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Abstract. Anthropogenic climate change is changing the earth system processes that control the characteristics of natural haz-

ards both globally and across Australia. Model projections of hazards under future climate change are necessary for effective

adaptation. This paper presents BARPA-R (the Bureau of Meteorology Atmospheric Regional Projections for Australia), a

regional climate model designed to downscale climate projections over the Australasian region with the purpose to investigate

future hazards. BARPA-R, a limited area model, has a 17 km horizontal grid-spacing and makes use of the Met Office Unified5

Model (MetUM) atmospheric model and the Joint UK Land Environment Simulator (JULES) land surface model. To establish

credibility and in compliance with the Coordinated Regional Climate Downscaling Experiment (CORDEX) experiment design,

the BARPA-R framework has been used to downscale ERA5 reanalysis. Here, an assessment of this evaluation experiment is

provided. Performance-based evaluation results are benchmarked against ERA5, with comparable performance between the

free-running BARPA-R simulations and observationally constrained reanalysis interpreted as a good result. First, an examina-10

tion of BARPA-R’s representation of Australia’s surface air temperature, precipitation and 10-m winds finds good performance

overall, with biases including a 1°C cold bias in daily maximum temperatures, reduced diurnal temperature range, and wet

biases up to 25 mm/month in inland Australia. Recent trends in daily maximum temperatures are consistent with observational

products, while trends in minimum temperatures show overestimated warming and trends in precipitation show underesti-

mated wetting in northern Australia. Precipitation and temperature teleconnections are effectively represented in BARPA-R15

when present in the driving boundary conditions, while 10-metre winds are improved over ERA5 in six out of eight of the

Australian regions considered. The second section of the paper considers the representation of large-scale atmospheric circula-

tion features and weather systems. While generally well represented, convection-related features such as tropical cyclones, the

SPCZ, Northwest Cloud-Bands and the monsoon westerlies show more divergence from observations and internal interannual

variability than mid-latitude phenomena such as the westerly jets and extra-tropical cyclones. Having simulated a realistic20

Australasian climate, the BARPA-R framework will be used to downscale two climate change scenarios from seven CMIP6

GCMs.
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1 Introduction

Australia experiences some of the highest global levels of interannual climate variability. As such, climate hazards are a key risk

in Australia, encompassing wildfires (known as ‘bushfires’ in Australia), high intensity precipitation, tropical and extratropical25

storms, flooding, heatwaves and drought. The risks associated with climate hazards are already changing as the planet warms

and will continue to do so into the future. These hazards are set by a range of factors including the interaction of weather

processes across the Australian geography and length-scales from kilometres to hundreds of kilometres. Therefore, climate

projections encompassing these scales across Australia are needed to inform the assessment of future natural hazards and

associated disaster risk (Binskin et al., 2020).30

Projections of hazards in Australia’s climate can be sourced from dynamically down-scaled climate projections: powerful

tools which can help translate global climate projections to hazard-relevant length-scales (Coppola et al., 2021). These projec-

tions are generated by Regional Climate Models, (RCMs), a class of climate models that focus on the simulation of a limited

regional domain, rather than the whole globe. Typically, RCMs are Limited Area Models (LAMs) with lateral boundaries

sourced from global models, however complementary Stretched Grid Models (SGMs) such as the Conformal Cubic Atmo-35

spheric Model (CCAM) can also be used for this purpose (McGregor and Dix, 2008, 2005).

RCMs have been used to study hazard projections across Australia (Herold et al., 2021) with focused studies examining

changes in bushfires (Dowdy et al., 2019; Di Virgilio et al., 2019a), East Coast Lows and Extratropical Cyclones (Pepler et al.,

2016; Pepler and Dowdy, 2022) and heatwaves (Perkins-Kirkpatrick et al., 2016; Hirsch et al., 2019), extreme precipitation

(Bao et al., 2017) amongst others. State-based regional climate projections have been produced to assess the risks associated40

with a changing climate on a sub-national scale (e.g. Corney et al., 2010; Evans et al., 2014; Clarke et al., 2019; Trancoso et al.,

2020).

Due to a wide range of combinations of global projections, emissions pathways, RCMs and downscaling domains that are

possible, coordination across different institutions is crucial to ensure that climate information available to users is consistent

and comparable (Giorgi et al., 2009). The Coordinated Regional Climate Downscaling Experiment (CORDEX) project is an45

initiative of the World Climate Research Programme (WCRP) that provides a consistent framework to produce downscaled

climate projections (Jones et al., 2011). Global driving model projections for CORDEX are sourced from the Coupled Model

Intercomparison Project (CMIP). Due to computational expense, the full CMIP ensemble can generally not be downscaled,

and a representative subsample may be coordinated instead at a regional level (e.g. Grose et al., 2023). CORDEX has defined

a set of 16 climate regions, including the Australasian region, which consists of Australia, New Zealand, the West Pacific and50

parts of Southeast Asia (shown in red in Figure 1). Six dynamical RCMs, produced using five independent modelling frame-

works, contributed downscaled projections of the Australasian region to the first Coordinated Regional Climate Downscaling

Experiment (CORDEX-CMIP5) (Di Virgilio et al., 2019a; Evans et al., 2021).

When downscaling ERA-Interim reanalyses, the CORDEX-Australasia CMIP5 ensemble framework featured persistent cold

daily maximum biases of order 2-5 ° C, reduced diurnal temperature ranges and dual-signed precipitation biases with magni-55

tudes up to 40 mm port month (Di Virgilio et al., 2019b). Downscaling of the CMIP5 historical experiment model ensemble
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reflected these temperature biases and showed dry precipitation biases in the tropical monsoonal regions and wet biases else-

where (Evans et al., 2021). However, Evans et al. (2020) showed that the CORDEX-CMIP5 Australasia ensemble generally

outperformed the driving GCM ensemble, particularly at simulating the tails of temperature and precipitation distributions.

Here, we introduce the Bureau of Meteorology Atmospheric Regional Projections for Australia (BARPA-R), a RCM de-60

signed for the Australasian region. BARPA-R is being developed by the Australian Bureau of Meteorology (henceforth the

Bureau) and the Australian Climate Service (ACS), together with a forthcoming convection permitting model, BARPA-C. The

BARPA-R model configuration and developmental trials were presented by Su et al. (2022b). This model is a continuation

of prototype work developed for the Energy Sector Climate Information (ESCI) project, documented by Su et al. (2021) and

hereon referred to as ESCI-BARPA. BARPA-R adheres to the principle of seamless weather and climate prediction by following65

the Australian Community Climate and Earth-System Simulator (ACCESS) modelling framework and uses a 17km (0.1545 de-

gree) grid spacing. This means that BARPA-R uses an atmospheric model configuration that is complementary to the Bureau’s

operational numerical weather prediction (NWP) configuration and seasonal prediction configuration, allowing learnings and

developments from NWP to be applied over longer time scales into the regional climate change space. Furthermore, BARPA-R

is being developed in tandem with BARRA2 reanalysis (version 2 of the Bureau of Meteorology high-resolution Atmospheric70

Regional Reanalysis for Australia, (Su et al., 2022a)), allowing for seamless comparison between the data-assimilated and fully

model-based simulations.

