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Abstract.   

We describe a new FORTRAN 90Fortran computer program to solve the  the system  of equations for the NH4
+–Na+–Ca2+–10 

K+–Mg2+–SO4
2––NO3

––Cl––H2O system, based on the algorithms of ISORROPIA II.  Specifically, the code solves the system 

of equations describing the “forward” (gas + aerosol input) metastable state, , but with containing algorithm improvements 

and corrections.    These algorithm changes allow the code to deliver more accurate solution results in formal evaluations of 

accuracy of the roots of the systems of equations, while reducing processing time in practical applications by about 50 %.  The 

improved solution performance results from several implementation improvements relative to the original ISORROPIA 15 

algorithms.  These improvements include (i) the use of the ‘interpolate, truncate and project’ (ITP) root–finding approach 

rather than bisection, (ii) the allowance of search interval endpoints as valid roots at the onset of a search, (iii) the use of a 

more accurate method to solve polynomial subsystems of equations, (iv) the elimination of negative concentrations during 

iterative solutions, (v) corrections for mass conservation enforcement, and (vi) several code structure improvements.  The new 

code may be run in either a “vectorization” mode wherein a global convergence criterion is used across multiple tests within 20 

the same chemical subspace, or a “by gridpointcase-by-case” mode wherein individual test cases are solved with the same 

convergence criteria. The latter approach was found to be more efficient on the compiler tested here, but users of the code are 

recommended to test both options on their own systems.  TWe also note that implementation of inorganic chemistry within 

chemical transport models should take care to retain residual or “free” mass of aerosol species remaining after partitioning, to 

ensure mass conservation – thehe new code has been constructed to explicitly conserve the input mass for all species considered 25 

in the solver, and .  The new code is provided as open–sourceopen source FORTRAN 90Fortran shareware. 

1 Introduction  

Anthropogenic atmospheric particulate matter (aerosols) can negatively impact the Earth’s climate and biosphere – aerosols 

can alter the atmosphere’s radiative forcing (Jacobson, 2001; Schmale et al., 2021), contribute to acid rain (Irwin and Williams, 
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1988), reduce atmospheric visibility (Quan et al., 2015) and cause morbidity in humans (Atkinson et al., 2014) and other plant 30 

and animal species (Lovett et al., 2009).  Atmospheric particulate matter is comprised of organic and inorganic species, with 

25 to 60 % of particulate matter being inorganic by mass (Harrison and Pio, 1983; Heintzenberg, 1989).  The inorganic portion 

of atmospheric particulate matter consists primarily of sulfate (SO4
2–), nitrate (NO3

–), ammonium (NH4
+), chloride (Cl–), 

calcium (Ca2+), potassium (K+), magnesium (Mg2+),  and sodium (Na+) and water (H2O) (Harrison and Pio, 1983; Wang et al., 

2003).  Along coastlines and within marine air masses, inorganic bromide (Br–) (Sander et al., 2003) and iodide (I-) (Saiz-35 

Lopez et al., 2011) may also be common (Sander et al., 2003).  Ca2+, K+, Mg2+, Na+ and Cl– exist principally in the coarse 

mode aerosols (particle diameter > 2.5 µm), and these species are particularly important to the partitioning of ammonium and 

nitrate (Metzger et al., 2006).  As an example, coarse mode particle nitrate may form via adsorption of nitric acid (HNO3) onto 

sea salt (Savoie and Prospero, 1982).  It should be noted that a considerable amount of K+ may also be present in the fine mode 

aerosols (particle diameter < 2.5 µm) when it is generated during biomass burning events, termed ‘pyrogenic potassium’ 40 

(Metzger et al., 2006).  The transfer of cation and anion mass between the gas and particulate phase is crucially dependent on 

inorganic thermodynamic partitioning.   – Ffor example, observations have indicated that base cations (Ca2+, K+, Mg2+, Na+) 

and the NH4
+ammonium  ion (NH4

+) can compete for uptake of HNO3 (the former residing in coarse mode, the latter in fine 

mode particle nitrate formation) (Makar et al., 1998, Anlauf et al., 2006). 

The aerosols can reside in the crystalline solid phase or exist as an aqueous solution of ions, andions and may be in 45 

thermodynamic equilibrium with atmospheric gases.  The partitioning of the inorganic species between the solid, 

gaseousgaseous, and aqueous phase is a complex computational problem, owing to the many nonlinearities involved.  The 

equations describing high concentration (non-–ideal) inorganic heterogeneous equilibrium between gases, ions and crystallized 

solid phases present a system of 𝑁 equations in 𝑁 unknowns,  (where 𝑁 is the number of chemical constituents).  While these 

equations may be addressed through searching for roots of polynomials resulting from substitution of equations, the non-–50 

ideal nature of the problem manifests as corrections to the equilibrium constants in the equations, known as a (activity 

coefficients.  The) which activity coefficientsin turn depend on concentrations in the condensed phase, – increasing the 

nonlinearity of the system of equations, andequations and requiring the development of special techniques for their solution.  

Several solvers have been developed to simulate the thermodynamic partitioning of inorganic species (see Zhang et al., 2000 

and Pye et al., 2020 for a detailed review of these solvers).  AIM2 (Clegg and Pitzer, 1992; Wexler and Clegg, 2002), and 55 

GFEMN (Ansari and Pandis, 1999a, b)  and UHAERO (Amundson et al., 2006) are considered the most rigorous solvers, in 

that they attempt to find a global minimum in the Gibbs free energy of the constituents.,  However, thbut the downfall of this 

approach stems from the computational time and operator review required to discriminate between the true global minimum 

and (potentially many) local minima (Makar et al., 2003).  This difficulty has prevented the use of these solvers in three 

dimensional (3D) chemical transport models (CTMs) to date.  However, these models may be used to help determine sub–60 

systemssubsystems of equations – local solution spaces where gas and aerosol partitioning will occur with a smaller number 

of constituents – and hence describe simplified systems that may be solved with more efficient methods.  Inorganic 

heterogeneous chemistry implementations in CTMschemical transport models have relied on computationally efficient 
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algorithms.  These algorithms, which directly solve the system of inorganic heterogeneous chemistry equations by considering 

the species’ chemical potentials within these predetermined subspaces of a smaller numbers of species, hence simplifying and 65 

reducing the number of equations and unknowns.  The specific subspace to be solved is determined based on the input precursor 

species, and the ratio(s) of the total available cations to the total available sulfate (see Sect. 2).  This approach effectively 

breaks the larger problem into several separate smaller problems.  Solvers that apply this tactic include SCAPE (Kim et al., 

1993a,b; Kim and Seinfeld, 1995; Meng et al., 1995), EQUILSOLV–II (Jacobson, 1999), ISORROPIA/ISORROPIA 

II/ISORROPIA–lite (Nenes et al., 1998; Fountoukis and Nenes, 2007; Kakavas et al., 2022), HETV (Makar et al., 2003) and 70 

HETP (presented herein).  HETV (HETerogeneous Vectorized) was a vectorized solver (i.e., optimized for vectorized 

computer architecture) based on the original ISORROPIA algorithms (Nenes et al., 1998), but with numerical improvements 

related to more accurate evaluation of cubic and quadratic equations whose coefficients may vary by several orders of 

magnitude, coding structure changes to replace logical IF statements with mathematical equivalents, the elimination of 

redundant calculations, the replacement of intrinsic functions in activity coefficient calculations by high order Taylor series, 75 

and the gathering of similar problems within a single-–subsystem for solutionto be solved using a global convergence criteria.  

These modifications allowed HETV to perform calculations in 1/38 to 1/89 of the time required for ISORROPIA (v1.0), on a 

vector supercomputer (the fastest supercomputer architecture at the time the HETV code was created).  – Mmore recent 

supercomputer architectures focus on parallel processing across multiple processors to reduce processing time).  In 2007, an 

update to ISORROPIA was released that included ‘crustal’ species (Mg2+, K+, Ca2+) and sea salt (Na+, Cl–),  (referred to as 80 

ISORROPIA II (; Fountoukis and Nenes, 2007).  More recently,, a simplified (and extended ) version of ISORROPIA II has 

been developed,  (called ISORROPIA-–lite.  ISORROPIA-lite) that attempts to addresses the metastable state  (i.e., it assumes 

(a supersaturated aqueous solution where crystalline states are ignored, except CaSO4)those subsystems in which liquid water 

is present),  as well as effects of organic aerosols on the partitioning of the inorganic system.  ISORROPIA-–lite solves the 

same chemical subspaces as ISORROPIA II, but only for the metastable state option (i.e., efflorescence branch) and uses 85 

precalculated binary activity coefficients, resulting in a solver that executes about 35 % faster than ISORROPIA II (Kakavas 

et al., 2022).   

The underlying issue driving the use of a metastable state assumption in regional air quality models for inorganic 

heterogeneous chemistry solvers is that the presence of water in the aerosol is not only controlled by the inorganic components, 

but also by other components within a mixed-–phase aerosol.  In the absence of these additional sources of aerosol water, the 90 

“pure” (i.e.  only) inorganic aerosol thermodynamics can result in partitioning to the ‘stable’ aerosol phase as only crystalline 

solidssalts (no ions) or a mixture of crystalline salts and aqueous ions that are saturated with respect to the crystalline salts.,  

The whereas the presence of the additional sources of aerosol water will ensure that some water is always present – and hence 

the subsystems of equations that have no water will not be encountered.  It has been reported that metastable state aerosols 

may be ‘ubiquitous’ in the Earth’s atmosphere, existing more than 50 % of the time when the relative humidity is between 45 95 

and 75 % (Rood et al., 1989; Tang et al., 1995); this may be especially true in the case of dissolved impurities such as organic 

species (Fountoukis et al., 2009).  Another issue driving the use of the metastable state assumption in regional air quality 
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models is the need to track the RH history of aerosols to accurately predict their phase state, due to the   hysteresis of salts.  

Specifically, without knowing the RH history of the aerosol, it is not possible to determine whether the aerosol will exist as an 

aqueous solution of ions or as a crystalline salt between its efflorescence and deliquescence RH (Martin et al., 2004; Fountoukis 100 

et al., 2009).  Given these reasons, aApplications of inorganic aerosol thermodynamics within 3D chemical transport 

modelsCTMs tthus tend to assume a metastable state as the most likely conditions in the troposphere, although absolutely 

stable aqueous aerosols are possible above the deliquescence RH.   This assumption also reduces the number of chemical sub–

spacessubspaces required to obtain a solution of the system of equations for inorganic heterogeneous chemistry, and additions 

such as formulae for the water activity associated with organic aerosols may be used to better simulate the aerosol water content 105 

(Kakavas et al, 2022).   

 In the different versions of ISORROPIA and HETV, the roots of sub–systemssubsystems of equilibrium equations 

are used to determine the thermodynamic equilibrium solution, the result being the concentrations of the inorganic ions and 

the partitioning gases.  In ISORROPIA/ISORROPIA II/ISORROPIA–lite and HETV, convergence of these solutions to these 

systems of equations are obtained via a bisection search, while in SCAPE, Newton’s method is employed.  Newton’s method 110 

is also used in ANISORROPIA where it is combined with the bisection method for chemical subspaces describing a neutral 

aerosol.  ANISORROPIA performs a sensitivity analysis on each inorganic species considered in ISORROPIA (excluding 

Ca2+, Mg2+, K+) with respect to the total input precursor species concentration (Capps et al., 2012).   It is well known that 

Newton’s method may fail to converge if the ‘initial guess’ of the root is too far away from the actual root (Burden and Faires, 

2011).  Unlike Newton’s method, the bisection method is guaranteed to converge, al (though the convergence may be slow.)  115 

The bisection method, requirequiresring at most 𝑛𝑒𝑣𝑎𝑙 = log2 (
𝑏−𝑎

2𝜀
) function evaluations to locate the root (𝑥) on the interval 

[𝑎, 𝑏] such that |𝑥𝑖 − 𝑥∗| ≤ 𝜀, where 𝜀 is a set tolerance, and 𝑥∗ is the current estimate of the root, and 𝑥𝑖 is the previous 

estimate of the root.  In most cases, the bisection method will require all 𝑛𝑒𝑣𝑎𝑙  function evaluations for convergence (Oliveira 

and Takahasi, 2021).  Recently, Oliveira and Takahasi (2021) developed a modified bisection approach called “interpolate, 

truncate and project” (ITP), which may obtain superlinear convergence, therefore reducing the execution time required to 120 

obtain a solution with the same accuracy as the typical bisection method (note that the bisection method has linear 

convergence).  To achieve an improved order of convergence, the ITP method incorporates a regula-–falsi estimate into the 

bisection method.  The ‘typical’ bisection method simply splits the original interval in half, with 𝑥∗ becoming the midpoint of 

this interval (𝑥∗ = 𝑥1 2⁄ = 0.5(𝑎 + 𝑏));  – a new interval is then chosen (i.e., [𝑎, 𝑥∗] or [𝑥∗, 𝑏]) based on the sign change.  The 

regula-–falsi estimate, however, is determined by fitting a straight line through the identified interval by using the function 125 

values at each endpoint (i.e., 𝑥𝑓 = [𝑏𝑓(𝑎) − 𝑎𝑓(𝑏)] [𝑓(𝑎) − 𝑓(𝑏)]⁄ ).   – Tthis estimate defines the ‘interpolation’ aspect of 

the ITP method.  By making use of these two estimates simultaneously (i.e., 𝑥∗ and 𝑥𝑓), ITP is able tocan outperform the 

typical bisection method for both convergence rate and accuracy.  For well-–behaved functions (i.e., there is onlexactlyy one 

root in the function’s domain) ITP requires on average 24 to 37 % of the iterations required by bisection, and for ill-–behaved 

functions (i.e., there are multiple roots in the function’s domainn, or the function contains discontinuities) ITP requires on 130 
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average 82 % of the iterations necessary forrequired by bisection.  Oliveira and Takahasi (2021) also compared the performance 

of ITP against well-established alternative root-finding methods, such as Ridder’s method,  the Illinois method, Matlab’s 

‘fzero’ routine and the Secant method.  For all mathematical functions evaluated for convergence, ITP required the least 

amount of function evaluations when compared against the other root-finding methods.  For example, compared to Ridder’s 

method,  ITP requires an average of 20.2 function Theevaluations while Ridder’s method requires an average of 26.1.  The 135 

full mathematical details describing the ITP method (as well as pseudocode) are given in Oliveira and Takahasi (2021) and are 

not repeated herein. 

