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Dear Referee #2, 

We sincerely thank you for all your valuable comments, insightful suggestions, and 

thoughtful corrections to our manuscript. These comments and suggestions will undoubtedly 

help us improve the quality of the manuscript. Below are our point-by-point responses to the 

comments. In the revised manuscript, all changes and additions are highlighted in yellow. 

 

Best regards, 

Xiaoning Xie et al. 

 

“The authors have many redundant figures, and the manuscript could be condensed 

significantly. Additionally, for your evaluation for extremes you only use 4 years of data. I 

suggest doing another experiment, with a larger test set. More epxeriments (i.e larger ensemble). 

Concerning how much noise there are in the downscaled outputs.” 

Response: Thanks for your comments and suggestions. Based on your suggestions, we have 

significantly condensed the manuscript, merged some figures and tables, and put some figures 

and tables in the Supplementary Section in the revised manuscript. We also did the experiments 

to extend the testing period. Specifically, For RRDBNet, we did the test experiments for 10 

years (2011-2020), and the training period was 2001-2011. The spatial distribution is shown in 

Figure R1. For the ten-year (2011-2020) test period, we calculated the specific metrics for the 

deep-learning models in Table R1. As noted by the Referee, when we increase the time of 

validation for 10 years (2011-2020), the noise decreases significantly as in Figure R1. As can 

be seen from Table 1, for the ten-year test period (2011-2020), RRDBNet outperforms other 

models on R95P, R99P, and RX1Day (with the smallest RMSE and largest CC). Therefore, 

RRDBNet has good performance in capturing extreme precipitation. 

 

 



In addition, for RRDBNet, we repeated the experiment as ten times and calculated the 

mean and variance for these experiment results in Tables R2 and R3. We found that the changes 

in the results of these experiments are very small in Table R2. Then, we calculated the mean 

and variance of these results in Table R2 and Table R3. Therefore, we infer that the RRDBNet 

results are statistically significant in Table R3, compared with other models. We have analyzed 

the above results in the Discussion Section of the revised manuscript.  

 

 

Figure R1. Spatial distribution of annual mean precipitation and extreme precipitation in the 

MRYR for RRDBNet in different testing periods. 



Table R1. Evaluation metrics of annual extreme precipitation for each method from 2011 to 

2020 

 Models Difference RMSE CC 

R95P 

CNN 4.84 28.80 0.56 

RDBNet 1.84 26.99 0.62 

RRDBNet -3.62 25.37 0.66 

R99P 

CNN 3.97 15.41 0.37 

RDBNet 2.57 13.63 0.48 

RRDBNet 0.89 12.81 0.51 

RX1Day 

CNN 8.65 11.09 0.32 

RDBNet 6.57 8.44 0.41 

RRDBNet 4.86 6.76 0.55 

 

Table R2. Results of ten repeated experiments using RRDBNet. 

 Difference RMSE CC 

1 -0.09589823 0.29287103 0.93531325 

2 -0.0973649 0.29267051 0.93549379 

3 -0.09529275 0.29251509 0.93530962 

4 -0.09570838 0.29507643 0.93433473 

5 -0.09507929 0.29269518 0.93511726 

6 -0.09596082 0.2931742 0.93505923 

7 -0.09697484 0.29216068 0.93575122 

8 -0.09673768 0.29315587 0.93529157 

9 -0.09631896 0.29314359 0.93520193 

10 -0.09771557 0.29449235 0.93481579 

Ensemble -0.0963±0.0008 0.2932±0.0009 0.9352±0.0004 

 

  



Table R3. Evaluation metrics of annual mean precipitation in different models. 

Models Difference RMSE CC 

GLM -0.12 0.36 0.89 

CNN 0.07 0.35 0.92 

RDBNet 0.03 0.33 0.92 

RRDBNet -0.10 0.29 0.94 

RRDBNet(10 times) -0.0963±0.0008 0.2932±0.0009 0.9352±0.0004 

 

Comment 1: I suggest changing your title to the following or something similar: Deep learning-

based downscaling of precipitation in the middle reaches of the yellow river using residual 

networks. The title is a bit clunky.  

Author response: Thanks for your great suggestions on improving our manuscript. Based on 

your suggestions, we have modified the title to "Deep learning-based downscaling of 

precipitation in the middle reaches of the Yellow River using Residual-in-Residual Dense Block 

based networks”. 