The Bureau intends to downscale an ensemble of at least 7 CMIP6 global climate projections (GCMs) using the BARPA-

R framework. Downscaling GCMs have been selected based on their performance over Australia, representation of climate

drivers, modelling centre independence and the overall ensemble coverage of a range of warming and precipitation change75

scenarios in the Australian region, following Grose et al. (2023). Through ACS, BARPA-R is intended to produce complemen-

tary regional climate projections to existing Australian RCM systems, broadening the ensemble of climate hazard projections

available in the Australasian region. BARPA-R will be compliant with next generation of CORDEX, CORDEX-CMIP6. Since

the atmospheric component of ACCESS and the UK Met Office’s Unified Model (MetUM) are co-developed and share a code

base, BARPA-R also joins a family of MetUM-based regional climate simulations around the world. These include the PRECIS80

regional climate modelling system, CP4Africa (Stratton et al., 2018), and the HadREM CORDEX-Europe (Tucker et al., 2022)

simulations.

This paper presents an assessment of the BARPA-R evaluation simulation. The evaluation simulation is driven at the lateral

boundaries using ERA5 reanalysis (Hersbach et al., 2020) and is designed to test the performance of the RCM. This paper

proceeds as follows. In section 2, description of the BARPA-R model configuration, the evaluation methodology and the85

reference datasets are provided. Section 3 evaluates the performance of BARPA-R in simulating the observed precipitation and

temperature and near-surface wind climates in the Australian region. Section 4 provides a process-based evaluation in order to

assess the representation of key circulation features and weather systems in the Australian region.
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Figure 1. Map of region of interest with BARPA-R domain marked by a black box and CORDEX-Australasia domain marked by a red box.

The National Resource Management (NRM) clusters described in Section 2.3 and used in model evaluation are indicated in colours as per

the figure legend.

2 Data and Methods

2.1 Experimental Design and Model Configuration90

BARPA-R is a land-atmosphere limited area regional climate model. The experimental design follows the CORDEX-v2 Aus-

tralasia guidelines. The limited area domain covers the CORDEX-Australasia domain, as shown in Figure 1, and includes

Australia, New Zealand, the West Pacific and the Maritime Continent. The horizontal grid spacing is 0.1545◦ of latitude and

longitude, which roughly corresponds to 17 km in each direction. 63 vertical model levels have been used, with a 40 km model

top. A stretch sigma grid is used with a higher density of levels near the surface, with the first model level is located 10 m95

Above Ground Level (AGL). Model levels are terrain following near the surface and relax to surfaces of uniform radial height

approximately 18 km AGL. The model integration updates on a 7.5 minute dynamical timestep.

The simulation was initialised from the deterministic ERA5 reanalysis on the first of January 1979. Soil moisture was

initialised from the January-1 climatological mean of the BARRA-V1 reanalysis (Su et al., 2019). Boundary conditions were

updated every 3-hours and derived from the ERA5 pressure level dataset, which consists of 37 vertical levels. The 3D model100

inputs from ERA5 at the lateral boundaries were horizontal winds, specific humidity, temperature, cloud liquid, cloud ice

and cloud cover. Between 2000 and 2006, boundary inputs were derived from ERA5.1 to avoid stratospheric temperature

and humidity biases present in the original ERA5 dataset. Sea surface temperatures were sourced from ERA5 and updated

daily. Model configuration followed the MetUM standard configuration HadREM3-GA7.05 (Tucker et al., 2022) with a few

modifications as described in the BARPA-R version 1 model description paper (Su et al., 2022b). Firstly, the ‘fountain buster’105

correction to the advection scheme was applied to improve moisture conservation during strong convective events. Secondly,

the ‘prognostic entrainment’ scheme (Willet and Whitall, 2017) was applied to improve the representation of convection and
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precipitation. Thirdly, Newtonian relaxation (Telford et al., 2008; Stassen et al., 2023) is used to improve alignment between

the driving model and the interior of the domain. This relaxation is applied from model level 38 and above (11 km AGL)

with a 6-hour relaxation time-scale. These modifications were demonstrated in trial experiments to improve the climatologies110

of Australian precipitation and near-surface temperatures. The UM and JULES code branches used in the publication have

not all been submitted for code review and inclusion in the UM/JULES trunk or released for general use. These branches

are associated with nudging, support for the 365-day calendars used by some GCMs, and performance optimisation for the

Australian national computational infrastructure (NCI) and were provided to the reviewers of this article.

HadREM3-GA7.05 uses a non-hydrostatic, fully compressible, deep atmosphere formulation with an iterative, semi-implicit115

dynamical solver (Wood et al., 2014). Awakara-C grid staggering is used in the horizontal dimensions (Arakawa and Lamb,

1977) and Charney-Phillips staggering is used in the vertical dimensions. Key parameterisation schemes include the prognostic

condensate (PC2) cloud scheme (Wilson et al., 2008), the Lock et al. (2000) boundary layer scheme, the Gregory and Rowntree

(1990) mass flux convection scheme, the Edwards and Slingo (1996) radiation scheme and the Wilson and Ballard (1999)

mixed-phase cloud microphysics. These schemes have been routinely improved since their publication through regular model120

development (Walters et al., 2019). Observed historical green-house gas, aerosol and ozone forcing are implemented following

Tucker et al. (2022). This approach prescribes 4D aerosol optical properties on 9 shortwave and 6 longwave bands in the

SOCRATES radiative transfer code, combining seasonal and spatial variation derived from an offline simulation using the

Global Model of Aerosol Processes (GLOMAP) scheme (Mann et al., 2010) with interannual variation derived from the

EasyAerosol project (Stevens et al., 2017).125

The MetUM atmosphere is coupled to the Joint UK Land Environment simulator (Jules, Best et al., 2011). Jules uses a

nine-tile approach to represent sub-grid scale land cover heterogeneity, namely broadleaf and needle leaf trees, C3 and C4

grass, shrubs, inland water, bare soil, urban and land ice. Four soil levels are present with thicknesses of 0.1, 0.25, 0.65 and

2 metres. In BARPA-R, land surface properties are prescribed as per Walters et al. (2019), with the exception of the land sea

mask, which is derived from the ERA Climate Change Initiative (CCI, Hartley et al., 2017), and the broadleaf canopy height,130

which is derived from Simard et al. (2011) following Dharssi et al. (2015). Land cover categorisation is fixed using a seasonal

climatology following Hurtt et al. (2020).

2.2 Reference Datasets

This paper evaluates the performance of BARPA-R against three main observationally derived datasets: version 1 of the Aus-

tralian Gridded Climate Dataset (AGCD; also known as AWAP), the ERA5 deterministic reanalysis, and the Australian Bureau135

of Meteorology’s point-based station dataset. The current BARRA-V1 regional reanalysis is not used in this work as our core

evaluation period goes back to 1985.

