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Abstract 13 

 14 

AAn automated real-time forecast model of surface hydrodynamics in Lake Ontario (Coastlines-LO) was 15 

developed to automatically predict storm surge and surface waves. The system uses a dynamically coupled 16 

Delft3D – SWAN model with a structured grid to generate 48 h predictions for the lake that are updated 17 

every 6 h. The lake surface is forced with meteorological data from the High Resolution Deterministic 18 

Prediction System (HRDPS). The forecast model has been running since May 2021, capturing a wide 19 

variety of storm conditions. Good agreement between observations and modelled results is achieved, with 20 

root mean squared errors (RMSE) for water levels and waves under 0.02 m and 0.26 m, respectively. During 21 

storm events, the magnitude and timing of storm surges are accurately predicted at 9 monitoring stations 22 

(RMSE < 0.05 m), with model accuracy either improving or remaining consistent with decreasing forecast 23 

length. Forecast significant wave heights agree with observed data (1-12% relative error for peak wave 24 

heights) at 4 wave buoys in the lake. Coastlines-LO forecasts for storm surge prediction for two consecutive 25 

storm events were compared to those from the Great Lakes Coastal Forecasting System (GLCFS) to further 26 

evaluate model performance. Both systems achieved comparable results with average RMSEs of 0.02 m. 27 

Coastlines-LO is an open-source wrapper code driven by open-data and has a relatively low computational 28 

demand, compared to GLCFS, making this approach suitable for forecasting marine conditions in other 29 

coastal regions. 30 

 31 

1 Introduction 32 

 33 

Coastal regions of large lakes can face hazardous conditions with costly consequences due to strong storm 34 

events, where powerful winds generate large waves and storm surge (Danard, 2003; FEMA, 2014; 35 

Gallagher et al., 2020). Waves during these events can cause erosion, overtopping, and run-up, with the 36 

hazards being greater when the water level is elevated from storm surge. The intensity and frequency of 37 

strong storm events is increasing in the Great Lakes region as a result of climate change, as tropical storms 38 

are predicted to reach higher latitudes more often (Bender et al., 2010; Studholme et al., 2022). In addition, 39 

the mean water levels in the Great Lakes are being impacted by climate change, with large seasonal 40 

fluctuations in lake levels and record low and high water levels consistently occurring in recent years 41 

(Gronewold and Rood, 2019). The combined impacts of these projections present a greater risk for 42 

hazardous conditions in Great Lakes coastal regions, and developing better methods to understand and 43 

model the physical processes occurring during storms is important to help mitigate the risk. (Chisholm et 44 

al., 2021; Gronewold et al., 2013). 45 



 

 

 46 

‘Real-time forecasting’ of lakes and coastal oceans can be achieved by applying numerical models to run 47 

predictive simulations of future hydrodynamic conditions in real time. Water level, circulation, and 48 

temperature simulations, using forecast models of large lakes and reservoirs, aid in water quality 49 

management (Baracchini et al., 2020; Carey et al., 2021; Lin et al., 2022). Coastal hazard forecasting is also 50 

being applied in numerous ocean regions, including the northern Gulf of Mexico where forecast systems of 51 

water levels and waves predict hurricane impacts on various scales (Bilskie et al., 2022; Dietrich et al., 52 

2018; Paramygin et al., 2017). Similarly, Rey and Mulligan (2021) use a coupled Deflt3D–SWAN model 53 

to forecast storm conditions in coastal North Carolina, investigating the influence of various atmospheric 54 

forecast models on the results during hurricanes. Specific to lakes, the National Oceanic and Atmospheric 55 

Administration (NOAA) has implemented forecast models for North American coastal regions, including 56 

the Great Lakes, with the Great Lakes Coastal Forecast System (GLCFS). The GLCFS uses a high-57 

resolution (30 m – 2 km) hydrodynamic model (FVCOM) to simulate physical processes including currents, 58 

temperatures, and water levels (Kelley et al., 2018; Peng et al., 2019).  Waves in the Great Lakes are 59 

predicted by Environment and Climate Change Canada’s (ECCC) Regional Ensemble Wave Prediction 60 

System (REWPS), which uses a probabilistic approach  to forecast wave characteristic 3 days into the 61 

future.   62 

 63 

Developing deterministic forecast models that run in real-time requires dealing with the challenge of 64 

minimizing the computational runtime of the model while still achieving accurate results (model resolution 65 

and performance), as the forecasts must be available in advance of the actual event. This need to effectively 66 

balance efficiency and accuracy in thesereal-time models is an active research area emphasized by( Elko et 67 

al.,  (2019). In addition, clear and efficient dissemination of forecasts must be provided to users and 68 

stakeholders.  Typical real-time coastal models require large computing resources to run high resolution 69 

and accurate forecast simulations (Bilskie et al., 2022; Kelley et al., 2018), while fewer model applications 70 

focus on developing flexible systems that can achieve accurate results while running on local computers, 71 

often for smaller domains, using open data and with a smaller computational allowance (Lin et al., 2022; 72 

Rey and Mulligan, 2021). 73 

 74 

The accuracy of numerical models for simulating the hydrodynamic response of coastal regions to storm 75 

events has increased with advances in computing power, data availability, and the development of models 76 

that can better represent more physical processes and their interactions, however model performance is still 77 

limited by the quality of input and forcing data available for a simulation. Model ability also depends on 78 

the grid resolution, with higher resolution models being more capable of resolving bathymetric features 79 



 

 

(Bilskie et al., 2022), and the inclusion of relevant processes, such as wave-current interactions and 80 

baroclinic effects (Asher et al., 2019; Swatridge et al., 2022). A main consideration is the accuracy of the 81 

atmospheric forcing, as winds are the primary driver of surface behaviour, and errors in the winds translate 82 

through as errors in the modelled results (Dietrich et al., 2018; Farhadzadeh and Gangai, 2017; Rey and 83 

