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Abstract 13 

 14 

A real-time forecast model of surface hydrodynamics in Lake Ontario (Coastlines-LO) was developed to 15 

automatically predict storm surge and surface waves. The system uses a dynamically coupled Delft3D – 16 

SWAN model with a structured grid to generate 48 h predictions for the lake that are updated every 6 h. 17 

The lake surface is forced with meteorological data from the High Resolution Deterministic Prediction 18 

System (HRDPS). The forecast model has been running since May 2021, capturing a wide variety of storm 19 

conditions. Good agreement between observations and modelled results is achieved, with root mean squared 20 

errors (RMSE) for water levels and waves under 0.02 m and 0.26 m, respectively. During storm events, the 21 

magnitude and timing of storm surges are accurately predicted at 9 monitoring stations (RMSE < 0.05 m), 22 

with model accuracy either improving or remaining consistent with decreasing forecast length. Forecast 23 

significant wave heights agree with observed data (1-12% relative error for peak wave heights) at 4 wave 24 

buoys in the lake. Coastlines-LO forecasts for storm surge prediction for two consecutive storm events were 25 

compared to those from the Great Lakes Coastal Forecasting System (GLCFS) to further evaluate model 26 

performance. Both systems achieved comparable results with average RMSEs of 0.02 m. Coastlines-LO is 27 

an open-source wrapper code driven by open-data and has a relatively low computational demand, 28 

compared to GLCFS, making this approach suitable for forecasting marine conditions in other coastal 29 

regions. 30 

 31 

1 Introduction 32 

 33 

Coastal regions of large lakes can face hazardous conditions with costly consequences due to strong storm 34 

events, where powerful winds generate large waves and storm surge (Danard, 2003; FEMA, 2014; 35 

Gallagher et al., 2020). Waves during these events can cause erosion, overtopping, and run-up, with the 36 

hazards being greater when the water level is elevated from storm surge. The intensity and frequency of 37 

strong storm events is increasing in the Great Lakes region as a result of climate change, as tropical storms 38 

are predicted to reach higher latitudes more often (Bender et al., 2010; Studholme et al., 2022). In addition, 39 

the mean water levels in the Great Lakes are being impacted by climate change, with large seasonal 40 

fluctuations in lake levels and record low and high water levels consistently occurring in recent years 41 

(Gronewold and Rood, 2019). The combined impacts of these projections present a greater risk for 42 

hazardous conditions in Great Lakes coastal regions, and developing better methods to understand and 43 

model the physical processes occurring during storms is important to help mitigate the risk. (Chisholm et 44 

al., 2021; Gronewold et al., 2013). 45 



 

 

 46 

‘Real-time forecasting’ of lakes and coastal oceans can be achieved by applying numerical models to run 47 

predictive simulations of future hydrodynamic conditions in real time. Water level, circulation, and 48 

temperature simulations, using forecast models of large lakes and reservoirs, aid in water quality 49 

management (Baracchini et al., 2020; Carey et al., 2021; Lin et al., 2022). Coastal hazard forecasting is also 50 

being applied in numerous ocean regions, including the northern Gulf of Mexico where forecast systems of 51 

water levels and waves predict hurricane impacts on various scales (Bilskie et al., 2022; Dietrich et al., 52 

2018; Paramygin et al., 2017). Similarly, Rey and Mulligan (2021) use a coupled Deflt3D–SWAN model 53 

to forecast storm conditions in coastal North Carolina, investigating the influence of various atmospheric 54 

forecast models on the results during hurricanes. Specific to lakes, the National Oceanic and Atmospheric 55 

Administration (NOAA) has implemented forecast models for North American coastal regions, including 56 

the Great Lakes, with the Great Lakes Coastal Forecast System (GLCFS). The GLCFS uses a high-57 

resolution (30 m – 2 km) hydrodynamic model (FVCOM) to simulate physical processes including currents, 58 

temperatures, and water levels (Kelley et al., 2018; Peng et al., 2019). Waves in the Great Lakes are 59 

predicted by Environment and Climate Change Canada’s (ECCC) Regional Ensemble Wave Prediction 60 

System (REWPS), which uses a probabilistic approach to forecast wave characteristic 3 days into the future. 61 

 62 

Developing deterministic forecast models that run in real-time requires dealing with the challenge of 63 

minimizing the computational runtime of the model while still achieving accurate results (model resolution 64 

and performance), as the forecasts must be available in advance of the actual event. This need to effectively 65 

balance efficiency and accuracy in real-time models is an active research area (Elko et al., 2019). In 66 

addition, clear and efficient dissemination of forecasts must be provided to users and stakeholders. Typical 67 

real-time coastal models require large computing resources to run high resolution and accurate forecast 68 

simulations (Bilskie et al., 2022; Kelley et al., 2018), while fewer model applications focus on developing 69 

flexible systems that can achieve accurate results while running on local computers, often for smaller 70 

domains, using open data and with a smaller computational allowance (Lin et al., 2022; Rey and Mulligan, 71 

2021). 72 

 73 

The accuracy of numerical models for simulating the hydrodynamic response of coastal regions to storm 74 

events has increased with advances in computing power, data availability, and the development of models 75 

that can better represent more physical processes and their interactions, however model performance is still 76 

limited by the quality of input and forcing data available for a simulation. Model ability also depends on 77 

the grid resolution, with higher resolution models being more capable of resolving bathymetric features 78 

(Bilskie et al., 2022), and the inclusion of relevant processes, such as wave-current interactions and 79 



 