In this work we present HETP (HETerogeneous vectorized or Parallel), a solver based on the “forward” (input 

precursor species as gas + aerosol) metastable state algorithms of ISORROPIA II.  HETP , which hascan been optimized for 

vector processors where (i.e. similar problems for a subsystem are gathered and solved with a global convergence criterion,) 140 

or parallel processors, where (the latter employing local, by grid point case-by-case solutions to the system of equations are 

used to minimize processing time on parallel processors).  HETP focuses exclusively on the metastable state (efflorescence 

branch) where some amount of liquid water is always assumed to be present in the aerosol, even at very low relative humidity.  

; Tthe metastable state assumption is currently applied in various state-–of-–the-–art global and regional chemical transport 

modelsCTMs, such as GEM-–MACH, GEOS-–ChemHEM and CMAQ.  GEM-MACH uses HETV (Makar et al., 2018), while 145 

CMAQ (Wang et al., 2012) and GEOS-ChemHEM (Pye et al., 2009) use ISORROPIA II.  HETP has been updated to improve 

its numerical stability and computational speed compared to ISORROPIA II, as will be discussed in detail below.  Specifically, 

in addition to the numerical improvements associated with its predecessor, HETV, modifications have been made to 

incorporate base cations and chlorine, to ensure mass conservation, and to update the bisection method to ITP.  In the following 

sections, we demonstrate that the implementation of ITP not only decreases the execution time of the solver, but it can also 150 

improve the final convergence of the chemical system by initializing the search with a species concentration (i.e., an initial 

guess) that is closer to the actual solution being sought (at thermodynamic equilibrium).  Thus, we have developed a new 

solver (HETP) that has improved the accuracy and decreased the execution time compared to the original ISORROPIA II 

metastable state forward algorithms.  Section 2 briefly outlines the background theory underpinning the solver, followed in 

Sect. 3 by a detailed list of modifications that are unique to HETP (relative to ISORROPIA II).  The final sections provide a 155 

comprehensive comparison between ISORROPIA II and HETP, in terms of output results and computational speed, both of 

which are improved in the HETP algorithm.  For brevity we will henceforth refer to ISORROPIA II as ISORROPIA in the 

remainder of this paper.   

2 Background theory  

HETP is based on the algorithms of ISORROPIA, which are in turn based on Gibbs free energy minimizations to define 160 

subspaces of systems of equations for inorganic heterogeneous chemistry.  ISORROPIA solves two types of problems, referred 

to as the ‘forward’ or ‘reverse’ problem.  The forward problem requires known input precursor concentrations (total gas + 
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aerosol), along with a relative humidity and air temperature, to predict the equilibrium state.  HETP does not consider the 

reverse problem where the relative humidity, air temperature and aqueous aerosol species concentrations are known (i.e., no 

gaseous species are included in the input precursor concentrations), and a solution is sought to determine the resulting 165 

equilibrium and gas concentrations.  For measured data, the reverse problem is typically not recommended since it lacks the 

inclusion of gas phase speciation in the input, making its predictions highly sensitive to measurement errors.  For example, 

Hennigan et al., (2015) show that a ±10 % measurement error in NH4
+ can alter the pH predicted by the reverse mode by more 

than 1 pH unit.  Furthermore, Song et al., (2018) found that the aerosol pH predicted by the reverse mode may result in a 

bimodal pH distribution; in their study a negative ion balance gave highly acidic conditions while a positive ion balance gave 170 

near-neutral conditions.  We note that the reverse mode is used in CMAQ to perform mass transfer with the coarse mode (Pye 

et al., 2022), but other CTMs that employ ISORROPIA use only the forward mode.  

The ISORROPIA solvers have been used in a large number of chemical transport modelCTM applications (i.e., 

ISORROPIA: 1250 citations; ISORROPIA II: 1245 citations), and have been a key component in these models, allowing 

inorganic heterogeneous chemistry calculations to be carried out in a timely fashion.  Here, we build on those solvers, and 175 

would like to acknowledge their important contribution to air-–quality modelling science.  As stated in Sect. 1, HETP assumes 

a metastable state,  (where some liquid water is always present even at low relative humidity).  The required input precursor 

species are the total sulfate (TS, expressed as molar equivalent H2SO4), total ammonium (TA, expressed as molar equivalent 

NH3), total nitrate (TN, expressed as molar equivalent HNO3), total sodium (TNa, expressed as molar equivalent Na+), total 

chloride (TCl, expressed as molar equivalent HCl), total magnesium (TMg, expressed as molar equivalent Mg2+), total 180 

potassium (TK, expressed as molar equivalent K+) and total calcium (TCa, expressed as molar equivalent Ca2+).  Units of these 

net precursor species are mol m–3 air upon input into both ISORROPIA and HETP.  For some input conditions ISORROPIA 

will adjust the input precursor concentrations prior to determining the subroutine that should be entered.  Specifically, 

ISORROPIA will adjust TA and TCl so that they are no less than 1×10-10 mol m-3, and if (TNa + TS + TN) < 1×10-10 mol m-

3, then ISORROPIA will adjust TNa and TN so that they are no less than 1×10-10 mol m-3 (note these are applicable only to 185 

Branch 3 and 4; see Fig. 1).  These adjustments performed within a chemical transport modelCTM result in output speciation 

that violates mass conservation, since mass is created for TA, TN, TCl and TNa.  For example, for 50,000 unique sets of input 

conditions executing Branch 4 subroutines (i.e., winter input from Sect. 4.2), performing these adjustments results in a median 

of 1.09×10-3 ug m-3 of TCl being created by the solver.  On a relative scale (
output mass

input mass
× 100 %) this represents a median 

increase in TCl mass by 42.7 %; for 25 % of these input conditions the relative increase in TCl mass ≥ 4414 %.  In a CTM 190 

these mass violations would occur at a single timestep, therefore the impact would increase as the simulation progresses.   As 

a resultConsidering these mass violations, ISORROPIA currently used in GEOS-ChemHEM v14.0.0 (GEOS-CHEMChem, 

2022) does not perform these mass adjustments.  ; Iit should be noted that GEOS-CHEM Chem v14.0.0 uses ISORROPIA 

v2.2 which contains minor bug fixes compared to ISORROPIA II (v2.0).  CMAQv5.4 which also uses ISORROPIA v.2.2 

(CMAS, 2016; USEPA, 2022), does perform these initial mass adjustments;, however, any output that results from input data 195 
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that are mass adjusted are flagged.  HETP adopts the approach of GEOS-ChemHEM and likewise does not perform these 

initial mass adjustments.  Therefore, ISORROPIA v2.2 used herein (obtained from CMAQv5.4; USEPA, 2022) has been 

modified so that it also does not perform the aforementioned mass adjustments.  Other than this modification, the branches 

and chemical subspaces (shown in Fig. 1) are identical to ISORROPIA.  

Table 1 lists the entire set of equilibrium reactions (ER1 to ER7) that are solved in various chemical subspaces of the 200 

metastable state ‘forward’ option of both ISORROPIA and HETP.  The decision tree (outlined at the end of this section) used 

to select the appropriate chemical subspace, as well as the equilibrium reactions shown in Table 1, are identical to ISORROPIA 

(Fountoukis and Nenes, 2007).  ER1 to ER7 are solved by introducing additional relationships for mass conservation, 

electroneutrality (i.e., a charge balance equation), aerosol water activity, and  mean molality-based activity coefficients (𝛾) to 

represent ion-–ion interactions in non-–ideal aqueous solutions (𝛾 → 1 as the solution becomes more dilute, i.e.  more “ideal”).  205 

Given in Table S1 are the equilibrium reactions that form the basis of dry salt partitioning (ER8 to ER25) that is completed 

during the initialization of several metastable state subspaces.  It should be noted that ER8 to ER25 are not solved directly – 

instead the input precursor species are partitioned into various salts based on these equilibrium reactions.   

The exact salts that form (i.e., which anions are matched by which cations) depends on the specific chemical subspace 

that is entered and whether the subspace is ‘sulfate rich’, ‘sulfate super-–rich’ or ‘sulfate poor’; these classifications are 210 

determined by the relative amounts of the input cations to the total available sulfate.  For example, in CALCP13 (the algorithm 

branch describing a sulfate poor case with base cations present) calcium, potassium and magnesium first react with the sulfates 

to produce CaSO4, K2SO4 and MgSO4 respectively, and sodium and chloride react to form NaCl.  Any free calcium will then 

react with nitrate and free chloride to form Ca(NO3)2 and CaCl2 respectively.  Next, free magnesium will react with free nitrate 

and free chloride to form Mg(NO3) and CaCl2, respectively, and then free sodium will then react with free nitrate to form 215 

NaNO3.  Finally, free potassium will react with free chloride and free nitrate to form KCl and KNO3, respectively.  The order 

of dry salt partitioning in the remaining chemical subspaces,  (where applicable,) are provided in Table S2 of the Supplemental 

Information, and are identical to ISORROPIA (except for CALCL9, discussed in Sect. 3).  Depending on the amount of anions 

and cations present for this initial partitioning stage, some of these input components may be in excess of the amount which 

can be partitioned into salts.  This excess mass, beyond that required to create a set of salts, is referred to as the “free” amount 220 

of the given component.  The salts created in this initial stage of partitioning are then assumed to undergo deliquescence in 

each of the problems to be solved, resulting in an aqueous phase speciation that is then used as the initial conditions for which 

a thermodynamic solution is required.  In addition to the free amounts generated within a chemical subspace during dry salt 

partitioning, free amounts may also be generated during the initialization of HETP and ISORROPIA, prior to entering a 

chemical subspace.  Specifically, automatic adjustments are applied if the input precursor species are nonelectroneutral.  In 225 

this case, any excess cations are ignored, and free amounts of Na, Ca, K and Mg may be created.  These automatic adjustments 

help constrain the particle alkalinity of the equilibrium solution, ensuring that it does not exceed the pH of dissolved particulate 

calcium carbonate (Pye et al., 2020).   The “free” mass must therefore be treated carefully in the context of the application of 

thermodynamic solvers within chemical transport modelsCTMs.  A key requirement for chemical transport modelsCTMs is 
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that they conserve the mass of transported species, within process representation such as inorganic thermodynamics.  Solvers 230 

such as ISORROPIA conserve mass for the “captured” or “non-–free” portion of the input chemical speciation, but not the 

“free” portion.  .  However, the “free” mass must be retained by the program accessing the solver, to prevent loss of mass of 

species such as Na, Mg, K, and Ca; the free mass must be added back to the captured mass partitioned by the solver prior to 

returning to the program accessing the inorganic heterogeneous chemistry solver.  Currently, ISORROPIA only outputs the 

aqueous, solid, or gaseous species that result after partitioning at thermodynamic equilibrium, and not ‘free’ amounts.  If the 235 

non-volatile species (Ca2+, Mg2+, K+, Na+) output by the solver are used by the CTM, and the ‘free’ amounts are  not retained 

and used to conserve mass, then inputs to the solver which result in ‘free’ species will be lost in the solver call.  Some of the 

chemical subsystem solvers in ISORROPIA retain the free amounts, while others do not; Wwe note, however,  thatt the free 

amounts are not being tracked in someCTMs community regional chemical transport models such as CMAQ v5.4 and GEOS–

Chem v14.0.2 avoid this potential problem by only allowing the semi-volatile species employing ISORROPIA (i.e., 240 

CMAQv5.4, GEOS–CHEM v14.0.2)(i.e., Cl-–HCl, NO3
-–HNO3, NH4

+–NH3) to be modified on output from the solver.  The 

semi-volatile species are then saved and transferred back to the model.  The non-volatile species are not used after chemical 

partitioning and are not transferred back to the model calling ISORROPIA.  Therefore, any non-volatile free mass that was 

created in ISORORPIA is not lost in the solver call in these CTMs (aerosol mass is conserved).  ; these implementations may 

be inadvertently losing aerosol mass due to this issue, where the free amounts were not being retained and hence inorganic 245 

aerosol mass may sometimes inadvertently be lost in these regional models.  IIn HETP , the free amounts have been retained 

in all cases and are returned to the calling code for completeness.  The manner in which the initial salt concentrations are 

determined, including the “free” amounts, is provided in detail in Table S2 (Supplemental information). ; HETP tracks all free 

amounts explicitly, otherwise, the initial dry salt concentrations outlined in Table S2 are determined identical to ISORROPIA 

(except CALCL9 which is discussed in Sect. 3). 250 

 

 

Table 1: Equilibrium reactions (ER) considered in the metastable state chemical subspaces,  identical to ISORROPIA (Fountoukis and Nenes, 2007).  These 

reactions are solved directly within the appropriate major system.  ∆𝐺𝑓
0, ∆𝐻𝑓

0 and ∆𝐶𝑝
0 are the standard molar Gibbs free energy, enthalpy of formation and 

heat capacity at standard pressure, 𝑅 = 8.314 J mol–1 K–1 is the universal gas constant, and 𝑇0 = 298.15 K is the reference temperature.  Each species 255 
concentration  The ions denoted in square brackets […] (i.e., [H+], [SO4

2-], [HSO4
-], etc.) with unitsrefer to of molalities with units of mol kg-1 mol m–3 is 

converted to a molality using the aerosol liquid water content in kg m-3.  Here, 𝛾 is a multicomponent activity coefficient and 𝑝 is a gas partial pressure. 