Mulligan, 2021).  84 

 85 

A probabilistic approach can be used to account for uncertainty in atmospheric forcing by running multiple 86 

variations of the same event, however this requires large computational resources (Baracchini et al., 2020; 87 

Fleming et al., 2008). In deterministic forecasts of water levels in Lake Erie, error in the atmospheric forcing 88 

was significantly larger for 240 h forecasts compared to the 120 h forecasts, which translated to increased 89 

error in predicted water levels (Lin et al., 2022). The longer forecast predicted excessive seiching and an 90 

underestimation in peak water level, which improved as forecast length decreased. Forecasts of hurricane 91 

storm surge and waves in the Gulf of Mexico by Forbes et al. (2010), Dietrich et al. (2018), and Bilskie et 92 

al. (2022) found trends of decreasing error in storm surge prediction with shorter forecast length. Longer 93 

forecasts (~5 days) resulted in storm surge variations of up to 4 m from the best track predictions, attributed 94 

to variability in atmospheric forcing, and for forecasts shorter than 2.5 days, simulations converged on a 95 

solution, and error was almost constant (Dietrich et al., 2018). 96 

 97 

The hydrodynamics of Lake Ontario have been simulated on various scales in previous studies (e.g., Huang 98 

et al., 2010; Paturi et al., 2012; Prakesh et al., 2007; Shore, 2009). Numerical models have also been used 99 

to simulate waves and circulation during extreme events in the Kingston Basin (Cooper and Mulligan, 2016; 100 

McCombs et al., 2014a; McCombs et al., 2014b). Sogut et al. (2019) used a combination of analyzing 101 

historical water level and wave data, as well as numerical modelling of extreme storm events to gain insight 102 

on lake seiching, storm surges, and wave patterns. Historical data have also been studied to determine the 103 

risk of flooding due to storm surge along the Lake Ontario shoreline with a statistical model (Steinschneider, 104 

2021). Surface waves and storm surge were simulated over the entire lake by Swatridge et al. (2022) during 105 

recent storm events. Their study investigated the influence of different wind fields on the accuracy of storm 106 

surge simulation, finding that variations in meteorological forcing were the primary source of uncertainty 107 

in model results. 108 

 109 

In the present study, an existing depth-averaged numerical model of Lake Ontario (Swatridge et al., 2022) 110 

was applied to the lake to forecast water levels and waves in real-time, driven by spatially varied wind 111 

fields from a high-resolution wind forecast model. The workflow develops an open-source Python- and 112 

MATLAB-based wrapper code, that has been successfully applied to other systems using different 113 



 

 

hydrodynamic models as part of the Canadian Coastal and Lake Forecasting Model System (Coastlines; 114 

https://coastlines.engineering.queensu.ca; Lin et al., 2022; Rey and Mulligan, 2021). This flexible 115 

methodology uses open access forcing/validation data and requires a relatively low computational demand, 116 

compared to other existing Great Lakes storm surge models, allowing for application to other locations. 117 

Model performance is evaluated by comparing results to near-real time observed data. Forecast results, for 118 

storm surges and waves are statistically investigated over forecast lead times ranging from 6 to 48 h. 119 

 120 

2 Methods 121 

 122 

2.1. Modelling Approach 123 

A two-dimensional (depth-averaged) coupled hydrodynamic-wave model is applied to Lake Ontario to 124 

simulate wind driven hydrodynamics and waves using Delft3D-SWAN. The Delft3D flow model calculates 125 

non-steady flow on a structured grid by solving the Reynolds-Averaged Navier Stokes equations (Lesser et 126 

al., 2004). Wave conditions are simulated with the phase-averaged wave model, Simulating WAves 127 

Nearshore (SWAN), which uses the spectral action balance equation to compute random wind-generated 128 

waves. SWAN accounts for non-linear wave interactions, wave propagation, refraction, dissipation due to 129 

whitecapping, bottom friction and depth-induced breaking (Booij et al., 1999). The models are dynamically 130 

coupled to account for wave-current interactions. Radiation stress gradients from SWAN simulations are 131 

input into the horizontal momentum equations in Delft3D to account for the impacts of waves on 132 

circulation, such as wave-induced mass fluxes driving currents, and enhanced bed shear stress. Results from 133 

the hydrodynamic simulation are then used to update water levels and circulation in the wave model.  134 

 135 

Model setup choices were made based on simulations by Swatridge et al. (2022) which were adapted for 136 

the present study to minimize computational demand, allowing the system to run in real-time. The Delft3D 137 

simulation uses a curvilinear grid with a horizontal resolution gradually ranging from 250-450 m. The wave 138 

grid has a coarser resolution, ranging from 350-600 m,  thus reducing the computational time required to 139 

complete a wave simulation while still achieving higher resolution in nearshore areas (Table S2 in the 140 

supplementary material). Flow simulations are depth-averaged and barotropic, shown by Swatridge et al. 141 

(2022) to accurately represent surface storm surge in Lake Ontario, with root mean squared errors (RMSEs) 142 

between observations and model results ranging between 0.01 m - 0.07 m during several major events. 143 

Bathymetry data was interpolated to the grid from the US National Centers for Environmental Information’s 144 

(NCEI) 3-arcsecond (~ 90 m) resolution dataset with supplementary data from the ETOPO1 global relief 145 

model with a resolution of approximately 1.3 km (Fig. 1). Detailed sensitivity testing for this model was 146 

completed in Swatridge et al. (2022) to calibrate model parameters. Hydrodynamic simulations use a time 147 

https://coastlines.engineering.queensu.ca/


 