 

baroclinic effects (Asher et al., 2019; Swatridge et al., 2022). A main consideration is the accuracy of the 80 

atmospheric forcing, as winds are the primary driver of surface behaviour, and errors in the winds translate 81 

through as errors in the modelled results (Dietrich et al., 2018; Farhadzadeh and Gangai, 2017; Rey and 82 

Mulligan, 2021).  83 

 84 

A probabilistic approach can be used to account for uncertainty in atmospheric forcing by running multiple 85 

variations of the same event, however this requires large computational resources (Baracchini et al., 2020; 86 

Fleming et al., 2008). In deterministic forecasts of water levels in Lake Erie, error in the atmospheric forcing 87 

was significantly larger for 240 h forecasts compared to the 120 h forecasts, which translated to increased 88 

error in predicted water levels (Lin et al., 2022). The longer forecast predicted excessive seiching and an 89 

underestimation in peak water level, which improved as forecast length decreased. Forecasts of hurricane 90 

storm surge and waves in the Gulf of Mexico by Forbes et al. (2010), Dietrich et al. (2018), and Bilskie et 91 

al. (2022) found trends of decreasing error in storm surge prediction with shorter forecast length. Longer 92 

forecasts (~5 days) resulted in storm surge variations of up to 4 m from the best track predictions, attributed 93 

to variability in atmospheric forcing, and for forecasts shorter than 2.5 days, simulations converged on a 94 

solution, and error was almost constant (Dietrich et al., 2018). 95 

 96 

The hydrodynamics of Lake Ontario have been simulated on various scales in previous studies (e.g., Huang 97 

et al., 2010; Paturi et al., 2012; Prakesh et al., 2007; Shore, 2009). Numerical models have also been used 98 

to simulate waves and circulation during extreme events in the Kingston Basin (Cooper and Mulligan, 2016; 99 

McCombs et al., 2014a; McCombs et al., 2014b). Sogut et al. (2019) used a combination of analyzing 100 

historical water level and wave data, as well as numerical modelling of extreme storm events to gain insight 101 

on lake seiching, storm surges, and wave patterns. Historical data have also been studied to determine the 102 

risk of flooding due to storm surge along the Lake Ontario shoreline with a statistical model (Steinschneider, 103 

2021). Surface waves and storm surge were simulated over the entire lake by Swatridge et al. (2022) during 104 

recent storm events. Their study investigated the influence of different wind fields on the accuracy of storm 105 

surge simulation, finding that variations in meteorological forcing were the primary source of uncertainty 106 

in model results. 107 

 108 

In the present study, an existing depth-averaged numerical model of Lake Ontario (Swatridge et al., 2022) 109 

was applied to the lake to forecast water levels and waves in real-time, driven by spatially varied wind 110 

fields from a high-resolution wind forecast model. The workflow develops an open-source Python- and 111 

MATLAB-based wrapper code, that has been successfully applied to other systems using different 112 

hydrodynamic models as part of the Canadian Coastal and Lake Forecasting Model System (Coastlines; 113 



 

 

https://coastlines.engineering.queensu.ca; Lin et al., 2022; Rey and Mulligan, 2021). This flexible 114 

methodology uses open access forcing/validation data and requires a relatively low computational demand, 115 

compared to other existing Great Lakes storm surge models, allowing for application to other locations. 116 

Model performance is evaluated by comparing results to near-real time observed data. Forecast results, for 117 

storm surges and waves are statistically investigated over forecast lead times ranging from 6 to 48 h. 118 

 119 

2 Methods 120 

 121 

2.1. Modelling Approach 122 

A two-dimensional (depth-averaged) coupled hydrodynamic-wave model is applied to Lake Ontario to 123 

simulate wind driven hydrodynamics and waves using Delft3D-SWAN. The Delft3D flow model calculates 124 

non-steady flow on a structured grid by solving the Reynolds-Averaged Navier Stokes equations (Lesser et 125 

al., 2004). Wave conditions are simulated with the phase-averaged wave model, Simulating WAves 126 

Nearshore (SWAN), which uses the spectral action balance equation to compute random wind-generated 127 

waves. SWAN accounts for non-linear wave interactions, wave propagation, refraction, dissipation due to 128 

whitecapping, bottom friction and depth-induced breaking (Booij et al., 1999). The models are dynamically 129 

coupled to account for wave-current interactions. Radiation stress gradients from SWAN simulations are 130 

input into the horizontal momentum equations in Delft3D to account for the impacts of waves on 131 

circulation, such as wave-induced mass fluxes driving currents, and enhanced bed shear stress. Results from 132 

the hydrodynamic simulation are then used to update water levels and circulation in the wave model.  133 

 134 

Model setup choices were made based on simulations by Swatridge et al. (2022) which were adapted for 135 

the present study to minimize computational demand, allowing the system to run in real-time. The Delft3D 136 

simulation uses a curvilinear grid with a horizontal resolution gradually ranging from 250-450 m. The wave 137 

grid has a coarser resolution, ranging from 350-600 m, thus reducing the computational time required to 138 

complete a wave simulation while still achieving higher resolution in nearshore areas (Table S2 in the 139 

supplementary material). Flow simulations are depth-averaged and barotropic, shown by Swatridge et al. 140 

(2022) to accurately represent surface storm surge in Lake Ontario, with root mean squared errors (RMSEs) 141 

between observations and model results ranging between 0.01 m - 0.07 m during several major events. 142 

Bathymetry data was interpolated to the grid from the US National Centers for Environmental Information’s 143 