Theoretically, equilibrium constants are unitless since each pressure or concentration should be normalized by a standard state; here standard states are 

neglected. 

Equation 

No. 

Equilibrium reactions and values of 

𝐞𝐱𝐩(−∆𝑮𝒇
𝟎 (𝑹𝑻𝟎)⁄ ), −∆𝑯𝒇

𝟎 (𝑹𝑻𝟎)⁄ , −∆𝑪𝒑
𝟎 𝑹⁄  

Equilibrium equation 

ER1 

𝐾HSO4
: HSO4

−
(aq)

⇌ H(aq)
+ + SO4

2−
(aq)

  

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 1.015×10–2 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  8.85 

∆𝐶𝑝
0 𝑅⁄  25.14 

 

𝐾HSO4
=

[H+][SO4
2−]

[HSO4
−]

(
𝛾H+𝛾

SO4
2−

𝛾HSO4
−

𝛾H2SO4
3

𝛾H−HSO4
2 )   [mol kg–1] 

ER2 

𝐾NH3𝑎
: NH3(g) ⇌ NH3(aq) 

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 5.7639×101 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  13.79 

∆𝐶𝑝
0 𝑅⁄  –5.39 

 

𝐾NH3 𝑎
=

[NH3(aq)]

[𝑝NH3(aq)
]

(𝛾NH3(aq)
)   [mol kg–1 atm–1] 
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ER3 

𝐾NH3𝑏
: NH3(aq)

+ H2O(aq) ⇌ NH4
+

(aq) + OH(aq)
−  

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 1.805×10–5 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  –1.50 

∆𝐶𝑝
0 𝑅⁄  26.92 

 

𝐾NH3 𝑏
=

[NH4
+][OH−]

[NH3(aq)
]𝑎𝑤

(
𝛾

NH4
+𝛾OH−

𝛾NH3(aq)

)   [mol kg–1] 

ER4 

𝐾H2O: H2O(aq) ⇌ H(aq)
+ + OH(aq)

−  

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 1.010×10–14 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  –22.52 

∆𝐶𝑝
0 𝑅⁄  26.92 

 

𝐾H2O =
[H+][OH−]

𝑎𝑤
(𝛾H+𝛾OH−)   [mol2 kg–2] 

with 𝛾H+ = 1 and 𝛾OH− = 1 

ER5 

𝐾HNO3
: HNO3(g) ⇌ H(aq)

+ + NO3
−

(aq)
 

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 2.511×106 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  29.17 

∆𝐶𝑝
0 𝑅⁄  16.83 

 

𝐾HNO3
=

[H+][NO3
−]

𝑝HNO3

(𝛾H+𝛾NO3
−)   [mol2 kg–2 atm–1] 

 

ER6 

𝐾HCl: HCl(g) ⇌ H(aq)
+ + Cl(aq)

−  

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 1.971×106 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  30.20 

∆𝐶𝑝
0 𝑅⁄  19.91 

 

𝐾HCl =
[H+][Cl−]

𝑝HCl
(𝛾H+𝛾Cl−)   [mol2 kg–2 atm–1] 

ER7 

𝐾NH4NO3
: NH4NO3(s)

⇌ NH3(g)
+ HNO3(g)

 

exp(−∆𝐺𝑓
0 (𝑅𝑇0)⁄ ) 4.199×10–17 

∆𝐻𝑓
0 (𝑅𝑇0)⁄  –74.735 

∆𝐶𝑝
0 𝑅⁄  6.025 

 

𝐾NH4NO3
= 𝑝NH3

𝑝HNO3
    [atm2] 

Note: 
𝜸𝐇+𝜸

𝐒𝐎𝟒
𝟐−

𝜸𝐇𝐒𝐎𝟒
−

=
𝜸

𝐇+
𝟐 𝜸

𝐒𝐎𝟒
𝟐−

𝜸𝐇+𝜸𝐇𝐒𝐎𝟒
−

=
𝜸𝐇𝟐𝐒𝐎𝟒

𝟑

𝜸𝐇−𝐇𝐒𝐎𝟒
𝟐   (Kim and Seinfeld, 1993b) 260 

 

The equilibrium constants are calculated from the Van’t Hoff equation, where ∆𝐻0(𝑇0) is approximated for a small 

temperature range (Denbigh, 1981) as  

 

𝐾𝑗(𝑇) = 𝐾0 exp [−
∆𝐻0(𝑇0)

𝑅𝑇0
(

𝑇0

𝑇
− 1) −

∆𝑐𝑝
0

𝑅
(1 + ln (

𝑇0

𝑇
) −

𝑇0

𝑇
)],       (1) 265 

 

where 𝐾0 is the equilibrium constant at a reference temperature of 𝑇0 = 298.15 K, 𝑅 = 8.314 J mol–1 K–1 is the universal gas 

constant, ∆𝑐𝑝
0 (J mol–1 K–1) is the change of molar heat capacity of products minus reactants and ∆𝐻0 (kJ mol–1) is the enthalpy 

change of the reaction at temperature 𝑇0 (K).  𝐾0 is determined as 

 270 

𝐾0(𝑇0) = exp (−
∆𝐺𝑓

0

𝑅𝑇0
),           (2) 

 

where ∆𝐺𝑓
0 (kJ mol–1) is the standard molar Gibbs free energy of formation at 𝑇0.   

The mean  activity coefficients are calculated following the same methodology as in ISORROPIA: multicomponent 

activity coefficients are calculated according to Bromley’s formula (Bromley, 1973), binary activity coefficients are 275 

determined from the Kusik-–Meissner relationship (Kusik and Meissner, 1978), and the temperature dependence of the 

multicomponent activity coefficients areis calculated following Meissner and Peppas (1973).  HETP (as in ISORROPIA) 

assumes that OH–
(aq) is small compared to other species, and hence it is not used in the calculation of ionic strength.  HETP 

only allows on-–line calculation of activity coefficients and does not use precalculated look-–up tables.  
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 Aerosol liquid water content in kg m-3 air is calculated according to the Zdanovskii-Stokes-Robinson (ZSR) 280 

correlation relation (Robinson and Stokes, 1965), as  

 

𝑊 = ∑
𝑀𝑖

𝑚𝑖(𝑎𝑤)𝑖 ,             (3) 

 

where 𝑀𝑖 is the concentration of species 𝑖 in mol m-3 air and 𝑚𝑖 is the molality (mol kg-1) of an aqueous solution of 𝑖 at the 285 

same water activity (𝑎𝑤) as the mixturethe water activity (𝑎𝑤) is equal to the fractional relative humidity (0 to 1 scale).  It is 

assumed that there are negligible effects from droplet curvature (i.e., Kelvin effect), and that the growth of an aerosol by uptake 

of H2O does not affect the ambient water vapor pressure (i.e., no effect on the ambient relative humidityRH).  Therefore, 

equilibrium between the vapor (gas) and liquid (aerosol) phase is assumed with 𝑎𝑤 = RH (Seinfeld and Pandis, 2016). 

 There are other simplifications and assumptions applied to the metastable state in HETP and ISORROPIA including: 290 

(i) sulfuric acid, sodium, magnesium, calcium and potassium are assumed to only exist in the aerosol phase (i.e., no sulfuric 

acid gas), (ii) calcium sulfate (CaSO4) never dissolves and will only be present as a solid species, (iii) in cases that are sulfate 

rich (B4, C2, E4, F2, I6, J3, L9, K4), the ions NH4
+, NO3

– and Cl– are “assumed to be minor species that do not significantly 

perturb the [thermodynamic] equilibrium” (Fountoukis and Nenes, 2007) – the partitioning problem to be solved  for these 

ions in sulfate-–rich cases is referred to as a “minor system”.  All minor systems are solved after convergence of the major 295 

system has been achieved.  Practically, for point (iii) above, this implies that NO3
– and Cl– within the minor system will not 

affect the charge balance or the activity coefficients of the major system.  The concentration of H+ determined from the major 

system is used as the basis to perform the partitioning between the aerosol and gas phase in the minor system(s),  (using the 

equilibrium reaction(s) in Table 1 which describe the minor system(s) to be solved).   

 The system of equations and order of the operations to create a solution is identical between ISORROPIA and HETP 300 

using the same chemical subspaces.  The subspace that will be entered,  (and therefore the speciation that will be present,) is 

determined based on the input precursor species.  If crustal species (TK, TMg and TCa), TNa and TCl are all near zero, then 

the set of chemical subspaces reduces to those used in HETV (Makar et al., 2002) and the original release of ISORROPIA 

(Nenes et al., 1998).  Both codes follow the same procedure, first creating three sulfate ratios used to determine the chemical 

subspace for solution: the “total sulfate ratio” (𝑅1), “crustal species and sodium ratio” (𝑅2) and “crustal species ratio” (𝑅3),  305 

 

𝑅1 =
TA+TNa+TCa+TK+TMg

TS
           (43) 

 

𝑅2 =
TNa+TCa+TK+TMg

TS
           (54) 

 310 

𝑅3 =
TCa+TK+TMg

TS
 .           (65) 
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These ratios are used as the basis to determine the appropriate chemical subspace that is entered and solved, with 15 possible 

metastable subspaces in total.  The possible subspaces given the input ratios 𝑅1, 𝑅2 and 𝑅3 are summarized in Fig. 1, along 

with the resulting speciation (aqueous, gaseous, and solid).  The bold font species are solved in the major system while regular 315 

font species are solved in the minor system.  Four unique ‘branches’ exist: in Branch 1 only TS and TA are present, in Branch 

2 only TS, TA and TN are present, in Branch 3 TS, TA and TN are present, and at least one of TNa or TCl, and in Branch 4 

TS, TA and TN are present, and at least one of TCa, TK or TMg.  The branches are further subdivided into subcases depending 

on input concentrations.  It should be noted that the subcases G5, H6, O7, M8 and P13 require that TCl be present, along with 

the aforementioned requisite species, otherwise a solution is not possible due to small numbers and floating-point arithmetic 320 

limitations.  This limitation occurs since HETP does not apply the mass modification that resets TCl to a floor value of 1×10-

10 mol m-3, as discussed near the start of the section. 