 

step of 120 s to satisfy the Courant–Friedrichs–Lewy stability criterion, and coupling with the stationary 148 

wave model occurs every 60 minutes. the wave model uses a stationary computational scheme. Coupling 149 

between the flow and wave models occurs every 60 minutes.  150 

 151 

Figure 1: Map of Lake Ontario showing NCEI bathymetry and the location of real-time water level, wind, 152 

and wave observation stations (Table 1, Table 2) 153 

 154 

Spatially varied atmospheric input from the Meteorological Service of Canada (MSC) High Resolution 155 

Deterministic Prediction System (HRDPS) is used to drive the model (Milbrandt et al., 2016). HRDPS is 156 

an hourly assimilated forecast system downscaled from the larger scale Regional Deterministic Prediction 157 

System (RDPS) that provides hourly predictions of surface pressure and wind velocity components with a 158 

horizontal resolution of 2.5 km for the pan-Canada domain. The system runs every 6 h, predicting 159 

atmospheric conditions 48 h into the future. This wind-forcing was successfully used by Swatridge et al. 160 

(2022) to simulate the lake surface response to a range of storm conditions. Their modelled results for water 161 

levels and surface waves agreed with observations at up to 16 locations in Lake Ontario, resulting in 162 

maximum difference between predicted and observed peak wave heights and water levels of 0.4 m and 163 

0.08 m, respectively. No lateral boundary conditions are applied to account for the influence of the riverine 164 

flows (Niagara and St. Lawrence Rivers), as results from previous modelling studies have concluded that 165 

the hydrodynamic influence of river inflows and outflows in limited to within 10 km of the river mouth 166 

Tand therefore can be neglected for simulations of lake wide water level over event based timescales  167 

previous works have found the hydrodynamic influence of river flows is limited to within 10 km of the 168 

river inlet, and therefore have a negligible impact on large-scale circulation and water levels over event-169 

based timescales (Prakash et al., 2007; McCombs et al. 2014a). The closed based approach leads to 170 



 

 

uncertainties in the simulated results in the river region, however the impacts on the lake-wide hydraulics 171 

is expected to be minimal.  172 

 173 

2.2. Development of an Automated Prediction System  174 

The forecast system uses a combination of code written in MATLAB and Python to automatically run every 175 

6 h and has been operational since May 2021 (https://coastlines.engineering.queensu.ca/lake-ontario/). The 176 

workflow (Fig 2) consists of pre-processing, model simulation and post processing stages. For pre-177 

processing, initiation of the modelling system is scheduled to occur when a new HRDPS forecast becomes 178 

available. Python is used to download the latest forecast and MATLAB is used to automatically process the 179 

atmospheric forcing and write input files for Delft3D-SWAN. The Delft3D model definition files are then 180 

updated with the correct time information.  181 

 182 

Figure 2. Diagram of the automated workflow for processes performed for each model cycle (every 6 h 183 

initiated by Windows Task Scheduler) on the local Coastlines server. 184 

 185 

Model simulations cover a period of 48 h and are ‘hot-started’ with a restart file from a previous model run 186 

if available. If a restart file is not available, simulations begin from rest with initial water levels of 0 m and 187 

current speeds (u) of 0 m s-1 throughout the lake. When the simulation finishes, all available real-time 188 

observed data, outlined in Table S1 in the supplementary material, is downloaded using Python, which is 189 

then processed in MATLAB. Observed water levels at each station are averaged over the previous 12 h and 190 

used to locally adjust the datum of the model outputs. We acknowledge that assimilating observed water 191 

https://coastlines.engineering.queensu.ca/lake-ontario/


 

 

levels into the initial conditions may be a preferred approach, but this is beyond the scope of the present 192 

study and may be incorporated into future versions on Coastlines-LO. The model simulates high frequency 193 

variability in water levels generated by winds. Seasonal changes in water levels due to inflows, outflows, 194 

and evaporation are not included, but are accounted for in post-processing. 195 

 196 

Time series plots of observed water levels and wave heights are automatically compared to the forecast 197 

model results from the previous 2.5 days at the observation locations and additional plots are created to 198 

provide predictions at other locations of interest with no observed data (Fig. 1). Spatial snapshots of model 199 

results across the lake are generated at select times, as well as animations showing key output parameters 200 

during the forecast simulation. All outputs are exported to Google Sheets and displayed on the project 201 

webpage, https://coastlines.engineering.queensu.ca/. The system runs in a Windows environment using 16 202 

cores of a 32-core XEON workstation, with each workflow cycle taking approximately 5 h to complete a 203 

48 h forecast simulation. 204 

 205 

2.3. Real-time Comparison between Model Results and Observations 206 

Near real-time observations of water surface elevation (η) data are available at 9 water level gauges around 207 

the perimeter of Lake Ontario from the National Oceanic and Atmospheric Administration (NOAA) and 208 

the Department of Fisheries and Oceans Canada (DFO), with temporal resolutions of 3 minutes and 6 209 

minutes, respectively (Fig. 1; Table 1). Hourly surface waves and winds are measured in Lake Ontario at 210 

one US National Data Buoy Center (NDBC) buoy and ECCC buoys from spring to early winter (Table 2). 211 

The buoys report the significant wave height (Hs), peak wave period (Tp), surface wind speed and direction 212 

averaged over an 8-minute period (U).  213 

 214 

Table 1: List of real-time water level gauge station locations  215 

Name Longitude Latitude Source 

Oswego -76.52 43.46 NOAA 

Rochester -77.63 43.27 NOAA 

Olcott Harbour -78.72 43.34 NOAA 

Cape Vincent -76.33 44.12 NOAA 

Port Wellar -79.22 43.24 DFO  

Cobourg -78.16 43.96 DFO  

Burlington -79.79 43.29 DFO  

Kingston -76.52 44.22 DFO  

Toronto -79.38 43.64 DFO  



 

