETP (left) and ISORROPIA (right), for the chemical subspace CALCO7 (a-b) 

and CALCM8 (c-d).  All input species are held constant, except the total available sulfate (TS) which is varied over 10,000 sets of initial 390 
conditions.  The air temperature and relative humidity are 306 K and 35% respectively, for all test cases in the figure. The convergence 

criteria are consistent between both solvers (see text).   

 

Figure 2 displays the output from ISORROPIA and HETP for two example chemical subspaces: (a–b) displays 

CALCO7 and (c–d) shows CALCM8.  These chemical subspaces involve the presence of at least one of Ca2+, K+ and Mg2+ 395 

and so they were not included in the original HETV package, which was designed for the SO4–NO3–NH4 system.  Furthermore, 

these two subspaces are frequently called in practical chemical transport model applications (see Sect. 4.2) and hence are used 

to compare HETP against ISORROPIA in this section.  For the test cases shown in Fig. 2, the relative humidity (RH) was set 

to 35% and the air temperature (𝑇) to 306 K, conditions typical of a hot summer day in central North America.  The output for 
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CALCO7 is nearly identical between the two solvers, with a difference of < 1% between HETP (Fig. 2a) and ISORROPIA 400 

(Fig. 2b), except for TS between 2.1×10–5 and 2.4×10–5 mol m–3, where visual differences begin to appear, particularly for H+, 

HSO4
– and NH3.  In the case of CALCM8, the output from HETP (Fig. 2c) is vastly different from ISORROPIA (Fig. 2d), for 

the same initial conditions and convergence criteria, and the ISORROPIA solution shows the effects of numerical instability 

in the bisection root–finding procedure.  The ISORROPIA algorithm used in CALCM8 is designed so that the variable being 

bisected is proportional to Cl– (see Table S2, Supplemental Information).  At the same time, the multicomponent activity 405 

coefficients are dependent on the ionic strength of the aqueous aerosol, determined from the molar concentration of all ions 

present, including Cl–.  Both of these iterative procedures are completed simultaneously, and impact each other in a nonlinear 

fashion.  The choice of Cl– during the first iteration of bisection (or ITP) may considerably impact the final equilibrium solution, 

by altering the initial ionic strength, and as a result, the convergence of the multicomponent activity coefficients.  This effect 

is demonstrated for CALCM8 in Fig. 2(c–d), where the differences between ISORROPIA and HETP are related only to the 410 

choice of root–finding methodology.  In fact, if the ITP approach within HETP is reverted to the same bisection algorithm 

used in ISORROPIA, then the output from HETP begins to show the same unstable behaviour that is demonstrated in the 

ISORROPIA simulation shown in Fig. 2d.  It should be noted that these differences are due to the choice of root–finding 

methodology and are not the result of allowing the ends of the interval to be potentially valid roots (i.e., point 2 in Sect. 3). 

The accuracy of each solver can be assessed directly by introducing an error term (𝜉), determined as the absolute 415 

logarithmic difference between the ‘calculated’ equilibrium constant (𝐾𝑐𝑎𝑙𝑐) and the ‘true’ equilibrium constant (𝐾𝑡𝑟𝑢𝑒), that 

is, 𝜉 = log(𝐾𝑐𝑎𝑙𝑐) − log(𝐾𝑡𝑟𝑢𝑒). 𝐾𝑐𝑎𝑙𝑐  is determined from the species concentrations (converted to molalities using the aerosol 

liquid water content in kg m–3) and activity coefficients after convergence of the major or minor system (i.e., from the equations 

in Table 1), while 𝐾𝑡𝑟𝑢𝑒 is calculated from the Van’t Hoff equation (Eq. 1).  The parameter 𝜉 thus provides a direct measure 

of each solver’s proximity to the actual root of the system of equations, for a given level of convergence criteria employed in 420 

both solvers.  For statistical characterization of 𝜉, the absolute value of the difference is used, so that 𝜉′ = |𝜉|.  A logarithmic 

difference is used herein (instead of a percent difference, for example) since the difference between 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒 can span 

several orders of magnitude.  In this way, a difference on the order of 1 implies that 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒 differ by an order of 

magnitude different, while a difference on the order of 1×10–2 implies 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒 differ starting at the second or third 

digit (when written in scientific notation).  The error analysis has been completed using the case–by–case implementation of 425 

HETP (see Sect. 4.3).  Ideally, 𝜉′ = 0, signifying that the problem has converged to a solution whose concentrations and 

activity coefficients satisfy the equilibrium equations of the major (and minor systems) precisely.  In reality, however, there 

may some magnitude of difference between 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒.  The accuracy of 𝐾𝑡𝑟𝑢𝑒 calculated from Eq. 1 (used in both 

solvers) is limited to 3 significant digits due to the variable −∆𝐻𝑓
0 (𝑅𝑇0)⁄ .  Therefore when  𝜉′ < 1×10–3 in either solver, we 

can conclude that 𝐾𝑐𝑎𝑙𝑐  after convergence is identical to 𝐾𝑡𝑟𝑢𝑒 within its known accuracy.  However, in practical applications 430 

(i.e., within a chemical–transport model), the value of 𝐾𝑡𝑟𝑢𝑒 calculated from Eq. 1 will retain all digits as determined by the 

precision of the code (i.e., double precision in HETP) and therefore 𝜉′ may be ≪ 1×10–3.  Hence we seek a solver that obtains 
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𝜉′ as close to zero as possible.  Table 2 gives the median, the maximum, and the 25th and 75th percentiles of 𝜉′ for HETP and 