 

Comment 2: Line 5: “good performance on precipitation simulations”, I’d be explicit and 

provide some indication of improvement in %. Also, I’d say “when evaluated against 

observations we obtain X % of improvement relative to linear methods”. 

Author response: Thanks for your great suggestion on improving our manuscript. We have 

included specific indicators of improvement in the abstract of the revised manuscript. The 

modification is as follows: The results show that the proposed RRDBNet has a good 

performance on precipitation simulations, which can well reproduce the spatial-temporal 

characteristics of high-resolution precipitation. RRDBNet reduces RMSE by 19% and 

improves CC by 6% relative to GLM for climatology mean. Especially, RRDBNet has 

substantial improvements in extreme precipitation compared with other models. It 

reduces RMSE by 58% (79%) and improves CC by 38% (145%) relative to GLM for 

R95P (R99P). 

 



Comment 3: Line 20:” Over simplified parameterizations” I’d remove this text. The main 

reason for downscaling is the resolution issue. Your research is not on parameterizations. 

Author response: We sincerely appreciate your valuable comments. Based on your suggestion 

we have removed "Over simplified parameterizations" in the introduction. We have modified 

this sentence the revised manuscript as follows: Due to the coarse spatial resolutions (usually 

~100 km) in Global Climate Models (GCMs) (Berg et al., 2013) 

 

Comment 4: Line 35 & Line 40: “tricube methods”- what is tricube methods? 

Author response: Thanks for your comments. The tricube method is a statistical method of 

non-parametric regression used to estimate the smoothing curve of the data (Wand et al., 1994; 

Cleveland et al., 2017). It estimates the value of an unknown data point by weighted smoothing 

a set of neighboring data points around each data point. The method uses a cubic spline function 

for smoothing, so it is called a tricube (three times cubed) method. In the tricube method, the 

data points around the point to be interpolated are organized into a cube, i.e., a three-

dimensional space. Then, different weights are given to each data point within the cube 

according to its distance from the point to be interpolated. Typically, data points that are closer 

to the point to be interpolated are given higher weights, while data points that are farther away 

are given lower weights. The advantage of this method is that the spatial distribution of data 

points can be considered during the interpolation process, and data points that are far away from 

the point to be interpolated are given lower weights to reduce their impact on the interpolation 

results. This makes the tricube method widely used in the field of precipitation. Such as 

estimation of future precipitation quantiles (Stojkovic et al., 2019), bias correction of GCM 

data (Panjwani et al., 2021) and estimation of missing daily rainfall data (Makungo et al., 2019). 

 

Comment 5: Line 45: “Say that capturing non-linearities is important for downscaling 

variables such as precipitation”. This is a good reference 

(https://www.sciencedirect.com/science/article/pii/S2212094722001049). 

Author response: Thanks for your great suggestion on improving our manuscript. We have 

added this reference to the introduction based on your suggestion and have modified this 

sentence appropriately. The modification is as follows: Although the traditional methods are 



easy to understand and interpret, they cannot accurately characterize the nonlinear 

dependence among climate variables due to their simple assumptions (Booij, 2002; 

Beniston et al., 2007; Prudhomme and Davies, 2009), and capturing non-linearities is very 

important for downscaling variables such as precipitation (Rampal et al., 2022). 

 

Comment 6: Line 50: Bano Medina et al, (2020) is not about forecasting it is about 

downscaling. If you use that reference, how might need to clarify this. 

Author response: Thank you for pointing out the mistakes. We have made corrections in the 

revised manuscript. The modification is as follows: To improve the quality of downscaling, 

many models about CNNs are employed to generate high-resolution data (Rodrigues et 

al., 2018; Pan et al., 2019; Baño-Medina et al., 2020; Sun and Lan, 2021; Rampal et al., 

2022). 

 

Comment 7: Line 50: (Pan et al, 2019, Bano Medina 2020) add Sun et al, (2021) and Rampal 

et al, (2022). These are also important references. 

https://www.sciencedirect.com/science/article/pii/S2212094722001049 and 

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.6769. You also need to add other 

recent papers by Bano Medina et al (e.g. 2021, 2022). I don’t think you’ve summarized the 

recent literature too well. 

Author response: We sincerely appreciate your valuable comments. Based on your suggestion, 

we have added references (Sun and Lan, 2021; Rampal et al., 2022) and rewritten this part in 

the revised manuscript. The rewrite is as follows: It was demonstrated that CNNs have better 

performance on the estimation of precipitation than reanalysis products and statistical 

downscaling products obtained using linear regression, nearest neighbor and random 

forest (Pan et al., 2019; Baño-Medina et al., 2020; Sun and Lan, 2021; Rampal et al., 2022). 