AGCD is a near-surface analysis product that uses an anomaly-based modified Barnes successive corrective method to

interpolate gridded station data to a regular grid (Jones et al., 2009). In this work, AGCD version 1 is used to evaluate the ability

of the BARPA-R system to reproduce the observed temperature and precipitation climate across Australian land points. The140

three AGCD variables used in this study, daily maximum temperature, daily minimum temperature and daily total precipitation,
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are available on a regular grid with 0.05-degree latitude and longitude spacing. AGCD’s performance hinges on the availability

of station data, and so suffers from data availability issues in sparsely populated regions. A spatial mask, shown in Figure

2, is applied to precipitation metrics to remove the influence of regions most poorly constrained by observations, however

observational uncertainty in the AGCD dataset remains.145

Jones et al. (2009) describe key sources of observational uncertainty in AGCD. They highlight underestimations of maximum

temperatures in regions of tight climate gradients and sparse observational coverage, including the coastal north-west Australia

and the Nullarbor Plain due to poor resolution of maritime effects. They also note large analysis errors in daily precipitation

estimates, with mean absolute errors up to 50% of the total. King et al. (2013) demonstrated that AGCD is suitable for the

study of rainfall extremes, trends and variability across much of Australia, with limitations occurring in regions where station150

coverage is sparse. Meanwhile, Chubb et al. (2016) established large systematic dry biases between AGCD and an independent

gauge network in the snowy mountains. In the following analysis, the direction of the AGCD biases is opposite to the BARPA-

R bias presented. This means that the biases presented in this paper are likely overestimates, ensuring that our analysis is

conservative.

ERA5 (Hersbach et al., 2020) is a global reanalysis product that combines data assimilation with ECMWF’s Integrated155

Forecasting Sytem (IFS) model. As well as providing boundary conditions, ERA5 is used in the assessment of the BARPA-R

evaluation simulation. In the performance evaluation section below, BARPA’s biases are compared to ERA5’s biases, both

with respect to AGCD. However, since ERA5 benefits from assimilating observations while BARPA-R is a free running model

within its regional boundaries, this reference is not regarded to be a minimum benchmark for some metrics. For example, it is

not expected that BARPA-R will outperform ERA5 based on direct comparisons with observations at exact times and locations.160

When comparable levels of performance are present in BARPA-R and ERA5, this is interpreted a good result for BARPA-R.

There are also expectations that some climatological metrics could indicate benefits from the BARPA-R downscaling, such as

metrics based on spatio-temporal averages of weather conditions.

2.3 Evaluation Methodology

In section 3, the temperature and precipitation climatology is evaluated through analysis of derived standardised climate indices165

defined in the ICCLIM project (Pagé et al., 2022). These indices have been selected to evaluate aspects of the tails of the pre-

cipitation and temperature distributions, such as monthly maximum and minimum temperatures, and high precipitation rates.

Indices have been computed on the 0.25° ERA5 grid following conservative remapping, aggregating from daily temperature

extrema and precipitation data to monthly indices.

Performance was assessed over eight Australian regions, known as the National Resource Management (NRM) clusters170

(Clarke et al., 2015). These clusters are shown in Figure 1 and have been designed to be climatologically distinct and follow

the boundaries of the Australia’s 54 National Resource Management regions. This assessment is based on the decomposition

of root mean square error into bias, correlation and variance error metric components following Su et al. (2013) and Gupta

et al. (2009) and presented in equation 1. Error metrics selected were the seasonal biases, annual variance errors, climatological

seasonal correlations and climatological spatial correlations. These error metrics are adjusted to reflect important climatological175
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aspects of model performance, as a like-for-like reproduction of observed weather events is not expected from free-running

climate downscaling experiments.
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Here, m and o represent the three-dimensional, monthly modelled and observed indices respectively, stdevx and correlx

represent the act of computing the standard deviation or Pearson correlation of inputs over dimension x, and n indicates the185

number of gridpoints in the NRM cluster of consideration. The variance formula is modified by an offset of 1 to avoid division

by zero in regions of low rainfall.

3 Performance Evaluation

3.1 Mean State

This section evaluates the performance of BARPA-R at simulating Australian monthly temperature and precipitation metrics as190

compared to AGCD and ERA5. Firstly, we examine the mean-state bias maps of seasonal-mean daily maximum and minimum

temperatures and precipitation. Secondly, spatial and temporal characteristics of six temperature and four precipitation indices

are examined, aggregated over the 8 NRM clusters. These indices were chosen with some emphasis on including properties of

high impact weather. Finally, contemporary climate trends of the same ten indices are compared across the three data products.

Figure 2 displays seasonal bias maps over the Australian region of daily minimum temperature, daily maximum temper-195

ature and monthly precipitation totals, all averaged over the core evaluation period (1985-2014). Two seasons are presented

here: December to February (DJF) and June to August (JJA). The remaining transition seasons are provided in Supplementary

Figure A1. When temperature biases show a decrease in maximum temperatures coupled to an increase in minimum temper-

atures in the same season, this can be interpreted as an underestimation of the diurnal temperature range. During the Austral
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Figure 2. Bias in temperature and precipitation climate indicators (rows: TX, TN and PRCPTOT) for two seasons DJF and JJA, for BARPA-R

and ERA5 (second and third columns) against AGCD (first column) averaged across the core evaluation period (1985-2014). The annotated

figures indicate the area-averaged bias (top) and mean absolute error (bottom).
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summer and northern Australian wet season, BARPA-R shows improvements in both daily minimum and daily maximum200

temperatures compared to ERA5, whose diurnal temperature range is reduced compared to observations across the country.

However, BARPA-R does show a reduced diurnal temperature range across the south-east coast. Persistent warm biases of

daily maximum temperatures in the Nullarbor may derive from observational uncertainty due to the low density of station data

contributing to AGCD in these regions (Jones et al., 2009).

During the winter season, both BARPA-R and ERA5 show a reduced diurnal temperature range compared to the observed205

climate, with overly warm minimums and cool maximums, except for in the tropical north. The magnitude of the biases is

higher in BARPA-R than ERA5, particularly on the highly populated East Coast. In all seasons, BARPA-R has a more realistic

representation of Australia’s inland lakes than ERA5.

The final two rows of Figure 2 show the monthly-aggregated precipitation biases. Overall, BARPA-R is overly wet, consistent

with the overall performance of ACCESS-based models in the Australian region, including in NWP (Hudson et al., 2017). A210

prominent wet bias is present over the highlands in eastern Victoria in both seasons. However, wet biases surrounding the

two masked regions in Western Australia (grey) are likely to be related to underestimates in AGCD due to the sparse station

network (Jones et al., 2009). BARPA-R shows a reduction in ERA5’s dry biases in southwestern Australia, western Tasmania,

the Pilbara and Cape York.

Six temperature indices have been selected to examine BARPA-R’s representation of Australia’s regional temperature cli-215

mates. The indices considered are: SU – number of summer days (Tmax > 25), TR – number of tropical nights (Tmin > 0),

the monthly minimums and maximums of the daily minimums (TNn, TNx) and the same of the daily maximums (TXn, TXx).

These indices have been computed on a monthly time-scale from daily maximum and minimum temperature data for AGCD

and ERA5 and then regridded to the BARPA-R grid as described in section 2. Performance statistics described in section 2.3,

namely biases, variance errors and correlations of the seasonal cycles, are calculated at each grid-point and then averaged220

across each NRM cluster. A spatial correlation was additionally calculated on the overall climatological mean of each index

for each NRM cluster.

The resultant statistics are presented in Figure 3. The number of summer days is substantially improved in BARPA-R

compared to ERA5, with reduced biases in most cases (save for summer in the north-most clusters), similar spatial correlations,

and a much-improved seasonal cycle in the wet tropics. Tropical nights also show reduced biases but worse variance errors225

in many cases and worse performance in the South Slopes cluster. Absolute monthly maximum temperatures exhibit a strong

cold bias in BARPA-R throughout the southern NRM clusters, consistent with the results shown in Figure 2.