(NCEI) 3-arcsecond (~ 90 m) resolution dataset with supplementary data from the ETOPO1 global relief 144 

model with a resolution of approximately 1.3 km (Fig. 1). Detailed sensitivity testing for this model was 145 

completed in Swatridge et al. (2022) to calibrate model parameters. Hydrodynamic simulations use a time 146 

https://coastlines.engineering.queensu.ca/


 

 

step of 120 s to satisfy the Courant–Friedrichs–Lewy stability criterion, and coupling with the stationary 147 

wave model occurs every 60 minutes.  148 

 149 

Figure 1: Map of Lake Ontario showing NCEI bathymetry and the location of real-time water level, wind, 150 

and wave observation stations (Table 1, Table 2) 151 

 152 

Spatially varied atmospheric input from the Meteorological Service of Canada (MSC) High Resolution 153 

Deterministic Prediction System (HRDPS) is used to drive the model (Milbrandt et al., 2016). HRDPS is 154 

an hourly assimilated forecast system downscaled from the larger scale Regional Deterministic Prediction 155 

System (RDPS) that provides hourly predictions of surface pressure and wind velocity components with a 156 

horizontal resolution of 2.5 km for the pan-Canada domain. The system runs every 6 h, predicting 157 

atmospheric conditions 48 h into the future. This wind-forcing was successfully used by Swatridge et al. 158 

(2022) to simulate the lake surface response to a range of storm conditions. Their modelled results for water 159 

levels and surface waves agreed with observations at up to 16 locations in Lake Ontario, resulting in 160 

maximum difference between predicted and observed peak wave heights and water levels of 0.4 m and 161 

0.08 m, respectively. No lateral boundary conditions are applied to account for the influence of the riverine 162 

flows (Niagara and St. Lawrence Rivers), as results from previous modelling studies have concluded that 163 

the hydrodynamic influence of river inflows and outflows in limited to within 10 km of the river mouth, 164 

and therefore can be neglected for simulations of lake wide water level over event based timescales. 165 

(Prakash et al., 2007; McCombs et al. 2014a). The closed based approach leads to uncertainties in the 166 

simulated results in the river region, however the impacts on the lake-wide hydraulics is expected to be 167 

minimal. 168 

 169 



 

 

2.2. Development of an Automated Prediction System  170 

The forecast system uses a combination of code written in MATLAB and Python to automatically run every 171 

6 h and has been operational since May 2021 (https://coastlines.engineering.queensu.ca/lake-ontario/). The 172 

workflow (Fig 2) consists of pre-processing, model simulation and post processing stages. For pre-173 

processing, initiation of the modelling system is scheduled to occur when a new HRDPS forecast becomes 174 

available. Python is used to download the latest forecast and MATLAB is used to automatically process the 175 

atmospheric forcing and write input files for Delft3D-SWAN. The Delft3D model definition files are then 176 

updated with the correct time information.  177 

 178 

Figure 2. Diagram of the automated workflow for processes performed for each model cycle (every 6 h 179 

initiated by Windows Task Scheduler) on the local Coastlines server. 180 

 181 

Model simulations cover a period of 48 h and are ‘hot-started’ with a restart file from a previous model run 182 

if available. If a restart file is not available, simulations begin from rest with initial water levels of 0 m and 183 

current speeds (u) of 0 m s-1 throughout the lake. When the simulation finishes, all available real-time 184 

observed data, outlined in Table S1 in the supplementary material, is downloaded using Python, which is 185 

then processed in MATLAB. Observed water levels at each station are averaged over the previous 12 h and 186 

used to locally adjust the datum of the model outputs. We acknowledge that assimilating observed water 187 

levels into the initial conditions may be a preferred approach, but this is beyond the scope of the present 188 

study and may be incorporated into future versions on Coastlines-LO. The model simulates high frequency 189 

variability in water levels generated by winds. Seasonal changes in water levels due to inflows, outflows, 190 

and evaporation are not included, but are accounted for in post-processing. 191 

https://coastlines.engineering.queensu.ca/lake-ontario/


 

 

 192 

Time series plots of observed water levels and wave heights are automatically compared to the forecast 193 

model results from the previous 2.5 days at the observation locations and additional plots are created to 194 

provide predictions at other locations of interest with no observed data (Fig. 1). Spatial snapshots of model 195 

results across the lake are generated at select times, as well as animations showing key output parameters 196 

during the forecast simulation. All outputs are exported to Google Sheets and displayed on the project 197 

webpage, https://coastlines.engineering.queensu.ca/. The system runs in a Windows environment using 16 198 

cores of a 32-core XEON workstation, with each workflow cycle taking approximately 5 h to complete a 199 

48 h forecast simulation. 200 

 201 

2.3. Real-time Comparison between Model Results and Observations 202 

Near real-time observations of water surface elevation (η) data are available at 9 water level gauges around 203 

the perimeter of Lake Ontario from the National Oceanic and Atmospheric Administration (NOAA) and 204 

the Department of Fisheries and Oceans Canada (DFO), with temporal resolutions of 3 minutes and 6 205 

minutes, respectively (Fig. 1; Table 1). Hourly surface waves and winds are measured in Lake Ontario at 206 

one US National Data Buoy Center (NDBC) buoy and ECCC buoys from spring to early winter (Table 2). 207 

The buoys report the significant wave height (Hs), peak wave period (Tp), surface wind speed and direction 208 

averaged over an 8-minute period (U).  209 

 210 

Table 1: List of real-time water level gauge station locations  211 

Name Longitude Latitude Source 

Oswego -76.52 43.46 NOAA 

Rochester -77.63 43.27 NOAA 

Olcott Harbour -78.72 43.34 NOAA 

Cape Vincent -76.33 44.12 NOAA 

Port Wellar -79.22 43.24 DFO  

Cobourg -78.16 43.96 DFO  

Burlington -79.79 43.29 DFO  

Kingston -76.52 44.22 DFO  

Toronto -79.38 43.64 DFO  

  212 



 