For example, experimental results from Pan et al. (2019) at 14 geogrid points in the U.S. 

show that CNN-based precipitation estimation outperforms reanalyzed precipitation and 

downscaled precipitation estimation using linear regression, nearest neighbor, and 

random forest. Baño-Medina et al. (2020) conducted precipitation downscaling 

experiments in continental Europe, and their experiments showed that the overall 



performance of the CNN is superior to the generalized linear regression model (GLM) for 

precipitation. Later, Baño-Medina et al. (2022) used CNN for GCM downscaling. They 

emphasized that CNN-based downscaling results can reproduce the spatial distribution 

of precipitation and temperature observations during historical periods and reduce the 

systematic biases shown by global and regional physical models. In future climate change 

analysis, the spatial pattern and magnitude of CNN-based downscaling are roughly 

similar to RCM. Sun et al. (2021) further demonstrated that the performance of CNN for 

precipitation downscaling is superior to GLM in China, and CNN outperforms in large 

regional downscaling. Rampal et al. (2022) investigated learning relationships in CNN by 

implementing gradient-weighted class-activation maps (Grad-CAM), and they 

demonstrated that CNN can automatically learn physically believable relationships 

between large-scale atmospheric environments and extreme localized precipitation events. 

 

Comment 8: Lines 55-60: Here you need to state what contribution your work makes to the 

overall literature. It’s not very convincing about the value added of your research here. 

Something like “Our work expands on the existing literature by incorporating X y and Z”. You 

could say that we also downscaling the temporal variability which has not been considered 

before. 

Author response: Thanks for your comments and suggestions. According to your suggestion, 

We have stated the contribution of our work to the overall literature in the revised manuscript. 

The statement is as follows: The main contributions of our work are as follows: 1. We 

developed an RRDB-based network to provide another idea and method for precipitation 

downscaling. Multi-level residuals and dense connectivity strategies are incorporated into 

the RRDB, which is beneficial to extracting higher-level, more abstract, and more 

discriminative features in atmospheric variables, capturing complex patterns and 

nonlinear features among climate variables, and enhancing model stability. 2. The 

proposed RRDBNet more accurately captures the extreme precipitation and extreme 

precipitation frequency, and has better results in terms of extreme precipitation compared 

to other models. 3. We also downscaled temporal variability not previously considered by 

Baño-Medina et al (2020). 



 

Comment 9: Line 70: Maybe describe why you chose to coarsen ERA5 to 2° resolution (i.e. 

to be consistent with Medina et al, (2020). 

Author response: Thank you for your suggestions. Under the perfect-prognosis approach, the 

statistical downscaling relationships are learned from (daily) data using simultaneous 

observations for both the predictors (from a reanalysis) and predictands (historical local or 

gridded observations), and are subsequently applied to GCM-simulated predictors 

(multidecadal climate change projections under different scenarios), to obtain locally 

downscaled values (Gutiérrez et al., 2013; Manzanas et al., 2018; Baño-Medina et al., 2020, 

2022). Therefore, we choose data from ERA5 as the predictors and cumulative precipitation 

from Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) as 

the predictand. To facilitate comparison of performance between models, the spatial resolution 

of the predictors was 2° × 2° (consistent with the spatial resolution of the predictors chosen 

by Baño-Medina et al. (2020)). In addition, in the future, we will use the trained model to 

downscale the 2° × 2° GCM predictors. We have described these in Section 2 of the revised 

manuscript. The description is as follows: Under the "perfect-prognosis", the model learns 

statistical relationships from daily predictors (from reanalysis data) and predictands 

(from historical observations), and then works on the predictors of the GCM to obtain the 

corresponding regional or local downscaling results (Gutiérrez et al., 2013; Manzanas et 

al., 2018; Baño-Medina et al., 2020, 2022). Therefore, we selected predictors from ERA5 

and used cumulative precipitation from Integrated Multi-satellite Retrievals for Global 

Precipitation Measurement (IMERG) as predictand. Specifically, the input dataset 

(predictor set) of statistic downscaling is derived from data with 𝟐° × 𝟐° resolution in 

ERA5 (consistent with the predictors selected by Baño-Medina et al. (2020)). 