The equivalent bar-charts for precipitation-based variables are shown in Figure 4. The metrics selected were number of RR1 –

rain days (with at least 1mm of daily precipitation, R10m – heavy precipitation days (with at least 10 mm of daily precipitation),

Rx1day – the monthly maximum daily precipitation amount, and SDII - the Simple Daily (precipitation) Intensity Index, which230

is calculated as the average precipitation rate across all days with at least 1 mm of precipitation. BARPA-R’s wet bias is

generally visible across the first three of these metrics, with BARPA-R biases generally tending towards more precipitation

and rain days and being larger in magnitude than the ERA5 biases. Exceptions to this include the winter rain and heavy rain

day count in the South and Southwest Flatlands, which are negative and reduced compared to ERA5, and rain days in the two
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Figure 3. BARPA-R (solid bars) and ERA5 (outlined bars) performance of 6 temperature indices across the 8 Australian NRM clusters. Ref-

erence data is sourced from AGCD. Rows show number of summer days (SU; with daily maximum temperatures exceeding 25° C), tropical

nights (TN; with daily minimum temperatures exceeding 20° C), and the monthly minimums and maximums of the daily minimums and

maximums (TNn, TNx, TXn and TXx). Skill metrics are indicated by colour and column, with blue and orange showing the bias aggregated

over summer and winter respectively (left), green representing the ratio of interannual standard deviations (middle), red representing the

correlations in the climatological seasonal cycles and purple representing the spatial correlation across the NRM cluster of the climatological

mean (right). All temporal metrics are computed at each grid-point and then spatially aggregated.
10



Figure 4. As per Figure 3 but for precipitation indices: wet days (RR1, > 1 mm/day), heavy rain days (R10mm; > 10 mm/day), monthly

maximum daily precipitation (RX1day) and monthly precipitation (PRCPTOT).

tropical clusters where large positive biases in ERA5 are improved by BARPA-R. Maximum daily precipitation is consistently235

more variable on an interannual time-scale in BARPA-R than in AGCD across all NRM clusters. However, the SDII has a
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consistent negative bias across ERA5 which is significantly improved in BARPA-R, particularly during the summer months.

Both SDII and maximum daily precipitation have low spatial and seasonal correlation values, consistent with expectation that

these fields will be quite noisy due to the influences of extreme values.

3.2 Trends240

In order for the BARPA-R system to be of use in dynamically downscaling climate projections, it is crucial that BARPA-R is

able to sensibly simulate changes in climate. Additionally, the subset of CMIP6 that will be downscaled with BARPA-R has

been selected to cover a range of wetting/drying and high/low warming scenarios, with the intention that BARPA-R outputs

can be used in a larger ensemble together with projections from other RCMs within CORDEX Australasia. Although it is

possible that BARPA-R may be found to diverge from it’s host GCM for good reasons, this model selection was based on the245

hypothesis that this spread in future change will be translated to some degree into the BARPA-R ensemble. Therefore, this

section investigates the degree to which BARPA-R is able to simulate observed trends in contemporary climate.

The study periods used for this analysis are two 10-year time-slices: 1985–1994 and 2005–2014. Due to their short durations,

these time-slices will include a degree of interannual variability as well as any anthropogenic climate change. However, it is

expected that this variability will be in phase and consistent across the observations and driving reanalysis data, and therefore250

should be reproducible by BARPA-R.

This trend analysis must be caveated by the observational uncertainties associated with the trends of both AGCD and ERA5.

Long-term trends in observational datasets, including analyses and reanalyses are sensitive to temporal inhomogeneities in

their input datasets (Gibson et al., 2019, e.g.). Simmons et al. (2021) found that temperature trends over Australia are affected

by inhomogeneities in the observational inputs, however the poorest performance occurs prior to 1970, before our study period.255

AGCD has been designed to be more robust to long-term trends, through the application of an anomaly-based approach which

takes advantage of climate normals at a subset of stations with longer coverage. Jones et al. (2009) demonstrate that this

approach provides consistent maps of precipitation trends compared to monthly analyses derived only from stations with long

climate records and found that temperature trends were similarly robust at the large scale.

With these caveats in mind, this paper accounts for observational uncertainty in rainfall trends by focussing attention on260

established trends that have been studied elsewhere, namely southern Australian cool season drying, wetting trends in north-

western Australian during summer, and the intensification of short-duration heavy convective rainfall (Tolhurst et al., 2023;

Borowiak et al., 2023; Fowler et al., 2021).

The contemporary change the temperature-based ICCLIM indices across BARPA-R, AGCD and ERA5 are shown in Figure

5. BARPA-R shows warming trends for all the indicators, across all the clusters. There is some consistency between BARPA-265

R and AGCD, particularly for the indicators based on maximum temperatures. Statistically significant AGCD trends present

in montly mean maximum temperature (TX), summer days (SU) and monthly maximum temperature (TXx) in the southern

clusters are generally well captured and significant in both BARPA-R and AGCD. However, minimum temperature-based

indices show increased rates of warming in BARPA-R that are not reflected in the observed products. Aside from in the Murray

Basin cluster, these changes are not statistically significant at the p < 0.05 level. However, some cooling trends are observed270
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Figure 5. Contemporary change in annual means of 8 temperature indices between the period 1985-1994 and 2005-2014 aggregated across

NRM clusters. Indices are as per Figure 3, together with the monthly mean daily temperatures (TX and TN). Values are annotated on the

figures when the early and late samples are significantly distinct at the p > 0.05 level using a Welch’s t-test.
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in AGCD and ERA5 that are not present in BARPA-R, most noticeably in the Monsoonal North and in absolute minimum

temperatures.

Figure 6. Contemporary change in seasonal means of 5 precipitation indices between 1985-1995 and 2005-2015. Indices as per Figure 4,

together with monthly total precipitation (PRCPTOT). Values are annotated on the figures when the early and late samples are significantly

distinct at the p > 0.05 level using a Welch’s t-test.

Corresponding trend plots for precipitation indices are shown in Figure 6. As contemporary trends show a strong seasonal

dependence, these trends have been split into warm season (October – March) and cool season (April – October) panels. The

direction of change is generally consistent across all three datasets in the warm season. Significant AGCD-based increases275

in precipitation intensities across multiple NRM clusters (Figure 6e), are not reflected in either BARPA-R or ERA5. This

result highlights the difficulty that parameterised convection models and reanalysis products have in simulating the observed

intensification of short duration extreme precipitation (Fowler et al., 2021). A decrease in the number of dry days in the

Southern Slopes region is evident in ERA5 but insignificant in BARPA-R. Conversely in the cool season, drying trends are
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typically more pronounced in BARPA-R and ERA5 than in AGCD. Reductions in rain days are consistent across all three280

datasets.

3.3 Interannual Variability

BARPA-R outputs are examined here in relation to three key modes of interannual climate variability: the El Niño-Southern

Oscillation (ENSO), the Indian Ocean Dipole (IOD) and the Southern Annular Mode (SAM). These modes of variability

typically have the largest observed teleconnections to Australian climate during the Austral Spring (September to November),285

so this section focuses on that season. In order to increase the sample size of modes of variability, the full 42-year period from

1979 to 2020 has been sampled.