 

 216 

Table 2: List of real-time wave buoy locations 217 

Name Longitude Latitude Depth Source 

Prince Edward Point -76.87 43.78 68 m ECCC 

West Lake Ontario -79.53 43.25 35 m  ECCC  

Northwest Lake Ontario -78.98 43.77 54 m  ECCC  

East Lake Ontario -77.40 43.62 140 m NDBC 

 218 

For long term analysis of results, the residual component of the water level data, representing storm surge, 219 

is isolated at the gauge locations by finding the difference between the total water level and the average 220 

water level, calculated using a gaussian window of 7 days (Steinschneider et al., 2021). Model performance 221 

is quantified using statistical measures including the RMSE (eq. 1), normalized RMSE (NRMSE; eq. 2), 222 

and the correlation coefficient (r; eq. 3):  223 

𝑅𝑀𝑆𝐸 =  √∑
(𝑥𝑖−𝑦𝑖)2

𝑛
𝑛
𝑖=1            (1) 224 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦̅
           (2) 225 

𝑟 =  
∑(𝑦−𝑦̅) (𝑥−𝑥̅) 

√∑(𝑦−𝑦̅)2  ∑(𝑥−𝑥̅)
2

    

          (3) 226 

Where xi and yi (i = 1, 2,3, … N) are time series of modelled and observed data respectively, and N is the 227 

number of samples in the series. Strong storm surge events are identified from the water level data using 228 

the peaks-over-threshold method (Steinschneider et al. 2021). Forecast error during select events was 229 

evaluated by computing error metrics for consecutive forecasts leading up to the peak of the event. For each 230 

forecast, the relative error (RE; eq. 4), between observed and simulated maximum storm surge relative to 231 

the mean water level calculated at water level gauge locations, and between observed and modelled 232 

maximum wave heights at buoy locations was computed. The RMSE for each location was computed over 233 

a 6 h period that included the peak of the event.  234 

𝑅𝐸 =
|(𝑦̅− 𝑦)−(𝑥̅−𝑥)|

(𝑦̅− 𝑦)
           (4) 235 

 236 

3 Results 237 

 238 

3.1. Long-term model performance 239 



 

 

Simulation results, for water levels and waves, at the observation locations, were compiled over the 20-240 

month operational period. The first 6 h of each 48 h forecast were stitched into a single time series, and 241 

these results were compared to the observed data (Fig. S1 in the supplementary material). During this time, 242 

seasonal changes in the observed mean lake level fluctuated by over 1 m, with the highest water levels 243 

occurring in May 2022. The ability of the model to reproduce storm surge was investigated over a four-244 

month period when multiple storm events occurred (106 days from 15 September 2022 to 30 December 245 

2022; Fig. 3). Stations with larger ranges of observed water levels (i.e., Burlington, Cape Vincent), located 246 

at the east and west ends of the lake (i.e., Fig. 3c, g) show a slight bias, where the model tended to slightly 247 

overpredict the maximum and minimum values, corresponding to larger RMSE values (Table 3). These 248 

stations also tended to show a stronger correlation (r = 0.83 – 0.86); whereas observation points with 249 

typically smaller ranges in water levels (Fig. 3a, e) resulted in weaker correlations (r = 0.76 – 0.79). 250 

Normalized results show comparable error statistics at all stations, with larger errors occurring at locations 251 

with smaller storm surges (i.e., Rochester, Oswego).  252 

 253 



 

 

254 

Figure 3: Observed (black) and modelled (red) residual water levels at select observation points over a 3 255 

month period (September – December 2022) with corresponding scatter plots and error statistics over this 256 

period at select locations.  257 

  258 



 

 

 259 

Table 3: Error Statistics for residual water level results over 106 days (September 15 – December 30, 2022) 260 

 

Minimum η 

(m) 

Mean η 

(m) 

Maximum 

η (m) 

RMSE 

(m) 

NRMSE 

(m) r 

Oswego -0.10 0.07 0.12 0.01 0.15 0.80 

Rochester -0.03 0.03 0.04 0.00 0.16 0.76 

Olcott -0.16 0.04 0.11 0.01 0.19 0.80 

Cape Vincent -0.22 0.10 0.34 0.02 0.16 0.83 

Port Wellar -0.19 0.06 0.16 0.01 0.14 0.86 

Cobourg -0.08 0.04 0.07 0.01 0.14 0.79 

Toronto -0.16 0.07 0.14 0.01 0.14 0.83 

Burlington -0.22 0.10 0.20 0.02 0.14 0.83 

Kingston -0.21 0.09 0.25 0.01 0.14 0.86 

 261 

Results for simulated Hs at buoy locations show the largest waves occurred during winter, between 262 

December and March (Fig.4). Results showing forecasted wave period compared to observations are shown 263 

in Fig S2 in the supplementary material. Over the 600-day operational period, no monitoring data was 264 

available for comparison and Lake Ontario could potentially experience partial ice-cover in nearshore areas, 265 

impacting the wave environment (Anderson et al., 2018). Stations in the eastern end of the lake (Prince 266 

Edward Point, East Lake Ontario) are expected to experience the largest waves due to the experienced the 267 

largest waves, due to the prominent north-easterly direction of storms over the lake, which results in winds 268 

blowing along the long-axis of the lake creating a resulting in a larger fetch at these locations (Lacke et al. 269 

2007; McCombs et al. 2014a). Error statistics show similar values for RMSE at these points however Prince 270 