 

Comment 10: Lines 85-90: You need to cite other work that as used similar methodology here. 

For example, Cannon et al, (2008), Rampal et al, (2022), Sun et al, (2021), Bano Medina et al, 

(2020, 2021, 2022). 

Author response: Thanks for your suggestions and comments. We have cited related work 

using similar methodologies in Subsection 3.2 of the revised manuscript. The change is as 



follows: Overall, the predictors are processed by the statistical downscaling model 

(RRDBNet) to obtain the modeled parameters p, α and β. Then precipitation is estimated 

using a mixed binomial-log-normal distribution with modeled p, α and β. This is consistent 

with Baño-Medina et al., (2020, 2022), Sun et al., (2021), and Rampal et al., (2022). p 

denotes the probability of precipitation, and α and β represent the shape and scale of the 

gamma distribution, respectively. 

 

Comment 11: Table 1: I personally think this should go in a supplementary section. 

Author response: Thanks for your great suggestion on improving our manuscript. We have 

placed this table in the Supplementary Section and noted it as Supplementary Table 1. 

 

Comment 12: Equation 1: Also should go in a supplementary section. 

Author response: Thanks for your suggestion. Following your suggestion, we have also put 

this equation in the Supplementary Section and noted it as Supplementary Equation 1. 

 

Comment 13: Figure 4: This should go in a supplementary or be combined with Figure 3. 

Author response: Thanks for your comment. We have put this figure in the Supplementary 

Section and recorded it as Supplementary Figure 1. 

 

Comment 14: Lines 125: Clarification: is the paper downscaling to daily precipitation? If you 

are discussing the BG distribution, make sure you cite Rampal et al, (2022) and Sun et al, (2021). 

Author response: Thank you very much for your comments. According to your suggestions, 

we have clarified that we study downscaled daily precipitation and have added these two 

references (Sun and Lan, 2021; Rampal et al., 2022) in the revised manuscript. The 

modification is as follows: Therefore, we study stochastic prediction and downscaled daily 

precipitation in this paper. Due to the mixed discrete and continuous nature of 

precipitation, Williams (1997) suggested using the bernoulli-gamma distribution to 

describe precipitation, which has been used for single-site precipitation downscaling 

models (Haylock et al., 2006; Cawley et al., 2007) and gridded precipitation downscaling 

models (Baño-Medina et al., 2020, 2022; Sun and Lan, 2021; Rampal et al., 2022). 



 

Comment 15: Lines 135: Again are you performing temporal disaggregation? Where for a 

daily input you are predicting hourly or sub-daily output? 

Author response: Thanks for your comments. We did not perform time disaggregation. The 

inputs to the model are daily data and the outputs are also daily data. Equations 1-3 describe 

that the 𝑖𝑡ℎ grid in the study area produces p, 𝛼, and 𝛽 on day 𝑡. Where 𝑡 stands for day 𝑡, 

𝑖 represents the 𝑖𝑡ℎ grid in the study area. Then 𝑝𝑖(𝑡), 𝛼𝑖(𝑡) and 𝛽𝑖(𝑡) are used to obtain 

the precipitation of the 𝑖𝑡ℎ grid on day 𝑡. Specifically, for the input data on day 𝑡, after going 

through the fully connected layer of the model, each grid (0.1° × 0.1° ) in the study area 

produces three values, i.e., 𝑜1, 𝑜2, and 𝑜3. For example, the three output values for the 𝑖𝑡ℎ 

grid point on day 𝑡  are 𝑜𝑖
1(𝑡) , 𝑜𝑖

2(𝑡) , and 𝑜𝑖
3(𝑡) . Next, 𝑝𝑖(𝑡) , 𝛼𝑖(𝑡)  and 𝛽𝑖(𝑡)  are 

calculated through Equations 1-3. Finally, the precipitation of the 𝑖𝑡ℎ grid point on day 𝑡 is 

estimated using a mixed binomial-log-normal distribution with modeled 𝑝𝑖(𝑡) , 𝛼𝑖(𝑡)  and 

𝛽𝑖(𝑡)  (Baño-Medina et al., 2020, 2022; Sun and Lan, 2021; Rampal et al., 2022). The 

estimation process of precipitation at day t for other grid points in the study area is consistent 

with the above. To express our meaning more clearly, we have rewritten this part in Subsection 

3.1.2 of the revised manuscript. 