Figure 7 shows the composite differences between the active phases of each mode of variability and the climatological means

for precipitation and daily maximum temperatures, aggregated across the NRM clusters. Precipitation anomalies are presented

as percentages of the climatological mean. Spatial variability in the IOD teleconnection is very similar across all three datasets.290

In the northern clusters, precipitation anomalies during the positive phase of the SAM are too weak in BARPA-R and do not

reflect AGCD’s statistical significance. BARPA-R also misses significant warm and cool temperature anomalies in the Central

Slopes and East Coast clusters due to both phases of ENSO. However, there is a remarkably close correspondence between

maximum temperature and the SAM across BARPA-R and AGCD. Overall, all three teleconnections are well represented by

BARPA-R.295

3.4 10-metre Winds

In the absence of a gridded wind analysis, near-surface wind speeds have been evaluated against 3-hourly station observa-

tions taken from 10-metre masts. Where quality information was present, observations that were flagged as wrong, suspect

or inconsistent were excluded from the analysis. Model and reanalysis data corresponding to the observations were extracted

from ERA5 and BARPA-R. For each station, instantaneous wind speed data for a height of 10m AGL was extracted from the300

nearest grid-cell to the station position. The model dynamical time-steps (7.5 minutes for BARPA-R and 12 minutes for ERA5)

roughly correspond to the observational averaging period (10 minutes), which ensures that the modelled and observed wind

speeds are comparable. Only time samples for which valid station data was present are considered. The resulting model and

observation data were then aggregated to NRM cluster level.

Resulting quantile-quantile (Q-Q) plots of observed and corresponding modelled 10-metre wind speed for each NRM cluster305

are presented in Figure 8. The Perkins Skill Score (PSS Perkins et al., 2007) has been used to compare the distributions

of BARPA-R and ERA5 to the observed station wind speeds, and is listed in the captions of Figure 8. The PSS measures

the difference between two normalised distributions, ranging between 1 for a perfect match to 0 for no overlap between

distributions, and is sensitive to histogram bin width, in this case 0.5 m/s. In six of the eight NRM clusters, BARPA-R shows

an improved PSS and improved 99th percentile wind speeds compared to ERA5. BARPA-R generally shows improved high310

percentile tail values compared to ERA5, while both models underestimate ’calm’ weather conditions with wind speeds of 0

m/s. In the upper tail, there is a general tendency for both BARPA-R and ERA5 to have the Q-Q line tending towards lower

15



Figure 7. Spring fractional precipitation (top) and maximum temperature (bottom) composite anomalies under positive and negative phases

of (left): ENSO, (centre): IOD and (right): SAM. Values are annotated on the figures when the composite anomaly is statistically significant

from 0 at the p > 0.05 level using a Welch’s t-test.
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values, similar to previous results for BARPA-R downscaling of CMIP5 simulations which also found an improvement for this

when using BARPA-C convection-permitting simulations (Dowdy et al., 2021). This is as expected to some degree given the

very strong winds from some localised storms may be better simulated at finer scales.315

In summary, performance evaluation of precipitation and surface air temperatures has demonstrated that BARPA-R is capable

of producing a faithful representation of present-day climate when deriving driving inputs from ERA5. BARPA-R shows a per-

sistent wet bias across a set of precipitation-related indices, and a winter cold bias in maximum temperatures. Maximum tem-

perature trends are broadly consistent with observations, while warming trends in minimum temperatures are over-estimated.

Precipitation trends resemble ERA5 more closely than AGCD, and while the cool-season drying in southern Australia is well320

captured, deficiencies in simulating the intensification of heavy precipitation by parameterised convection models is evident

in both BARPA-R and ERA5. Regional correlations with key modes of variability, namely ENSO, IOD and SAM, are well

simulated. 10-metre winds are improved over ERA5 but still under-estimate the high-tails of the distribution in many regions.

4 Process Evaluation

This section provides an analysis of the BARPA-R’s representation of some key atmospheric dynamical and thermodynamical325

processes that are important for the Australian Region. Focus is placed on key wind circulation features and on large-scale

weather systems. Firstly, the climatologies of these features are compared between BARPA-R and observational datasets. This

climatological analysis is provided to demonstrate the fidelity with which BARPA-R reproduces regional climate process. Sec-

ondly, interannual correlations of location and frequency statistics for each circulation feature or weather system are computed

between BARPA-R and the real-world observations. This correlation analysis demonstrates the degree to which the weather and330

circulation is coupled with the boundary conditions, versus the degree to which these systems are free to evolve independently

within the model.

4.1 Circulation

Figure 9 shows heatmaps of the frequency of the presence of three key large-scale circulation features of the Australian region

across four seasons: the barotropic and subtropical jets, and the monsoonal westerly winds. Table 1 further shows the biases and335

interannual correlations with ERA5 key properties of each circulation feature. In this analysis, ERA5 is used as the reference

dataset. The computational methods apply simple thresholds to daily mean wind speeds to determine the horizontal locations of

each circulation feature. The occurrence frequencies are likely to be somewhat sensitive to the choice of thresholds, however,

further analysis (not shown) has found that BARPA-R model biases are robust to threshold choice. The location of the South

Pacific Convergence Zone is also shown. Feature definitions are given below:340

– Barotropic Westerly Jet (blue): 850 hPa and 200 hPa zonal winds both exceed 10 m/s.

– Monsoon Westerlies (green): 850 hPa zonal wind is westerly, while 200 hPa zonal wind is easterly.

– Subtropical Jet (red): 200 hPa zonal winds exceed 30 m/s.
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Figure 8. Q-Q plots of observed and modelled hourly wind speeds at station locations in each NRM clusters of ERA5 (red) and BARPA-R

(blue), compared to station observations. Perkins Skill Scores and 99th percentile biases are given in each figure legends. Station locations

are shown as black dots in the inset maps. Model data is derived from time-step instantaneous winds and interpolated to station locations

using a nearest neighbour interpolation scheme. The number of stations and hours are given in each figure label.
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– South Pacific Convergence Zone (SPCZ, orange): Linear fit to the latitude of the monthly maximum of precipitation in

the South-West Pacific, for each longitude between 150 and 200 E. This methodology is modified from Brown et al.345

(2013) for the BARPA-R domain. In Figure 9, the orange marker indicates the interannual inter-quartile range of the

seasonal SPCZ location.

All four features are present in both BARPA-R and ERA5 in Figure 9, with matching seasonal cycles. Some biases are

evident, however, which are further summarised in Table 1. The largest biases are present in the monsoon westerlies, which

are shifted too far east, particularly during the boreal monsoon, and the SPCZ, which is shifted south in March to May. The350

spatial extent of the Subtropical Jet is additionally reduced in all seasons. The bias in the monsoon westerlies is a persistent

systematic MetUM bias (Rodríguez and Milton, 2019). This bias has been linked by ? to errors in the representation of

convection over the Maritime Continent and the western-central equatorial Indian Ocean. Systematic rainfall biases in the

maritime continent are common due to the complex, multi-scale nature of convection in this region. A reduced southerly bias

in the SPCZ location has been documented in the ACCESS-S1 seasonal forecast system (?), suggesting that ocean coupling355

may improve the representation of the SPCZ.