 

 

Figure 11: Domains of the systems of equations, based on ISORROPIA.  For Branch 3, each of TS, TA and TN > tiny, as well as one (or 325 
both) of TNa and TCl.  For Branch 4, each of TS, TA and TN > tiny, as well as one (or all) of TMg, TK and TMg – thus Branch 4 does not 

necessarily require TNa or TCl  > tiny.  However, it should be noted that for a solution to be possible, subcases CALCH6, CALCG5, 

CALCM8, CALCO7 and CALCP13 do require TCl > tiny.  The dashed lines in the figure implies that the domain extends infinintely in the 

direction of increasing R1 or R2.  ; Ffor example, in Branch 1, 0 ≤ 𝑅1 < ∞, but in the figure 𝑅1 only extends to 4, and subcase CALCA2 

extends for all TA/TS >2. 330 
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These ratios are used as the basis to determine the appropriate chemical subspace that is entered (15 possible metastable 

subspaces in total).  The possible subspaces (given the input ratios 𝑅1, 𝑅2 and 𝑅3) are summarized in Fig. 1, along with the 

resulting speciation (aqueous, gaseous and solid).  The bold font species are solved in the major system, while regular font 

species are solved in the minor system.  Four unique ‘branches’ exist: in Branch 1 only TS and TA are present, in Branch 2 

only TS, TA and TN are present, in Branch 3 TS, TA and TN are present, and at least one of TNa or TCl, and in Branch 4 TS, 335 

TA and TN are present, and at least one of TCa, TK or TMg.  The branches are further subdivided into subcases depending on 

input concentrations.  It should be noted that the subcases G5, H6, O7, M8 and P13 require that TCl be present (along with the 

aforementioned requisite species), otherwise a solution is not possible due to small numbers and floating point arithmetic 

limitations; this limitation occurs since HETP does not apply the mass modification that sets TCl = max(TCl, 1×10-10), as 

discussed near the start of the section. 340 

3 Algorithm design and improvements   

During the development of HETP, several improvements related to the mathematical techniques were incorporated relative to 

ISORROPIA (and HETV), as well as additional modifications related to mass balance.  These modifications and improvements 

include: 

(1) An updated root finding algorithm, referred to as ‘interpolate, truncate and project (ITP)’ (Oliveria et al.,  2021), has 345 

been used instead of the bisection method in HETP.  ITP has the advantage of ‘superlinear convergence’, and hence 

may obtain a root with the same accuracy as bisection, but in less iterations.  The increased rate of convergence can 

affect the activity coefficients.;  Iin some cases, the faster convergence of ITP can alter the ionic strength, resulting 

in different activity coefficients being calculated early on in the iterative process than would be determined from the 

bisection algorithm used in ISORROPIA.  The new approach may also contribute to an improved formal accuracy 350 

performance for estimating the roots, for the same convergence criteria level (see Sect.  4.1).   

(2) All bisection subroutines in ISORROPIA employ a root bracketing approach to obtain an initial interval [𝑥𝑎, 𝑥𝑏] 

where 𝑓(𝑥𝑎)𝑓(𝑥𝑏) < 0, signifying that a root exists within the interval according to the intermediate value theorem,  

(assuming a continuous function).  We have found that ISORROPIA does not check to determine if either endpoint 

is a valid root, that is, if 𝑓(𝑥𝑎) = 0 or 𝑓(𝑥𝑏) = 0.  Instead, ISORROPIA will proceed to the next interval, continuing 355 

its search for a root and, potentially locating a different root than expected (the code seeks the smallest positive real 

root in the case of multiple roots in the search domain), or a slower convergence towards the start or end of the root 

interval than might otherwise be the case.  In HETP we have included a check during the root bracketing stage to 

identify cases when 𝑥𝑎 or 𝑥𝑏 is a valid root.  If an endpoint is a root, then HETP will return since an equilibrium 

solution has been found.  It should be noted that the occurrence of an endpoint as a valid root is extremely rare and 360 

hence neglecting this modification will have no effect on most output from the solver, but nonetheless we have 

included this possibility in HETP for completeness and accuracy.   
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(3) In some cases that require ITP (or bisection in ISORROPIA) to obtain an equilibrium solution, the independent 

variable (i.e., 𝑥) converges, but the function being evaluated at 𝑥 (i.e., 𝑦 = 𝑓(𝑥)) oscillates between a negative and 

positive value, and thus |𝑦| does not converge to zero as expected if 𝑥 is a root (despite convergence of 𝑥).  This 365 

oscillating behavior of 𝑦 may indicate (i) that 𝑥 is a discontinuity, (ii) or that there is significant non-linearity in the 

partitioning solution, or (iii) that the accepted tolerance on 𝑥 is too loose for convergence,  and hence 𝑥 is not an 

accurate solution to the system of equations at the targeted tolerance level for 𝑥.  For all subroutines requiring ITP, 

HETP will track the species concentrations, activity coefficients and the value of 𝑥 that are found to minimize |𝑦| 

during the iterative process.  If after convergence of 𝑥 it is determined that |𝑦| is not minimized compared to all earlier 370 

iterations, then HETP will ‘reset’, and instead use the 𝑥 value, species concentrations and activity coefficients that 

were found to minimize |𝑦| – this is chosen as the solution of the system.  The effect of this modification on the output 

from HETP is discussed in Sect 4.2. 

(3)  4.2.  

(4) In all chemical subspaces, a quadratic equation must be solved for a subsystem of the equations, while in some cases 375 

a cubic equation will be solved.  Quadratic equations have the form 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where the solution (i.e., 

corresponding to 𝑓( 𝑥) = 0) i, is usually expressed as the standard quadratic formula  𝑥 =
(−𝑏±√−𝑏±√𝑏2−4𝑎𝑐𝑏2−4𝑎𝑐)

2𝑎
.  

𝑥 has two possible solutions, 𝑥1 and 𝑥2, determined by the sign in front of the radical.  As identified in Makar et al.,  

(2003) and implemented in the original version of HETV, when the coefficient ‘𝑏’ differs by several orders of 

magnitude from coefficients ‘𝑎’ or ‘𝑐’, floating-–point arithmetic can fail to give an accurate answer for 𝑥 when using 380 

the standard root formula.  For example, if √𝑏2 − 4𝑎𝑐 ≈ 𝑏, then addition in the quadratic formula may be problematic 

since we are subtracting two nearly equal numbers (i.e., ≈  −𝑏 + 𝑏)..  To avoid this issue, HETP uses the In HETP 

(and  HETV), a Taylor series expansion of the quadratic formula is used instead, to approximate the root for times 

when the coefficients ‘𝑏’ and ‘𝑐’ differ by orders of magnitude (note that 𝑎 = 1 in all subroutines; formulae were 

normalized)analytic formula given in Press et al., (2007) to solve the quadratic equation: 𝑞 = −
1

2
(𝑏 +385 

𝑠𝑖𝑔𝑛(𝑏)√𝑏2 − 4𝑎𝑐) with roots 𝑥𝑝1
=

𝑐

𝑞
 and 𝑥𝑝2

=
𝑞

𝑎
.  Care must be taken when applying this formula since the 

appropriate choice of 𝑥𝑝1
 and 𝑥𝑝2

 depends simultaneously on the chosen solution (i.e., 𝑥1 or 𝑥2) and the sign of the 𝑏 

coefficient, as described in Table S3 of the supplement.  In addition to the analytic formula from Press et al., (2007), 

HETP also includes code (which is commented out) to solve the quadratic equation using a Taylor series expansion 

of the quadratic formula.  In this code, the Taylor series expansion is only applied when the coefficients ‘𝑏’ and ‘𝑐’ 390 

differ by orders of magnitude, and hence when the numerical precision issues as described above are likely to occur 

(note that 𝑎 = 1 in all subroutines; formulae were normalized). .  Both methods produce very similar results, but the 

analytic formula provided by Press et al., (2007) is superior to the Taylor expansion since it provides an exact solution, 



14 

 

giving lower error metrics (i.e., Sect. 4).  For cases where a cubic equation must be solved, HETP will employ an ITP 

search to obtain an estimate of the smallest positive real root if an exact analytic solution is not possible.  The generic 395 

formulae describing the exact analytic solution of a cubic polynomial is from Spiegel et al., (2009) and is used in 

ISORROPIA.  It should be noted that the requirement to solve a cubic equation occurs only during the solution 

procedure of the minor systems of I6, J3, L9 and K4.  For example, the call to solve a cubic equation occurs on line 

130 of subroutine ‘mach_hetp_calchclhno3’.  The most recent version of ISORROPIA (i.e., ISORROPIA-–lite) did 

not address these outstanding numerical issues. 400 

(5) During the development of HETP we have identified several cases where a negative ion or gas concentration can be 

output from ISORROPIA.  For example, a negative concentration of NH4
+ can occur when solving the minor system 

NH3(g) + H+
(aq) ↔ NH4

+
(aq) for thermodynamic equilibrium.  In this case, HETP and ISORROPIA will solve a quadratic 

equation to determine the concentration of ammonia gas (NH3).  From the concentration of NH3, the ammonium 

cation is determined as NH4
+ = NH4

+
i – NH3, where NH4

+
i is the ammonium concentration determined from the major 405 

system (see Table S2, Supplemental Information).  If partitioning (after solving the quadratic equation) at this stage 

gives NH3 ≈ NH4
+

i, then subtraction of two nearly identical numbers may lead to a floating- point arithmetic error 

and a final concentration of NH4
+ < 0 (in the original ISORROPIA equations).  In HETP, negative output is strictly 

prohibited.  To accomplish thisthis, we have utilized max statements that force any negative concentrations to zero, 

in conjunction with the more accurate evaluation of the quadratic formula (i.e., point 4 above). 410 

(6) In ISORROPIA, the initial dry salt partitioning that is completed at the commencement of chemical subspace L9 may 

fail to conserve mass for sulfate, ammonium, potassiumpotassium, and sodium, in some cases.  In HETP we have 

slightly modified the initial dry salt partitioning of CALCL9 (see Table S2, Supplemental Information) to ensure mass 

conservation holds for all cases.;  Aany free TA that may result in L9 is assumed to be in the gas phase as NH3, 

andNH3 and is added back to the final equilibrium solution after convergence of both the major and minor systems. 415 

As discussed in Sect. 2, the free amounts of SO4, Na, Mg, K and Ca are explicitly tracked in HETP for all chemical 

subspaces and returned to the calling code to prevent a loss of mass in the output speciation.  

(7) Mass conservation may not hold in ISORROPIA when the input precursor concentrations are near the lower limit for 

species concentrations, “tiny” (1×10–20 mol m–3), used in the solver.  The same lower limit used to bound the input 

precursor concentrations is also is used throughout ISORROPIA to bound the species concentrations during and after 420 

chemical partitioning.  In HETP we use the same lower limit as ISORROPIA to bound the input precursor species 

(i.e., tiny), but during and after partitioning the lower limit for gaseous speciation is reduced to tiny2 = 1×10–28 mol 

m–3.  This reduction of the lower limit for gaseous speciation during the iterative process improves mass conservation 

for the limiting case when the input precursor concentrations are near the lower limit of tiny.   

(8) The subroutine ‘adjust’ performs a post-–convergence mass balance adjustment for ammonium, sulfate, nitratenitrate, 425 

and chloride, with the goal of ensuring mass conservation holds to machine precision.  Specifically, this subroutine 

checks only for excess mass relative to the input totals.  If identified, the excess mass is removed first from the aqueous 
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phase, and then from the solid phase, and finally from the gaseous phase, until no excess remains.  However, the mass 

adjustment of sulfate in ISORROPIA does not include CaSO4 in the mass balance calculations, and therefore in some 

cases, ISORROPIA will fail to properly conserve mass to machine precision.  In HETP we have included CaSO4 in 430 

the mass balance adjustment of sulfate. 

(9)  Improvements to the overall code structure and efficiency include: 

(a) Use of modern Fortran 90 (compared to Fortran FORTRAN 77 in ISORROPIA),  

(b) Use of explicit declarations only – all subroutines now start with an ‘implicit none’ statement and all common 

blocks have been removed, 435 

(c) Removing all GOTO statements, and instead using Fortran 90modern Fortran constructs such as ‘do while’ loops, 

(d) Removing function and short subroutine calls, except for process calls to calculate activity coefficients (calcact), 

to solve a cubic equation (poly3), to solve minor systems,  and to perform a post-–convergence mass balance 

adjustment (adjust). The merging of functions and some short subroutines allowed several variables to be 

calculated once and reused throughout the iterative process, reducing computational time, – i.e.  reducing the call 440 

factor overhead for individual subroutine calls to the largest extent possible, 

(e) Moving expressions being recalculated unnecessarily within loops to take place prior to the loop, and removing 

calculations that serve no purpose to the actual solution being sought, 

(f) Pre-–calculating constant values which are then stored as variables to be used later in the subroutine and,  

(g) Designing the code to include an optional use of a vectorization-–by-–grid point approach (Makar, 1995), which 445 

may reduce the call factor overhead on some compilers. 