ISORROPIA, corresponding to the data presented in Fig. 2.  For CALCM8, the median 𝜉′ is lower in HETP than ISORROPIA 

for all equilibrium constants, which suggests that HETP is obtaining a more accurate solution for this set of input conditions.  435 

The difference in median 𝜉′ between the two solvers is large and indicates that HETP values are more accurate than 

ISORROPIA by many orders of magnitude, for the same level of the convergence criteria, i.e., for 𝐾HCl, HETP has a median 

𝜉′ ≈ 1.77×10–8, while ISORROPIA has a median 𝜉′ ≈ 0.39 (similar results are found for 𝐾HNO3
 for CALCM8).  The superior 

performance of HETP for this set of initial conditions can also be confirmed visually by comparing Fig. 2(c) to Fig. 2(d).  For 

all species present in this subspace, HETP shows a smooth transition with incremental change in TS, but this is not the case 440 

for ISORROPIA.  In CALCM8, the very large differences in median 𝜉′ between the two codes demonstrates that the 𝜉′ values 

are linked to the poor convergence performance of ISORROPIA, and are associated with the high degree of sensitivity of that 

algorithm’s use of bisection towards initial conditions. 

In CALCO7 (Fig. 2a–b), the median 𝜉′ for all equilibrium constants is lower in HETP than ISORROPIA, but the 

difference between the two solvers is marginal, especially when the 25th and 75th percentiles are considered (i.e., for 𝐾HCl the 445 

75th percentile of 𝜉′ is 5.17×10–7 and 4.40×10–7 for HETP and ISORROPIA respectively).  Table 2 also gives statistics of 𝜉′ 

for the same set of input precursor concentrations, but now with a 𝑅𝐻 = 65% and 𝑇 = 263 K. The main difference here is that 

CALCO7 performs slightly worse in HETP than ISORROPIA (as determined from the median and 75th percentile of 𝜉′).  

However, despite this worse statistical performance in HETP, there are no visual differences between when the output from 

each solver is plotted (see Fig. S1). In this case, the median 𝜉′ of both solvers is on the order of 1.0×10–4, implying that the 450 

difference between 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒 occurs in the 4th digit (when written in scientific notation).  As a result, the differences 

between HETP and ISORROPIA do not become apparent unless the graph is zoomed in very close to the data points. For 

CALCM8 at these new meteorological conditions (𝑅𝐻 = 65% and 𝑇 = 263 K), HETP has an unstable behavior in the output 

speciation for TS between 1.6×10-7 mol m-3 and 2.3×10-7 mol m-3, while ISORROPIA has an unstable behavior for all TS > 

0.7×10-7 mol m-3 (see Fig. S1); this poor performance in CALCM8 for these meteorological conditions is demonstrated in the 455 

statistics of 𝜉′ shown in Table 2.  

 

 

 

 460 
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Table 2: Theoretical error (𝝃′) for 𝒏 = 10,000 generated input conditions corresponding to the chemical subspaces O7, M8 and I6.  Statistics 465 
of 𝝃′ for two sets of atmospheric conditions are presented (temperature, 𝑻 and relative humidity, 𝐑𝐇).  The bolded values denotes the smallest 

median error for that equilibrium constant (i.e., row) between HETP and ISORROPIA.  

Case 
Equilibrium 

Constant 

HETP: 𝝃′ = |𝐥𝐨𝐠(𝑲𝐭𝐫𝐮𝐞/𝑲𝐜𝐚𝐥𝐜)| ISORROPIA II: 𝝃′ = |𝐥𝐨𝐠(𝑲𝐭𝐫𝐮𝐞/𝑲𝐜𝐚𝐥𝐜)| 

Median Q25 Q75 Maximum Median Q25 Q75 Maximum 
 

𝑻 = 306 K; 𝐑𝐇 = 35%   

(Fig. 2) 

O7 

𝐾NH3
𝐾H2O⁄  9.82×10-9 3.55×10-12 2.09×10-6 1.81×10-3 9.84×10-9 3.51×10-12 2.09×10-6 1.81×10-3 

𝐾HNO3
 1.26×10-9 2.68×10-10 5.17×10-7 0.30 2.86×10-9 1.19×10-9 4.80×10-7 0.85 

𝐾HCl 1.26×10-9 2.68×10-10 5.17×10-7 0.30 2.86×10-9 1.19×10-9 4.40×10-7 0.85 

M8 

𝐾NH3
 2.52×10-13 2.13×10-14 3.61×10-12 6.95×10-11 7.33×10-12 3.55×10-14 1.47×10-10 12.0 

𝐾HNO3
 1.77×10-8 1.89×10-9 9.34×10-8 1.87×10-4 0.39 8.38×10-8 1.93 40.5 

𝐾HCl 1.77×10-8 1.89×10-9 9.34×10-8 1.87×10-4 0.39 8.38×10-8 1.94 30.8 
 

𝑻 = 263 K; 𝐑𝐇 = 65% 

(Fig. S1) 

O7 

𝐾NH3
𝐾H2O⁄  2.31×10-5 9.95×10-10 2.49×10-3 5.19×10-2 2.31×10-5 9.69×10-10 2.49×10-3 5.19×10-2 

𝐾HNO3
 3.60×10-4 4.70×10-10 2.95×10-3 7.69×10-3 1.52×10-4 9.13×10-10 9.10×10-4 3.19×10-3 

𝐾HCl 3.60×10-4 4.70×10-10 2.95×10-3 7.69×10-3 1.52×10-4 9.13×10-10 9.10×10-4 3.19×10-3 