 

Table 2: List of real-time wave buoy locations 213 

Name Longitude Latitude Depth Source 

Prince Edward Point -76.87 43.78 68 m ECCC 

West Lake Ontario -79.53 43.25 35 m  ECCC  

Northwest Lake Ontario -78.98 43.77 54 m  ECCC  

East Lake Ontario -77.40 43.62 140 m NDBC 

 214 

For long term analysis of results, the residual component of the water level data, representing storm surge, 215 

is isolated at the gauge locations by finding the difference between the total water level and the average 216 

water level, calculated using a gaussian window of 7 days (Steinschneider et al., 2021). Model performance 217 

is quantified using statistical measures including the RMSE (eq. 1), normalized RMSE (NRMSE; eq. 2), 218 

and the correlation coefficient (r; eq. 3):  219 

𝑅𝑀𝑆𝐸 =  √∑
(𝑥𝑖−𝑦𝑖)2

𝑛
𝑛
𝑖=1           (1) 220 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

�̅�
           (2) 221 

𝑟 =  
∑(𝑦−�̅�) (𝑥−�̅�) 

√∑(𝑦−�̅�)2  ∑(𝑥−�̅�)2
 

           (3) 222 

Where xi and yi (i = 1, 2,3, … N) are time series of modelled and observed data respectively, and N is the 223 

number of samples in the series. Strong storm surge events are identified from the water level data using 224 

the peaks-over-threshold method (Steinschneider et al. 2021). Forecast error during select events was 225 

evaluated by computing error metrics for consecutive forecasts leading up to the peak of the event. For each 226 

forecast, the relative error (RE; eq. 4), between observed and simulated maximum storm surge relative to 227 

the mean water level calculated at water level gauge locations, and between observed and modelled 228 

maximum wave heights at buoy locations was computed. The RMSE for each location was computed over 229 

a 6 h period that included the peak of the event.  230 

𝑅𝐸 =
|(�̅�− 𝑦)−(�̅�−𝑥)|

(�̅�− 𝑦)
           (4) 231 

 232 

3 Results 233 

 234 

3.1. Long-term model performance 235 



 

 

Simulation results, for water levels and waves, at the observation locations, were compiled over the 20-236 

month operational period. The first 6 h of each 48 h forecast were stitched into a single time series, and 237 

these results were compared to the observed data (Fig. S1 in the supplementary material). During this time, 238 

seasonal changes in the observed mean lake level fluctuated by over 1 m, with the highest water levels 239 

occurring in May 2022. The ability of the model to reproduce storm surge was investigated over a four-240 

month period when multiple storm events occurred (106 days from 15 September 2022 to 30 December 241 

2022; Fig. 3). Stations with larger ranges of observed water levels (i.e., Burlington, Cape Vincent), located 242 

at the east and west ends of the lake (i.e., Fig. 3c, g) show a slight bias, where the model tended to slightly 243 

overpredict the maximum and minimum values, corresponding to larger RMSE values (Table 3). These 244 

stations also tended to show a stronger correlation (r = 0.83 – 0.86); whereas observation points with 245 

typically smaller ranges in water levels (Fig. 3a, e) resulted in weaker correlations (r = 0.76 – 0.79). 246 

Normalized results show comparable error statistics at all stations, with larger errors occurring at locations 247 

with smaller storm surges (i.e., Rochester, Oswego). 248 

  249 



 

 

250 

Figure 3: Observed (black) and modelled (red) residual water levels at select observation points over a 3 251 

month period (September – December 2022) with corresponding scatter plots and error statistics over this 252 

period at select locations.  253 

  254 



 

 

Table 3: Error Statistics for residual water level results over 106 days (September 15 – December 30, 2022) 255 

 

Minimum η 

(m) 

Mean η 

(m) 

Maximum 

η (m) 

RMSE 

(m) 

NRMSE 

(m) r 

Oswego -0.10 0.07 0.12 0.01 0.15 0.80 

Rochester -0.03 0.03 0.04 0.00 0.16 0.76 

Olcott -0.16 0.04 0.11 0.01 0.19 0.80 

Cape Vincent -0.22 0.10 0.34 0.02 0.16 0.83 

Port Wellar -0.19 0.06 0.16 0.01 0.14 0.86 

Cobourg -0.08 0.04 0.07 0.01 0.14 0.79 

Toronto -0.16 0.07 0.14 0.01 0.14 0.83 

Burlington -0.22 0.10 0.20 0.02 0.14 0.83 

Kingston -0.21 0.09 0.25 0.01 0.14 0.86 

 256 

Results for simulated Hs at buoy locations show the largest waves occurred during winter, between 257 

December and March (Fig.4). Results showing forecasted wave period compared to observations are shown 258 

in Fig S2 in the supplementary material. Over the 600-day operational period, no monitoring data was 259 

available for comparison and Lake Ontario could potentially experience partial ice-cover in nearshore areas, 260 

impacting the wave environment (Anderson et al., 2018). Stations in the eastern end of the lake (Prince 261 

Edward Point, East Lake Ontario) are expected to experience the largest waves due to the prominent north-262 

easterly direction of storms over the lake, which results in winds blowing along the long-axis of the lake 263 

creating a large fetch at these locations (Lacke et al. 2007; McCombs et al. 2014a). Error statistics show 264 

similar values for RMSE at these points however Prince Edward Point had the lowest correlation coefficient 265 