4 Comparison between HETP and ISORROPIA  

4.1 Case-–by-–case comparison  

In this section the output from HETP is compared to ISORROPIA for a set of 10,000 artificially generated input ‘test cases’ 

that span the domain of each chemical subspace.  The test cases have all precursor species held constant except the total sulfate 450 

(TS) which is slowly varied (linearly) over the range of the chemical subspace.  Tests of this nature demonstrate the stability 

of numerical solutions – adjacent tests along the same axis of variation in general are expected to be smoothly varying (Makar 

et al., 2003).  The convergence criteria are consistent between both solvers.  For activity coefficients, 𝜖𝑎𝑐𝑡 = 1×10-6^(-6) and 

𝑚𝑎𝑥𝑖𝑡𝑎𝑐𝑡 = 4 = 4,, where 𝜖𝑎𝑐𝑡 is the relative error limit between successive iterations of activity coefficient calculations, and 

𝑚𝑎𝑥𝑖𝑡𝑎𝑐𝑡 is the maximum number of allowed iterations.  For bisection or ITP, 𝜀 = 1×10-9^(-9), 𝑚𝑎𝑥𝑖𝑡𝑏𝑠𝑒𝑐 = 100 = 100 and 455 

𝑛𝑑𝑖𝑣 = 5 = 5,, where 𝜀 is defined in Sect. 1, 𝑚𝑎𝑥𝑖𝑡𝑏𝑠𝑒𝑐 is the maximum number of allowed iterations, and 𝑛𝑑𝑖𝑣 is the number 

of subdivisions searched for an interval containing a root (i.e., sign change) prior to the start of bisection or ITP.  All output 

from HETP,  (in this section and those presented hereafter,) includes the modifications outlined in Sect. 3 unless stated 

otherwise.,  T while the ISORROPIA code used in this comparison is the base version (ISORROPIA v2.2) used in the CMAQ 
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air-–quality model (USEPA, 2022).  ISORROPIA throughout this paper has been compliled using the ‘-–r8’ flag that  (converts 460 

allall real variables converted to double precision,) to ensure the precision of both solvers is consistent (HETP uses double 

precision throughout).  It should be noted that ISORROPIA is coded to use mostly ‘double precision’ variables, but some 

single precision variables exist (i.e., declared as ‘real’, either explicitly or by default under Fortran variable naming 

conventions).  While compiling ISORROPIA with the intel Fortran compiler flag ‘-r8’ does not have a large impact on the 

execution time, it may in some cases produce non-trivial differences in the output, compared to output produced without the 465 

‘-r8’ flag.  Aside from the ‘-r8’ flag, no other compilation flags were used in this work.   All numerical tests herein were 

executed on a Lenovo ThinkSystem SD650v2 DWC computer, which uses an Intel® Xeon® Platinum 8380 CPU running at a 

clock speed of 2.30 GHz, with 512 GB of available random accessrandom-access memory. The compiler used was an intel 

compiler (IFORT) version 2021.5.0.2021109. 

 470 
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 480 

Figure 22: A side-–by-–side comparison of the output from HETP (left) and ISORROPIA (right), for the chemical subspace CALCO7 (a-

b) and CALCM8 (c-d).  All input species are held constant, except the total available sulfate (TS) which is varied over 10,000 sets of initial 

conditions.  The air temperature and relative humidity are 306 K and 35 % respectively, for all test cases in the figure. The convergence 

criteria are consistent between both solvers (see text).   

 485 

Figure 2 displays the output from ISORROPIA and HETP for two example chemical subspaces: (a-–b) displays 

CALCO7 and (c-–d) shows CALCM8.  These chemical subspaces involve the presence of at least one of Ca2+, K+ and Mg2+ 

and so they were not included in the original HETV package, which was designed for the SO4–NO3–NH4–H2O  system.  

Furthermore, these two subspaces are frequently called in practical chemical transport modelCTM applications (see Sect. 4.2) 

and hence are used to compare HETP against ISORROPIA in this section.  For the test cases shown in Fig. 2, the relative 490 

humidithumidity (RH) y (RH) was set to 35 % and the air temperature (𝑇) to 306 K, conditions typical of a hot summer day in 

central North America.  The output for CALCO7 is nearly identical between the two solvers, with a difference of < 1 % 

between HETP (Fig. 2a) and ISORROPIA (Fig. 2b), except for TS between 2.1×10–5 and 2.4×10–5 mol m–3, where visual 

differences begin to appear,, particularly for H+, HSO4
– and NH3.  In the case of CALCM8, the output from HETP (Fig. 2c) is 

vastly different from ISORROPIA (Fig. 2d), for the same initial conditions and convergence criteria.  For these initial 495 
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conditions, , and the ISORROPIA solution shows the effects of numerical instability in the bisection root-–finding procedure.  

The ISORROPIA algorithm used in CALCM8 is designed so that the variable being bisected is proportional to Cl– (see Table 

S2, Supplemental Information).  At the same time, the multicomponent activity coefficients are dependent on the ionic strength 

of the aqueous aerosol, determined from the molar concentration of all ions present, including Cl–.  Both of these iterative 

procedures are completed simultaneously, and impact each other in a nonlinear fashion.  The choice of Cl– during the first 500 

iteration of bisection (or ITP) may considerably impact the final equilibrium solution, by altering the initial ionic strength, and 

as a result, the convergence of the multicomponent activity coefficients.  This effect is demonstrated for CALCM8 in Fig. 2(c-

–d), where the differences between ISORROPIA and HETP are related only to the choice of root-–finding methodology.  In 

fact, if the ITP approach within HETP is reverted to the same bisection algorithm used in ISORROPIA, then the output from 

HETP begins to show the same unstable behaviour that is demonstrated in the ISORROPIA simulation shown in Fig. 2d.  It 505 

should be noted that these differences are due to the choice of root-–finding methodology and are not the result of allowing 

the ends of the interval to be potentially valid roots (i.e., point 2 in Sect. 3). 

The accuracy of each solver can be assessed directly by introducing an error term (𝜉), determined as the absolute 

logarithmic difference between the ‘calculated’ equilibrium constant (𝐾𝑐𝑎𝑙𝑐) and the ‘true’ equilibrium constant (𝐾𝑡𝑟𝑢𝑒), that 

is, 𝜉 = log(𝐾𝑐𝑎𝑙𝑐) − log(𝐾𝑡𝑟𝑢𝑒).  𝐾𝑐𝑎𝑙𝑐  is determined from the species concentrations (converted to molalities using the aerosol 510 

liquid water content in kg m–3) and activity coefficients after convergence of the major or minor system (i.e., from the equations 

in Table 1), while 𝐾𝑡𝑟𝑢𝑒 is calculated from the Van’t Hoff equation (Eq. 1).  The parameter 𝜉 thus provides a direct measure 

of each solver’s proximity to the actual root of the system of equations, for a given level of convergence criteria employed in 

both solvers.  For statistical characterization of 𝜉, the absolute value of the difference is used, so that 𝜉′ = |𝜉|.  A logarithmic 

difference is used herein (instead of a percent difference, for example) since the difference between 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒 can span 515 

several orders of magnitude.  In this way, a difference on the order of 1 implies that 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒 differ by an order of 

magnitude different, while a difference on the order of 1×10–2 implies 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒 differ starting at the second or third 

digit,  (when written in scientific notation).  The error analysis has been completed using the case-–by-–case implementation 

of HETP (see Sect. 4.3).  Ideally, 𝜉′ = 0, signifying that the problem has converged to a solution whose concentrations and 

activity coefficients satisfy the equilibrium equations of the major (and minor systems) precisely.  In reality, however, there 520 

may be some magnitude of difference between 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒.  The accuracy of 𝐾𝑡𝑟𝑢𝑒 calculated from Eq. 1 (used in both 

solvers) is limited to 3 significant digits due to the variable −∆𝐻𝑓
0 (𝑅𝑇0)⁄ .  Therefore when  𝜉′ < 1×10–3 in either solver, we 

can conclude that 𝐾𝑐𝑎𝑙𝑐  after convergence is identical to 𝐾𝑡𝑟𝑢𝑒 within its known accuracy.  However, in practical applications 

(i.e., within a chemical–transport modelCTM), the value of 𝐾𝑡𝑟𝑢𝑒 calculated from Eq. 1 will retain all digits as determined by 

the precision of the code (i.e., double precision in HETP) and therefore 𝜉′ may be ≪ 1×10–3.  HenceHence, we seek a solver 525 

that obtains 𝜉′ as close to zero as possible.  Table 2 gives the median, the maximum, and the 25th and 75th percentiles of 𝜉′ for 

HETP and ISORROPIA, corresponding to the data presented in Fig. 2.  For CALCM8, the median 𝜉′ is lower in HETP than 

ISORROPIA for all equilibrium constants, which suggests that HETP is obtaining a more accurate solution for this set of input 
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conditions.  The difference in median 𝜉′ between the two solvers is large and indicates that HETP values are more accurate 

than ISORROPIA by many orders of magnitude, for the same level of the convergence criteria.  For example,, i.e., for 𝐾HCl, 530 

HETP has a median 𝜉′ ≈ 1.77×10–8, while ISORROPIA has a median 𝜉′ ≈ 0.39, with  (similar results are found for 

𝐾HNO3
 for CALCM8).  The superior performance of HETP for this set of initial conditions can also be confirmed visually by 

comparing Fig. 2(c) to Fig. 2(d).  For all species present in this subspace, HETP shows a smooth transition with incremental 

change in TS, but this is not the case for ISORROPIA.  In CALCM8, the very large differences in median 𝜉′ between the two 

codes demonstrates that the 𝜉′ values are linked to the poor convergence performance of ISORROPIA, andISORROPIA and 535 

are associated with the high degree of sensitivity of that algorithm’s use of bisection towards initial conditions. 

In CALCO7 (Fig. 2a-–b), the median 𝜉′ for all equilibrium constants is lower in HETP than ISORROPIA, but the 

difference between the two solvers is marginal, especially when the 25th and 75th percentiles are considered (i.e., for 𝐾HCl the 

75th percentile of 𝜉′ is 5.174.88×10–7 and 4.40×10–7 for HETP and ISORROPIA respectively).  Table 2 also gives statistics of 

𝜉′ for the same set of input precursor concentrations, but now with a RH  a 𝑅𝐻 = 65 % and 𝑇 = 263 K.  The main difference 540 

here is that CALCO7 performs slightly worse in HETP than ISORROPIA,  (as determined from the median and 75th percentile 

of 𝜉′).  D However, despite this worse statistical performance in HETP, there are no visual differences between them when the 

output from each solver is plotted (see Fig. S1).  In this case, the median 𝜉′ of both solvers is on the order of 1.0×10–4, implying 

that the difference between 𝐾𝑐𝑎𝑙𝑐  and 𝐾𝑡𝑟𝑢𝑒 occurs in the 4th digit (when written in scientific notation).  As a result, the 

differences between HETP and ISORROPIARORPIA do not become apparent unless the graph is zoomed in very close to the 545 

data points.  For CALCM8 at these new meteorological conditions (𝑅𝐻 =(RH = 65 % and 𝑇 = 263 K), HETP has an unstable 

behavior in the output speciation for TS between 1.6×10-7 mol m-3 and 2.3×10-7 mol m-3, while ISORROPIA has an unstable 

behavior for all TS > 0.7×10-7 mol m-3 (see Fig. S1). ; Tthis poor performance in CALCM8 for these meteorological conditions 

is demonstrated in the statistics of 𝜉′ shown in Table 2.  

 550 
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Table 2: Theoretical error (𝜉′) for 𝑛 = 10,000 generated input conditions corresponding to the chemical subspaces O7, M8 and I6.  Statistics 

of 𝜉′ for two sets of atmospheric conditions are presented (temperature, 𝑇 and relative humidity, RH)RH).  The bolded values denotes the 

smallest median error for that equilibrium constant (i.e., row) between HETP and ISORROPIA.  570 

Case 
Equilibrium 

Constant 

HETP: 𝝃′ = |𝐥𝐨𝐠(𝑲𝐭𝐫𝐮𝐞/𝑲𝐜𝐚𝐥𝐜)| ISORROPIA II: 𝝃′ = |𝐥𝐨𝐠(𝑲𝐭𝐫𝐮𝐞/𝑲𝐜𝐚𝐥𝐜)| 

Median Q25 Q75 Maximum Median Q25 Q75 Maximum 
 

𝑻 = 306 K; RH = 35 %   

(Fig. 2) 

O7 

𝐾NH3
𝐾H2O⁄  9.823×10-9 3.556×10-12 2.09×10-6 1.81×10-3 9.84×10-9 3.51×10-12 2.09×10-6 1.81×10-3 

𝐾HNO3
 1.267×10-9 2.683×10-10 

5.174.88×10-

7 
0.30 2.86×10-9 1.19×10-9 4.80×10-7 0.85 

𝐾HCl 1.2627×10-9 2.6863×10-10 
5.174.88×10-

7 
0.30 2.86×10-9 1.19×10-9 4.40×10-7 0.85 

M8 

𝐾NH3
 2.52×10-13 2.13×10-14 3.61×10-12 6.95×10-11 7.33×10-12 3.55×10-14 1.47×10-10 12.0 

𝐾HNO3
 1.77×10-8 1.89×10-9 9.34×10-8 1.87×10-4 0.39 8.38×10-8 1.93 40.5 

𝐾HCl 1.77×10-8 1.89×10-9 9.34×10-8 1.87×10-4 0.39 8.38×10-8 1.94 30.8 
 

𝑻 = 263 K; RH = 65 % 

(Fig. S1) 