M8 

𝐾NH3
 6.47×10-11 2.41×10-11 1.42×10-10 31.8 2.32 8.87×10-11 11.5 17.1 

𝐾HNO3
 1.75 1.67 1.90 7.17 3.89 1.96 20.3 37.4 

𝐾HCl 1.74 1.67 1.90 7.17 3.92 1.95 20.9 25.8 
 

𝑻 = 243 K; 𝐑𝐇 = 5%              I6–1: No improvements to root–finding methodology in HETP  

(Fig. 4)                                     I6–2: Taylor expansion quadratic equations, no ITP for cubic equations 

                                                 I6–3: Taylor expansion quadratic equations and ITP for cubic equations 

I6–1 

𝐾NH3
𝐾H2O⁄  9.02 1.68 15.1 35.9 9.80 3.87 18.1 40.6 

𝐾HNO3
 15.1 11.7 18.3 24.8 15.1 11.9 18.2 23.8 

𝐾HCl 15.1 11.7 18.3 24.8 15.1 11.9 18.2 23.8 

I6–2 

𝐾NH3
𝐾H2O⁄  2.83×10-5 6.83×10-8 4.12×10-2 5.77 –– –– –– –– 

𝐾HNO3
 13.1 9.35 16.2 19.8 –– –– –– –– 

𝐾HCl 13.1 9.35 16.2 19.8 –– –– –– –– 

I6–3 

𝐾NH3
𝐾H2O⁄  2.83×10-5 6.83×10-8 4.12×10-2 5.77 –– –– –– –– 

𝐾HNO3
 1.46×10-9 6.38×10-10 3.36×10-8 1.45×10-2 –– –– –– –– 

𝐾HCl 1.46×10-9 6.38×10-10 3.36×10-8 1.45×10-2 –– –– –– –– 

 

 

 470 

 

 

 

 

 475 
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Figure 3 displays a comparison of HETP and ISORROPIA, where now TS and TA are varied simultaneously while 

all other input precursor species are held constant.  Two tests were conducted that span the same range of TS and TA, but in 

(a–c) TN = 3×10–6, TNa = 1×10–5, TCl = 1×10–14, TCa = 1×10–8, TK = 1×10–14 and TMg = 1×10–14, and in (d–f): TN = 1×10–

8, TNa = 1×10–6, TCl = 1×10–14, TCa = 3.8×10–16, TK = 1×10–17 and TMg = 1×10–16 (all units of input precursor species are 480 

in mol m–3).  It should be noted that in the unaltered version of ISORROPIA, TCl < 1×10–14 mol m–3 would have necessitated 

a mass adjustment of TCl at the commencement of the solver, with TCl being reset to 1×10–10 mol m–3 (thereby creating mass) 

– this adjustment has not been applied here.  Each panel set (i.e., a–c and d–f) contains 𝑛 = 1,000,000 unique test cases, with 

𝑅𝐻 = 35% and 𝑇 = 306 K.  The colors in Fig. 3(a-b) and Fig. 3(d-e) represent the amount of gaseous NH3 after partitioning 

between the gas and aerosol phase, and the test cases span across all of Branch 4 (O7, M8, P13, L9 and K4), using the same 485 

convergence criteria as Fig. 1 and Fig. 2.  The colors shown in Fig. 3c and Fig. 3f give the absolute percent difference between 

Fig. 3a and Fig. 3b, and Fig. 3d and Fig. 3e, respectively (calculated relative to HETP; |HETP-ISO|/HETP×100%).  Note that 

the color contour intervals in Fig. 3 are on a logarithmic scale.  In each figure panel dashed black lines separate between the 

different chemical subspaces, with the particular subspace label superimposed.  In Fig. 3(a-b) and Fig. 3(d–e) the output 

compares well between HETP and ISORROPIA for the subspaces O7, M8 and P13, with absolute differences typically < 0.1% 490 

and no obvious visual differences between the two solvers.  However, in Fig. 3(a-b) for the subspaces K4, and particularly L9, 

there are some noticeable visual differences between the two solvers.  The differences in L9 between the two solvers result 

from (i) the updated methodology within HETP to calculate polynomial roots, (ii) a correction within HETP to the initial dry 

salt partitioning to ensure mass conservation, and (iii) one less call to calculate activity coefficients in HETP for some test 

cases (specifically those test cases that have no convergence of activity coefficients after completing the maximum number of 495 

allowed iterations).  The largest absolute differences (i.e., 100% – 600%) are in L9, and are predominantly due to (ii), where 

for some input conditions ISORROPIA creates dry salt mass for TA, TS and TK.  In K4, (ii) is not applicable, so the differences 

are thus due to (i) and (iii). As demonstrated in Fig 3(a-c), there is a large amount of ‘noise’ in K4 for TS > 1×10–5 mol m–3 

and TA < 12×10–6 mol m–3 in ISORROPIA that is not present in HETP – this ‘noise’ shows up as speckling in the percent 

difference plots and is due mainly to (i).  If the noise in ISORROPIA is neglected for K4, then the output from ISORROPIA 500 

is quite similar to HETP, with differences < 1%.   
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Figure 3: Regular variation (linear) of the total available sulfate (TS) and the total available ammonium (TA), while holding all other input precursor species 505 
constant (see the main text for a description of precursor species that are held constant).  The colors in figure panels (a-b) and (d-e) give the amount of gaseous 
NH3 after chemical partitioning at thermodynamic equilibrium (the color scale is logarithmic and identical in these panels).  Panel (c) and (f) show the percent 

difference of (a-b) and (d-e) respectively.  Each panel set (i.e., a-c and d-f) includes 1,000,000 unique input test cases, with the same convergence criteria as 

used to generate Fig. 2 and 3.  Superimposed on each panel are dashed black lines denoting the boundary between different chemical subspaces; the actual 

subspace contained within a set of dashed lines is given as a text label.  510 

 