The right-hand side of Table 1 shows the correlations between the circulation system indices (latitude, longitude, spatial

extent and SPCZ slope) in ERA5 and BARPA-R. These correlations are not measures of model performance, as it is not

required that BARPA-R shows perfect agreement in interannual variability phasing as its driving model. Instead, they show

where circulation systems are influenced by the internal variability of the BARPA-R system, and where they are constrained by360

boundary conditions and SST forcing. From the table, it is evident that tropical features, namely the SPCZ and the Monsoon

Westerlies, have a larger degree of internal variability, while the subtropical and barotropic jets are more constrained and remain

in phase with ERA5.

Table 1. Bias and interannual correlations of circulation features compared to ERA5.

Feature Index Units
Biases Correlations

DJF MAM JJA SON DJF MAM JJA SON

Subtropical

Jet

Latitude Deg Lat -0.17 -0.02 0.01 -0.10 1.00 1.00 1.00 1.00

Longitude Deg Lon -0.31 -0.15 -0.09 -0.14 0.99 0.99 0.99 1.00

Extent % grid -0.53 -0.52 -0.37 -0.47 0.99 0.98 0.99 0.99

Monsoon

Westerlies

Latitude Deg Lat -0.23 0.20 0.47 0.40 0.81 0.81 0.72 0.87

Longitude Deg Lon 0.78 1.37 3.19 1.94 0.96 0.93 0.93 0.98

Extent % grid -0.23 -0.33 0.25 0.62 0.9 0.92 0.97 0.97

Barotropic

Jet

Latitude Deg Lat 0.08 -0.11 -0.17 -0.05 0.91 0.95 0.98 0.98

Longitude Deg Lon 0.02 -0.03 -0.03 -0.08 0.97 0.99 0.98 0.99

Extent % grid 0.00 -0.04 -0.09 -0.01 0.98 0.98 0.99 0.99

SPCZ
Latitude Deg Lat -1.34 -2.73 -0.88 -0.17 0.74 0.84 0.76 0.81

Slope 1 -0.05 -0.04 0.00 -0.01 0.19 0.53 0.48 0.71
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Figure 9. Heatmaps of seasonal circulation feature fractional frequency, ranging from 0 to 1, in BARPA-R (top) and ERA5 (bottom). Colours

indicate: the westerly jet at 850 hPa (blue), the monsoonal westerlies at 850 hPa (green), the subtropical jet at 200 hPa (red lines; contour

interval = 0.15, first contour: 0.2). Additionally, the location of the SPCZ is shown in orange. Feature definitions are provided in the text.

4.2 Weather Systems

Figure 10 and Table 2 follow the format of Figure 9 and Table 1, but consider a set of large-scale weather systems that365

influence Australia, namely tropical and extra-tropical cyclones, and Australian Northwest Cloud-Bands (NWCBs). Where

weather features only occur in limited seasons are not necessarily observed in every year, interannual correlations are only

given for the feature counts and statistics are only shown in seasons when the weather systems are present. In this analysis,

some direct observational products are available, and these are used as references where possible. Where no direct observation

is available, ERA5 is used as the reference. Identification algorithms and reference datasets are described below.370

Firstly, tropical cyclones are identified using the Okubo-Weiss-Zeta (OWZ) methodology following the methodology of

Tory et al. (2013) and Bell et al. (2018). This algorithm uses a low-deformation vorticity parameter derived from vorticity and

deformation parameters at 850 and 500 hPa, and tropical cyclone environment parameters derived from relative and specific

humidity at 950 and 700 hPa. The reference dataset is the International Best Track Archive for Climate Stewardship (IBTrACS

Knapp et al., 2010). In Table 2, tropical cyclones are split into eastern and western systems along the longitude band at 135°375

E, corresponding to the Indian Ocean and West Pacific Ocean tropical cyclone basins. Secondly, extra-tropical cyclones are

identified using the University of Melbourne (UM) tracker (Pepler and Dowdy, 2021) by identifying local minima in mean

sea level pressure for which the maximum sea-level pressure Laplacian exceeds 0.8 hPa/deg lat2 and which originate south of

35°S. In this case, tracks derived with the same algorithm using ERA5 reanalysis are used as the reference dataset.
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Finally, NWCBs are identified using the MetBot (Hart et al., 2012). This algorithm identifies bands of continuous low daily380

Outgoing Longwave Radiation (OLR) spanning from the tropics through the subtropics, and has been used to identify similar

weather systems in Southern Africa and South America. In this Australian application, the OLR threshold has been set to 240

K in observations, and 255 K in BARPA-R, with the latter selected through matching quantiles of daily OLR. Each NWCB

must intersect the longitude range, 110°–155° E along each latitude band between 29° and 11°S.

Together, Figure 10 and Table 2 show that extra-tropical cyclones are well represented in BARPA-R across all seasons.385

There is a westward bias in feature locations, and high correlations above 0.8 across BARPA-R and the ERA5-based reference.

Tropical cyclones are generally shifted south and west, and the large spike in cyclone systems in north-western Australia

is underestimated. Tropical cyclone interannual variability is decoupled from observations, with very low and even negative

correlation values present. Further investigation (not shown) indicates that tropical cyclone locations and paths diverge on

seasonal and sub-seasonal timescales between BARPA-R and observations away from the domain boundaries. Finally, the390

spatial distribution of NWCBs has the correct shape, with a maximum over the Australian East Coast in the DJF season.

However, cloud-band counts are reduced by 13% in this core NWCB season. Interannual correlations with observations are 0.5

and 0.66 in DJF and MAM respectively, suggesting a degree of coupling with the boundary conditions as well as real-world

interannual variability.

Figure 10. Heatmaps of seasonal weather feature frequency, in units of events per square degree per season, in BARPA-R (top) and ob-

servations (bottom). Colours indicate: tropical cyclones (blue), extra-tropical cyclones (green) and NWCBs (red lines; contour interval: 1

event/season, starting value: 2). Feature definitions are provided in the text. Observational products vary by feature: IBTRaCS tropical cy-

clones, ERA5 extra-tropical cyclones, and NOAA satellite-derived daily OLR-based cloud bands.
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Table 2. Bias and interannual correlations of weather features compared to IBTRaCS, ERA5 and NOAA OLR as per text.

Feature Index units Metric DJF MAM JJA SON

Tropical Cyclone

(East)

Latitude Deg Lat Bias -2.27 -0.41 - -

Longitude Deg Lon Bias -2.10 -2.71 - -

Count % diff Bias 5.5 -2.5 - -

Count 1 Correl 0.30 0.09 - -

Tropical Cyclone

(West)

Latitude Deg Lat Bias -0.77 -0.91 - -

Longitude Deg Lon Bias -0.79 -2.50 - -

Count % diff Bias -29.1 -30.1 - -

Count 1 Correl -0.07 0.17 - -

Extratropical

Cyclone

Latitude Deg Lat Bias 0.23 0.10 0.03 -0.01

Longitude Deg Lon Bias 1.08 1.60 1.63 2.00

Count % diff Bias 0.13 -1.90 0.85 1.09

Count 1 Correl 0.83 0.87 0.92 0.84

Northwest

Cloud-Band

Latitude Deg Lat Bias 2.47 2.58 - -

Longitude Deg Lon Bias -1.09 -2.08 - -

Count*check % diff Bias -13.6 9.7 - -

Count*check 1 Correl 0.51 0.66 - -

5 Lagged Temperature-Precipitation Relationship395

Correct simulation of multivariate relationships between RCM output variables are important for accurately representing

weather processes, compound events and downstream impact modelling, which take multiple inputs from RCMs (Kim et al.,