𝑝𝑖(𝑡) = 𝑜𝑖
1(𝑡)                                              (1) 

𝛼𝑖(𝑡) = 𝑒𝑥𝑝[𝑜𝑖
2(𝑡)]                                         (2) 

𝛽𝑖(𝑡) = 𝑒𝑥𝑝[𝑜𝑖
3(𝑡)]                                         (3) 

The rewrite in the paper is as follows: After the FC layer, The output of each grid point 

(𝟎. 𝟏° × 𝟎. 𝟏°) in the study area can be expressed as follows:  

𝒑𝒊(𝒕) = 𝒐𝒊
𝟏(𝒕),                                                  (2) 

𝜶𝒊(𝒕) = 𝒆𝒙𝒑[𝒐𝒊
𝟐(𝒕)],                                             (3) 

𝜷𝒊(𝒕) = 𝒆𝒙𝒑[𝒐𝒊
𝟑(𝒕)],                                             (4) 

where 𝒕 stands for day 𝒕, 𝒊 represents the 𝒊𝒕𝒉 grid in the study area. 𝒐𝒊
𝟏(𝒕), 𝒐𝒊

𝟐(𝒕) and 

𝒐𝒊
𝟑(𝒕) represent the three output values of the 𝒊𝒕𝒉 grid point at day 𝒕, respectively. 𝒑𝒊(𝒕), 

𝜶𝒊(𝒕) and 𝜷𝒊(𝒕) are calculated through Equations 2-4. The precipitation of the 𝒊𝒕𝒉 grid 

point on day 𝒕 is estimated using a mixed binomial-log-normal distribution with modeled 

𝒑𝒊(𝒕), 𝜶𝒊(𝒕) and 𝜷𝒊(𝒕) (Baño-Medina et al., 2020, 2022; Sun and Lan, 2021; Rampal et 



al., 2022). 

 

Comment 16: Equation 6: This could be combined in one expression with equation (2). 

Author response: Thanks for your nice suggestions. As you said, Equation 2 and Equation 6 

in the original paper can be combined. However, Equation 2 is the probability density function 

of Bernoulli–gamma. We use it here to describe the characteristics of precipitation distribution 

in detail, and specifically introduce the definitions of parameters p, 𝛼, and 𝛽. This sets the 

stage for the later introduction of obtaining the parameters p, 𝛼 , and 𝛽  through the fully 

connected layer and estimating the precipitation from p, 𝛼, and 𝛽. Equation 6 defines the loss 

function used by the model. Here we describe in detail the role of the loss function. We also 

show that the models used in this paper are run towards minimizing the negative likelihood 

logarithm of Equation 6 during training. In addition, we also refer to the format and narrative 

style of Cannon (2008). Therefore, we believe that it may be more consistent with the logic of 

our paper and the order of introduction to express Equation 2 and Equation 6 separately. 

 

Comment 17: Lines 170: Are you using any regularization, as these methods can overfit very 

easily? Please clarify if not. 

Author response: Thanks for your comments and suggestions. We use the early stopping 

strategy to regularize the model to prevent overfitting, where patience is set to 30. This has been 

clarified in subsection 3.1.4 of the original manuscript. To express our meaning more clearly 

and streamline the structure of the paper, we deleted subsection 3.1.4 and merged the contents 

of subsection 3.1.4 into subsection 3.2 in the revised manuscript. 

The modification is as follows:  

3.2 Models for comparison and experimental parameter setting 

We compare the proposed RRDBNet with a generalized linear regression (GLM) method 

and two deep learning-based methods including CNN (Baño-Medina et al., 2020), and 

RDBNet (Zhang et al.,2018; Wang et al.,2018).  

RRDBNet: The network structure is shown in Fig. 2, where the specific parameters of 

each layer are configured as displayed in Supplementary Table 1. 

GLM: Generalized linear regression model (GLM) uses binomial family and linked logit 



to predict the occurrence of precipitation and gamma-based family and linked logit to 

predict the amount of rainfall, respectively. Finally, the occurrence of rainfall is multiplied 

by the amount of rainfall to obtain the final rainfall forecast. In this paper, the GLM 

considers the predictors of the four grids that are nearest neighbors to the target location 

(Baño-Medina et al., 2020).  

CNN: The CNN is derived from the model CNN1 proposed by Baño-Medina et al. (2020) 

for statistical downscaling of precipitation prediction. Baño-Medina et al. (2020) also 

compared the CNN1 with some variants of the CNN model and found that the CNN1 

performs well in the European domain for precipitation downscaling. 