(Fig. 4a, b; r = 0.71), while East Lake Ontario showed the highest correlation (Fig. 4c, d; r = 0.88). Lower 266 

RMSE were at stations with smaller waves (Fig. 4e, g), and normalized results (Table 3) show comparable 267 

results at all buoys (NRMSE = 0.42 – 0.53 m).  268 

 269 



 

 

 270 

Figure 4: Time series of observed (black) and modelled (red) significant wave height over the duration that 271 

the buoys were in the lake (September -December 2022) with corresponding error scatter plots at the 272 

location of the 4 buoys. Note that the model was offline and are unavailable between February 9 – 27, 2022 273 

due to a change of service for the meteorological inputs.  274 

  275 



 

 

Table 3: Error statistics for significant wave heights at the buoy locations over 600 days (April 21, 2021 – 276 

December 12, 2022)  277 

 278 

3.2. Storm event forecasts 279 

The performance of the model was evaluated over an event on November 11- 12 2021, consisting of wind 280 

speeds that approached 15 m s-1, with the direction rotating clockwise from blowing towards the northeast 281 

to the winds dominantly blowing towards the east over a 24 h period. This event was selected due to the 282 

large storm surge generated (η = 0.17 m), and it resulted in the largest significant wave height that occurred 283 

over the 20 month operational period with wave measurements available from all buoy locations for 284 

comparison. Overlapping 48 h HRDPS forecasts (i.e., generated every 6 h) were validated against buoy 285 

observations, with good agreement found between modelled and predicted total wind speeds and directions, 286 

with peak wind speeds underrepresented by at most, 4.21 m s-1 at Northwest Lake Ontario and overpredicted 287 

by up to 2.61 m s-1 at Prince Edward Point (Fig. S3 in the supplementary material) 288 

 289 

This event resulted in an observed storm surge of up to 0.16 m in the northeast region of the lake, at Cape 290 

Vincent and Kingston. The forecast simulations captured the timing and magnitude of the event peak, with 291 

predicted surge values ranging between 0.12 m – 0.17 m (Fig.5d, i). A set down of about 0.10 m was 292 

recorded at the Burlington station, which was underpredicted by the model by up to 0.05 m. The simulated 293 

results at this location predicted water levels up to 0.05 m higher than the observations for the 24 h preceding 294 

the storm (Fig.5h). Notable error can also be identified at Cobourg (Fig. 5f) with the model predicting 295 

negligible fluctuations in the water surface, but observations show some oscillations (0.05 m). 296 

 297 

Location Mean Hs (m) Maximum Hs (m) RMSE (m) r NRMSE (m) 

Prince Edward Point 0.44 3.82 0.24 0.71 0.53 

East Lake Ontario 0.62 4.42 0.26 0.88 0.42 

West Lake Ontario 0.34 2.60 0.16 0.76 0.48 

Northwest Lake Ontario 0.35 2.29 0.19 0.74 0.53 



 

 

 298 

Figure 5: Time series of measured water levels at various observation points compared to forecasted data 299 

from progressive model simulations. The highlighted area indicates the 12 h period over which error 300 

statistics are computed. 301 

 302 

Forecast performance was quantified by computing error statistics, over the duration of the event, for each 303 

forecast leading up to the time of peak water level. The largest errors occurred at the location of the set 304 

down, Burlington and Toronto, with a nearly constant RMSE of 0.03 m, and RE of 14% and 10% 305 

respectively (Fig. 6c, d). The errors at all stations remained fairly constant with RMSE and RE under 0.03 m 306 

and 10%, respectively, for each new forecast. However, map results showing the spatial variability in water 307 

level predictions from forecasts 12 h and 36 h before the storm peak show large differences (Fig. 6a,b). The 308 

earlier results (Fig. 6a) simulated a far less extensive storm surge in the northeast region of the lake than 309 

what was subsequently predicted 24 h later (Fig. 6b), when the storm surge was simulated to impact most 310 

of the northeast shoreline. The later forecast also predicted spatially larger set-down, about 0.10 m more 311 

than the earlier forecast in the western region of the lake. 312 

 313 



 

 

314 

Figure 6: Contour plots showing maps of modelled water levels at the peak of the storm event from two 315 

different forecasts, with an a) 35 hr lead time starting November 11, 00:00 UTC and b) 11 hour lead time 316 

starting on November 12, 00:00 UTC, with observed data plotted at the observation locations in black 317 

circles. Panels c) to h) show metrics including the RE and RMSE for peak storm surge magnitude at the 318 

locations of 6 selected water level gauges from the 8 forecasts preceding the storm event. 319 

 320 

Measured waves during this event reached up to 2.10 m, with the buoys in the western region of the lake 321 

(Fig. 7c, d) experiencing peak wave heights about 12 h earlier (Nov 11, 2021, 18:00 UTC) than the buoys 322 

in the eastern region of the lake (Fig. 7a, b; Nov 12 2021, 06:00 UTC). This is explained by the shift in 323 

wind direction over the storm duration, with winds originally from the southeast, rotating clockwise, then 324 

blowing dominantly from the west along the axis of the lake (Fig. S3 in the supplementary material). 325 

Overall, forecast simulations captured the magnitude of the waves all stations, with some error, and 326 

approximately 5 h delay in the timing of the peak Hs at Prince Edward Point (Fig. 7a). Error for waves 327 

during this event, at all stations, was constant for consecutive forecasts at all stations, with RMSE for 328 



 