Edward Point had the lowest correlation coefficient (Fig. 4a, b; r = 0.71), while East Lake Ontario showed 271 

the highest correlation (Fig. 4c, d; r = 0.88). Lower RMSE were at stations with smaller waves (Fig. 4e, g), 272 

and normalized results (Table 3) show comparable results at all buoys (NRMSE = 0.42 – 0.53 m).  273 

 274 



 

 

 275 

Figure 4: Time series of observed (black) and modelled (red) significant wave height over the duration that 276 

the buoys were in the lake (September -December 2022) with corresponding error scatter plots at the 277 

location of the 4 buoys. Note that the model was offline and are unavailable between February 9 – 27, 2022 278 

due to a change of service for the meteorological inputs.  279 

  280 



 

 

Table 3: Error statistics for significant wave heights at the buoy locations over 600 days (April 21, 2021 – 281 

December 12, 2022)  282 

 283 

3.2. Storm event forecasts 284 

The performance of the model was evaluated over an event on November 121- 12, 2021 consisting of wind 285 

speeds that approached 15 m s-1, with the direction rotating clockwise from blowing towards the northeast 286 

to the winds dominantly blowing towards the east over a 24 h period,. This event was selected due to the 287 

large storm surge generated (η  = 0.17 m), and it resulted in the largest significant wave height that occurreds 288 

over the 20 month operational period in which which generated the largest waves and storm surge over the 289 

20 month operational period with available observed water level and with wave measurements dataare 290 

available from all buoy locations for comparison. During this event, wind speeds reached up to 15 m s-1, 291 

with the direction rotating clockwise from the southeast to the west over a 24 h period. Overlapping 48 h 292 

HRDPS forecasts (i.e., generated every 6 h) were validated against buoy observations, with good agreement 293 

found between modelled and predicted total wind speeds and directions, with peak wind speeds 294 

underrepresented by at most, 4.21 m s-1 at Northwest Lake Ontario and overpredicted by up to 2.61 m s-1 at 295 

Prince Edward Point (Fig. S3 in the supplementary material) 296 

 297 

This event resulted in an observed storm surge of up to 0.16 m in the northeast region of the lake, at Cape 298 

Vincent and Kingston. The forecast simulations captured the timing and magnitude of the event peak, with 299 

predicted surge values ranging between 0.12 m – 0.17 m (Fig.5d, i). A set down of about 0.10 m was 300 

recorded at the Burlington station, which was underpredicted by the model by up to 0.05 m. The simulated 301 

results at this location predicted water levels up to 0.05 m higher than the observations for the 24 h preceding 302 

the storm (Fig.5h). Notable error can also be identified at Cobourg (Fig. 5f) with the model predicting 303 

negligible fluctuations in the water surface, but observations show some oscillations (0.05 m).  304 

 305 

Location Mean Hs (m) Maximum Hs (m) RMSE (m) r NRMSE (m) 

Prince Edward Point 0.44 3.82 0.24 0.71 0.53 

East Lake Ontario 0.62 4.42 0.26 0.88 0.42 

West Lake Ontario 0.34 2.60 0.16 0.76 0.48 

Northwest Lake Ontario 0.35 2.29 0.19 0.74 0.53 
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 306 

Figure 5: Time series of measured water levels at various observation points compared to forecasted data 307 

from progressive model simulations. The highlighted area indicates the 12 h period over which error 308 

statistics are computed. 309 

 310 

Forecast performance was quantified by computing error statistics, over the duration of the event, for each 311 

forecast leading up to the time of peak water level. The largest errors occurred at the location of the set 312 

down, Burlington and Toronto, with a nearly constant RMSE of 0.03 m, and RE of 14% and 10% 313 

respectively (Fig. 6c, d). The errors at all stations remained fairly constant with RMSE and RE under 0.03 m 314 

and 10%, respectively, for each new forecast. However, map results showing the spatial variability in water 315 

level predictions from forecasts 12 h and 36 h before the storm peak show large differences (Fig. 6a,b). The 316 

earlier results (Fig. 6a) simulated a far less extensive storm surge in the northeast region of the lake than 317 

what was subsequently predicted 24 h later (Fig. 6b), when the storm surge was simulated to impact most 318 

of the northeast shoreline. The later forecast also predicted spatially larger set-down, about 0.10 m more 319 

than the earlier forecast in the western region of the lake. 320 

 321 



 

 

322 

Figure 6: Contour plots showing maps of modelled water levels at the peak of the storm event from two 323 

different forecasts, with an starting a) 35 hr lead time starting November 11, 00:00 UTC and b) 11 houthour 324 

lead time starting on November 12, 00:00 UTC, with observed data plotted at the observation locations in 325 

black circles. Panels c) to h) show metrics including the RE and RMSE for peak storm surge magnitude at 326 

the locations of 6 selected water level gauges from the 8 forecasts preceding the storm event. 327 

 328 

Measured waves during this event reached up to 2.10 m, with the buoys in the western region of the lake 329 

(Fig. 7c, d) experiencing peak wave heights about 12 h earlier (Nov 11, 2021, 18:00 UTC) than the buoys 330 

in the eastern region of the lake (Fig. 7a, b; Nov 12 2021, 06:00 UTC). This is explained by the shift in 331 

wind direction over the storm duration, with winds originally from the southeast, rotating clockwise, then 332 

blowing dominantly from the west along the axis of the lake (Fig. S3 in the supplementary material). 333 

Overall, forecast simulations captured the magnitude of the waves all stations, with some error, and 334 

approximately 5 h delay in the timing of the peak Hs at Prince Edward Point (Fig. 7a). Error for waves 335 

during this event, at all stations, was constant for consecutive forecasts at all stations, with RMSE for 336 



 