An additional concern identified in Makar et al., (2003) is the potential impact of the inaccurate evaluation of the 

quadratic and cubic formula (i.e., analytic formulae to obtain an ‘exact’ solution), which remains present in subsequent 

iterations of ISORROPIA since the development of HETV (see Sect 3, point 4).  An example showing the incremental 

improvement of the quadratic and cubic solution procedure on the output speciation is displayed in Fig. 4, which depicts the 515 

output of CALCI6 from ISORROPIA (Fig. 4b) and HETP (Fig. 4a, c–d).  In Fig. 4a, HETP has been executed without any 

modifications to improve the accuracy of polynomial root calculations, so that the only improvement over ISORROPIA is that 

HETP will not allow negative species concentrations (i.e., HSO4
-). In Fig. 4c, HETP now includes an improved methodology 

to calculate roots of quadratic polynomials, in addition to the improvement related to negative species concentrations of Fig. 

4a.  Lastly, In Fig. 4d, HETP now includes an ITP search to determine the roots of cubic polynomials, in addition to the 520 

improvements of Fig. 4a and c.  Figure 4 follows the same procedure as Fig. 2 – that is, an incremental variation of the input 

TS while holding all other precursor species constant.  This case illustrates differences that would occur at rather low 

temperatures and relative humidity, in this case 𝑇 = 243 K and RH = 5%.  Without the modifications applied in Fig. 4c and d, 

https://doi.org/10.5194/gmd-2023-159
Preprint. Discussion started: 28 September 2023
c© Author(s) 2023. CC BY 4.0 License.



20 

 

the output from HETP and ISORROPIA are quite similar.  However, as numerical improvements are incrementally applied to 

HETP, clear visual differences between HETP and ISORROPIA become apparent for most chemical species in this subspace.  525 

In CALCI6 the major system being solved is H+–HSO4
––SO4

2–, requiring a quadratic root with a large variation in coefficient 

magnitudes to be derived – and therefore an error in H+ will propagate through to the minor systems that are solved thereafter 

(see Table S2, Supplemental Information).  It should be noted that the 𝑦–axis in Fig. 4 is logarithmic, so negative values are 

not shown in the figure panels.  Nonetheless, there are many instances when ISORROPIA outputs a negative concentration of 

HSO4
– for this subspace (Fig. 4b), as a result of the use of the standard (and under these circumstances inaccurate) formula for 530 

the roots of a quadratic equation for H+ in this subspace.  In HETP we have included a Taylor expansion of the quadratic 

formula, which is applied when numerical precision is likely to cause erroneous output.  The result of this modification (as 

demonstrated in Fig. 4c) is the removal of the numerical instability present in the output of HETP for this set of initial 

conditions shown in Fig. 4a.  Numerical instability caused by the erroneous evaluation of the quadratic formula appears to be 

most prevalent at a low relative humidity (low aerosol water mass).   535 

Following convergence of the major system in CALCI6, the minor systems are solved, one of which requires the 

roots of a cubic polynomial to be identified; the smallest positive real root determines the concentration of Cl– and NO3
–.  In 

HETP, an ITP search is employed to determine the smallest positive real root of the cubic polynomial when an exact analytic 

solution from the cubic root formulae is not possible (due to a large range in the magnitude of the coefficients of the cubic 

polynomial, which may lead to floating point arithmetic errors).  For the set of input conditions shown in Fig. 4, including an 540 

ITP search to solve cubic polynomials results in about 72% more roots being identified in HETP than in ISORROPIA.  If 

ISORROPIA is unable to determine a valid root from the cubic formula, it will assume that the root is a tiny value (i.e., 1×10–

20 mol m–3) – this is the procedure that was applied to generate the output shown in Fig. 4a-c.  The effect of including an ITP 

search to solve cubic polynomials is a very large reduction in 𝜉′ for 𝐾HCl and 𝐾HNO3
 in the chemical subspaces I6, J3, L9 and 

K4 for some sets of initial conditions (statistics of 𝜉′ corresponding to CALCI6 shown in Fig. 4 are given at the bottom of 545 

Table 2).  For example, in Fig. 4d, HETP has been implemented with an ITP search to solve cubic polynomials, and as shown 

in Table 2, this implementation leads to a large reduction in the median 𝜉′ for 𝐾HCl from 13.1 to 1.46×10–9.  The difference 

here is a solution that is accurate versus one that is not.  The output shown in Fig. 4d demonstrates that including an ITP search 

to solve cubic polynomials removes discontinuities that occur in Cl–, NO3
–, H+ and NH3 near 1.4 mol m–3 – and hence these 

species now show a smooth transition over the entire range of TS.  HETP has a limiting precision of 1×10–28 mol m–3, which 550 

is the likely cause of the HSO4
- concentration becoming zero in Fig. 4(c-d) when TS is between about 2.15×10–12 and 2.4×10–

12 mol m–3. 
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Figure 4: A side–by–side comparison of the output from HETP (a, c, d) and ISORROPIA (b) for CALCI6.  In (a), HETP does not include 555 
any methodological improvements to polynomial root calculations.  In (c) HETP may apply a Taylor series expansion to calculate polynomial 

roots.  In (d), HETP may apply a Taylor series expansion to calculate polynomial roots, as well as an ITP search to determine cubic 

polynomial roots.  ISORROPIA shown in (b) solves quadratic equations using the quadratic formula, and attempts to find an exact analytic 

solution of cubic equations.  All input precursor species are held constant, except the total available sulfate (TS) which is varied over 10,000 

sets of initial conditions.  The air temperature and relative humidity are 243 K and 5% respectively, for all test cases in the figure.  The 560 
convergence criteria are consistent between both solvers (see text).  
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4.2 Comparison using input from the GEM–MACH air–quality model  