 

between 0.03 – 0.25 m and RE between 1-12%. Despite the generally consistent results, at the buoy 329 

locations, maps from different forecasts show distinct changes between the 36 h forecast (Fig. 8a) and the 330 

6 h forecast (Fig. 8b). Simulated wave fields in the northeast region of the lake showed similar results 331 

between forecasts, but in the northwest, predicted wave magnitudes and directions were distinctly different. 332 

The earlier forecast predicted waves under 0.70 m coming from the southeast, whereas the later forecast 333 

showed larger waves (Hs = 0.50 – 1.00 m) from the southwest, which can be attributed to changes in 334 

forecasted wind-fields.  335 

 336 

337 

Figure 7: Time series of measured Hs at the location of the 4 buoys compared to modelled data from 338 

progressive model forecasts for Event 1 (November 12, 2021). 339 



 

 

340 

Figure 8: Contour maps of modelled waves with vectors indicating wave direction at a select time during 341 

the storm event from two forecasts, with: a) 32 hr lead time starting November 11, 00:00 UTC; and b) 8 hr 342 

lead time starting November 12, 00:00 UTC with observed data plotted at the observation locations in black 343 

circles. Every 10th vector is plotted for clarity. Panels c) to f) show metrics including the RE and RMSE for 344 

significant wave height at the locations of 4 buoys from the 8 forecasts preceding the storm event on 345 

November 12, 2021, 12:00 UTC, and RMSE values are computed over a 12 h period centered at the time 346 

of the peak Hs for each station. 347 

 348 

For further investigation into model performance during storm events, wave forecasts during the event that 349 

resulted in the largest observed wave heights (December 1, 2022, Fig. 3c) were examined. During this 350 

storm, the lake experienced sustained easterly winds for almost 24 h, reaching speeds > 20 m s-1 on 351 

December 1, 14:00 UTC, generating waves > 4 m (Fig. 9. Data was only available from the one buoy at 352 

East Lake Ontario during this event, which recorded a maximum Hs = 4.46 m. The forecasts initially 353 

underestimated this value, with a maximum predicted wave height of Hs = 4.19 m from the forecast starting 354 

on November 29 18:00 UTC, and the next forecast then overestimated this value (Hs = 4.54 m). Subsequent 355 



 

 

forecasts slightly underestimated the peak value, with the lowest predicted peak Hs = 4.26 m and the 356 

maximum values occurring ~1 h after the observed peak. All forecast results tended to overestimate the 357 

peak wave period, with predicted values ranging between 7.8 - 8.1 s, compared to an observed maximum 358 

value of 7.2 s. 359 

 360 

361 

Figure 9: Variability in significant wave height during a storm event: measured Hs compared to progressive 362 

forecast results at the Prince Edward Point Buoy for Event 3 (December 1, 2022; top) and maps of Hs and 363 

wave direction shown at an interval of 2 h (every 10th vector is shown for clarity).  364 

 365 

4 Discussion 366 

 367 

4.1. Forecast Lead Times 368 



 

 

Water level forecasts during a storm event on December 8, 2021, were examined in relation to forecast lead 369 

time. During this event, 21 m s-1 winds (Figure S4 in the supplementary material) generated a storm surge 370 

of approximately 0.20 m along the northeast coast, and a resulting setdown of 0.10 m on the opposite end 371 

of the lake. Error statistics throughout the peak of the event, as a function of forecast lead time, were plotted 372 

at selected stations (Fig. 10). The timing and magnitude of the storm surge was well represented by the 373 

forecast model, with RMSE < 0.05 m for all forecasts and a maximum RE =14%.  374 

 375 

 376 
Figure 10: Time series of measured water levels at select observation points compared to forecasted data 377 

from progressive model simulations for Event 3: December 08, 2021, with corresponding plots showing 378 

computed RMSE calculated over the shaded area and percent error in peak storm surge from the 8 forecasts 379 

preceding the storm event.  380 

 381 

Trends in the error can be identified for this event at all stations, with notable patterns corresponding to 382 

locations with larger fluctuations in water level (i.e., Cape Vincent, Kingston, Burlington). At these sites, 383 



 

 

forecast error tended to decrease as the forecast length shortened. At Cape Vincent, the initial 48 h forecast 384 

had an RMSE of 0.05 m and by the 18 h forecast, the RMSE had decreased to 0.01 m. However, after the 385 

18 h forecast there was a slight increase in RE from less than 1% to about 5% (Fig. 10b). Trends in 386 

decreasing error were also observed at Kingston, where a similar decrease in RMSE was observed, and the 387 

RE was maintained between 1 – 5%, corresponding to a maximum underprediction of about 0.05 m (Fig. 388 

10i, j). The locations with smaller ranges in surface fluctuations (Toronto, Port Wellar) generally showed 389 

constant error (0.02 m and ~1% at Port Wellar; 0.01 m and 7% at Toronto) for consecutive forecast results 390 

over the duration of this event (Fig. 10d, f). 391 

 392 

Hydrodynamics in the model are only driven by atmospheric forcing, which is a primary source of 393 

uncertainty in simulations of surface dynamics in large lakes. The accuracy of meteorological forecasts 394 

typically decreases with increasing length due to assimilation schemes using observations and satellite 395 

imagery to yield more accurate results (Buehner et al., 2015). Therefore, it is expected that hydrodynamic 396 

forecast simulations will increase in accuracy as the lead time to a storm event decreases. For forecasts of 397 

storm surges in other Great Lakes (e.g., Lake Erie; Lin et al., 2022) and coastal seas (e.g., Gulf of Mexico; 398 