 

between 0.03 – 0.25 m and RE between 1-12%. Despite the generally consistent results, at the buoy 337 

locations, maps from different forecasts show distinct changes between the 36 h forecast (Fig. 8a) and the 338 

6 h forecast (Fig. 8b). Simulated wave fields in the northeast region of the lake showed similar results 339 

between forecasts, but in the northwest, predicted wave magnitudes and directions were distinctly different. 340 

The earlier forecast predicted waves under 0.70 m coming from the southeast, whereas the later forecast 341 

showed larger waves (Hs = 0.50 – 1.00 m) from the southwest, which can be attributed to changes in 342 

forecasted wind-fields.  343 

 344 

345 

Figure 7: Time series of measured Hs at the location of the 4 buoys compared to modelled data from 346 

progressive model forecasts for Event 1 (November 12, 2021). 347 



 

 

348 

Figure 8: Contour maps of modelled waves  with  vectors indicating wave direction at a select time during 349 

the storm eventthe peak of the storm event from two forecasts, with: an a) 32 hr lead time starting starting 350 

a) November 11, 00:00 UTC; and b) 8 hr lead time starting November 12, 00:00 UTC with observed data 351 

plotted at the observation locations in black circles. Every 10th vector is plotted for clarity. Panels c) to f) 352 

show metrics including the RE and RMSE for significant wave height at the locations of 4 buoys from the 353 

8 forecasts preceding the storm event on November 12, 2021, 12:00 UTC, and RMSE values are computed 354 

over a 12 h period centered at the time of the peak Hs for each station. 355 

 356 

For further investigation into model performance during storm events, wave forecasts during the event that 357 

resulted in the largest observed wave heights (December 1, 2022, Fig. 3c) were examined. During this 358 

storm, the lake experienced sustained easterly winds for almost 24 h, reaching speeds > 20 m s-1 on 359 

December 1, 14:00 UTC, generating waves > 4 m (Fig. 9. Data was only available from the one buoy at 360 

East Lake Ontario during this event, which recorded a maximum Hs = 4.46 m. The forecasts initially 361 

underestimated this value, with a maximum predicted wave height of Hs = 4.19 m from the forecast starting 362 

on November 29 18:00 UTC, and the next forecast then overestimated this value (Hs = 4.54 m). Subsequent 363 



 

 

forecasts slightly underestimated the peak value, with the lowest predicted peak Hs = 4.26 m and the 364 

maximum values occurring ~1 h after the observed peak. All forecast results tended to overestimate the 365 

peak wave period, with predicted values ranging between 7.8 - 8.1 s, compared to an observed maximum 366 

value of 7.2 s.  367 

 368 

369 

Figure 9: Variability in significant wave height during a storm event: measured Hs compared to progressive 370 

forecast results at the Prince Edward Point Buoy for Event 3 (December 1, 2022; top) and maps of Hs and 371 

wave direction shown at an interval of 2 h (every 10th vector is shown for clarity).  372 

 373 

4 Discussion 374 

 375 

4.1. Forecast Lead Times 376 



 

 

Water level forecasts during a storm event on December 8, 2021, were examined in relation to forecast lead 377 

time. During this event, 21 m s-1 winds (Figure S4 in the supplementary material) generated a storm surge 378 

of approximately 0.20 m along the northeast coast, and a resulting setdown of 0.10 m on the opposite end 379 

of the lake. Error statistics throughout the peak of the event, as a function of forecast lead time, were plotted 380 

at selected stations (Fig. 10). The timing and magnitude of the storm surge was well represented by the 381 

forecast model, with RMSE < 0.05 m for all forecasts and a maximum RE =14%.  382 

 383 

 384 
Figure 10: Time series of measured water levels at select observation points compared to forecasted data 385 

from progressive model simulations for Event 3: December 08, 2021, with corresponding plots showing 386 

computed RMSE calculated over the shaded area and percent error in peak storm surge from the 8 forecasts 387 

preceding the storm event.  388 

 389 

Trends in the error can be identified for this event at all stations, with notable patterns corresponding to 390 

locations with larger fluctuations in water level (i.e., Cape Vincent, Kingston, Burlington). At these sites, 391 



 

 

forecast error tended to decrease as the forecast length shortened. At Cape Vincent, the initial 48 h forecast 392 

had an RMSE of 0.05 m and by the 18 h forecast, the RMSE had decreased to 0.01 m. However, after the 393 

18 h forecast there was a slight increase in RE from less than 1% to about 5% (Fig. 10b). Trends in 394 

decreasing error were also observed at Kingston, where a similar decrease in RMSE was observed, and the 395 

RE was maintained between 1 – 5%, corresponding to a maximum underprediction of about 0.05 m (Fig. 396 

10i, j). The locations with smaller ranges in surface fluctuations (Toronto, Port Wellar) generally showed 397 

constant error (0.02 m and ~1% at Port Wellar; 0.01 m and 7% at Toronto) for consecutive forecast results 398 

over the duration of this event (Fig. 10d, f). 399 

 400 

Hydrodynamics in the model are only driven by atmospheric forcing, which is a primary source of 401 

uncertainty in simulations of surface dynamics in large lakes. The accuracy of meteorological forecasts 402 

typically decreases with increasing length due to assimilation schemes using observations and satellite 403 

imagery to yield more accurate results (Buehner et al., 2015). Therefore, it is expected that hydrodynamic 404 

forecast simulations will increase in accuracy as the lead time to a storm event decreases. For forecasts of 405 

storm surges in other Great Lakes (e.g., Lake Erie; Lin et al., 2022) and coastal seas (e.g., Gulf of Mexico; 406 