Aside from generating artificial sets of input data to evaluate HETP (Sect. 4.1), the value of which is to demonstrate relative 565 

solution stability across small increments in input conditions, a comparison between HETP and ISORROPIA can be completed 

using more realistic input conditions obtained from the GEM–MACH air–quality model (Makar et al., 2018).  In this section, 

20,000 unique sets of input data (‘test cases’) from GEM–MACH are investigated for each chemical subspace, with 10,000 

test cases obtained from summer days and 10,000 test cases obtained from winter days. These test cases were selected from 

input conditions generated from a 10 km resolution simulation (domain covering North America), and chosen randomly so 570 

that the selected set of test cases spans across a broad range of temperatures and relative humidity, typical of actual tropospheric 

conditions.  Table 3 gives the relative frequency of calls to each chemical subspace (as a percentage of the total calls in GEM-

MACH) determined from four days (2 in the winter and 2 in the summer).  It should be noted that subspaces A2, B4 and C2 

all require that TN be formally zero; a low number limit in the GEM–MACH model prevents true zero conditions from 

occurring, hence the given subroutines are not called in this practical application test.  The majority of calls are to the subspaces 575 

O7, M8 and L9 which comprise more than 75% of the total calls on these four days, and hence most situations encountered in 

GEM–MACH over North America have a non–zero amount of base cation species present (K+, Mg2+, Ca2+).  

 

Table 3: The percentage of total calls to each subspace determined from four separate days (2 in the winter and 2 in the summer). The call 

frequencies are determined from the 10 km domain of the GEM–MACH air quality model which covers all of North America.  Any subspace 580 
with > 10% of total calls is bolded in the table.  

Case A2 B4 C2 D3 E4 F2 G5 H6 I6 J3 O7 M8 P13 L9 K4 

% Called 0.000 0.000 0.000 9.735 4.470 0.016 2.479 0.709 3.825 0.038 31.72 25.85 0.044 20.88 0.232 

 

 Figure 5 displays a scatter plot of Cl-/HCl (left panels) and NO3
-/HNO3 (right panels) output from ISORROPIA (y-

axis) and HETP (x-axis).  Fig 5(a-b) displays CALCM8 – summer (hereafter M8-S) and Fig. 5(c-d) shows CALCG5 – winter 

(hereafter G5-W).  The black dashed lines give a one–to–one relationship, denoting where HETP and ISORROPIA agree 585 

exactly.  There is relatively good agreement between the two solvers for M8-S, despite the differences noted for this subspace 

in Sect 4.1.  However, For G5-W a large amount of scatter exists, demonstrating disagreement between the two solvers for 

some test cases.  This disagreement is likely related to the choice to root–finding method and/or other numerical updates that 

have been made to the HETP code, as described in Sect. 3.  
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 590 

Figure 5: A scatter plot of the output concentrations (mol m-3) from ISORROPIA (y–axis) compared againist HETP (x–axis) for M8-

Summer (S) (a,b) and G5-Winter (W) (c,d), calculated from 10,000 input test cases obtained from the GEM-MACH air-quality model.  The 

solid black line gives a one–to–one relationship.  Speciation is given in the legend shown in panel a.  

 

As in Sect. 4.1, statistics of 𝜉′ are calculated from the output of each solver to judge the accuracy of the equilibrium 595 

solution.  This is especially important since the test cases in this section cannot be plotted in a regular fashion (as in Sect. 4.1), 

to graphically reveal obvious numerical instabilities.  Figure 6 displays a box and whisker plot of 𝜉′ for the chemical subspaces 

G5, H6, O7, M8 and P13. These subcases all require bisection or ITP and may have chloride present, with 𝐾HCl providing the 

‘final convergence check’.  The statistics shown in Fig. 6 include the data shown in Fig. 5 for subspaces M8-S and G5-W.  Fig. 
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6(a) and (b) show 𝜉′ for 𝐾HCl and 𝐾HNO3
 respectively; each panel shows 𝜉′ for both seasons, with summer having a ‘-S’ label 600 

winter having a ‘-W’ label.  In the box plot, the 25th percentile, median and 75th percentile of 𝜉′ correspond to the bottom of 

the box, center line in the box, and top of the box respectively. The bottom and top whisker of each box gives the minimum 

and maximum of 𝜉′ respectively; if the bottom whisker extends off the graph, then the minimum 𝜉′ is zero.  Except for G5-S, 

H6-S, H6-W, M8-S and M8-W, the median 𝜉′ of 𝐾HNO3
 is smaller in HETP than ISORROPIA for all subspaces shown in Fig. 