RDBNet: The RRDB in the proposed RRDBNet is composed of RDB performing 

multilevel residual learning. We replace the RRDB with a single RDB, and the network 

model formed after the replacement is denoted as RDBNet. RDBNet is employed as a 

comparison model to verify whether the multi-level residual learning strategy of RRDB is 

effective in precipitation downscaling. 

To ensure the fairness of the comparison, we made uniform experimental parameter 

settings for the deep-learning models. The learning rate set to 𝟏𝟎−𝟒, and the batch size 

set to 32. The loss function uses the function defined by Eq.5 to minimize the negative log-

likelihood of the Bernoulli-gamma distribution. We use the early stopping strategy to 

regularize the models to prevent overfitting, where patience is set to 30. During the 

training period, the best model weight parameters are saved. And during testing period, 

the model calls this best parameter weight to test the data. 

 

Comment 18: Lines 180: These metrics are commonly known, so we do not need these in the 

text. If you’d like to include them add them to the supplementary section or appendix. 

Author response: Thanks for your comments and suggestions. We have added them to the 

Supplementary Section and removed subsection 3.3 (Evaluation matrix) in the revised 

manuscript. 

 

Comment 19: Lines 185: This is a very small validation sample (4 years), which makes it 

challenging to examine the performance on extremes. I’d recommend having a supplementary 



analysis with a longer validation dataset. 

Author response: Thank you for your comments and suggestions. Based on your suggestion, 

we have did the experiments in which the test period was extended to 10 years (2011-2020), 

and the training period was 2001-2011. The experimental results are shown in Table R1. It can 

be seen that RRDBNet outperforms the other models on R95P, R99P and RX1Day with the 

smallest RMSE and the largest CC. Therefore, RRDBNet has good performance in capturing 

extreme precipitation. We also performed a corresponding analysis in the Discussion Section 

of the revised manuscript. The corresponding analysis in the Discussion Section is as follows: 

In addition, we also did the experiments in which the test period was extended to 10 years 

(2011-2020), and the training period was 2001-2011. We further evaluated the 

performance of the models in extreme precipitation and the results are in Supplementary 

Table 7. It can be observed that RRDBNet also performs well compared to other models 

when the test period is extended. 

  

Comment 20: Lines 185: “downscaling projections” – you are not downscaling projections? 

Author response: Thanks for pointing out the mistake. We have changed "downscaling 

projections" to "downscaling" in the revised manuscript. The change is as follows: Fig. 5 shows 

the spatial distribution of annual mean precipitation for GPM and downscaling based on 

the four models from 2016 and 2020. 

 

Comment 21: Table 2: I think some measure of uncertainty is required perhaps. I’d suggest 

repeated the experiment 20 times (with different random seeds) and investigate whether your 

results are statistically significant. This is importance, as this is the premise of your entire results. 

Author response: Thanks for your comments and suggestions. Due to limitations of 

computational resources and time, we only repeated the experiment ten times (with different 

random seeds). We found that the changes in the results of the ten experiments are very small 

as in Table R2. Then, we calculated the mean and variance of the ten experimental results and 

filled them in Table R2 and Table R3. The statistical significance of our results can be 

demonstrated from Tables R2 and R3. 

 



Comment 22: Table 4: I don’t think table 4 is useful, this could easily go in the supplementary 

section. 

Author response: Thank you for your comments. We have moved Table 4 into the 

Supplementary Section and labeled it Supplementary Table 2. 

 

Comment 23: Figure 6: This seems excessive, I suggest making a (2 x 5) plot and combining 

this with Figure 5. Where the columns are the models (e.g. GPM, GLM) and the row is the 

climatology and bias. 

Author response: Thanks for your suggestions and comments. We consider that if Figure 5 

and Figure 6 were combined into a single 2×5 figure, it might make each subfigure very small. 

So to make each subfigure show more clearly, we merge Figure 5 and Figure 6 as follows:  

  



 

Figure R2. Spatial distribution of annual mean precipitation (mm/day) in the MRYR from 2016 

to 2020 for (a) GPM, (b) GLM, (c) CNN, (d) RDBNet, and (e) RRDBNet. Percentage 

differences in annual precipitation (%) between model and GPM from 2016 to 2020 in the 

MRYR for (f) GLM, (g) CNN, (h) RDBNet, and (i) RRDBNet. Percentage 

Difference=(MODEL-GPM)/GPM × 100%. 