O7 

𝐾NH3
𝐾H2O⁄  2.31×10-5 

9.951.00×10-

910 
2.49×10-3 5.19×10-2 2.31×10-5 9.69×10-10 2.49×10-3 5.19×10-2 

𝐾HNO3
 3.60×10-4 4.70×10-10 2.95×10-3 7.69×10-3 1.52×10-4 9.13×10-10 9.10×10-4 3.19×10-3 

𝐾HCl 3.60×10-4 4.70×10-10 2.95×10-3 7.69×10-3 1.52×10-4 9.13×10-10 9.10×10-4 3.19×10-3 

M8 

𝐾NH3
 

6.471.84×10-

11 

2.417.38×10-

121 

1.423.59×10-

110 
31.8 2.32 8.87×10-11 11.5 17.1 

𝐾HNO3
 1.75 1.67 1.90 7.17 3.89 1.96 20.3 37.4 

𝐾HCl 1.74 1.67 1.90 7.17 3.92 1.95 20.9 25.8 
 

𝑻 = 243 K; RH = 5 %              I6–1: No improvements to root–finding methodology in HETP  

(Fig. 4)                                     I6–2: Taylor expansionUpdated analytic formula to solve quadratic equationss, no ITP for cubic equations 

                                                 I6–3: Updated analytic formula to solve quadratic equationsTaylor expansion quadratic equations  and ITP for 

cubic equations 

I6–1 

𝐾HSO4
𝐾NH3

𝐾H2O⁄  9.02 1.68 15.1 35.9 9.80 3.87 18.1 40.6 

𝐾HNO3
 15.1 11.7 18.3 24.8 15.1 11.9 18.2 23.8 

𝐾HCl 15.1 11.7 18.3 24.8 15.1 11.9 18.2 23.8 

I6–2 

𝐾HSO4
𝐾NH3

𝐾H2O⁄  2.9483×10-5 6.6783×10-8 
3.664.12×10-

2 
5.757 –– –– –– –– 

𝐾HNO3
 13.01 9.35 16.2 19.8 –– –– –– –– 

𝐾HCl 13.01 9.35 16.2 19.8 –– –– –– –– 

I6–3 
𝐾HSO4

𝐾NH3
𝐾H2O⁄  2.9483×10-5 6.6783×10-8 

3.664.12×10-

2 
5.757 –– –– –– –– 

𝐾HNO3
 1.46×10-9 6.38×10-10 3.36×10-8 1.45×10-2 –– –– –– –– 
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𝐾HCl 1.46×10-9 6.38×10-10 3.36×10-8 1.45×10-2 –– –– –– –– 

 

 

 

 

 575 

 

 

 

 

Figure 3 displays a comparison of HETP and ISORROPIA, where now TS and TA are varied simultaneously while 580 

all other input precursor species are held constant.  Figure 3 displays output generated fromt 𝑛 = 2,000,000 unique test cases.  

These test cases are divided into tTwo tests, were conducted denoted as  a high Mg2+-Ca2+-K+-Na+ case (Fig. 3a-c) and a low 

Mg2+-Ca2+-K+-Na+ case (Fig. 3d-f). th at span the same range of TS and TA, The input conditions used to generate Fig. 3 are 

summarized in Table 3.  It should be noted that in the unaltered version of ISORROPIA, TCl < 1×10–14 mol m–3 would have 

necessitated a mass adjustment at the commencement of the solver.  In this case, TCl would be reset to a floor value of 1×10–585 

10 mol m–3, thereby creating mass.  This adjustment has not been applied here.   

 

Table 3 – Input conditions used to generate Fig. 3 for 2,000,000 total unique test cases. All input precursor species have units of mol m–3.  

 Fig(a-c): High Mg2+-Ca2+-K+-Na+ Fig(d-f): Low Mg2+-Ca2+-K+-Na+ 

TS 
Varying between 2.5×10–5 and 

2.5×10–12 

Varying between 2.5×10–5 and 

2.5×10–12 

TA 
Varying between 2.5×10–5 and 

2.5×10–18 

Varying between 2.5×10–5 and 

2.5×10–9 

TN 3.0×10–6 1×10–8 

TNa 1.0×10–5 1×10–6 

TCl 1.0×10–14 1×10–14 

TCa 1.0×10–8 1×10–16 

TK 1.0×10–14 1×10–17 

TMg 1.0×10–14 1×10–16 

Temp (K) 306 Same as Fig(a-c) 

RH (%) 35 Same as Fig(a-c) 

𝒏 1,000,000 1,000,000 

 

but in (a–c) TN = 3×10–6, TNa = 1×10–5, TCl = 1×10–14, TCa = 1×10–8, TK = 1×10–14 and TMg = 1×10–14, and in 590 

(d–f): TN = 1×10–8, TNa = 1×10–6, TCl = 1×10–14, TCa = 3.8×10–16, TK = 1×10–17 and TMg = 1×10–16 (all units of input 

precursor species are in mol m–3).  It should be noted that in the unaltered version of ISORROPIA, TCl < 1×10–14 mol m–3 

would have necessitated a mass adjustment of TCl at the commencement of the solver, with TCl being reset to 1×10–10 mol 
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m–3 (thereby creating mass) – this adjustment has not been applied here.  Each panel set (i.e., a–c and d–f) contains 𝑛 = 

1,000,000 unique test cases, with 𝑅𝐻 = 35% and 𝑇 = 306 K.  The colors in Fig. 3(a-b) and Fig. 3(d-e) represent the amount of 595 

gaseous NH3 after partitioning between the gas and aerosol phase.,  T and the test inputcases spans across all of Branch 4 (O7, 

M8, P13, L9 and K4), using the same convergence criteria as Fig. 1 and Fig. 2.  The colors shown in Fig. 3c and Fig. 3f give 

the absolute percent difference between Fig. 3a and Fig. 3b, and Fig. 3d and Fig. 3e, respectively,  (calculated relative to HETP 

as; |HETP-ISO|/HETP×100 %).  TNote that the color contour intervals in Fig. 3 are on a logarithmic scale.  In each figure 

panel dashed black lines separate between the different chemical subspaces, with the particular subspace label superimposed.  600 

In Fig. 3(a-b) and Fig. 3(d–e) the output compares well between HETP and ISORROPIA for the subspaces O7, M8 and P13, 

with absolute differences typically < 0.1 % and no obvious visual differences between the two solvers.  However, in the high 

Mg2+-Ca2+-K+-Na+ case (Fig. 3(a-b),  for the subspaces K4, and particularly L9, there are some noticeable visual differences 

between the two solvers for the subspaces K4 and particularly L9..  The differences in L9 between the two solvers result from 

(i) the updated methodology within HETP to calculate polynomial roots, (ii) a correction within HETP to the initial dry salt 605 

partitioning to ensure mass conservation, and (iii) one less call to calculate activity coefficients in HETP for some test cases,  

(specifically thosethose test cases that have no convergence of activity coefficients after completing the maximum number of 

allowed iterations).  The largest absolute differences of (i.e., 100 %to – 600 %) are in L9, and are predominantly due to (ii), 

where for some input conditions ISORROPIA creates dry salt mass for TA, TSTS, and TK.  Specifically in ISORROPIA, 

6.02%, 0.05% and 5.97% of the test input conditions shown in Fig. 3(a-b) create mass for TS, TA, and TK respectively that 610 

cannot be attributed to machine precision near the lower limit used in the solver (i.e., Species𝑜𝑢𝑡 − Species𝑖𝑛 > 9.999×10-19 mol 

m-3).  The median relative mass created for these input conditions is 22.6% for TS, 0.24% for TA and 2.93×1010 % for TK.    

In K4, (ii) is not applicable, so the differences are thus due to (i) and (iii). As demonstrated in Fig 3(a-c), there is a large amount 

of ‘noise’ in K4 for TS > 1×10–5 mol m–3 and TA < 12×10–6 mol m–3 in ISORROPIA that is not present in HETP.   – Tthis 

‘noise’ shows up as speckling in the percent difference plots and is due mainly to (i).  If the noise in ISORROPIA is neglected 615 

for K4, then the output from ISORROPIA is quite similar to HETP, with differences < 1%.   
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Figure 3: Regular variation (linear) of the total available sulfate (TS) and the total available ammonium (TA), while holding all other input precursor species 

constant (see the main text for a description of precursor species that are held constantTable 3 for a summary of the input conditions).  The colors in figure 
panels (a-b) and (d-e) give the amount of gaseous NH3 after chemical partitioning at thermodynamic equilibrium (the color scale is logarithmic and identical 

in these panels).  Panel (c)(c)  and (f) show the percent difference of (a-b) and (d-e) respectively.  Each panel set (i.e., a-c and d-f) includes 1,000,000 unique 

input test cases, with the same convergence criteria as used to generate Fig. 2 and 3.  Superimposed on each panel are dashed black lines denoting the 625 
boundariesy between different chemical subspaces. ; Tthe actual subspace contained within a set of dashed lines is given as a text label.  

 

An additional concern identified in Makar et al., (2003) is the potential impact of the inaccurate evaluation of the 

quadratic and cubic formula (i.e., analytic formulae to obtain an ‘exact’ solution), which remains present in subsequent 

iterations of ISORROPIA since the development of HETV (see Sect 3, point 4).  An example showing the incremental 630 

improvement of the quadratic and cubic solution procedure on the output speciation is displayed in Fig. 4, which depicts the 

output of CALCI6 from ISORROPIA (Fig. 4b) and HETP (Fig. 4a, c-–d).  This case illustrates differences that would occur 

at rather low temperatures and relative humidity, in this case 𝑇 = 243 K and RH = 5 %.  While such a combination of air 

temperature and relative humidity is likely to be rare in the lower troposphere, it is not uncommon for surface air temperatures 

to reach 243 K or lower in the winter in Canada, and at similar higher latitudes in other parts of the world.  The choice of RH 635 

= 5 % here is used to highlight the numerical issues present in ISORROPIA, which occur more frequently and are more 

pronounced at low RH.  However, the numerical issues highlighted in Fig. 4 continue to be present in the output from 

ISORROPIA, but to a lesser extent, even as the RH is increased to 35 % for the same set of initial conditions.  At an ambient 

RH of 5 % the assumption of a supersaturated aqueous phase may be less justified and is more likely to be representative of a 

very hypothetical case.  Nonetheless, observations from southern California have indicated (although in warmer air 640 

temperatures than investigated here) that crystallization of some ambient aerosols may not occur until a RH as low as 4 % 

(Shaw and Rood, 1990), suggesting that in some atmospheric conditions metastable aerosols are possible even at a very low 

RH of 5 %. 

In Fig. 4a, HETP has been executed without any modifications to improve the accuracy of polynomial root 

calculations, so that the only improvement over ISORROPIA is that HETP will not allow negative species concentrations (i.e., 645 

HSO4
-).  In Fig. 4c, HETP now includes an improved methodology to calculate roots of quadratic polynomials (‘analytic 

quad’), in addition to the improvement related to negative species concentrations of Fig. 4a.  Lastly, In Fig. 4d, HETP now 

includes an ITP search to determine the roots of cubic polynomials, in addition to the improvements of Fig. 4a and c.  Figure 

4 follows the same procedure as Fig. 2 – that is, an incremental variation of the input TS while holding all other precursor 

species constant.  This case illustrates differences that would occur at rather low temperatures and relative humidity, in this 650 

case 𝑇 = 243 K and RH = 5%.  Without the modifications applied in Fig. 4c and d, the output from HETP and ISORROPIA 

are quite similar.  However, as numerical improvements are incrementally applied to HETP, clear visual differences between 

HETP and ISORROPIA become apparent for most chemical species in this subspace.  In CALCI6, the major system being 

solved is H+–HSO4
––SO4

2–, requiring a quadratic root with a large variation in coefficient magnitudes to be derived – and 

therefore an error in H+ will propagate through to the minor systems that are solved thereafter (see Table S2, Supplemental 655 

Information).  It should be noted that the 𝑦-–axis in Fig. 4 is logarithmic, so negative values are not shown in the figure panels.  
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Nonetheless, there are many instances when ISORROPIA outputs a negative concentration of HSO4
– for this subspace (Fig. 

4b), as a result of the use of the standard (and under these circumstances inaccurate) formula for the roots of a quadratic 

equation for H+ in this subspace.  In HETP  we have included a updated methodologies are used to solve the quadratic equation, 

that avoid numerical inaccuracies due to catastrophic cancellation. Taylor expansion of the quadratic formula, which is applied 660 

when numerical precision is likely to cause erroneous output.  The result of this modification (as demonstrated in Fig. 4c) is 

the removal of the numerical instability present in the output of HETP for this set of initial conditions shown in Fig. 4a.  

Numerical instability caused by the erroneous evaluation of the quadratic formula appears to be most prevalent at a low relative 

humidity (low aerosol water mass).   