6b.  For 𝐾HCl, all subspaces except H6-S and H6-W have a smaller median 𝜉′ in HETP than ISORROPIA.  We note that despite 605 

HETP having lower median 𝜉′ than ISORROPIA for some subspaces, the magnitude of 𝜉′ suggests that ISORROPIA 

nevertheless providing sufficiently accurate output for most test cases.  For the input data investigated here, the subspace H6 

is performing poorly in both solvers (median 𝜉′ > 0.5 for all equilibrium constants), but the performance is marginally worse 

in HETP than ISORROPIA (for example, in H6–S for 𝐾HNO3
 the 75th percentile in HETP is 31.8, but in ISORROPIA it is 

13.4).   610 

Returning to the scatter noted in HNO3/NO3
– between the two solvers in G5-W (Fig. 5d), it is clear from the statistics 

of 𝜉′ for 𝐾HNO3
 and 𝐾HCl shown in Fig. 6 that both solvers are producing output that spans a broad range of accuracy.  The 75th 

percentile of 𝐾HNO3
 and 𝐾HCl are 2 orders of magnitude lower in HETP than ISORROPIA (for 𝐾HCl the 75th percentile of 𝜉′ is 

6.93×10-2 and 4.35 in HETP and ISORROPIA respectively), but the maximum 𝜉′ are a similar magnitude in each solver.  This 

suggests that both solvers are struggling with partitioning between the aqueous and gaseous phase for some test cases 615 

investigated here.  Of the 10,000 test cases analyzed in G5-W, 14.02% are identified in HETP as having ‘oscillatory behavior’ 

(see Sect. 3, point 3).  These flagged test cases generally have large 𝜉′ for all equilibrium constants (in both solvers), which is 

related to poor convergence during the iterative process.  Removing these flagged test cases reduces the median and 75th 

percentile of 𝜉′ (for 𝐾HNO3
 and 𝐾HCl) by an order of magnitude in both solvers; for HETP the median 𝜉′ for 𝐾HNO3

 reduces to 

4.90×10-8 (from 4.60×10-7) and for ISORROPIA the median 𝜉′ reduces to 2.72×10-6 (from 5.59×10-5).  The modification to 620 

account for ‘oscillatory behavior’ has the effect of reducing 𝜉′ for the flagged test cases in HETP compared to ISORROPIA 

(i.e., for the 14.02% of test cases affected, the median 𝜉′ for 𝐾HNO3
 is 0.28 for HETP, but for ISORROPIA it is 2.65). 

Furthermore, 98.8% of the flagged test cases are times when [Cl−] is predicted to be < 1×10-16 mol m-3 (note that [Cl−] is the 

bisected variable in G5), and all flagged test cases have TCl < 1×10-10 mol m-3.  For test cases where the output from each 

solver agrees well (i.e., falls along the one-to-one line in Fig. 5c-d), 𝜉′ for 𝐾HNO3
 and 𝐾HCl are minimized in each solver.  The 625 

statistics of 𝜉′ for other subspaces not discussed here are summarized in Table S3 (summer) and Table S4 (winter) of the 

supplemental information.   
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Figure 6: A box and whisker plot of the absolute error 𝝃′ = |𝐥𝐨𝐠(𝑲𝒄𝒂𝒍𝒄) − 𝐥𝐨𝐠(𝑲𝒕𝒓𝒖𝒆)| for (a) 𝑲𝐇𝐂𝐥 and (b) 𝑲𝐇𝐍𝐎𝟑
.  The summer season is 

denoted by ‘-S’ and the winter season is denoted by ‘-W’ in the x-axis labels.  𝝃′ is calculated from a set of 10,000 test cases in each season 630 
(obtained from the GEM–MACH air–quality model). 𝝃′ shown in the figure for M8 and G5 correspond to the scatter plots shown in Fig. 5.  

The median 𝝃′ is represented by the solid black line in the center of each box, and the 25th and 75th percentiles correspond to the bottom and 

top of each box respectively. The whiskers give the maximum (top) and minimum (bottom) of 𝝃′.  

 

 635 
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4.3 Computational time 

The mean time (determined from 10 repeated samples) required for the central processing unit (CPU) of a Lenovo SV650v2 

DWC computer to solve the test cases from Sect. 4.2 (for each season and subspace) are given in Table 4; the timing tests have 

an estimated uncertainty of ± 1%.  For HETP, two sets of timing tests are reported.  Test 1, labelled ‘THETV’, refers to timing 

using a global convergence criteria for all tests within a given chemical subspace; a “vectorized” test where all 𝑛 test cases for 640 

a given subspace are solved simultaneously.  This is the methodology used in Makar et al. (2003), where the great reduction 

in processing time associated with vectorization on a vector compiler was used to offset the fact that the number of iterations 

was determined by the single test case with the worst convergence behavior.  Test 2, labelled ‘THETP’ refers to a case–by–case 

test where the solver is called individually for each test case (i.e., the solver is called 𝑛 times).  In the latter test, the time 

associated with subroutine calls is offset by the number of iterations becoming test–specific.  The first strategy may be more 645 

efficient (aside from vectorization architecture gains) when the convergence criteria are relatively similar across grid–cells, 

that is, all input problems converge with the same number of iterations – while the second may be more efficient when the 

distribution of convergence is more heterogeneous, with some test cases requiring many more iterations than others.  

ISORROPIA (TISO) requires a case–by–case implementation, and cannot solve 𝑛 cases simultaneously.  The convergence 

criteria are identical to those used in the previous sections (Sect. 4.1 and 4.2).  In the case of ISORROPIA, it is important to 650 

reaffirm that the ‘–r8’ flag was used during compilation, forcing all calculations to be performed in double precision (as in the 

default implementation of HETP – that is, the precision of the solver has been removed as a possible cause for differences in 

performance).  For the subspaces D3, G5, H6, O7, M8 and P13 all test cases investigated were chosen so that they require the 

application of a root–finding method for convergence, since these are the most computationally intensive cases encountered 

by the solver.  As noted above, not all chemical subspaces have a sufficient amount of unique input data derived from GEM–655 

MACH simulations for the days sampled from each season.  Specifically, in the winter the subspaces A2, B4, C2 and F2 do 

not have enough suitable input data, while in the summer, the subspaces A2, B4, C2 have insufficient input data.  For winter, 

input data from J3 are used for F2, except with TNa = 0 and TCl = 0, the aim here being to provide timing tests across a 

realistic range of initial conditions.  It should be noted again that the subspaces A2, B4 and C2 were not executed by GEM–

MACH on either day for the reasons noted in Sect. 4.2.  Therefore, like F2 (winter), the input data used to analyze D3, E4 and 660 

F2 are used to analyze A2, B2 and C2 respectively, except with TN = 0.  