Dietrich et al., 2018), improvements in storm surge predictions are directly linked to increased accuracy in 407 

meteorological forcing leading up to an event. However, our Lake Ontario model results do not follow a 408 

consistent trend between different events, either improving (Fig. 10) or maintaining accuracy (Fig. 6; 409 

Fig. 8). Cases where error increases (i.e.. Fig 10b) or remains constant (i.e. Fig. 8), can be explained due to 410 

sources of uncertainty in the model calibration and neglecting additional hydrodynamic processes in the 411 

model setup (i.e. 3-dimensional circulation). Despite model accuracy being constant at the observation 412 

locations, changes in the spatial variability of predicted water levels and wave conditions for different 413 

forecasts are not clearly communicated through time series analysis but are qualitatively shown in maps of 414 

results (Fig. 6; Fig. 10). 415 

 416 

4.2. Comparison with Other Models  417 

The current work (Coastlines-LO) makes use of a relatively simple, low computational demand modelling 418 

approach. The performance of this model can be compared to the GLCFS, which delivers a higher resolution 419 

and more complex forecast system in throughout the Great Lakes. Differences between predictions from 420 

these models can be explained according to the setup of each system, including different hydrodynamic 421 

models, grid resolutions, and atmospheric forcing inputs, which are summarized in table S23 in the 422 

supplementary material. The GLCFS uses the 2 km horizontal resolution High Resolution Rapid Refresh 423 

(HRRR) meteorological forcing, which is comparable to HRDPS (2.5 km), however previous studies have 424 

found that wind and direction predictions can vary between these models (Rey and Mulligan, 2021; 425 



 

 

Swatridge et al., 2022). The inclusion of waves in the two systems is also accounted for differently, with a 426 

separate model (WaveWatch III) used to simulate waves in the GLCFS, while Coastlines-LO uses a 427 

dynamically coupled wave and flow model that accounts for wave-current interactions. The inclusion of 428 

wave coupling in simulations of the Great Lakes can impact water level predictions (Mao and Xia, 2017). 429 

The GLCFS runs on NOAA’s high performance computing system, and the larger computational power 430 

allows it to include 3D baroclinic processes while still running in the required timeframe, whereas the 431 

Coastlines-LO system in the present study uses a 2D, depth averaged approach, and therefore doesn’t 432 

resolve vertical gradients in lake temperature or 3D circulation. The inclusion of river inflows and outflows 433 

in the GLCFS also allows the model to simulate seasonal changes in the mean lake water level instead of 434 

accounting for these changes based on observed data in post-processing.  435 

 436 

Forecasts results from both models were compared to observed data over a 6-day period in December 2022, 437 

during which 2 storm events occurred (Fig. 11; Table S34 in the supplementary material). Results from the 438 

first 6 h of subsequent forecasts are combined to construct a water level time series at observation points 439 

for both models for the entire duration. Both models represent trends in water levels over this, resulting in 440 

comparable metrics, with an average RMSE 0.02 m for both models, and r = 0.73 and 0.74 for Coastlines-441 

LO, and GLCFS, respectively. GLCFS achieved better predictions of peak water levels at Oswego for the 442 

event on December 1(RE = 30% for GLCFS, RE = 51% for Coastlines-LO; Fig. 11a), and more accurately 443 

represented the surface fluctuations observed over the entire 6 day period at Toronto (Fig. 11f).While 444 

GLCFS was able to represent water levels at some locations, Coastlines-LO had higher accuracy predictions 445 

at others (Fig. 11c, d). At Port Wellar and Cape Vincent, Coastlines-LO better predicted the peak set-down 446 

and set-up on December 1 by 0.01 m and 0.03 m respectively, while GLCFS underpredicted at these 447 

locations by 0.05 m and 0.09 m. Boths models had difficulty simulating the second storm surge (December 448 

3) at Oswego and Cape Vincent (Fig. 11 a, c), where the observed surge occurs approximately 3 h before 449 

the predicted peak. At the Kingston station (Fig. 11h), storm surges of 0.25 m and 0.30 m are observed. 450 

Coastlines-LO yielded better predictions for the first event, simulating a peak value of 0.24 m, compared 451 

to 0.28 m predicted by GLCFS, while GLCFS performed better for the second event, with a predicted storm 452 

surges of 0.28 m and 0.22 m for GLCFS and Coastlines-LO, respectively. Therefore, while the GLCFS 453 

offers several advantages, Coastlines-LO is able to provides comparable results for water level prediction 454 

with a lower computational demand. This demonstrates that a relatively simple modelling system can be 455 

applied to coastal environments to achieve accurate and efficient hydrodynamic predictions. The open-456 

source and flexible wrapper code could therefore be theoretically adapted  Coastlines-LO has the benefit of 457 

a low computational demand and usage of the flexible open-source wrapping code and that allows for easy 458 

adaption to include different hydrodynamic models and investigate different field sites as previous works 459 



 

 

have successfully applied similar approaches for forecast modelling  (e.g., Lin et al., 2022; Rey and 460 

Mulligan 2021). , while still achieving very comparable results simulating short term water level 461 

fluctuations in Lake Ontario.  462 

 463 

464 

Figure 11: Compiled Coastlines-LO forecast results compared to forecasts from the GLCFS and observed 465 

data at select water level gauge locations interpolated to a 30 minute time resolution for 2 subsequent events 466 

between November 30 – December 5, 2022. 467 

4.3. Limitations and Uncertainties 468 

Sensitivity testing and calibration of the numerical model this system is based on, comes from the work of 469 