Dietrich et al., 2018), improvements in storm surge predictions are directly linked to increased accuracy in 399 

meteorological forcing leading up to an event. However, our Lake Ontario model results do not follow a 400 

consistent trend between different events, either improving (Fig. 10) or maintaining accuracy (Fig. 6; 401 

Fig. 8). Cases where error increases (i.e. Fig 10b) or remains constant (i.e. Fig. 8), can be explained due to 402 

sources of uncertainty in the model calibration and neglecting additional hydrodynamic processes in the 403 

model setup (i.e. 3-dimensional circulation). Despite model accuracy being constant at the observation 404 

locations, changes in the spatial variability of predicted water levels and wave conditions for different 405 

forecasts are not clearly communicated through time series analysis but are qualitatively shown in maps of 406 

results (Fig. 6; Fig. 10). 407 

 408 

4.2. Comparison with Other Models  409 

The current work (Coastlines-LO) makes use of a relatively simple, low computational demand modelling 410 

approach. The performance of this model can be compared to the GLCFS, which delivers a higher resolution 411 

and more complex forecast system in throughout the Great Lakes. Differences between predictions from 412 

these models can be explained according to the setup of each system, including different hydrodynamic 413 

models, grid resolutions, and atmospheric forcing inputs, which are summarized in table S3 in the 414 

supplementary material. The GLCFS uses the 2 km horizontal resolution High Resolution Rapid Refresh 415 

(HRRR) meteorological forcing, which is comparable to HRDPS (2.5 km), however previous studies have 416 

found that wind and direction predictions can vary between these models (Rey and Mulligan, 2021; 417 



 

 

Swatridge et al., 2022). The inclusion of waves in the two systems is also accounted for differently, with a 418 

separate model (WaveWatch III) used to simulate waves in the GLCFS, while Coastlines-LO uses a 419 

dynamically coupled wave and flow model that accounts for wave-current interactions. The inclusion of 420 

wave coupling in simulations of the Great Lakes can impact water level predictions (Mao and Xia, 2017). 421 

The GLCFS runs on NOAA’s high performance computing system, and the larger computational power 422 

allows it to include 3D baroclinic processes while still running in the required timeframe, whereas the 423 

Coastlines-LO system in the present study uses a 2D, depth averaged approach, and therefore doesn’t 424 

resolve vertical gradients in lake temperature or 3D circulation. The inclusion of river inflows and outflows 425 

in the GLCFS also allows the model to simulate seasonal changes in the mean lake water level instead of 426 

accounting for these changes based on observed data in post-processing.  427 

 428 

Forecasts results from both models were compared to observed data over a 6-day period in December 2022, 429 

during which 2 storm events occurred (Fig. 11; Table S4 in the supplementary material). Results from the 430 

first 6 h of subsequent forecasts are combined to construct a water level time series at observation points 431 

for both models for the entire duration. Both models represent trends in water levels over this, resulting in 432 

comparable metrics, with an average RMSE 0.02 m for both models, and r = 0.73 and 0.74 for Coastlines-433 

LO, and GLCFS, respectively. GLCFS achieved better predictions of peak water levels at Oswego for the 434 

event on December 1(RE = 30% for GLCFS, RE = 51% for Coastlines-LO; Fig. 11a), and more accurately 435 

represented the surface fluctuations observed over the entire 6 day period at Toronto (Fig. 11f).While 436 

GLCFS was able to represent water levels at some locations, Coastlines-LO had higher accuracy predictions 437 

at others (Fig. 11c, d). At Port Wellar and Cape Vincent, Coastlines-LO better predicted the peak set-down 438 

and set-up on December 1 by 0.01 m and 0.03 m respectively, while GLCFS underpredicted at these 439 

locations by 0.05 m and 0.09 m. Boths models had difficulty simulating the second storm surge (December 440 

3) at Oswego and Cape Vincent (Fig. 11 a, c), where the observed surge occurs approximately 3 h before 441 

the predicted peak. At the Kingston station (Fig. 11h), storm surges of 0.25 m and 0.30 m are observed. 442 

Coastlines-LO yielded better predictions for the first event, simulating a peak value of 0.24 m, compared 443 

to 0.28 m predicted by GLCFS, while GLCFS performed better for the second event, with a predicted storm 444 

surges of 0.28 m and 0.22 m for GLCFS and Coastlines-LO, respectively. Therefore, while the GLCFS 445 

offers several advantages, Coastlines-LO provides comparable results for water level prediction with a 446 

lower computational demand. This demonstrates that a relatively simple modelling system can be applied 447 

to coastal environments to achieve accurate and efficient hydrodynamic predictions. The open-source and 448 

flexible wrapper code could therefore be theoretically adapted to include different hydrodynamic models 449 

and investigate different field sites as previous works have successfully applied similar approaches for 450 

forecast modelling (e.g., Lin et al., 2022; Rey and Mulligan 2021).  451 



 

 

452 

Figure 11: Compiled Coastlines-LO forecast results compared to forecasts from the GLCFS and observed 453 

data at select water level gauge locations interpolated to a 30 minute time resolution for 2 subsequent events 454 

between November 30 – December 5, 2022. 455 

4.3. Limitations and Uncertainties 456 

Sensitivity testing and calibration of the numerical model this system is based on, comes from the work of 457 