 

 

 

 665 
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Table 4: The average computational time (𝑻) (calculated from 10 samples) required to solve 10,000 unique sets of input conditions (from 670 
summer and winter), using ISORROPIA (TISO), the vectorized solver of HETP (THETV) and the case–by–case solver of HETP (THETP).  Input 

conditions were obtained from the GEM–MACH air–quality model, and the convergence criteria are consistent between both solvers (see 

text).  The speed up is a dimensionless quantity, with the non–bracketed value representing TISO/THETV and the bracketed value representing 

TISO/THETP; a value > 1 implies that HETP (or HETV) is computationally faster, while a value < 1 implies that ISORROPIA is computationally 

faster.  In the first three columns of each season, the bolded value denotes the fastest execution time between each of the solvers. The bolded 675 
value in the speed up column shows which solver style is computationally faster (i.e., HETP or HETV); an underlined value in this column 

signifies that HETV is computationally slower than ISORROPIA for that subcase (row).  

Subroutine  
Winter Summer  

THETV (s) THETP (s) TISO (s) Speed up THETV (s) THETP (s) TISO (s) Speed up 

CALCA2 0.044 0.042 0.061 
1.39 

(1.45) 
0.049 0.046 0.069 

1.41 

(1.50) 

CALCB4 0.011 0.011 0.022 
2.00 

(2.00) 
0.011 0.011 0.022 

2.00 

(2.00) 

CALCC2 0.010 0.009 0.020 
2.00 

(2.22) 
0.010 0.010 0.020 

2.00 

(2.00) 

CALCD3 0.354 0.295 0.486 
1.37 

(1.65) 
0.370 0.288 0.461 

1.25 

(1.60) 

CALCE4 0.013 0.013 0.027 
2.08 

(2.08) 
0.014 0.014 0.026 

1.86 

(1.86) 

CALCF2 0.013 0.012 0.024 
1.85 

(2.00) 
0.013 0.012 0.024 

1.85 

(2.00) 

CALCG5 0.447 0.381 0.806 
1.80 

(2.12) 
0.360 0.292 0.704 

1.96 

(2.41) 

CALCH6 0.126 0.061 0.108 
0.86 

(1.77) 
0.136 0.071 0.121 

0.89 

(1.70) 

CALCI6 0.027 0.026 0.037 
1.37 

(1.42) 
0.029 0.027 0.039 

1.34 

(1.44) 

CALCJ3 0.030 0.030 0.039 
1.30 

(1.30) 
0.032 0.031 0.041 

1.28 

(1.32) 

CALCO7 0.690 0.549 1.202 
1.74 

(2.19) 
0.688 0.567 1.262 

1.83 

(2.23) 

CALCM8 0.409 0.261 0.607 
1.48 

(2.33) 
0.482 0.359 0.646 

1.34 

(1.80) 

CALCP13 0.409 0.300 0.727 
1.78 

(2.42) 
0.376 0.192 0.796 

2.12 

(4.15) 

CALCL9 0.041 0.039 0.059 
1.44 

(1.51) 
0.038 0.036 0.058 

1.53 

(1.61) 

CALCK4 0.044 0.042 0.063 
1.43 

(1.50) 
0.042 0.040 0.060 

1.43 

 (1.50) 

Sum of 

GEM–

MACH tests  

2.67 2.07 4.29 
1.61 

(2.07) 
2.65 2.00 4.35 

1.64 

(2.18) 

 

 

The CPU timing results demonstrate that all subspaces (except H6, winter and summer) execute faster in HETP’s 680 

vectorized THETV implementation than ISORROPIA – in some cases the speed–up is significant (i.e., for CALCO7 the speed 

up is about a factor of 1.75 to 1.85 when using THETV).  An even more significant speed up can be achieved by using the case–
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by–case THETP implementation for some subspaces, specifically those that require bisection (A2, D3, G5, H6, O7, M8 and 

P13).  Unlike THETV, all chemical subspaces execute faster in in THETP than ISORROPIA.  For the sets of test cases investigated 

in this work, the best–case performance is found in P13–S, where THETV executes in about 0.38 s, but THETP executes in about 685 

0.19 s (the latter being about ~4.2x faster than ISORROPIA).  The speed–up afforded by HETP for this subcase is largely the 

result of HETP’s updated root–finding methodology (ITP), which requires fewer iterations on average to obtain a solution with 

an equivalent (or better) level of accuracy as ISORROPIA.  The statistics related to the number of iterations required by the 

root–finding methodology of each solver to achieve convergence (of the major systems) are given in Table 5, for the same 

input data used to generate the timing tests shown in Table 4.  For P13–S which has the best–case performance, ITP in HETP 690 

requires on average 8.2 iterations for convergence, while bisection in ISORROPIA requires on average 42.5 iterations.  Thus, 

HETP’s root–finding method requires about 19% of the iterations required by ISORROPIA for this set of input conditions, 

while executing in about 24% of the time (using the case–by–case mode).  The overall performance for the tests in GEM–

MACH (bottom row of Table 4) show the average performance of HETP operating in case–by–case mode results in a speed 

up relative to ISORROPIA of a factor of 2.07x for the summer tests, and 2.18x for the winter tests.  The inclusion of an ITP 695 

search for smallest positive real root of cubic equations in I6, J3, L9 and K4 substantially increases the execution time of the 

solver for these chemical subspaces relative to no ITP search, but despite this, HETP still executes in less time than 

ISORROPIA for these subcases.  