Comment 24: Figure 5 & 6. It seems a little concerning that there is so much noise in your 

predictions from the GLM, CNN and other ML models. Other papers do not show such “noise”. 

Are you training your models enough or too much and that your models are overfitting? Some 

clarification on why there is more noise is needed. 

Author response: Thanks for your comments and suggestions. Noise appears in Figures 5 and 

6. It is because our validation time may be a bit short, only five years (2016-2020). When we 

increase the time of validation for years (2011-2020), the noise decreases significantly as in 

Figure R3. We have added the corresponding content in the section Conclusions and discussion. 

 

 

Figure R3. Spatial distribution of annual mean precipitation (mm/day) in the MRYR for GPM 

in different testing periods. 



 

Comment 25: Figure 7: Plot the bias instead of the raw amounts. Reorder axes from DJF, MAM, 

JJA, SON. 

Author response: Thanks for your nice suggestions. We drew Figure 7 just to show that 

precipitation in the middle reaches of the Yellow River is mainly concentrated in summer and 

autumn, and then to prepare for the later analysis focusing on the models' performance in 

extreme precipitation in summer and autumn. In the revised manuscript, we also plotted the 

bias of the modeled data relative to the observation as shown below in Figure R4. We find that 

GLM and RRDBNet have a small Difference from observation in summer and autumn 

precipitation compared to the other models. And the Difference of RRDBNet is minimum in 

summer. 

 

Figure R4. (a) Seasonal variation of precipitation (mm/day) in the MRYR from 2016 to 2020 

for GPM, GLM, CNN, RDBNet, and RRDBNet. (b) Differences in Seasonal precipitation 

between model and GPM from 2016 to 2020 in the MRYR for GLM, CNN, RDBNet, and 

RRDBNet. 

 

Comment 26: Figure 8: Not useful, this could go in the supplementary instead. 

Author response: Thanks for your comments and suggestions. We have moved Figure 8 to the 

Supplementary Section in the revised manuscript and noted it as Supplementary Figure 2. 

 

Comment 27: Lines 230: Use either R99P or R95P in the analysis, not both. If you’d like you 

could keep one in the supplementary section. 

Author response: Thanks for your great suggestions on improving our manuscript. Based on 

your suggestions, we have retained only R95P and moved R99P to the Supplementary Section 



in the revised manuscript. 

 

Comment 28: Figure 9: Frequency at 100mm is very large in Figure 9b and 9d, is there 

something wrong in your analysis, this is very concerning? 

Author response: Thank you very much for your comments. Frequency at 100mm is very large 

in Figure 9b and 9d. This is because we have accumulated the frequency of precipitation above 

100mm. The frequency accumulation value is placed at 101mm. Therefore, there will be a big 

change in the frequency of precipitation above 100mm in Figure 9b and 9d. To express our 

meaning more clearly, we have made a note in the caption of this figure in the revised 

manuscript. The modification is shown in Figure R5 below. 

 

Figure R5. (a) Comparison of probability density functions of daily precipitation from 1 mm to 

50 mm for all grids of GPM, GLM, CNN, RDBNet, and RRDBNet in the MRYR from 2016 to 

2020. (b) The same as (a) but from 50 mm to 100 mm. (c) and (d) The same as (a) and (b) but 

for observation from 149 stations and nearest grids of GPM and RRDBNet in the MRYR from 

2016 to 2019. In (b) and (d), the frequencies of precipitation above 100 mm are cumulated and 

the cumulative values are placed at 101 mm. 



 

Comment 29: Figure 10: Again only one of the R95 and R99 plots should be plotted. You 

should also compute the bias of the R95 fields against the observations (the percentage bias) in 

one single plot. It seems strange that you have so much noise in your plots. Figure 11: Again 

combine with Figure 10. 

Author response: Thanks for your comments and suggestions. In the revised manuscript, the 

figures for R95P have been retained in the text and the figures for R99P have been moved to 

the Supplementary Section. Figure 11 in the original manuscript represents the percentage bias 

of the R95 fields against the observation. We have merged Figure 10 and 11 together in the 

revised manuscript. The display is shown in Figure R6 below. There is noise in the picture. It 

may be because the period of our test was a bit short, only five years (2016-2020). We further 

conducted verification for 10 years (2011-2020) as shown in Figure R7. It can be seen that the 

noise is significantly reduced. 