Swatridge et al. (2022), which found that 3D simulations of Lake Ontario improved predictions of surface 470 

behaviour compared to 2D depth averaged simulations. The 3D simulation allowed the model to account 471 

for transfer of surface momentum into baroclinic motions, giving a better representation of current 472 

velocities and surface seiching following a storm event, resulting in reduced RMSE during storm events by 473 

up to 12%, and improvement in modelled peak storm surge magnitude by up to 0.03 m. While 3D 474 

simulations improved accuracy, they also increased the computational runtime of a 24 h simulation from 475 

about 2.5 h to 4 h. Ten-day forecasts of 3D hydrodynamic processes in Lake Erie has been achieved by Lin 476 

et al. (2022) in using the AEM3D model with a similar Coastlines computational workflow as the current 477 

work; however, the Lake Erie model in on a coarser 2 km horizontal grid and does not couple with SWAN 478 



 

 

to predict surface waves, which is computationally expensive compared to hydrodynamic simulations. 479 

Therefore, to apply this model in real-time with a new simulation every 6 h, 2D simulations are used, 480 

potentially resulting in up to 12% greater uncertainty in the forecast results. Additional investigation of 481 

real-time model performance during more storm events, including when the lake is stratified is 482 

recommended for further model validation.  483 

 484 

There is additional uncertainty in model results during the winter season, when ice forms in the Great Lakes. 485 

Lake Ontario typically experiences some ice cover between December and April (Anderson et al., 2018), 486 

which impacts lake processes, including water levels, circulation, and waves through limited air-water 487 

momentum transfer (Anderson et al., 2018; Farhadzadeh and Gangai, 2017). While ice cover has been 488 

simulated in Lake Ontario using other models (e.g., Oveisy et al., 2012), it is presently not available in 489 

Delft3D-SWAN. Therefore, simulations of surface behaviour during the ice-covered months would have 490 

limited accuracy in ice-covered areas. Future work could incorporate ice cover into the model byor applingy 491 

dynamic masking of ice-covered surfaces using satellite dataa, to improve results during these months.  492 

 493 

While this system requires low computational resources, making it flexible for adaption to other coastal 494 

regions, it’s capability for forecasting in additional locations is an area that requires future investigation.  , 495 

making it possible to adapt it for other locations, tThe applicability of the model is limited by the availability 496 

of online data for model forcing and validation. In order to account for seasonal changes in mean lake 497 

levels, near real-time measurements of water levels are needed in the simulation to adjust the datum in post-498 

processing. However, if no data were available the simulation could include the wind-generated short-term 499 

fluctuations in surface levels and real-time operations could continue. The workflow of the model is also 500 

limited by the availability of atmospheric forcing data, with any interruptions of service in the HRDPS 501 

forecasts causing the hydrodynamic simulations to fail for that run-cycle. Improvements in the system could 502 

account for this by providing a secondary source of atmospheric forcing in that case. In future studies, we 503 

recommend applying this system to a region in the coastal ocean, therefore requiring the development of 504 

real-time forecast inputs of open boundary conditions. 505 

 506 

5 Conclusions 507 

 508 

A forecast model for wind-driven hydrodynamics was developed and applied to Lake Ontario using an 509 

approach with relatively low computational demand. Wind-waves and water levels were simulated using a 510 

dynamically coupled Delft3D-SWAN model driven by high resolution atmospheric forcing. Simulations 511 

were able to forecast the wind-driven variability in the lake surface, with seasonal changes in the total water 512 



 

 

levels accounted for by adjusting the datum for each forecast cycle based on observations of the mean water 513 

level. The system provides rapid (~5 h runtime) predictions that are publicly available through the project 514 

webpage, with the automated system forecasting a 48 h period every 6 h. The model has been running 515 

continuously since April 2021, capturing a variety of storm events with storm surges up to 0.30 m and 516 

significant wave heights over 4.00 m. Reliable prediction for wave conditions during winter months are 517 

provided by the forecast model when no wave observations are available, however accuracy is limited 518 

where ice is present as this process is not included in the modelling system. 519 

 520 

Results show that the model is effective in simulating short term fluctuations in the water levels and wave 521 

conditions during strong storm events, with relative errors between observed and forecasted storm surge 522 

magnitudes and significant wave heights of less than 15%. Larger errors typically corresponded to locations 523 

in the lake with larger ranges in observed water levels. For storm events, as the forecast lead time decreases 524 

for progressing forecasts, the simulated results changed as a result of updates to the meteorological forcing. 525 

No constant trends in forecast error due to decreasing forecast length were apparent, with forecast accuracy 526 

increasing with shorter forecasts in some cases and staying constant at others, but overall results agreed 527 

well with observed data for all forecasts leading up to an event, with RMSE for storm surge and waves 528 

below 0.05 m and 0.30 m, respectively. The model compared well with other existing forecast models in 529 

the Great Lakes (GLCFS), yielding comparable results for water level predictions during multiple storm 530 

events. Due to the low computational requirements and pan-Canadian coverage from the High Resolution 531 

Deterministic Prediction System forecasts, this model could be adapted to other Canadian lakes and coastal 532 

seas with available bathymetry data for storm surge prediction and monitoring. 533 

 534 

6 Code and Data Availability Statement 535 

 536 

Real-time model results are available at https://coastlines.engineering.queensu.ca/lake-ontario/, and 537 

archived on the local server, to be made available by contacting the corresponding author. HRDPS input 538 

data is available from the Meteorological Service of Canada Datamart and observed data is openly 539 

accessible online, as cited in the text. The source code and documentation of the open source numerical 540 

model (Delft3D 4.01.01) can be accessed on their online repositories 541 

(https://oss.deltares.nl/web/delft3d/source-code, last access: 19 December, 2023). The Python and 542 

MATLAB scripts, and supporting files used in the automated workflow, as well as data and scripts used 543 

to generate the plots presented in this paper are archived on Zenodo 544 

(https://doi.org/10.5281/zenodo.10407863, Swatridge, 2023).  545 

 546 
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