 The difference between THETP and THETV becomes even more apparent, and in favor of THETP, if a significant amount 

of test cases do not require bisection.  While THETV includes a return statement to reorder the problem (removing those test 700 

cases that have converged or have no solution prior to entering ITP), the root bracketing stage in THETV will nonetheless need 

to be repeated a second time for all test cases that do require ITP.  Note that the root bracketing stage identifies an interval 

where the objective function has a sign change; assuming a continuous function, this sign change signifies that a root exists 

within the interval.  Furthermore, in THETV some test cases may iterate in the root–bracketing stage more times than necessary 

(i.e., one test case has an identified interval, but other test cases within the same chemical subspace being solved by a global 705 

convergence criteria do not), thereby introducing excess computations into in THETV  that do not exist in THETP.  This is especially 

true as the variable 𝑛𝑑𝑖𝑣 (which controls the number of subdivisions searched for a sign change) is increased.  Thus, in most 

applications, and for the computer architecture tested here, the case–by–case THETP implementation will be preferred.  Both 

options are available as separate versions of code, and we recommend users test both options of the code on their own system 

to determine the best performance. 710 

The results presented herein have demonstrated that HETP is able to provide output for these subspaces that is more 

accurate overall, while executing up to 4.2x faster than ISORROPIA, with an average performance increase in a practical 

application between 2.07x and 2.18x (using the case–by–case mode).  The subspace H6 which executes slower in THETV than 

THETP (and is also less accurate than ISORROPIA for most input test cases), accounts for < 1% of the all test cases on the days 

sampled (see Table 3). 715 
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Table 5: Statistics describing the number of iterations required to achieve convergence of bisection (ISORROPIA) or ITP (HETP) for the 

timing tests shown in Table 4. The final column shows the average speed up, calculated for each row as the mean number of iterations from 

ISORROPIA divided by the mean number of iterations from HETP.  

 ISORROPIA: Winter HETP: Winter  

Case Median Q25 Q75 Min Max Mean Median Q25 Q75 Min Max Mean 
Speed 

up 

CALCD3 29 28 43 28 61 33.8 29 10 40 5 61 26.7 1.27 

CALCG5 34 32 35 28 52 34.3 30 7 34 1 51 22.7 1.51 

CALCH6 33 30 37 28 41 33.6 7 7 7 4 37 9.9 3.39 

CALCO7 34 32 37 27 52 35.2 14 8 34 1 53 20.6 1.71 

CALCM8 31 30 33 28 43 31.6 7 7 11 4 38 11.3 2.80 

CALCP13 31 28 35 28 58 31.8 8 7 9 5 41 11.9 2.67 

 
 

 ISORROPIA: Summer HETP: Summer  

Case Median Q25 Q75 Min Max Mean Median Q25 Q75 Min Max Mean 
Speed 

up 

CALCD3 29 28 32 22 68 33.5 28 24 31 1 61 28.2 1.19 

CALCG5 33 31 36 26 57 34.1 12 7 32 1 44 17.6 1.94 

CALCH6 32 28 37 28 40 32.6 7 7 29 5 38 15.1 2.16 

CALCO7 34 32 36 28 47 33.9 17 9 34 5 45 21.1 1.61 

CALCM8 32 29 34 28 41 31.9 11 7 29 5 40 18.2 1.75 

CALCP13 42 39 45 28 60 42.5 7 6 8 5 61 8.2 5.18 

5 Conclusions   720 

In this work we have presented HETP, an updated solver to perform thermodynamic equilibrium calculations of the H+–SO4
2–

–NH4
+–NO3

––Cl––Na+–Ca2+–K+–Mg2+ chemical system, based on the algorithms of ISORROPIA, an inorganic heterogeneous 

chemistry solver which has allowed chemical transport models to carry out complex calculations in a practical amount of 

processing time.  HETP has been updated in several ways to improve both the computational speed and accuracy, compared 

to ISORROPIA.  For most input conditions HETP produces equivalent results to ISORROPIA, but for some input conditions 725 

the output from the solvers can diverge.  Analysis of the output from each solver suggests that HETP’s use of  ITP (instead of 

bisection) improves the accuracy of its equilibrium solution for some input conditions by obtaining a more accurate initial 

estimate of the root prior to the commencement of the ITP search, while reducing the number of iterations required for 

convergence.  The differences may be formally linked to reduced accuracy of the ISORROPIA solver’s output due to several 

numerical issues as described in the sections above.  In addition to providing more accurate output for most test cases, HETP, 730 

when implemented to solve 𝑛 test cases simultaneously, may execute 1.2 to 2.1 times faster than ISORROPIA (except for 
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CALCH6), based on input from the regional chemical transport model GEM-MACH.  Alternatively, when HETP is 

implemented as a case–by–case solver (the solver is called 𝑛 times), then HETP is 1.3 to 4.2 times faster than ISORROPIA 

for individual chemical subspaces, and 2.1 to 2.2 times faster than ISORROPIA on average, with the speed–up being most 

significant in subspaces that require the application of a root-finding method for convergence.  735 
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