Swatridge et al. (2022), which found that 3D simulations of Lake Ontario improved predictions of surface 458 

behaviour compared to 2D depth averaged simulations. The 3D simulation allowed the model to account 459 

for transfer of surface momentum into baroclinic motions, giving a better representation of current 460 

velocities and surface seiching following a storm event, resulting in reduced RMSE during storm events by 461 

up to 12%, and improvement in modelled peak storm surge magnitude by up to 0.03 m. While 3D 462 

simulations improved accuracy, they also increased the computational runtime of a 24 h simulation from 463 

about 2.5 h to 4 h. Ten-day forecasts of 3D hydrodynamic processes in Lake Erie has been achieved by Lin 464 

et al. (2022) in using the AEM3D model with a similar Coastlines computational workflow as the current 465 

work; however, the Lake Erie model in on a coarser 2 km horizontal grid and does not couple with SWAN 466 

to predict surface waves, which is computationally expensive compared to hydrodynamic simulations. 467 

Therefore, to apply this model in real-time with a new simulation every 6 h, 2D simulations are used, 468 

potentially resulting in up to 12% greater uncertainty in the forecast results. Additional investigation of 469 



 

 

real-time model performance during more storm events, including when the lake is stratified is 470 

recommended for further model validation.  471 

 472 

There is additional uncertainty in model results during the winter season, when ice forms in the Great Lakes. 473 

Lake Ontario typically experiences some ice cover between December and April (Anderson et al., 2018), 474 

which impacts lake processes, including water levels, circulation, and waves through limited air-water 475 

momentum transfer (Anderson et al., 2018; Farhadzadeh and Gangai, 2017). While ice cover has been 476 

simulated in Lake Ontario using other models (e.g., Oveisy et al., 2012), it is presently not available in 477 

Delft3D-SWAN. Therefore, simulations of surface behaviour during the ice-covered months would have 478 

limited accuracy in ice-covered areas. Future work could incorporate ice cover into the model by applying 479 

dynamic masking of ice-covered surfaces using satellite data to improve results during these months.  480 

 481 

While this system requires low computational resources, making it flexible for adaption to other coastal 482 

regions, its capability for forecasting in additional locations is an area that requires future investigation. 483 

The applicability of the model is limited by the availability of online data for model forcing and validation. 484 

In order to account for seasonal changes in mean lake levels, near real-time measurements of water levels 485 

are needed in the simulation to adjust the datum in post-processing. However, if no data were available the 486 

simulation could include the wind-generated short-term fluctuations in surface levels and real-time 487 

operations could continue. The workflow of the model is also limited by the availability of atmospheric 488 

forcing data, with any interruptions of service in the HRDPS forecasts causing the hydrodynamic 489 

simulations to fail for that run-cycle. Improvements in the system could account for this by providing a 490 

secondary source of atmospheric forcing in that case. In future studies, we recommend applying this system 491 

to a region in the coastal ocean, therefore requiring the development of real-time forecast inputs of open 492 

boundary conditions. 493 

 494 

5 Conclusions 495 

 496 

A forecast model for wind-driven hydrodynamics was developed and applied to Lake Ontario using an 497 

approach with relatively low computational demand. Wind-waves and water levels were simulated using a 498 

dynamically coupled Delft3D-SWAN model driven by high resolution atmospheric forcing. Simulations 499 

were able to forecast the wind-driven variability in the lake surface, with seasonal changes in the total water 500 

levels accounted for by adjusting the datum for each forecast cycle based on observations of the mean water 501 

level. The system provides rapid (~5 h runtime) predictions that are publicly available through the project 502 

webpage, with the automated system forecasting a 48 h period every 6 h. The model has been running 503 



 

 

continuously since April 2021, capturing a variety of storm events with storm surges up to 0.30 m and 504 

significant wave heights over 4.00 m. Reliable prediction for wave conditions during winter months are 505 

provided by the forecast model when no wave observations are available, however accuracy is limited 506 

where ice is present as this process is not included in the modelling system. 507 

 508 

Results show that the model is effective in simulating short term fluctuations in the water levels and wave 509 

conditions during strong storm events, with relative errors between observed and forecasted storm surge 510 

magnitudes and significant wave heights of less than 15%. Larger errors typically corresponded to locations 511 

in the lake with larger ranges in observed water levels. For storm events, as the forecast lead time decreases 512 

for progressing forecasts, the simulated results changed as a result of updates to the meteorological forcing. 513 

No constant trends in forecast error due to decreasing forecast length were apparent, with forecast accuracy 514 

increasing with shorter forecasts in some cases and staying constant at others, but overall results agreed 515 

well with observed data for all forecasts leading up to an event, with RMSE for storm surge and waves 516 

below 0.05 m and 0.30 m, respectively. The model compared well with other existing forecast models in 517 

the Great Lakes (GLCFS), yielding comparable results for water level predictions during multiple storm 518 

events. Due to the low computational requirements and pan-Canadian coverage from the High Resolution 519 

Deterministic Prediction System forecasts, this model could be adapted to other Canadian lakes and coastal 520 

seas with available bathymetry data for storm surge prediction and monitoring. 521 

 522 

6 Code and Data Availability Statement 523 

 524 

Real-time model results are available at https://coastlines.engineering.queensu.ca/lake-ontario/, and 525 

archived on the local server, to be made available by contacting the corresponding author. HRDPS input 526 

data is available from the Meteorological Service of Canada Datamart and observed data is openly 527 

accessible online, as cited in the text. The source code and documentation of the open source numerical 528 

model (Delft3D 4.01.01) can be accessed on their online repositories 529 

(https://oss.deltares.nl/web/delft3d/source-code, last access: 19 December, 2023). The Python and 530 

MATLAB scripts, and supporting files used in the automated workflow, as well as data and scripts used 531 

to generate the plots presented in this paper are archived on Zenodo 532 

(https://doi.org/10.5281/zenodo.10407863, Swatridge, 2023).  533 
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