2021, 2023; Sain et al., 2011). Therefore, it is important to assess how well BARPA-R captures multivariate relationships,

in particular, between key variables like temperature and precipitation, as compared to existing observational and reanalysis

datasets.400

A useful metric for characterising the relationship between two variables is their time-lagged correlation, which can indicate

how each variable responds to anomalies of the other through examination of positive and negative lags respectively. Hence,

the lagged correlations between these variables may be useful to examine the time lag and determine the strength and direction

of the relationship between them (Kumar et al., 2013). At longer timescales, lagged correlations can also be helpful to identify

potential feedback mechanisms between precipitation and temperature. For instance, if increased precipitation leads to cooler405

temperatures, this can lead to enhanced vegetation growth, which can further increase precipitation due to amplified transpira-

tion and evaporation. In convective climates, positive correlations at negative lags may be linked with atmospheric instability

as the land heats up, thus, making conditions favourable for convection to occur; while negative correlations at positive lags

suggest that the preciptation cools the surface due to evaporation and cloud cover, resulting in lower temperatures. Moreover,

positive correlations at positive lags (especially, in the minimum temperatures) may be associated with increased cloudiness410
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Figure 11. Lagged Spearman ranked correlations between daily precipitation and maximum temperature (tasmax).Lines indicate BARPA-

ERA5 (red), ERA5 (black) and AGCD (marked in blue) in DJF (solid lines) and JJA (dashed lines) over the eight NRM clusters across

Australia (as labelled). Daily AGCD and modelled precipitation data are set to zero where the values are less than (<) 1mm/day. The

correlation is computed at each grid point, before spatially averaged over each region.

thereby increasing the chances of instability and precipitation; additionally, an increase in warm and humid conditions is

expected, leading to higher temperatures.

This section evaluates the daily temperature-precipitation relationship in BARPA-R and compared to AGCD and ERA5.

Seasonal Spearman’s ranked correlations with lag time of ±10 days are computed between the daily maximum/minimum

temperature and precipitation outputs from 1985 to 2014. A lower precipitation threshold of 1mm/day was applied before415

ranking the precipitation data to remove sensitivity to data storage precision. incorporating a precipitation threshold of 1

mm/day, assuming that this is the minimum amount of precipitation required to be considered as a precipitation event for

a particular day. The timesteps of AGCD maximum temperature data were shifted by 1 day to ensure that valid times were

consistent across all datasets.

Figures 11 and 12 show the lagged Spearman ranked correlations between daily precipitation and near-surface minimum/-420

maximum temperatures (tasmin/tasmax) in the different datasets, namely, BARPA-R, ERA5 and AGCD in DJF and JJA over

the eight NRM clusters. The remaining seasons showed similar results (not shown). The lagged temperature-precipitation

correlation relationships between ERA5 and AGCD are very similar across seasons and NRM clusters.
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Figure 12. Lagged Spearman ranked correlations between daily precipitation and minimum temperature (tasmin). Lines and subplots as per

Figure 11.

In the mid-latitude regions (Figure 11 a-e), precipitation generally leads tasmax with negative correlation at positive lag of

around 1 day, suggesting that precipitation initially cools the surface, leading to lower maximum temperature. This is consistent425

across all three datasets in all seasons. In all three datasets and in both seasons, tasmin leads precipitation (Figure 12 a-e) with

positive correlation at negative lag of around 1 day (which may accelerate evaporation, leading to an increase in atmospheric

moisture and condensation). Seasonal differences in the tasmin-precipitation relationship are well distinguished by BARPA-R

in the Southern slopes, Murray Basin and SSW Flatlands regions, while in the Central Slopes (Figure 12 d) and East Coast

(Figure 12 e) the BARPA-R DJF relationships more closely resembles the observed relationships in JJA.430

In north-central Australia, the observed precip-tasmin relationship is distinctly different between DJF and JJA (Figure 12

f-h). In JJA, this relationship is characterised by positive correlations and is well simulated by BARPA-R. However, in DJF,

negative correlations are seen at a positive lag of around 1 day in both AGCD and ERA5. However, BARPA-R still shows

positive correlations at negative lag (Figure 12 f-h), resembling its relationship in JJA. In these regions, namely, the Rangelands,

Monsoonal North, and Wet Tropics, BARPA-R shows a substantially different minimum temperature-precipitation relationship435

to AGCD and ERA5. This suggests that in the aforementioned regions (Figure 12 f-h). BARPA-R is unable to perform well

relative to AGCD and ERA5 and does not reproduce the observed daily minimum temperature-precipitation relationship in

DJF season (Figure 12 f-h). BARPA-R performs considerably better at simulating the observed precip-tasmax relationship in
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Northern Australia (Figure 11 g, h), resolving the strong seasonal differences between DJF and JJA apparent in the Monsoonal

North and Wet Tropics. In these regions, the DJF correlations are strongly negative with maximum values between -0.55 and440

-0.65.

The maximum strength of the correlations between precipitation and minimum/maximum temperature between the two

variables is generally quite strong (±0.3 - ±0.4) in the NRM clusters for all the datasets. The strongest correlation (±0.6)

between precipitation and maximum temperature is observed in DJF season over the Monsoonal North and Wet Tropics in

all the datasets. In all other regions, BARPA-R precipitation is more sensitive to minimum temperature in the summertime445

(DJF) relative to AGCD and ERA5, hence BARPA-R shows a slightly larger magnitude in correlations (with all peaking about

zeroth lag). Further results can be found in the supplementary section where the spatial maps of Spearman’s ranked correlation

coefficients at lag 0 between the daily precipitation and minimum temperature outputs from 1985-2014 are shown (Figs. A4

and A5), in DJF and JJA in BARPA-R, AGCD and ERA5 datasets.

Overall , BARPA-R simulates realistic relationships between daily maximum temperatures and precipitation across all NRM450

clusters and in both seasons. Relationships between daily minimum temperatures and precipitation are also well simulated in

midlatitude regimes, namely during winter, and across southern Australia. In convective regimes, such as Northern and Central

Australia and to a lesser extent along the East Coast, a shift in the minimum temperature-precipitation relationship is apparent

in observational datasets but not reflected in BARPA-R. Instead, the BARPA-R JJA relationship persists into DJF in these

clusters. These conclusions are consistent with spatial maps of the zero-lag correlations provided in supplementary Figures A4455

and A5.

The skilful representation of multivariate relationships has implications for the interpretation of climate risk assessments

of compound weather events. For example, hot and dry conditions may lead to enhanced bushfire risk, while hot and humid

conditions is associated with enhanced heat stress on humans and livestock. In regions where models struggle to represent

correct multivariate relationships, simulations of compound events may be adversely impacted. Improvements to the represen-460

tation of atmospheric convection, either through improved parametrisation or explicit simulation, may improve the minimum

temperature precipitation relationship in the northern Australian wet season.