Following convergence of the major system in CALCI6, the minor systems are solved, one of which requires the 665 

roots of a cubic polynomial to be identified; the smallest positive real root determines the concentration of Cl– and NO3
–.  In 

HETP, an ITP search is employed to determine the smallest positive real root of the cubic polynomial when an exact analytic 

solution from the cubic root formulae is not possible,  (due to a large range in the magnitude of the coefficients of the cubic 

polynomial, which may lead to floating- point arithmetic errors).  For the set of input conditions shown in Fig. 4, including an 

ITP search to solve cubic polynomials results in about 72 % more roots being identified in HETP than in ISORROPIA.  If 670 

ISORROPIA is unable to determine a valid root from the cubic formula, it will assume that the root is a tiny value (i.e., 1×10–

20 mol m–3) – this is the procedure that was applied to generate the output shown in Fig. 4a-c.  The effect of including an ITP 

search to solve cubic polynomials is a very large reduction in 𝜉′ for 𝐾HCl and 𝐾HNO3
 in the chemical subspaces I6, J3, L9 and 

K4 for some sets of initial conditions.   (Sstatistics of 𝜉′ corresponding to CALCI6 shown in Fig. 4 are given at the bottom of 

Table 2).  For example, in Fig. 4d, HETP has been implemented with an ITP search to solve cubic polynomials, and as shown 675 

in Table 2, this implementation leads to a large reduction in the median 𝜉′ for 𝐾HCl from 13.01 to 1.46×10–9.  The difference 

here is a solution that is accurate versus one that is not.  The output shown in Fig. 4d demonstrates that including an ITP search 

to solve cubic polynomials removes discontinuities that occur in Cl–, NO3
–, H+ and NH3 near 1.4 mol m–3 – and hence these 

species now show a smooth transition over the entire range of TS.  HETP has a limiting precision of 1×10–28 mol m–3, which 

is the likely cause of the HSO4
- concentration becoming zero in Fig. 4(c-d) when TS is between about 2.15×10–12 and 2.4×10–680 

12 mol m–3. 
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Figure 4: A side-–by-–side comparison of the output from HETP (a, c, d) and ISORROPIA (b) for CALCI6.  In (a), HETP does not include 

any methodological improvements to polynomial root calculations.  In (c) HETP may apply a Taylor series expansion touses an updated 

methodology to calculate polynomial roots.  In (d), HETP uses an updated methodology to calculate polynomial rootsmay apply a Taylor 

series expansion to calculate polynomial roots, as well as an ITP search to determine cubic polynomial roots.  ISORROPIA shown in (b) 690 
solves quadratic equations using the ‘standard’ quadratic formula, and attempts to find an exact analytic solution of cubic equations.  All 

input precursor species are held constant, except the total available sulfate (TS) which is varied over 10,000 sets of initial conditions.  The 

air temperature and relative humidity are 243 K and 5% respectively, for all test cases in the figure.  The convergence criteria are consistent 

between both solvers (see text).  

 695 

 

4.2 Comparison using input from the GEM-–MACH air-–quality model  

Aside from generating artificial sets of input data to evaluate HETP (Sect. 4.1), the value of which is to demonstrate relative 

solution stability across small increments in input conditions, a comparison between HETP and ISORROPIA can be completed 

using more realistic input conditions obtained from the GEM-–MACH air-–quality model (Makar et al., 2018).  In this section, 700 
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20,000 unique sets of input data (‘test cases’) from GEM-–MACH are investigated for each chemical subspace, with 10,000 

test cases obtained from summer days and 10,000 test cases obtained from winter days. These test cases were selected from 

input conditions generated from a 10 km resolution simulation with a (domain covering North America), and.  The test cases 

were chosen randomly so that the selected set of test cases spans across a broad range of temperatures and relative humidity, 

typical of actual tropospheric conditions.  Table 43 gives the relative frequency of calls to each chemical subspace (as a 705 

percentage of the total calls in GEM-MACH) determined from four days (2 in the winter and 2 in the summer).  It should be 

noted that subspaces A2, B4 and C2 all require that TN be formally zero. ; Aa low number limit in the GEM-–MACH model 

prevents true zero conditions from occurring, hence the given subroutines are not called in this practical application test.  The 

majority of calls are to the subspaces O7, M8 and L9 which comprise more than 75 % of the total calls on these four days.  , 

Therefore, and hence most situations encountered in GEM-–MACH over North America have a non-–zero amount of base 710 

cation species present (K+, Mg2+ and, Ca2+).  

 

Table 43: The percentage of total calls to each subspace determined from four separate days (2 in the winter and 2 in the summer). The call 

frequencies are determined from the 10 km domain of the GEM-–MACH air quality model which covers all of North America.  Any subspace 

with > 10 % of total calls is bolded in the table.  715 

Case A2 B4 C2 D3 E4 F2 G5 H6 I6 J3 O7 M8 P13 L9 K4 

% Called 0.000 0.000 0.000 9.735 4.470 0.016 2.479 0.709 3.825 0.038 31.72 25.85 0.044 20.88 0.232 

 

 Figure 5 displays a scatter plot of Cl- and /HCl (left panels) and NO3
- and /HNO3 (right panels) output from 

ISORROPIA (y-axis) and HETP (x-axis).  Fig 5(a-b) displays CALCM8 :– summer (hereafter M8:-S) and Fig. 5(c-d) shows 

CALCG5 –: winter (hereafter G5:-W).  The black dashed lines give a one-–to-–one relationship, denoting where HETP and 

ISORROPIA agree exactly.  There is relatively good agreement between the two solvers for M8:-S, despite the differences 720 

noted for this subspace in Sect 4.1.  However, fFor G5:-W a large amount of scatter exists, demonstrating disagreement 

between the two solvers for some test cases.   This disagreement is likely related to the choice tof root-–finding method and/or 

other numerical updates that have been made to the HETP code, as described in Sect. 3.  The differences between the two 

solvers noted for Cl- and HCl in Fig. 5(c) are only for very low concentrations, which likely would not be impactful in practical 

air-quality applications.    725 
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Figure 5: A scatter plot of the output concentrations (mol m-3) from ISORROPIA (y-–axis) compared agaagainstinist HETP (x-–axis) for 

M8:-Summer (M8:S) (a,b) and G5:-Winter (G5:W) (c,d), calculated from 10,000 input test cases obtained from the GEM-MACH air-quality 

model.  The solid black line gives a one-–to-–one relationship.  Speciation is given in the legend shown in panel a.  730 

 

As in Sect. 4.1, statistics of 𝜉′ are calculated from the output of each solver to judge the accuracy of the equilibrium 

solution.  This is especially important since the test cases in this section cannot be plotted in a regular fashion (as in Sect. 4.1), 

to graphically reveal obvious numerical instabilities.  Figure 6 displays a box and whisker plot of 𝜉′ for the chemical subspaces 

G5, H6, O7, M8 and P13.  These subspacescases all require bisection or ITP and mustay have chloride present, with 𝐾HCl 735 

providing the ‘final convergence check’ (except for H6).  The statistics shown in Fig. 6 include the data shown in Fig. 5 for 

subspaces M8:-S and G55:-W.  Fig. 6(a) and (b) show 𝜉′ for 𝐾HCl and 𝐾HNO3
 respectively.;  Eeach panel shows 𝜉′ for both 

seasons, with summer having a ‘:-S’ label and winter having a ‘:-W’ label.  In the box plot, the 25th percentile, median and 75th 
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percentile of 𝜉′ correspond to the bottom of the box, center line in the box, and top of the box respectively. The bottom and 

top whisker of each box gives the minimum and maximum of 𝜉′ respectively; if the bottom whisker extends off the graph, then 740 

the minimum 𝜉′ is zero.  Except for G5:-S, H6:-S, H6:-W, M8:-S and M8:-W, the median 𝜉′ of 𝐾HNO3
 is smaller in HETP than 

ISORROPIA for all subspaces shown in Fig. 6b.  For 𝐾HCl, all subspaces except H6:-S and H6:-W have a smaller median 𝜉′ 

in HETP than ISORROPIA.  We note that despite HETP having lower median 𝜉′ than ISORROPIA for some subspaces, the 

magnitude of 𝜉′ suggests that ISORROPIA is nevertheless providing sufficiently accurate output for most test cases.  For the 

input data investigated here, the subspace H6 is performing poorly in both solvers, with a  (median 𝜉′ > 0.5 for all equilibrium 745 

constants) (but with marginally worse, but the performance is marginally worse in HETP than in ISORROPIA).  FA (for 

example, in H6:–S for 𝐾HNO3
 the 75th percentile in HETP is 31.8, andbut in ISORROPIA it is 13.4).  H6 is unique relative to 

the other subspaces requiring a root-finding method (i.e., G5, O7, M8 and P13), since the objective function used to determine 

the root of the system of equations does not include H+ explicitly.  The expressions for 𝜉′  used in Fig. 6, however, explicitly 

evaluate the convergence of H+ relative to 𝐾HCl and   𝐾HNO3
 equilibria.  The relatively poor performance of the H6 algorithm 750 

when evaluated using 𝜉′ thus tells us that although the other ions and gases in the H6 chemical subspace have converged with 

the existing solution procedure, convergence with respect to H+ remains poor.  

Returning to the scatter noted in HNO3 and /NO3
– between the two solvers in G5:-W (Fig. 5d), it is clear from the 

statistics of 𝜉′ for 𝐾HNO3
 and 𝐾HCl shown in Fig. 6 that both solvers are producing output that spans a broad range of accuracy.  

The 75th percentile of 𝐾HNO3
 and 𝐾HCl are 2 orders of magnitude lower in HETP than ISORROPIA.   (Ffor 𝐾HCl the 75th 755 

percentile of 𝜉′ is 6.93×10-2 and 4.35 in HETP and ISORROPIA respectively.),  However, but the maximum 𝜉′ are a similar 

magnitude in each solver.  This suggests that both solvers are struggling with partitioning between the aqueous and gaseous 

phase for some test cases investigated here.  Of the 10,000 test cases analyzed in G5:-W, 14.02 % are identified in HETP as 

having ‘oscillatory behavior’ (see Sect. 3, point 3).  These flagged test cases generally have large 𝜉′ for all equilibrium 

constants (in both solvers), which is related to poor convergence during the iterative process.  Removing these flagged test 760 

cases reduces the median and 75th percentile of 𝜉′ (for 𝐾HNO3
 and 𝐾HCl) by an order of magnitude in both solvers.  ; Ffor HETP 

the median 𝜉′ for 𝐾HNO3
 reduces to 4.9089×10-8 (from 4.60×10-7) and for ISORROPIA the median 𝜉′ reduces to 2.72×10-6 

(from 5.59×10-5).  The modification to account for ‘oscillatory behavior’ has the effect of reducing 𝜉′ for the flagged test cases 

in HETP compared to ISORROPIA – (i.e., for the 14.02 % of test cases affected, the median 𝜉′ for 𝐾HNO3
 is 0.28 for HETP, 

but for ISORROPIA it is 2.65).  Furthermore, 98.875.3 % of the flagged test cases are times when [Cl−]Cl- is predicted to be 765 

< 1×10-16 mol m-3 (Cl- note that [Cl−] is the bisected variable in G5), and all flagged test cases have TCl < 1×10-10 mol m-3.  

For test cases where the output from each solver agrees well and (i.e., falls along the one-to-one line in Fig. 5c-d), 𝜉′ for 𝐾HNO3
 

and 𝐾HCl are minimized in each solver.  The statistics of 𝜉′ for other subspaces not discussed here are summarized in Table 

S43 (summer) and Table S54 (winter) of the supplemental information.   



33 

 

770 



34 

 

 

Figure 6: A box and whisker plot of the absolute error 𝜉′ = |log(𝐾𝑐𝑎𝑙𝑐) − log(𝐾𝑡𝑟𝑢𝑒)| for (a) 𝐾HCl and (b) 𝐾HNO3
.  The summer season is 

denoted by ‘:-S’ and the winter season is denoted by ‘:-W’ in the x-axis labels.  𝜉′ is calculated from a set of 10,000 test cases in each season 

(obtained from the GEM-–MACH air-–quality model). 𝜉′ shown in the figure for M8 and G5 correspond to the scatter plots shown in Fig. 