 

Figure R6. Spatial distribution of R95P in (mm) the MRYR from 2016 to 2020 for (a) GPM, 

(b) GLM, (c) CNN, (d) RDBNet, and (e) RRDBNet. Percentage differences in R95P (%) 

between model and GPM from 2016 to 2020 in the MRYR for (f) GLM, (g) CNN, (h) RDBNet, 

and (i) RRDBNet. 



 

Figure R7. Spatial distribution of extreme precipitation in the MRYR for GPM in different 

testing periods. 

 

Comment 30: Table 5: This could be in the supplementary section or combined with 

information in Figure 10. Table 6: Not required, could be supplementary. 

Author response: Thank you for your valuable comments. Tables 5 and 6 show the 

performance of the model in spatial for R95P and R99P. Spatially, RRDBNet reduces RMSE 

by 58% (79%) and improves CC by 38% (145%) relative to GLM for R95P (R99P). This 

improvement is very noticeable. RRDBNet also outperforms CNN and RDBNet on R95P and 



R99P. It has the smallest RMSE and largest CC. Therefore, we believe that Tables 5 and 6 are 

important to prove the performance of our model. It might be more appropriate to put them in 

the main text. 

 

Comment 31: Figure 12: Not required, and again very interesting why the outputs are so noisy. 

Figure 13: Not required, could be supplementary. 

Author response: Thank you very much for your comments and suggestions. We have 

combined Figures 12 and 13 into a single figure, placed it in the Supplementary section in the 

revised manuscript and labeled the Supplementary Figure 3. Regarding the noise in the outputs, 

we have explained it in detail in Comment 29. 

 

Comment 32: Figure 16, should be in the supplementary section. 

Author response: Thanks for your suggestion. Figure 16 is from subsection 4.4 (Comparison 

of convergence). This subsection compares the performance of the models from another aspect, 

i.e., the convergence speed of the models. The results are shown in Figure 16. We found that 

RRDBNet converges faster than CNN during the training period and can reach convergence 

earlier. The fast convergence speed of the model means that it can reduce training time and save 

computing resources. This also proves that RRDBNet is an effective downscaling tool. 

Therefore, we think it may be better to put Figure 16 in the main text. 

 

Comment 33: Figure 15: This is not a commonly used validation metric. I would validate 

against the RX1Day (wettest day of the year).  

Author response: Thanks for your comments and suggestions. We added the validation of the 

model downscaling results on the RX1Day metrics to the Discussion Section of the revised 

manuscript. The results are shown in Figures R8 and Tables R4. It can be seen that in the 

RX1Day metric, RRDBNet also has a very clear advantage over other models, having the 

smallest Difference, the smallest RMSE and the largest CC. 

 



 

Figure R8. Variations of annual and monthly precipitation (mm/day) in the MRYR during 2016-

2020 for RX1Day. (a) represents wettest day of the year. (b) represents wettest day of the month. 

 

 

 

  



Table R4. Evaluation metrics of RX1Day for each method from 2016 to 2020 

 Models Difference RMSE CC 

Annual 

GLM 16.32 17.83 -0.13 

CNN 4.90 6.08 0.69 

RDBNet 9.83 11.30 0.25 

RRDBNet 0.03 2.65 0.91 

Monthly 

GLM 1.54 5.71 0.91 

CNN 0.73 4.68 0.94 

RDBNet 1.09 5.86 0.92 

RRDBNet -0.59 3.99 0.94 

 

Comment 34: Figure 14: This should be the bias instead of the average precipitation. 

Author response: We sincerely appreciate your valuable comments. The purpose of Figure 14 

is to illustrate that extreme precipitation in the middle reaches of the Yellow River is also 

concentrated in summer and autumn. This is consistent with the actual situation in the area. 

Additionally, based on your suggestions, we also plotted the differences of extreme 

precipitation relative to observation in the revised manuscript. The display is as in Figure R9. 

It can be seen that the differences of the deep-learning models are smaller than GLM in summer. 

In autumn, the difference of RRDBNet is the smallest. 

 

Figure R9. Seasonal variations of extreme precipitation (mm) in the MRYR from 2016 to 2020 

for (a) R95P. 

 

Comment 35: Table 7 & 8, against too much information, this should be in the supplementary 



section. 

Author response: Thanks for your nice suggestions. We have put Tables 7 and 8 in 

Supplementary Section in the revised manuscript. Table 7 is labeled as Supplementary Table 3 

and Table 8 is labeled as Supplementary Table 4. 
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