6 Discussion and Conclusions

This paper has analysed the ability of the BARPA-R RCM to maintain a realistic Australian climate when driven with ERA5

reanalysis. Performance in the simulation of Australian temperatures and precipitation was found to be frequently on par465

with and sometimes improved on the ERA5 reanalysis, despite the contribution of data assimilation in ERA5. This analysis

considered mean state biases, seasonality and interannual variability of key ICCLIM metrics chosen to describe the temperature

and precipitation climates in the Australian region. Precipitation and temperature teleconnections of the SAM, ENSO and IOD

were shown to be well captured by BARPA-R when the appropriate circulation signals are present in the driving boundary

inputs and sea surface temperatures. Contemporary change signals of warming were present and, in many cases, overestimated470

in BARPA-R, while contemporary wetting signals in Northern Australia were underestimated.
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Key mean-state biases that exceeded those present in ERA5 included JJA cold biases in daily maximum temperatures of

around 1°C across the southern NRM clusters and JJA warm biases in daily minimum temperatures, together leading to a

reduced cold season diurnal temperature range. These JJA temperature biases are also evident in MetUM-based regional re-

analyses (?). The mean monthly maximums in daily precipitation were overestimated by 2-12 mm/day across all NRM clusters475

in both summer and winter. DJF rain-day counts were improved in northern regions compared to ERA5 but degraded in south-

ern regions. The simulation of near-surface wind speeds was improved compared to ERA5, but nevertheless underestimated

the tail of the distribution in all but the two northmost NRM clusters.

BARPA-R shows improvements in mean-state biases over Australia when compared to the previous generation of RCMs,

namely CORDEX-CMIP5 (Di Virgilio et al., 2019b) and the ESCI prototype BARPA-R simulations (Su et al., 2021). The480

pronounced June-August maximum temperature cold bias, which ranged from -2 to -5 °C in CORDEx-CMIP5, is substantially

reduced to -1.1 °C in BARPA-R. The mean-state east coast precipitation bias is reduced but remains substantial with an overall

DJF mean of 10 mm/day. The bias in the number of overall rain days is reduced in the DJF season from values of up to 5 extra

days per month in the ESCI-BARPA simulations to 1-2 extra days across all NRM clusters in BARPA-R. Meanwhile, the ESCI-

BARPA underestimation of heavy rain day frequency by 1.5 - 2 days in the wet tropics is transformed to a 0.1 day positive bias485

in BARPA-R. These changes are likely to be attributable to the inclusion of the improved, ‘prognostic entrainment’ convection

scheme in the new version (Su et al., 2022b).

As BARPA-R projections are intended to produce hazard information for risk assessment purposes, it is important that

BARPA-R is able to simulate correct frequencies of hazard-relevant weather and circulation systems. As a first attempt at

analysing this, Section 4 focused on the representation of key circulation and large-scale weather systems, such as tropical490

cyclones, extratropical cyclones, and monsoon westerlies. All circulation and weather systems analysed were present with

accurate seasonal cycles in BARPA-R. This is a reassuring but expected result, given that the length-scales of the systems

are large, and that these systems are well represented in the driving datasets. Future investigations into the representation of

finer scale systems such as sea breeze circulations, drylines, and mountain meteorology may yield more insightful findings. In

general, tropical systems such as the monsoon westerlies, tropical cyclones and northwest cloud bands showed larger biases in495

location and frequency statistics than extra-tropical systems such as extratropical cyclones. These tropical systems also showed

less correlation on interannual time-scales than extra-tropical systems. This has implications for future experiment design on

hazard analysis. While a case-study approach comparing BARPA-R with its driving model may be appropriate for studying

extratropical systems in some instances, it is unlikely to be practical for tropical systems due to divergence between driving

and downscaling model behaviour. A larger sample size may therefore be required, especially for studies of rare events such as500

tropical cyclone landfall.

Both BARPA-R and ERA5 underestimate the intensification trend of wet-day precipitation (SDII) observed in AGCD. This

result is consistent with global studies of atmospheric models with parametrised convection, and has been found elsewhere to

be rectified by the explicit representation of atmospheric convection (Fowler et al., 2021; Lee et al., 2022; Luu et al., 2022).

This is particularly true for subdaily rainfall, which has not been evaluated in this paper. Further downscaling of both climate505
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projections and regional reanalysis to convection-permitting length-scales over the Australian region are therefore necessary

for the assessment of changes in high-intensity, short duration rainfall (Wasko et al., 2023).

Many of the biases and limitations in BARPA-R identified by this study are common biases of the MetUM. These include the

overall wet bias (Hudson et al., 2017), the overestimation of the monsoon westerlies (?), and the reduced diurnal temperature

range in winter (?). Future development of BARPA-R will take advantage of on-going MetUM model development, such as510

the inclusion of the CoMorph convection scheme and updates to the Jules land surface model, with the potential of improving

these model shortcomings going forward.

This paper has demonstrated that BARPA-R is able to downscale ERA5 reanalysis to produce a reasonable climate over

Australia. This evaluation experiment meets the CORDEX requirement to downscale ERA5 reanalysis in order to evaluate

RCM performance in the absence of biased GCM-based driving inputs. Having shown good performance in the evaluation515

experiment, GCM-based downscaling with BARPA-R is now underway. This BARPA-GCM ensemble will require additional

evaluation and is not guaranteed to show similar performance over the Australian region. If key planetary-scale model circula-

tions and processes, such as ENSO or the subtropical jet, are biased or missing in the driving GCM, BARPA-R is unlikely to

be able to compensate for these errors. Additionally, nonlinear errors may arise from incompatibility between driving GCMs

and the downscaling BARPA-R GCM, such as if the two models have very different favoured vertical profiles of temperature520

or humidity.

Further work will perform a broader evaluation of BARPA-R’s performance at downscaling both ERA5 and CMIP6 GCMs.

Benchmarking of the performance of BARPA-R and other CORDEX-CMIP6 RCMs at downscaling historical experiments is

needed to establish the credibility of their downscaled projections. The added value of RCMs over GCMs must be evaluated in

order to assess the value of computationally expensive dynamical downscaling going forward. Hazard-specific evaluations are525

required to understand the representation of hazards in BARPA-R simulations before these simulations may be used for risk

assessment. Following this evaluation of the full BARPA-R system, these simulations will provide hazards intelligence and

climate services to support and inform decision-making.
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Appendix A: Supplementary Figures

Figure A1. Bias in temperature and precipitation climate indicators (rows: TX, TN and PRCPTOT) for transition seasons MAM and SON,

for BARPA-R and ERA5 (second and third columns) against AGCD (first column) averaged across the core evaluation period (1985-2014).
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Figure A2. BARPA-R (solid bars) and ERA5 (outlined bars) transition season biases of 6 temperature indices across the 8 Australian NRM

clusters. Reference data is sourced from AGCD. Panels show number of summer days, (SU; with daily maximum temperatures exceeding

25 ° C), tropical nights, (TN; with daily minimum temperatures exceeding 20 ° C), and the monthly minimums and maximums of the daily

minimums and maximums (TNn, TNx, TXn and TXx). Blue and orange bars show the bias aggregated over Austral autumn and spring

respectively.
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Figure A3. As per Figure A2 but for precipitation indices: wet days (RR1; > 1 mm/day), heavy rain days (R10mm; > 10 mm/day), monthly

maximum daily precipitation (RX1Day) and the overall monthly precipitation (PRCPTOT).
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Figure A4. Spatial maps of Spearman’s ranked correlation coefficients between the daily precipitation and maximum temperature in DJF

and JJA in BARPA-ERA5, AGCD and ERA5 datasets.

Figure A5. Spatial maps of Spearman’s ranked correlation coefficients between the daily precipitation and minimum temperature in DJF and

JJA in BARPA-ERA5, AGCD and ERA5 datasets.
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