5.  The median 𝜉′ is represented by the solid black line in the center of each box, and the 25th and 75th percentiles correspond to the bottom 775 
and top of each box respectively. The whiskers give the maximum (top) and minimum (bottom) of 𝜉′.  
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4.3 Computational time 

The mean time (determined from 10 repeated samples) required for the central processing unit (CPU) of a Lenovo SV650v2 780 

DWC computer to solve the test cases from Sect. 4.2 (for each season and subspace) are given in Table 54.;  Tthe timing tests 

have an estimated uncertainty of ± 1 %.  For HETP, two sets of timing tests are reported.  Test 1, labelled ‘THETV’, refers to 

timing using a global convergence criteriaglobal convergence criterion for all tests within a given chemical subspace, 

representing ; a “vectorized” test where all 𝑛 test cases for a given subspace are solved simultaneously.  This is the methodology 

used in Makar et al., (2003), where the great reduction in processing time associated with vectorization on a vector compiler 785 

was used to offset the fact that the number of iterations was determined by the single test case with the worst convergence 

behavior.  Test 2,Test 2, labelled ‘THETP’, refers to a case-–by-–case test where the solver is called individually for each test 

case (i.e., the solver is called 𝑛 times).  In the latter test, the time associated with subroutine calls is offset by the number of 

iterations becoming test–specifictest specific.  The first strategy may be more efficient,  (aside from vectorization architecture 

gains,) when the convergence criteria are relatively similar across grid-–cells, that is, all input problems converge with the 790 

same number of iterations.  T – while the second strategy may be more efficient when the distribution of convergence is more 

heterogeneous, with some test cases requiring many more iterations than others.  ISORROPIA (TISO) requires a case-–by-–

case implementation, andimplementation and cannot solve 𝑛 cases simultaneously.  The convergence criteria are identical to 

those used in the previous sections (Sect. 4.1 and 4.2).  In the case of ISORROPIA, it is important to reaffirm that the ‘-–r8’ 

flag was used during compilation, forcing all calculations to be performed in double precision ((as in the default 795 

implementation of HETP) and  – that is, the precision of the solver has been removedremoving precision as a possible cause 

for differences in performance.).  For the subspaces D3, G5, H6, O7, M8 and P13 all test cases investigated were chosen so 

that they require the application of a root-–finding method for convergence, since these are the most computationally intensive 

cases encountered by the solver.  As noted above, not all chemical subspaces have 10,000 a sufficient amount of unique input 

data derived from GEM-–MACH simulations for the days sampled from each season.  Specifically, in the winter the subspaces 800 

A2, B4, C2 and F2 do not have enough suitable input data from which to draw 10,000 unique samples, while iand likewise in 

the summer for , the subspaces A2, B4 and, C2 .have insufficient input data.  For winter, input data from J3 are used for F2, 

except with TNa = 0 and TCl = 0, the aim here being to provide timing tests across a realistic range of initial conditions.  It 

should be noted again that the subspaces A2, B4 and C2 were not executed by GEM-–MACH on either day for the reasons 

noted in Sect. 4.2.  Therefore, like F2 (winter), the input data used to analyze D3, E4 and F2 are used to analyze A2, B42 and 805 

C2 respectively, except with TN = 0.  

 

 

 

 810 
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Table 54: The average computational time (𝑇) (calculated from 10 samples) required to solve 10,000 unique sets of input conditions (from 815 
summer and winter), using ISORROPIA (TISO), the vectorized solver of HETP (THETV) and the case-–by-–case solver of HETP (THETP).  Input 

conditions were obtained from the GEM-–MACH air-–quality model, and the convergence criteria are consistent between both solvers (see 

text).  The speed up is a dimensionless quantity, with the non-–bracketed value representing TISO/THETV and the bracketed value representing 

TISO/THETP.; Aa value > 1 implies that HETP (or HETV) is computationally faster, while a value < 1 implies that ISORROPIA is 

computationally faster.  In the first three columns of each season, the bolded value denotes the fastest execution time between each of the 820 
solvers. The bolded value in the speed up column shows which solver style is computationally faster (i.e., HETP or HETV); an underlined 

value in this column signifies that HETV is computationally slower than ISORROPIA for that subcase (row).  

Subroutine  
Winter Summer  

THETV (s) THETP (s) TISO (s) Speed up THETV (s) THETP (s) TISO (s) Speed up 

CALCA2 0.044 0.042 0.061 
1.39 

(1.45) 
0.049 0.046 0.069 

1.41 

(1.50) 

CALCB4 0.011 0.011 0.022 
2.00 

(2.00) 
0.011 0.011 0.022 

2.00 

(2.00) 

CALCC2 0.010 0.009 0.020 
2.00 

(2.22) 
0.010 0.010 0.020 

2.00 

(2.00) 

CALCD3 0.354335 0.295270 0.486 
1.3745 

(1.80)65) 
0.370347 0.288262 0.461 

1.2533 

(1.7660) 

CALCE4 0.013 0.013 0.027 
2.08 

(2.08) 
0.014 0.014 0.026 

1.86 

(1.86) 

CALCF2 0.013 0.012 0.024 
1.85 

(2.00) 
0.013 0.012 0.024 

1.85 

(2.00) 

CALCG5 0.447 0.37381 0.806 
1.80 

(2.162) 
0.360 0.28492 0.704 

1.96 

(2.481) 

CALCH6 0.126 0.05961 0.108 
0.86 

(1.8377) 
0.136 0.06871 0.121 

0.89 

(1.780) 

CALCI6 0.027 0.026 0.037 
1.37 

(1.42) 
0.029 0.027 0.039 

1.34 

(1.44) 

CALCJ3 0.030 0.030 0.039 
1.30 

(1.30) 
0.032 0.031 0.041 

1.28 

(1.32) 

CALCO7 0.690 0.5419 1.202 
1.74 

(2.2219) 
0.688 0.55867 1.262 

1.83 

(2.263) 

CALCM8 0.409 0.25961 0.607 
1.48 

(2.343) 
0.482 0.3549 0.646 

1.34 

(1.820) 

CALCP13 0.409 0.290300 0.727 
1.78 

(2.5142) 
0.376 0.18492 0.796 

2.12 

(4.3315) 

CALCL9 0.041 0.039 0.059 
1.44 

(1.51) 
0.038 0.036 0.058 

1.53 

(1.61) 

CALCK4 0.044 0.042 0.063 
1.43 

(1.50) 
0.042 0.040 0.060 

1.43 

 (1.50) 

Sum of 

GEM–

MACH tests  

2.6765 2.027 4.29 
1.621 

(2.1207) 
2.6563 2.001.94 4.35 

1.654 

(2.1824) 
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The CPU timing results demonstrate that all subspaces (except H6, winter and summer) execute faster in HETP’s 825 

vectorized THETV implementation than ISORROPIA.   – Iin some cases the speed –up is significant: f (i.e., for CALCO7 the 

speed up is about a factor of 1.745 to 1.835 when using THETV).  An even more significantgreater speed up can be achieved by 

using the case-–by-–case THETP implementation for some subspaces, specifically those that require bisection (A2, D3, G5, H6, 

O7, M8 and P13).  Unlike THETV, all chemical subspaces execute faster in in THETP than ISORROPIA.  For the sets of test cases 

investigated in this work, the best-–case performance is found in P13:–S, where THETV executes in about 0.38 s, but THETP 830 

executes in about 0.189 s (the latter being about ~4.32x faster than ISORROPIA).  The speed –up afforded by HETP for this 

subcase is largely the result of HETP’s updated root-–finding methodology (ITP), which requires fewer iterations on average 

to obtain a solution with an equivalent (or better) level of accuracy as ISORROPIA.  The statistics related to the number of 

iterations required by the root-–finding methodology of each solver to achieve convergence (of the major systems) are given 

in Table 56, for the same input data used to generate the timing tests shown in Table 45.  For P13:–S which has the best-–case 835 

performance, ITP in HETP requires on average 8.02 iterations for convergence, while bisection in ISORROPIA requires on 

average 42.5 iterations.  Thus, HETP’s root-–finding method requires about 19 % of the iterations required by ISORROPIA 

for this set of input conditions, while executing in about 23 4% of the time (using the case-–by-–case mode).  The overall 

performance for the tests in GEM-–MACH (bottom row of Table 45) show the average performance of HETP operating in the 

case-–by-–case mode results in a speed up relative to ISORROPIA of a factor of 2.2407x for the summer tests, and 2.1218x 840 

for the winter tests.  The inclusion of an ITP search for the smallest positive real root of cubic equations in I6, J3, L9 and K4 

substantially increases the execution time of the solver for these chemical subspaces relative to no ITP search, but despite this, 

HETP still executes in less time than ISORROPIA for these subcases.  

 The difference between THETP and THETV becomes even more apparent, and in favor of THETP, if a significant amount 

of test cases do not require bisection.  While THETV includes a return statement to reorder the problem,  (removing those test 845 

cases that have converged or have no solution prior to entering ITP), the root bracketing stage in THETV will nonetheless need 

to be repeated a second time for all test cases that do require ITP.  Note that the root bracketing stage identifies an interval 

where the objective function has a sign change.  ; Aassuming a continuous function, this sign change signifies that a root exists 

within the interval.  Furthermore, in THETV some test cases may iterate in the root-–bracketing stage more times than necessary 

(i.e.,  one test case has an identified interval, but other test cases within the same chemical subspace being solved by a global 850 

convergence criteriaglobal convergence criterion do not), thereby introducing excess computations into in THETV  that do not 

exist in THETP.  This is especially true as the variable 𝑛𝑑𝑖𝑣,  (which controls the number of subdivisions searched for a sign 

change, ) is increased.  Thus, in most applications, and for the computer architecture tested here, the case-–by-–case THETP 

implementation will be preferred.  Both options are available as separate versions of code, and we recommend users test both 

options of the code on their own system to determine the best performance. 855 

The results presented herein have demonstrated that HETP is able to provide output for these subspaces that is more 

accurate overall, while executing up to 4..32x faster than ISORROPIA, with an average performance increase in a practical 

application between 2.1207x and 2.2418x (using the case-–by-–case mode).  The subspace H6 which executes slower in THETV 
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than THETP,  (and is also less accurate than ISORROPIA for most input test cases), accounts for < 1 % of the all test cases on 

the days sampled (see Table 43). 860 

 

Table 65: Statistics describing the number of iterations required to achieve convergence of bisection (ISORROPIA) or ITP (HETP) for the 

timing tests shown in Table 54. The final column shows the average speed up, calculated for each row as the mean number of iterations from 

ISORROPIA divided by the mean number of iterations from HETP.  

 ISORROPIA: Winter HETP: Winter  

Case Median Q25 Q75 Min Max Mean Median Q25 Q75 Min Max Mean 
Speed 

up 

CALCD3 29 28 43 28 61 33.8 29 10 410 5 61 26.7 1.27 

CALCG5 34 32 35 28 52 34.3 30 7 34 1 51 22.7 1.51 

CALCH6 33 30 37 28 41 33.6 7 7 7 4 37 9.9 3.39 

CALCO7 34 32 37 27 52 35.2 14 8 34 1 53 20.6 1.71 

CALCM8 31 30 33 28 43 31.6 7 7 11 4 38 11.3 2.80 

CALCP13 31 28 35 28 58 31.8 8 7 9 5 4142 11.9 2.67 

 
 

 ISORROPIA: Summer HETP: Summer  

Case Median Q25 Q75 Min Max Mean Median Q25 Q75 Min Max Mean 
Speed 

up 

CALCD3 29 28 32 22 68 33.5 28 24 31 1 621 28.2 1.19 

CALCG5 33 31 36 26 57 34.1 12 7 32 1 44 17.6 1.94 

CALCH6 32 28 37 28 40 32.6 7 7 29 5 38 15.1 2.16 

CALCO7 34 32 36 28 47 33.9 17 9 34 5 45 21.1 1.61 

CALCM8 32 29 34 28 41 31.9 11 7 29 5 40 18.2 1.75 

CALCP13 42 39 45 28 60 42.5 7 6 87 5 61 8.28.0 5.3118 

5 Conclusions   865 

In this work we have presented HETP, an updated solver to perform thermodynamic equilibrium calculations of the H+–SO4
2–

–NH4
+–NO3

––Cl––Na+–Ca2+–K+–Mg2+–H2O chemical system, based on the algorithms of ISORROPIA in the forward 

metastable state. , an inorganic heterogeneous chemistry solver which has allowed chemical transport models to carry out 

complex calculations in a practical amount of processing time.  HETP has been updated in several ways to improve both the 

computational speed and accuracy, compared to ISORROPIA.  For most input conditions HETP produces equivalent results 870 

to ISORROPIA, but for some input conditions the output from the solvers can diverge.  Analysis of the output from each solver 

suggests that HETP’s use of  ITP,  (instead of bisection,) improves the accuracy of its equilibrium solution for some input 

conditions by obtaining a more accurate initial estimate of the root prior to the commencement of the ITP search.  At the same 
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time, ITP , whcanile reduceing the number of iterations required for convergence.  The differences may be formally linked to 

reduced accuracy of the ISORROPIA solver’s output due to several numerical issues as described in the sections above.  In 875 

addition to providing more accurate output for most test cases, HETP, when implemented to solve 𝑛 test cases simultaneously, 

may execute 1..32 to 2.1 times faster than ISORROPIA (except for CALCH6), based on input from the regional chemical 

transport modelCTM GEM-MACH.  Alternatively, when HETP is implemented as a case-–by-–case solver (the solver is called 

𝑛 times), then HETP is 1.3 to 4.3 2 times faster than ISORROPIA for individual chemical subspaces, and 2.1 to 2.22 times 

faster than ISORROPIA on average, with the speed-–up being most significant in subspaces that require the application of a 880 

root-finding method for convergence.  

 

6 Code and data availability 

The data used in the analysis presented herein, and the HETP code, are available online at 

https://doi.org/10.5281/zenodo.81647045 (Miller, 20243).  885 
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